[LIBTIFF] Update to version 4.0.10. CORE-15854
[reactos.git] / dll / 3rdparty / libtiff / tif_getimage.c
1 /*
2 * Copyright (c) 1991-1997 Sam Leffler
3 * Copyright (c) 1991-1997 Silicon Graphics, Inc.
4 *
5 * Permission to use, copy, modify, distribute, and sell this software and
6 * its documentation for any purpose is hereby granted without fee, provided
7 * that (i) the above copyright notices and this permission notice appear in
8 * all copies of the software and related documentation, and (ii) the names of
9 * Sam Leffler and Silicon Graphics may not be used in any advertising or
10 * publicity relating to the software without the specific, prior written
11 * permission of Sam Leffler and Silicon Graphics.
12 *
13 * THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND,
14 * EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY
15 * WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
16 *
17 * IN NO EVENT SHALL SAM LEFFLER OR SILICON GRAPHICS BE LIABLE FOR
18 * ANY SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND,
19 * OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
20 * WHETHER OR NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF
21 * LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
22 * OF THIS SOFTWARE.
23 */
24
25 /*
26 * TIFF Library
27 *
28 * Read and return a packed RGBA image.
29 */
30 #include <precomp.h>
31 //#include <stdio.h>
32
33 static int gtTileContig(TIFFRGBAImage*, uint32*, uint32, uint32);
34 static int gtTileSeparate(TIFFRGBAImage*, uint32*, uint32, uint32);
35 static int gtStripContig(TIFFRGBAImage*, uint32*, uint32, uint32);
36 static int gtStripSeparate(TIFFRGBAImage*, uint32*, uint32, uint32);
37 static int PickContigCase(TIFFRGBAImage*);
38 static int PickSeparateCase(TIFFRGBAImage*);
39
40 static int BuildMapUaToAa(TIFFRGBAImage* img);
41 static int BuildMapBitdepth16To8(TIFFRGBAImage* img);
42
43 static const char photoTag[] = "PhotometricInterpretation";
44
45 /*
46 * Helper constants used in Orientation tag handling
47 */
48 #define FLIP_VERTICALLY 0x01
49 #define FLIP_HORIZONTALLY 0x02
50
51 /*
52 * Color conversion constants. We will define display types here.
53 */
54
55 static const TIFFDisplay display_sRGB = {
56 { /* XYZ -> luminance matrix */
57 { 3.2410F, -1.5374F, -0.4986F },
58 { -0.9692F, 1.8760F, 0.0416F },
59 { 0.0556F, -0.2040F, 1.0570F }
60 },
61 100.0F, 100.0F, 100.0F, /* Light o/p for reference white */
62 255, 255, 255, /* Pixel values for ref. white */
63 1.0F, 1.0F, 1.0F, /* Residual light o/p for black pixel */
64 2.4F, 2.4F, 2.4F, /* Gamma values for the three guns */
65 };
66
67 /*
68 * Check the image to see if TIFFReadRGBAImage can deal with it.
69 * 1/0 is returned according to whether or not the image can
70 * be handled. If 0 is returned, emsg contains the reason
71 * why it is being rejected.
72 */
73 int
74 TIFFRGBAImageOK(TIFF* tif, char emsg[1024])
75 {
76 TIFFDirectory* td = &tif->tif_dir;
77 uint16 photometric;
78 int colorchannels;
79
80 if (!tif->tif_decodestatus) {
81 sprintf(emsg, "Sorry, requested compression method is not configured");
82 return (0);
83 }
84 switch (td->td_bitspersample) {
85 case 1:
86 case 2:
87 case 4:
88 case 8:
89 case 16:
90 break;
91 default:
92 sprintf(emsg, "Sorry, can not handle images with %d-bit samples",
93 td->td_bitspersample);
94 return (0);
95 }
96 if (td->td_sampleformat == SAMPLEFORMAT_IEEEFP) {
97 sprintf(emsg, "Sorry, can not handle images with IEEE floating-point samples");
98 return (0);
99 }
100 colorchannels = td->td_samplesperpixel - td->td_extrasamples;
101 if (!TIFFGetField(tif, TIFFTAG_PHOTOMETRIC, &photometric)) {
102 switch (colorchannels) {
103 case 1:
104 photometric = PHOTOMETRIC_MINISBLACK;
105 break;
106 case 3:
107 photometric = PHOTOMETRIC_RGB;
108 break;
109 default:
110 sprintf(emsg, "Missing needed %s tag", photoTag);
111 return (0);
112 }
113 }
114 switch (photometric) {
115 case PHOTOMETRIC_MINISWHITE:
116 case PHOTOMETRIC_MINISBLACK:
117 case PHOTOMETRIC_PALETTE:
118 if (td->td_planarconfig == PLANARCONFIG_CONTIG
119 && td->td_samplesperpixel != 1
120 && td->td_bitspersample < 8 ) {
121 sprintf(emsg,
122 "Sorry, can not handle contiguous data with %s=%d, "
123 "and %s=%d and Bits/Sample=%d",
124 photoTag, photometric,
125 "Samples/pixel", td->td_samplesperpixel,
126 td->td_bitspersample);
127 return (0);
128 }
129 /*
130 * We should likely validate that any extra samples are either
131 * to be ignored, or are alpha, and if alpha we should try to use
132 * them. But for now we won't bother with this.
133 */
134 break;
135 case PHOTOMETRIC_YCBCR:
136 /*
137 * TODO: if at all meaningful and useful, make more complete
138 * support check here, or better still, refactor to let supporting
139 * code decide whether there is support and what meaningful
140 * error to return
141 */
142 break;
143 case PHOTOMETRIC_RGB:
144 if (colorchannels < 3) {
145 sprintf(emsg, "Sorry, can not handle RGB image with %s=%d",
146 "Color channels", colorchannels);
147 return (0);
148 }
149 break;
150 case PHOTOMETRIC_SEPARATED:
151 {
152 uint16 inkset;
153 TIFFGetFieldDefaulted(tif, TIFFTAG_INKSET, &inkset);
154 if (inkset != INKSET_CMYK) {
155 sprintf(emsg,
156 "Sorry, can not handle separated image with %s=%d",
157 "InkSet", inkset);
158 return 0;
159 }
160 if (td->td_samplesperpixel < 4) {
161 sprintf(emsg,
162 "Sorry, can not handle separated image with %s=%d",
163 "Samples/pixel", td->td_samplesperpixel);
164 return 0;
165 }
166 break;
167 }
168 case PHOTOMETRIC_LOGL:
169 if (td->td_compression != COMPRESSION_SGILOG) {
170 sprintf(emsg, "Sorry, LogL data must have %s=%d",
171 "Compression", COMPRESSION_SGILOG);
172 return (0);
173 }
174 break;
175 case PHOTOMETRIC_LOGLUV:
176 if (td->td_compression != COMPRESSION_SGILOG &&
177 td->td_compression != COMPRESSION_SGILOG24) {
178 sprintf(emsg, "Sorry, LogLuv data must have %s=%d or %d",
179 "Compression", COMPRESSION_SGILOG, COMPRESSION_SGILOG24);
180 return (0);
181 }
182 if (td->td_planarconfig != PLANARCONFIG_CONTIG) {
183 sprintf(emsg, "Sorry, can not handle LogLuv images with %s=%d",
184 "Planarconfiguration", td->td_planarconfig);
185 return (0);
186 }
187 if ( td->td_samplesperpixel != 3 || colorchannels != 3 ) {
188 sprintf(emsg,
189 "Sorry, can not handle image with %s=%d, %s=%d",
190 "Samples/pixel", td->td_samplesperpixel,
191 "colorchannels", colorchannels);
192 return 0;
193 }
194 break;
195 case PHOTOMETRIC_CIELAB:
196 if ( td->td_samplesperpixel != 3 || colorchannels != 3 || td->td_bitspersample != 8 ) {
197 sprintf(emsg,
198 "Sorry, can not handle image with %s=%d, %s=%d and %s=%d",
199 "Samples/pixel", td->td_samplesperpixel,
200 "colorchannels", colorchannels,
201 "Bits/sample", td->td_bitspersample);
202 return 0;
203 }
204 break;
205 default:
206 sprintf(emsg, "Sorry, can not handle image with %s=%d",
207 photoTag, photometric);
208 return (0);
209 }
210 return (1);
211 }
212
213 void
214 TIFFRGBAImageEnd(TIFFRGBAImage* img)
215 {
216 if (img->Map) {
217 _TIFFfree(img->Map);
218 img->Map = NULL;
219 }
220 if (img->BWmap) {
221 _TIFFfree(img->BWmap);
222 img->BWmap = NULL;
223 }
224 if (img->PALmap) {
225 _TIFFfree(img->PALmap);
226 img->PALmap = NULL;
227 }
228 if (img->ycbcr) {
229 _TIFFfree(img->ycbcr);
230 img->ycbcr = NULL;
231 }
232 if (img->cielab) {
233 _TIFFfree(img->cielab);
234 img->cielab = NULL;
235 }
236 if (img->UaToAa) {
237 _TIFFfree(img->UaToAa);
238 img->UaToAa = NULL;
239 }
240 if (img->Bitdepth16To8) {
241 _TIFFfree(img->Bitdepth16To8);
242 img->Bitdepth16To8 = NULL;
243 }
244
245 if( img->redcmap ) {
246 _TIFFfree( img->redcmap );
247 _TIFFfree( img->greencmap );
248 _TIFFfree( img->bluecmap );
249 img->redcmap = img->greencmap = img->bluecmap = NULL;
250 }
251 }
252
253 static int
254 isCCITTCompression(TIFF* tif)
255 {
256 uint16 compress;
257 TIFFGetField(tif, TIFFTAG_COMPRESSION, &compress);
258 return (compress == COMPRESSION_CCITTFAX3 ||
259 compress == COMPRESSION_CCITTFAX4 ||
260 compress == COMPRESSION_CCITTRLE ||
261 compress == COMPRESSION_CCITTRLEW);
262 }
263
264 int
265 TIFFRGBAImageBegin(TIFFRGBAImage* img, TIFF* tif, int stop, char emsg[1024])
266 {
267 uint16* sampleinfo;
268 uint16 extrasamples;
269 uint16 planarconfig;
270 uint16 compress;
271 int colorchannels;
272 uint16 *red_orig, *green_orig, *blue_orig;
273 int n_color;
274
275 if( !TIFFRGBAImageOK(tif, emsg) )
276 return 0;
277
278 /* Initialize to normal values */
279 img->row_offset = 0;
280 img->col_offset = 0;
281 img->redcmap = NULL;
282 img->greencmap = NULL;
283 img->bluecmap = NULL;
284 img->Map = NULL;
285 img->BWmap = NULL;
286 img->PALmap = NULL;
287 img->ycbcr = NULL;
288 img->cielab = NULL;
289 img->UaToAa = NULL;
290 img->Bitdepth16To8 = NULL;
291 img->req_orientation = ORIENTATION_BOTLEFT; /* It is the default */
292
293 img->tif = tif;
294 img->stoponerr = stop;
295 TIFFGetFieldDefaulted(tif, TIFFTAG_BITSPERSAMPLE, &img->bitspersample);
296 switch (img->bitspersample) {
297 case 1:
298 case 2:
299 case 4:
300 case 8:
301 case 16:
302 break;
303 default:
304 sprintf(emsg, "Sorry, can not handle images with %d-bit samples",
305 img->bitspersample);
306 goto fail_return;
307 }
308 img->alpha = 0;
309 TIFFGetFieldDefaulted(tif, TIFFTAG_SAMPLESPERPIXEL, &img->samplesperpixel);
310 TIFFGetFieldDefaulted(tif, TIFFTAG_EXTRASAMPLES,
311 &extrasamples, &sampleinfo);
312 if (extrasamples >= 1)
313 {
314 switch (sampleinfo[0]) {
315 case EXTRASAMPLE_UNSPECIFIED: /* Workaround for some images without */
316 if (img->samplesperpixel > 3) /* correct info about alpha channel */
317 img->alpha = EXTRASAMPLE_ASSOCALPHA;
318 break;
319 case EXTRASAMPLE_ASSOCALPHA: /* data is pre-multiplied */
320 case EXTRASAMPLE_UNASSALPHA: /* data is not pre-multiplied */
321 img->alpha = sampleinfo[0];
322 break;
323 }
324 }
325
326 #ifdef DEFAULT_EXTRASAMPLE_AS_ALPHA
327 if( !TIFFGetField(tif, TIFFTAG_PHOTOMETRIC, &img->photometric))
328 img->photometric = PHOTOMETRIC_MINISWHITE;
329
330 if( extrasamples == 0
331 && img->samplesperpixel == 4
332 && img->photometric == PHOTOMETRIC_RGB )
333 {
334 img->alpha = EXTRASAMPLE_ASSOCALPHA;
335 extrasamples = 1;
336 }
337 #endif
338
339 colorchannels = img->samplesperpixel - extrasamples;
340 TIFFGetFieldDefaulted(tif, TIFFTAG_COMPRESSION, &compress);
341 TIFFGetFieldDefaulted(tif, TIFFTAG_PLANARCONFIG, &planarconfig);
342 if (!TIFFGetField(tif, TIFFTAG_PHOTOMETRIC, &img->photometric)) {
343 switch (colorchannels) {
344 case 1:
345 if (isCCITTCompression(tif))
346 img->photometric = PHOTOMETRIC_MINISWHITE;
347 else
348 img->photometric = PHOTOMETRIC_MINISBLACK;
349 break;
350 case 3:
351 img->photometric = PHOTOMETRIC_RGB;
352 break;
353 default:
354 sprintf(emsg, "Missing needed %s tag", photoTag);
355 goto fail_return;
356 }
357 }
358 switch (img->photometric) {
359 case PHOTOMETRIC_PALETTE:
360 if (!TIFFGetField(tif, TIFFTAG_COLORMAP,
361 &red_orig, &green_orig, &blue_orig)) {
362 sprintf(emsg, "Missing required \"Colormap\" tag");
363 goto fail_return;
364 }
365
366 /* copy the colormaps so we can modify them */
367 n_color = (1U << img->bitspersample);
368 img->redcmap = (uint16 *) _TIFFmalloc(sizeof(uint16)*n_color);
369 img->greencmap = (uint16 *) _TIFFmalloc(sizeof(uint16)*n_color);
370 img->bluecmap = (uint16 *) _TIFFmalloc(sizeof(uint16)*n_color);
371 if( !img->redcmap || !img->greencmap || !img->bluecmap ) {
372 sprintf(emsg, "Out of memory for colormap copy");
373 goto fail_return;
374 }
375
376 _TIFFmemcpy( img->redcmap, red_orig, n_color * 2 );
377 _TIFFmemcpy( img->greencmap, green_orig, n_color * 2 );
378 _TIFFmemcpy( img->bluecmap, blue_orig, n_color * 2 );
379
380 /* fall through... */
381 case PHOTOMETRIC_MINISWHITE:
382 case PHOTOMETRIC_MINISBLACK:
383 if (planarconfig == PLANARCONFIG_CONTIG
384 && img->samplesperpixel != 1
385 && img->bitspersample < 8 ) {
386 sprintf(emsg,
387 "Sorry, can not handle contiguous data with %s=%d, "
388 "and %s=%d and Bits/Sample=%d",
389 photoTag, img->photometric,
390 "Samples/pixel", img->samplesperpixel,
391 img->bitspersample);
392 goto fail_return;
393 }
394 break;
395 case PHOTOMETRIC_YCBCR:
396 /* It would probably be nice to have a reality check here. */
397 if (planarconfig == PLANARCONFIG_CONTIG)
398 /* can rely on libjpeg to convert to RGB */
399 /* XXX should restore current state on exit */
400 switch (compress) {
401 case COMPRESSION_JPEG:
402 /*
403 * TODO: when complete tests verify complete desubsampling
404 * and YCbCr handling, remove use of TIFFTAG_JPEGCOLORMODE in
405 * favor of tif_getimage.c native handling
406 */
407 TIFFSetField(tif, TIFFTAG_JPEGCOLORMODE, JPEGCOLORMODE_RGB);
408 img->photometric = PHOTOMETRIC_RGB;
409 break;
410 default:
411 /* do nothing */;
412 break;
413 }
414 /*
415 * TODO: if at all meaningful and useful, make more complete
416 * support check here, or better still, refactor to let supporting
417 * code decide whether there is support and what meaningful
418 * error to return
419 */
420 break;
421 case PHOTOMETRIC_RGB:
422 if (colorchannels < 3) {
423 sprintf(emsg, "Sorry, can not handle RGB image with %s=%d",
424 "Color channels", colorchannels);
425 goto fail_return;
426 }
427 break;
428 case PHOTOMETRIC_SEPARATED:
429 {
430 uint16 inkset;
431 TIFFGetFieldDefaulted(tif, TIFFTAG_INKSET, &inkset);
432 if (inkset != INKSET_CMYK) {
433 sprintf(emsg, "Sorry, can not handle separated image with %s=%d",
434 "InkSet", inkset);
435 goto fail_return;
436 }
437 if (img->samplesperpixel < 4) {
438 sprintf(emsg, "Sorry, can not handle separated image with %s=%d",
439 "Samples/pixel", img->samplesperpixel);
440 goto fail_return;
441 }
442 }
443 break;
444 case PHOTOMETRIC_LOGL:
445 if (compress != COMPRESSION_SGILOG) {
446 sprintf(emsg, "Sorry, LogL data must have %s=%d",
447 "Compression", COMPRESSION_SGILOG);
448 goto fail_return;
449 }
450 TIFFSetField(tif, TIFFTAG_SGILOGDATAFMT, SGILOGDATAFMT_8BIT);
451 img->photometric = PHOTOMETRIC_MINISBLACK; /* little white lie */
452 img->bitspersample = 8;
453 break;
454 case PHOTOMETRIC_LOGLUV:
455 if (compress != COMPRESSION_SGILOG && compress != COMPRESSION_SGILOG24) {
456 sprintf(emsg, "Sorry, LogLuv data must have %s=%d or %d",
457 "Compression", COMPRESSION_SGILOG, COMPRESSION_SGILOG24);
458 goto fail_return;
459 }
460 if (planarconfig != PLANARCONFIG_CONTIG) {
461 sprintf(emsg, "Sorry, can not handle LogLuv images with %s=%d",
462 "Planarconfiguration", planarconfig);
463 return (0);
464 }
465 TIFFSetField(tif, TIFFTAG_SGILOGDATAFMT, SGILOGDATAFMT_8BIT);
466 img->photometric = PHOTOMETRIC_RGB; /* little white lie */
467 img->bitspersample = 8;
468 break;
469 case PHOTOMETRIC_CIELAB:
470 break;
471 default:
472 sprintf(emsg, "Sorry, can not handle image with %s=%d",
473 photoTag, img->photometric);
474 goto fail_return;
475 }
476 TIFFGetField(tif, TIFFTAG_IMAGEWIDTH, &img->width);
477 TIFFGetField(tif, TIFFTAG_IMAGELENGTH, &img->height);
478 TIFFGetFieldDefaulted(tif, TIFFTAG_ORIENTATION, &img->orientation);
479 img->isContig =
480 !(planarconfig == PLANARCONFIG_SEPARATE && img->samplesperpixel > 1);
481 if (img->isContig) {
482 if (!PickContigCase(img)) {
483 sprintf(emsg, "Sorry, can not handle image");
484 goto fail_return;
485 }
486 } else {
487 if (!PickSeparateCase(img)) {
488 sprintf(emsg, "Sorry, can not handle image");
489 goto fail_return;
490 }
491 }
492 return 1;
493
494 fail_return:
495 TIFFRGBAImageEnd( img );
496 return 0;
497 }
498
499 int
500 TIFFRGBAImageGet(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h)
501 {
502 if (img->get == NULL) {
503 TIFFErrorExt(img->tif->tif_clientdata, TIFFFileName(img->tif), "No \"get\" routine setup");
504 return (0);
505 }
506 if (img->put.any == NULL) {
507 TIFFErrorExt(img->tif->tif_clientdata, TIFFFileName(img->tif),
508 "No \"put\" routine setupl; probably can not handle image format");
509 return (0);
510 }
511 return (*img->get)(img, raster, w, h);
512 }
513
514 /*
515 * Read the specified image into an ABGR-format rastertaking in account
516 * specified orientation.
517 */
518 int
519 TIFFReadRGBAImageOriented(TIFF* tif,
520 uint32 rwidth, uint32 rheight, uint32* raster,
521 int orientation, int stop)
522 {
523 char emsg[1024] = "";
524 TIFFRGBAImage img;
525 int ok;
526
527 if (TIFFRGBAImageOK(tif, emsg) && TIFFRGBAImageBegin(&img, tif, stop, emsg)) {
528 img.req_orientation = (uint16)orientation;
529 /* XXX verify rwidth and rheight against width and height */
530 ok = TIFFRGBAImageGet(&img, raster+(rheight-img.height)*rwidth,
531 rwidth, img.height);
532 TIFFRGBAImageEnd(&img);
533 } else {
534 TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "%s", emsg);
535 ok = 0;
536 }
537 return (ok);
538 }
539
540 /*
541 * Read the specified image into an ABGR-format raster. Use bottom left
542 * origin for raster by default.
543 */
544 int
545 TIFFReadRGBAImage(TIFF* tif,
546 uint32 rwidth, uint32 rheight, uint32* raster, int stop)
547 {
548 return TIFFReadRGBAImageOriented(tif, rwidth, rheight, raster,
549 ORIENTATION_BOTLEFT, stop);
550 }
551
552 static int
553 setorientation(TIFFRGBAImage* img)
554 {
555 switch (img->orientation) {
556 case ORIENTATION_TOPLEFT:
557 case ORIENTATION_LEFTTOP:
558 if (img->req_orientation == ORIENTATION_TOPRIGHT ||
559 img->req_orientation == ORIENTATION_RIGHTTOP)
560 return FLIP_HORIZONTALLY;
561 else if (img->req_orientation == ORIENTATION_BOTRIGHT ||
562 img->req_orientation == ORIENTATION_RIGHTBOT)
563 return FLIP_HORIZONTALLY | FLIP_VERTICALLY;
564 else if (img->req_orientation == ORIENTATION_BOTLEFT ||
565 img->req_orientation == ORIENTATION_LEFTBOT)
566 return FLIP_VERTICALLY;
567 else
568 return 0;
569 case ORIENTATION_TOPRIGHT:
570 case ORIENTATION_RIGHTTOP:
571 if (img->req_orientation == ORIENTATION_TOPLEFT ||
572 img->req_orientation == ORIENTATION_LEFTTOP)
573 return FLIP_HORIZONTALLY;
574 else if (img->req_orientation == ORIENTATION_BOTRIGHT ||
575 img->req_orientation == ORIENTATION_RIGHTBOT)
576 return FLIP_VERTICALLY;
577 else if (img->req_orientation == ORIENTATION_BOTLEFT ||
578 img->req_orientation == ORIENTATION_LEFTBOT)
579 return FLIP_HORIZONTALLY | FLIP_VERTICALLY;
580 else
581 return 0;
582 case ORIENTATION_BOTRIGHT:
583 case ORIENTATION_RIGHTBOT:
584 if (img->req_orientation == ORIENTATION_TOPLEFT ||
585 img->req_orientation == ORIENTATION_LEFTTOP)
586 return FLIP_HORIZONTALLY | FLIP_VERTICALLY;
587 else if (img->req_orientation == ORIENTATION_TOPRIGHT ||
588 img->req_orientation == ORIENTATION_RIGHTTOP)
589 return FLIP_VERTICALLY;
590 else if (img->req_orientation == ORIENTATION_BOTLEFT ||
591 img->req_orientation == ORIENTATION_LEFTBOT)
592 return FLIP_HORIZONTALLY;
593 else
594 return 0;
595 case ORIENTATION_BOTLEFT:
596 case ORIENTATION_LEFTBOT:
597 if (img->req_orientation == ORIENTATION_TOPLEFT ||
598 img->req_orientation == ORIENTATION_LEFTTOP)
599 return FLIP_VERTICALLY;
600 else if (img->req_orientation == ORIENTATION_TOPRIGHT ||
601 img->req_orientation == ORIENTATION_RIGHTTOP)
602 return FLIP_HORIZONTALLY | FLIP_VERTICALLY;
603 else if (img->req_orientation == ORIENTATION_BOTRIGHT ||
604 img->req_orientation == ORIENTATION_RIGHTBOT)
605 return FLIP_HORIZONTALLY;
606 else
607 return 0;
608 default: /* NOTREACHED */
609 return 0;
610 }
611 }
612
613 /*
614 * Get an tile-organized image that has
615 * PlanarConfiguration contiguous if SamplesPerPixel > 1
616 * or
617 * SamplesPerPixel == 1
618 */
619 static int
620 gtTileContig(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h)
621 {
622 TIFF* tif = img->tif;
623 tileContigRoutine put = img->put.contig;
624 uint32 col, row, y, rowstoread;
625 tmsize_t pos;
626 uint32 tw, th;
627 unsigned char* buf = NULL;
628 int32 fromskew, toskew;
629 uint32 nrow;
630 int ret = 1, flip;
631 uint32 this_tw, tocol;
632 int32 this_toskew, leftmost_toskew;
633 int32 leftmost_fromskew;
634 uint32 leftmost_tw;
635 tmsize_t bufsize;
636
637 bufsize = TIFFTileSize(tif);
638 if (bufsize == 0) {
639 TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "%s", "No space for tile buffer");
640 return (0);
641 }
642
643 TIFFGetField(tif, TIFFTAG_TILEWIDTH, &tw);
644 TIFFGetField(tif, TIFFTAG_TILELENGTH, &th);
645
646 flip = setorientation(img);
647 if (flip & FLIP_VERTICALLY) {
648 y = h - 1;
649 toskew = -(int32)(tw + w);
650 }
651 else {
652 y = 0;
653 toskew = -(int32)(tw - w);
654 }
655
656 /*
657 * Leftmost tile is clipped on left side if col_offset > 0.
658 */
659 leftmost_fromskew = img->col_offset % tw;
660 leftmost_tw = tw - leftmost_fromskew;
661 leftmost_toskew = toskew + leftmost_fromskew;
662 for (row = 0; ret != 0 && row < h; row += nrow)
663 {
664 rowstoread = th - (row + img->row_offset) % th;
665 nrow = (row + rowstoread > h ? h - row : rowstoread);
666 fromskew = leftmost_fromskew;
667 this_tw = leftmost_tw;
668 this_toskew = leftmost_toskew;
669 tocol = 0;
670 col = img->col_offset;
671 while (tocol < w)
672 {
673 if (_TIFFReadTileAndAllocBuffer(tif, (void**) &buf, bufsize, col,
674 row+img->row_offset, 0, 0)==(tmsize_t)(-1) &&
675 (buf == NULL || img->stoponerr))
676 {
677 ret = 0;
678 break;
679 }
680 pos = ((row+img->row_offset) % th) * TIFFTileRowSize(tif) + \
681 ((tmsize_t) fromskew * img->samplesperpixel);
682 if (tocol + this_tw > w)
683 {
684 /*
685 * Rightmost tile is clipped on right side.
686 */
687 fromskew = tw - (w - tocol);
688 this_tw = tw - fromskew;
689 this_toskew = toskew + fromskew;
690 }
691 (*put)(img, raster+y*w+tocol, tocol, y, this_tw, nrow, fromskew, this_toskew, buf + pos);
692 tocol += this_tw;
693 col += this_tw;
694 /*
695 * After the leftmost tile, tiles are no longer clipped on left side.
696 */
697 fromskew = 0;
698 this_tw = tw;
699 this_toskew = toskew;
700 }
701
702 y += ((flip & FLIP_VERTICALLY) ? -(int32) nrow : (int32) nrow);
703 }
704 _TIFFfree(buf);
705
706 if (flip & FLIP_HORIZONTALLY) {
707 uint32 line;
708
709 for (line = 0; line < h; line++) {
710 uint32 *left = raster + (line * w);
711 uint32 *right = left + w - 1;
712
713 while ( left < right ) {
714 uint32 temp = *left;
715 *left = *right;
716 *right = temp;
717 left++;
718 right--;
719 }
720 }
721 }
722
723 return (ret);
724 }
725
726 /*
727 * Get an tile-organized image that has
728 * SamplesPerPixel > 1
729 * PlanarConfiguration separated
730 * We assume that all such images are RGB.
731 */
732 static int
733 gtTileSeparate(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h)
734 {
735 TIFF* tif = img->tif;
736 tileSeparateRoutine put = img->put.separate;
737 uint32 col, row, y, rowstoread;
738 tmsize_t pos;
739 uint32 tw, th;
740 unsigned char* buf = NULL;
741 unsigned char* p0 = NULL;
742 unsigned char* p1 = NULL;
743 unsigned char* p2 = NULL;
744 unsigned char* pa = NULL;
745 tmsize_t tilesize;
746 tmsize_t bufsize;
747 int32 fromskew, toskew;
748 int alpha = img->alpha;
749 uint32 nrow;
750 int ret = 1, flip;
751 uint16 colorchannels;
752 uint32 this_tw, tocol;
753 int32 this_toskew, leftmost_toskew;
754 int32 leftmost_fromskew;
755 uint32 leftmost_tw;
756
757 tilesize = TIFFTileSize(tif);
758 bufsize = TIFFSafeMultiply(tmsize_t,alpha?4:3,tilesize);
759 if (bufsize == 0) {
760 TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "Integer overflow in %s", "gtTileSeparate");
761 return (0);
762 }
763
764 TIFFGetField(tif, TIFFTAG_TILEWIDTH, &tw);
765 TIFFGetField(tif, TIFFTAG_TILELENGTH, &th);
766
767 flip = setorientation(img);
768 if (flip & FLIP_VERTICALLY) {
769 y = h - 1;
770 toskew = -(int32)(tw + w);
771 }
772 else {
773 y = 0;
774 toskew = -(int32)(tw - w);
775 }
776
777 switch( img->photometric )
778 {
779 case PHOTOMETRIC_MINISWHITE:
780 case PHOTOMETRIC_MINISBLACK:
781 case PHOTOMETRIC_PALETTE:
782 colorchannels = 1;
783 break;
784
785 default:
786 colorchannels = 3;
787 break;
788 }
789
790 /*
791 * Leftmost tile is clipped on left side if col_offset > 0.
792 */
793 leftmost_fromskew = img->col_offset % tw;
794 leftmost_tw = tw - leftmost_fromskew;
795 leftmost_toskew = toskew + leftmost_fromskew;
796 for (row = 0; ret != 0 && row < h; row += nrow)
797 {
798 rowstoread = th - (row + img->row_offset) % th;
799 nrow = (row + rowstoread > h ? h - row : rowstoread);
800 fromskew = leftmost_fromskew;
801 this_tw = leftmost_tw;
802 this_toskew = leftmost_toskew;
803 tocol = 0;
804 col = img->col_offset;
805 while (tocol < w)
806 {
807 if( buf == NULL )
808 {
809 if (_TIFFReadTileAndAllocBuffer(
810 tif, (void**) &buf, bufsize, col,
811 row+img->row_offset,0,0)==(tmsize_t)(-1)
812 && (buf == NULL || img->stoponerr))
813 {
814 ret = 0;
815 break;
816 }
817 p0 = buf;
818 if( colorchannels == 1 )
819 {
820 p2 = p1 = p0;
821 pa = (alpha?(p0+3*tilesize):NULL);
822 }
823 else
824 {
825 p1 = p0 + tilesize;
826 p2 = p1 + tilesize;
827 pa = (alpha?(p2+tilesize):NULL);
828 }
829 }
830 else if (TIFFReadTile(tif, p0, col,
831 row+img->row_offset,0,0)==(tmsize_t)(-1) && img->stoponerr)
832 {
833 ret = 0;
834 break;
835 }
836 if (colorchannels > 1
837 && TIFFReadTile(tif, p1, col,
838 row+img->row_offset,0,1) == (tmsize_t)(-1)
839 && img->stoponerr)
840 {
841 ret = 0;
842 break;
843 }
844 if (colorchannels > 1
845 && TIFFReadTile(tif, p2, col,
846 row+img->row_offset,0,2) == (tmsize_t)(-1)
847 && img->stoponerr)
848 {
849 ret = 0;
850 break;
851 }
852 if (alpha
853 && TIFFReadTile(tif,pa,col,
854 row+img->row_offset,0,colorchannels) == (tmsize_t)(-1)
855 && img->stoponerr)
856 {
857 ret = 0;
858 break;
859 }
860
861 pos = ((row+img->row_offset) % th) * TIFFTileRowSize(tif) + \
862 ((tmsize_t) fromskew * img->samplesperpixel);
863 if (tocol + this_tw > w)
864 {
865 /*
866 * Rightmost tile is clipped on right side.
867 */
868 fromskew = tw - (w - tocol);
869 this_tw = tw - fromskew;
870 this_toskew = toskew + fromskew;
871 }
872 (*put)(img, raster+y*w+tocol, tocol, y, this_tw, nrow, fromskew, this_toskew, \
873 p0 + pos, p1 + pos, p2 + pos, (alpha?(pa+pos):NULL));
874 tocol += this_tw;
875 col += this_tw;
876 /*
877 * After the leftmost tile, tiles are no longer clipped on left side.
878 */
879 fromskew = 0;
880 this_tw = tw;
881 this_toskew = toskew;
882 }
883
884 y += ((flip & FLIP_VERTICALLY) ?-(int32) nrow : (int32) nrow);
885 }
886
887 if (flip & FLIP_HORIZONTALLY) {
888 uint32 line;
889
890 for (line = 0; line < h; line++) {
891 uint32 *left = raster + (line * w);
892 uint32 *right = left + w - 1;
893
894 while ( left < right ) {
895 uint32 temp = *left;
896 *left = *right;
897 *right = temp;
898 left++;
899 right--;
900 }
901 }
902 }
903
904 _TIFFfree(buf);
905 return (ret);
906 }
907
908 /*
909 * Get a strip-organized image that has
910 * PlanarConfiguration contiguous if SamplesPerPixel > 1
911 * or
912 * SamplesPerPixel == 1
913 */
914 static int
915 gtStripContig(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h)
916 {
917 TIFF* tif = img->tif;
918 tileContigRoutine put = img->put.contig;
919 uint32 row, y, nrow, nrowsub, rowstoread;
920 tmsize_t pos;
921 unsigned char* buf = NULL;
922 uint32 rowsperstrip;
923 uint16 subsamplinghor,subsamplingver;
924 uint32 imagewidth = img->width;
925 tmsize_t scanline;
926 int32 fromskew, toskew;
927 int ret = 1, flip;
928 tmsize_t maxstripsize;
929
930 TIFFGetFieldDefaulted(tif, TIFFTAG_YCBCRSUBSAMPLING, &subsamplinghor, &subsamplingver);
931 if( subsamplingver == 0 ) {
932 TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "Invalid vertical YCbCr subsampling");
933 return (0);
934 }
935
936 maxstripsize = TIFFStripSize(tif);
937
938 flip = setorientation(img);
939 if (flip & FLIP_VERTICALLY) {
940 y = h - 1;
941 toskew = -(int32)(w + w);
942 } else {
943 y = 0;
944 toskew = -(int32)(w - w);
945 }
946
947 TIFFGetFieldDefaulted(tif, TIFFTAG_ROWSPERSTRIP, &rowsperstrip);
948
949 scanline = TIFFScanlineSize(tif);
950 fromskew = (w < imagewidth ? imagewidth - w : 0);
951 for (row = 0; row < h; row += nrow)
952 {
953 rowstoread = rowsperstrip - (row + img->row_offset) % rowsperstrip;
954 nrow = (row + rowstoread > h ? h - row : rowstoread);
955 nrowsub = nrow;
956 if ((nrowsub%subsamplingver)!=0)
957 nrowsub+=subsamplingver-nrowsub%subsamplingver;
958 if (_TIFFReadEncodedStripAndAllocBuffer(tif,
959 TIFFComputeStrip(tif,row+img->row_offset, 0),
960 (void**)(&buf),
961 maxstripsize,
962 ((row + img->row_offset)%rowsperstrip + nrowsub) * scanline)==(tmsize_t)(-1)
963 && (buf == NULL || img->stoponerr))
964 {
965 ret = 0;
966 break;
967 }
968
969 pos = ((row + img->row_offset) % rowsperstrip) * scanline + \
970 ((tmsize_t) img->col_offset * img->samplesperpixel);
971 (*put)(img, raster+y*w, 0, y, w, nrow, fromskew, toskew, buf + pos);
972 y += ((flip & FLIP_VERTICALLY) ? -(int32) nrow : (int32) nrow);
973 }
974
975 if (flip & FLIP_HORIZONTALLY) {
976 uint32 line;
977
978 for (line = 0; line < h; line++) {
979 uint32 *left = raster + (line * w);
980 uint32 *right = left + w - 1;
981
982 while ( left < right ) {
983 uint32 temp = *left;
984 *left = *right;
985 *right = temp;
986 left++;
987 right--;
988 }
989 }
990 }
991
992 _TIFFfree(buf);
993 return (ret);
994 }
995
996 /*
997 * Get a strip-organized image with
998 * SamplesPerPixel > 1
999 * PlanarConfiguration separated
1000 * We assume that all such images are RGB.
1001 */
1002 static int
1003 gtStripSeparate(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h)
1004 {
1005 TIFF* tif = img->tif;
1006 tileSeparateRoutine put = img->put.separate;
1007 unsigned char *buf = NULL;
1008 unsigned char *p0 = NULL, *p1 = NULL, *p2 = NULL, *pa = NULL;
1009 uint32 row, y, nrow, rowstoread;
1010 tmsize_t pos;
1011 tmsize_t scanline;
1012 uint32 rowsperstrip, offset_row;
1013 uint32 imagewidth = img->width;
1014 tmsize_t stripsize;
1015 tmsize_t bufsize;
1016 int32 fromskew, toskew;
1017 int alpha = img->alpha;
1018 int ret = 1, flip;
1019 uint16 colorchannels;
1020
1021 stripsize = TIFFStripSize(tif);
1022 bufsize = TIFFSafeMultiply(tmsize_t,alpha?4:3,stripsize);
1023 if (bufsize == 0) {
1024 TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "Integer overflow in %s", "gtStripSeparate");
1025 return (0);
1026 }
1027
1028 flip = setorientation(img);
1029 if (flip & FLIP_VERTICALLY) {
1030 y = h - 1;
1031 toskew = -(int32)(w + w);
1032 }
1033 else {
1034 y = 0;
1035 toskew = -(int32)(w - w);
1036 }
1037
1038 switch( img->photometric )
1039 {
1040 case PHOTOMETRIC_MINISWHITE:
1041 case PHOTOMETRIC_MINISBLACK:
1042 case PHOTOMETRIC_PALETTE:
1043 colorchannels = 1;
1044 break;
1045
1046 default:
1047 colorchannels = 3;
1048 break;
1049 }
1050
1051 TIFFGetFieldDefaulted(tif, TIFFTAG_ROWSPERSTRIP, &rowsperstrip);
1052 scanline = TIFFScanlineSize(tif);
1053 fromskew = (w < imagewidth ? imagewidth - w : 0);
1054 for (row = 0; row < h; row += nrow)
1055 {
1056 rowstoread = rowsperstrip - (row + img->row_offset) % rowsperstrip;
1057 nrow = (row + rowstoread > h ? h - row : rowstoread);
1058 offset_row = row + img->row_offset;
1059 if( buf == NULL )
1060 {
1061 if (_TIFFReadEncodedStripAndAllocBuffer(
1062 tif, TIFFComputeStrip(tif, offset_row, 0),
1063 (void**) &buf, bufsize,
1064 ((row + img->row_offset)%rowsperstrip + nrow) * scanline)==(tmsize_t)(-1)
1065 && (buf == NULL || img->stoponerr))
1066 {
1067 ret = 0;
1068 break;
1069 }
1070 p0 = buf;
1071 if( colorchannels == 1 )
1072 {
1073 p2 = p1 = p0;
1074 pa = (alpha?(p0+3*stripsize):NULL);
1075 }
1076 else
1077 {
1078 p1 = p0 + stripsize;
1079 p2 = p1 + stripsize;
1080 pa = (alpha?(p2+stripsize):NULL);
1081 }
1082 }
1083 else if (TIFFReadEncodedStrip(tif, TIFFComputeStrip(tif, offset_row, 0),
1084 p0, ((row + img->row_offset)%rowsperstrip + nrow) * scanline)==(tmsize_t)(-1)
1085 && img->stoponerr)
1086 {
1087 ret = 0;
1088 break;
1089 }
1090 if (colorchannels > 1
1091 && TIFFReadEncodedStrip(tif, TIFFComputeStrip(tif, offset_row, 1),
1092 p1, ((row + img->row_offset)%rowsperstrip + nrow) * scanline) == (tmsize_t)(-1)
1093 && img->stoponerr)
1094 {
1095 ret = 0;
1096 break;
1097 }
1098 if (colorchannels > 1
1099 && TIFFReadEncodedStrip(tif, TIFFComputeStrip(tif, offset_row, 2),
1100 p2, ((row + img->row_offset)%rowsperstrip + nrow) * scanline) == (tmsize_t)(-1)
1101 && img->stoponerr)
1102 {
1103 ret = 0;
1104 break;
1105 }
1106 if (alpha)
1107 {
1108 if (TIFFReadEncodedStrip(tif, TIFFComputeStrip(tif, offset_row, colorchannels),
1109 pa, ((row + img->row_offset)%rowsperstrip + nrow) * scanline)==(tmsize_t)(-1)
1110 && img->stoponerr)
1111 {
1112 ret = 0;
1113 break;
1114 }
1115 }
1116
1117 pos = ((row + img->row_offset) % rowsperstrip) * scanline + \
1118 ((tmsize_t) img->col_offset * img->samplesperpixel);
1119 (*put)(img, raster+y*w, 0, y, w, nrow, fromskew, toskew, p0 + pos, p1 + pos,
1120 p2 + pos, (alpha?(pa+pos):NULL));
1121 y += ((flip & FLIP_VERTICALLY) ? -(int32) nrow : (int32) nrow);
1122 }
1123
1124 if (flip & FLIP_HORIZONTALLY) {
1125 uint32 line;
1126
1127 for (line = 0; line < h; line++) {
1128 uint32 *left = raster + (line * w);
1129 uint32 *right = left + w - 1;
1130
1131 while ( left < right ) {
1132 uint32 temp = *left;
1133 *left = *right;
1134 *right = temp;
1135 left++;
1136 right--;
1137 }
1138 }
1139 }
1140
1141 _TIFFfree(buf);
1142 return (ret);
1143 }
1144
1145 /*
1146 * The following routines move decoded data returned
1147 * from the TIFF library into rasters filled with packed
1148 * ABGR pixels (i.e. suitable for passing to lrecwrite.)
1149 *
1150 * The routines have been created according to the most
1151 * important cases and optimized. PickContigCase and
1152 * PickSeparateCase analyze the parameters and select
1153 * the appropriate "get" and "put" routine to use.
1154 */
1155 #define REPEAT8(op) REPEAT4(op); REPEAT4(op)
1156 #define REPEAT4(op) REPEAT2(op); REPEAT2(op)
1157 #define REPEAT2(op) op; op
1158 #define CASE8(x,op) \
1159 switch (x) { \
1160 case 7: op; /*-fallthrough*/ \
1161 case 6: op; /*-fallthrough*/ \
1162 case 5: op; /*-fallthrough*/ \
1163 case 4: op; /*-fallthrough*/ \
1164 case 3: op; /*-fallthrough*/ \
1165 case 2: op; /*-fallthrough*/ \
1166 case 1: op; \
1167 }
1168 #define CASE4(x,op) switch (x) { case 3: op; /*-fallthrough*/ case 2: op; /*-fallthrough*/ case 1: op; }
1169 #define NOP
1170
1171 #define UNROLL8(w, op1, op2) { \
1172 uint32 _x; \
1173 for (_x = w; _x >= 8; _x -= 8) { \
1174 op1; \
1175 REPEAT8(op2); \
1176 } \
1177 if (_x > 0) { \
1178 op1; \
1179 CASE8(_x,op2); \
1180 } \
1181 }
1182 #define UNROLL4(w, op1, op2) { \
1183 uint32 _x; \
1184 for (_x = w; _x >= 4; _x -= 4) { \
1185 op1; \
1186 REPEAT4(op2); \
1187 } \
1188 if (_x > 0) { \
1189 op1; \
1190 CASE4(_x,op2); \
1191 } \
1192 }
1193 #define UNROLL2(w, op1, op2) { \
1194 uint32 _x; \
1195 for (_x = w; _x >= 2; _x -= 2) { \
1196 op1; \
1197 REPEAT2(op2); \
1198 } \
1199 if (_x) { \
1200 op1; \
1201 op2; \
1202 } \
1203 }
1204
1205 #define SKEW(r,g,b,skew) { r += skew; g += skew; b += skew; }
1206 #define SKEW4(r,g,b,a,skew) { r += skew; g += skew; b += skew; a+= skew; }
1207
1208 #define A1 (((uint32)0xffL)<<24)
1209 #define PACK(r,g,b) \
1210 ((uint32)(r)|((uint32)(g)<<8)|((uint32)(b)<<16)|A1)
1211 #define PACK4(r,g,b,a) \
1212 ((uint32)(r)|((uint32)(g)<<8)|((uint32)(b)<<16)|((uint32)(a)<<24))
1213 #define W2B(v) (((v)>>8)&0xff)
1214 /* TODO: PACKW should have be made redundant in favor of Bitdepth16To8 LUT */
1215 #define PACKW(r,g,b) \
1216 ((uint32)W2B(r)|((uint32)W2B(g)<<8)|((uint32)W2B(b)<<16)|A1)
1217 #define PACKW4(r,g,b,a) \
1218 ((uint32)W2B(r)|((uint32)W2B(g)<<8)|((uint32)W2B(b)<<16)|((uint32)W2B(a)<<24))
1219
1220 #define DECLAREContigPutFunc(name) \
1221 static void name(\
1222 TIFFRGBAImage* img, \
1223 uint32* cp, \
1224 uint32 x, uint32 y, \
1225 uint32 w, uint32 h, \
1226 int32 fromskew, int32 toskew, \
1227 unsigned char* pp \
1228 )
1229
1230 /*
1231 * 8-bit palette => colormap/RGB
1232 */
1233 DECLAREContigPutFunc(put8bitcmaptile)
1234 {
1235 uint32** PALmap = img->PALmap;
1236 int samplesperpixel = img->samplesperpixel;
1237
1238 (void) y;
1239 for( ; h > 0; --h) {
1240 for (x = w; x > 0; --x)
1241 {
1242 *cp++ = PALmap[*pp][0];
1243 pp += samplesperpixel;
1244 }
1245 cp += toskew;
1246 pp += fromskew;
1247 }
1248 }
1249
1250 /*
1251 * 4-bit palette => colormap/RGB
1252 */
1253 DECLAREContigPutFunc(put4bitcmaptile)
1254 {
1255 uint32** PALmap = img->PALmap;
1256
1257 (void) x; (void) y;
1258 fromskew /= 2;
1259 for( ; h > 0; --h) {
1260 uint32* bw;
1261 UNROLL2(w, bw = PALmap[*pp++], *cp++ = *bw++);
1262 cp += toskew;
1263 pp += fromskew;
1264 }
1265 }
1266
1267 /*
1268 * 2-bit palette => colormap/RGB
1269 */
1270 DECLAREContigPutFunc(put2bitcmaptile)
1271 {
1272 uint32** PALmap = img->PALmap;
1273
1274 (void) x; (void) y;
1275 fromskew /= 4;
1276 for( ; h > 0; --h) {
1277 uint32* bw;
1278 UNROLL4(w, bw = PALmap[*pp++], *cp++ = *bw++);
1279 cp += toskew;
1280 pp += fromskew;
1281 }
1282 }
1283
1284 /*
1285 * 1-bit palette => colormap/RGB
1286 */
1287 DECLAREContigPutFunc(put1bitcmaptile)
1288 {
1289 uint32** PALmap = img->PALmap;
1290
1291 (void) x; (void) y;
1292 fromskew /= 8;
1293 for( ; h > 0; --h) {
1294 uint32* bw;
1295 UNROLL8(w, bw = PALmap[*pp++], *cp++ = *bw++);
1296 cp += toskew;
1297 pp += fromskew;
1298 }
1299 }
1300
1301 /*
1302 * 8-bit greyscale => colormap/RGB
1303 */
1304 DECLAREContigPutFunc(putgreytile)
1305 {
1306 int samplesperpixel = img->samplesperpixel;
1307 uint32** BWmap = img->BWmap;
1308
1309 (void) y;
1310 for( ; h > 0; --h) {
1311 for (x = w; x > 0; --x)
1312 {
1313 *cp++ = BWmap[*pp][0];
1314 pp += samplesperpixel;
1315 }
1316 cp += toskew;
1317 pp += fromskew;
1318 }
1319 }
1320
1321 /*
1322 * 8-bit greyscale with associated alpha => colormap/RGBA
1323 */
1324 DECLAREContigPutFunc(putagreytile)
1325 {
1326 int samplesperpixel = img->samplesperpixel;
1327 uint32** BWmap = img->BWmap;
1328
1329 (void) y;
1330 for( ; h > 0; --h) {
1331 for (x = w; x > 0; --x)
1332 {
1333 *cp++ = BWmap[*pp][0] & ((uint32)*(pp+1) << 24 | ~A1);
1334 pp += samplesperpixel;
1335 }
1336 cp += toskew;
1337 pp += fromskew;
1338 }
1339 }
1340
1341 /*
1342 * 16-bit greyscale => colormap/RGB
1343 */
1344 DECLAREContigPutFunc(put16bitbwtile)
1345 {
1346 int samplesperpixel = img->samplesperpixel;
1347 uint32** BWmap = img->BWmap;
1348
1349 (void) y;
1350 for( ; h > 0; --h) {
1351 uint16 *wp = (uint16 *) pp;
1352
1353 for (x = w; x > 0; --x)
1354 {
1355 /* use high order byte of 16bit value */
1356
1357 *cp++ = BWmap[*wp >> 8][0];
1358 pp += 2 * samplesperpixel;
1359 wp += samplesperpixel;
1360 }
1361 cp += toskew;
1362 pp += fromskew;
1363 }
1364 }
1365
1366 /*
1367 * 1-bit bilevel => colormap/RGB
1368 */
1369 DECLAREContigPutFunc(put1bitbwtile)
1370 {
1371 uint32** BWmap = img->BWmap;
1372
1373 (void) x; (void) y;
1374 fromskew /= 8;
1375 for( ; h > 0; --h) {
1376 uint32* bw;
1377 UNROLL8(w, bw = BWmap[*pp++], *cp++ = *bw++);
1378 cp += toskew;
1379 pp += fromskew;
1380 }
1381 }
1382
1383 /*
1384 * 2-bit greyscale => colormap/RGB
1385 */
1386 DECLAREContigPutFunc(put2bitbwtile)
1387 {
1388 uint32** BWmap = img->BWmap;
1389
1390 (void) x; (void) y;
1391 fromskew /= 4;
1392 for( ; h > 0; --h) {
1393 uint32* bw;
1394 UNROLL4(w, bw = BWmap[*pp++], *cp++ = *bw++);
1395 cp += toskew;
1396 pp += fromskew;
1397 }
1398 }
1399
1400 /*
1401 * 4-bit greyscale => colormap/RGB
1402 */
1403 DECLAREContigPutFunc(put4bitbwtile)
1404 {
1405 uint32** BWmap = img->BWmap;
1406
1407 (void) x; (void) y;
1408 fromskew /= 2;
1409 for( ; h > 0; --h) {
1410 uint32* bw;
1411 UNROLL2(w, bw = BWmap[*pp++], *cp++ = *bw++);
1412 cp += toskew;
1413 pp += fromskew;
1414 }
1415 }
1416
1417 /*
1418 * 8-bit packed samples, no Map => RGB
1419 */
1420 DECLAREContigPutFunc(putRGBcontig8bittile)
1421 {
1422 int samplesperpixel = img->samplesperpixel;
1423
1424 (void) x; (void) y;
1425 fromskew *= samplesperpixel;
1426 for( ; h > 0; --h) {
1427 UNROLL8(w, NOP,
1428 *cp++ = PACK(pp[0], pp[1], pp[2]);
1429 pp += samplesperpixel);
1430 cp += toskew;
1431 pp += fromskew;
1432 }
1433 }
1434
1435 /*
1436 * 8-bit packed samples => RGBA w/ associated alpha
1437 * (known to have Map == NULL)
1438 */
1439 DECLAREContigPutFunc(putRGBAAcontig8bittile)
1440 {
1441 int samplesperpixel = img->samplesperpixel;
1442
1443 (void) x; (void) y;
1444 fromskew *= samplesperpixel;
1445 for( ; h > 0; --h) {
1446 UNROLL8(w, NOP,
1447 *cp++ = PACK4(pp[0], pp[1], pp[2], pp[3]);
1448 pp += samplesperpixel);
1449 cp += toskew;
1450 pp += fromskew;
1451 }
1452 }
1453
1454 /*
1455 * 8-bit packed samples => RGBA w/ unassociated alpha
1456 * (known to have Map == NULL)
1457 */
1458 DECLAREContigPutFunc(putRGBUAcontig8bittile)
1459 {
1460 int samplesperpixel = img->samplesperpixel;
1461 (void) y;
1462 fromskew *= samplesperpixel;
1463 for( ; h > 0; --h) {
1464 uint32 r, g, b, a;
1465 uint8* m;
1466 for (x = w; x > 0; --x) {
1467 a = pp[3];
1468 m = img->UaToAa+((size_t) a<<8);
1469 r = m[pp[0]];
1470 g = m[pp[1]];
1471 b = m[pp[2]];
1472 *cp++ = PACK4(r,g,b,a);
1473 pp += samplesperpixel;
1474 }
1475 cp += toskew;
1476 pp += fromskew;
1477 }
1478 }
1479
1480 /*
1481 * 16-bit packed samples => RGB
1482 */
1483 DECLAREContigPutFunc(putRGBcontig16bittile)
1484 {
1485 int samplesperpixel = img->samplesperpixel;
1486 uint16 *wp = (uint16 *)pp;
1487 (void) y;
1488 fromskew *= samplesperpixel;
1489 for( ; h > 0; --h) {
1490 for (x = w; x > 0; --x) {
1491 *cp++ = PACK(img->Bitdepth16To8[wp[0]],
1492 img->Bitdepth16To8[wp[1]],
1493 img->Bitdepth16To8[wp[2]]);
1494 wp += samplesperpixel;
1495 }
1496 cp += toskew;
1497 wp += fromskew;
1498 }
1499 }
1500
1501 /*
1502 * 16-bit packed samples => RGBA w/ associated alpha
1503 * (known to have Map == NULL)
1504 */
1505 DECLAREContigPutFunc(putRGBAAcontig16bittile)
1506 {
1507 int samplesperpixel = img->samplesperpixel;
1508 uint16 *wp = (uint16 *)pp;
1509 (void) y;
1510 fromskew *= samplesperpixel;
1511 for( ; h > 0; --h) {
1512 for (x = w; x > 0; --x) {
1513 *cp++ = PACK4(img->Bitdepth16To8[wp[0]],
1514 img->Bitdepth16To8[wp[1]],
1515 img->Bitdepth16To8[wp[2]],
1516 img->Bitdepth16To8[wp[3]]);
1517 wp += samplesperpixel;
1518 }
1519 cp += toskew;
1520 wp += fromskew;
1521 }
1522 }
1523
1524 /*
1525 * 16-bit packed samples => RGBA w/ unassociated alpha
1526 * (known to have Map == NULL)
1527 */
1528 DECLAREContigPutFunc(putRGBUAcontig16bittile)
1529 {
1530 int samplesperpixel = img->samplesperpixel;
1531 uint16 *wp = (uint16 *)pp;
1532 (void) y;
1533 fromskew *= samplesperpixel;
1534 for( ; h > 0; --h) {
1535 uint32 r,g,b,a;
1536 uint8* m;
1537 for (x = w; x > 0; --x) {
1538 a = img->Bitdepth16To8[wp[3]];
1539 m = img->UaToAa+((size_t) a<<8);
1540 r = m[img->Bitdepth16To8[wp[0]]];
1541 g = m[img->Bitdepth16To8[wp[1]]];
1542 b = m[img->Bitdepth16To8[wp[2]]];
1543 *cp++ = PACK4(r,g,b,a);
1544 wp += samplesperpixel;
1545 }
1546 cp += toskew;
1547 wp += fromskew;
1548 }
1549 }
1550
1551 /*
1552 * 8-bit packed CMYK samples w/o Map => RGB
1553 *
1554 * NB: The conversion of CMYK->RGB is *very* crude.
1555 */
1556 DECLAREContigPutFunc(putRGBcontig8bitCMYKtile)
1557 {
1558 int samplesperpixel = img->samplesperpixel;
1559 uint16 r, g, b, k;
1560
1561 (void) x; (void) y;
1562 fromskew *= samplesperpixel;
1563 for( ; h > 0; --h) {
1564 UNROLL8(w, NOP,
1565 k = 255 - pp[3];
1566 r = (k*(255-pp[0]))/255;
1567 g = (k*(255-pp[1]))/255;
1568 b = (k*(255-pp[2]))/255;
1569 *cp++ = PACK(r, g, b);
1570 pp += samplesperpixel);
1571 cp += toskew;
1572 pp += fromskew;
1573 }
1574 }
1575
1576 /*
1577 * 8-bit packed CMYK samples w/Map => RGB
1578 *
1579 * NB: The conversion of CMYK->RGB is *very* crude.
1580 */
1581 DECLAREContigPutFunc(putRGBcontig8bitCMYKMaptile)
1582 {
1583 int samplesperpixel = img->samplesperpixel;
1584 TIFFRGBValue* Map = img->Map;
1585 uint16 r, g, b, k;
1586
1587 (void) y;
1588 fromskew *= samplesperpixel;
1589 for( ; h > 0; --h) {
1590 for (x = w; x > 0; --x) {
1591 k = 255 - pp[3];
1592 r = (k*(255-pp[0]))/255;
1593 g = (k*(255-pp[1]))/255;
1594 b = (k*(255-pp[2]))/255;
1595 *cp++ = PACK(Map[r], Map[g], Map[b]);
1596 pp += samplesperpixel;
1597 }
1598 pp += fromskew;
1599 cp += toskew;
1600 }
1601 }
1602
1603 #define DECLARESepPutFunc(name) \
1604 static void name(\
1605 TIFFRGBAImage* img,\
1606 uint32* cp,\
1607 uint32 x, uint32 y, \
1608 uint32 w, uint32 h,\
1609 int32 fromskew, int32 toskew,\
1610 unsigned char* r, unsigned char* g, unsigned char* b, unsigned char* a\
1611 )
1612
1613 /*
1614 * 8-bit unpacked samples => RGB
1615 */
1616 DECLARESepPutFunc(putRGBseparate8bittile)
1617 {
1618 (void) img; (void) x; (void) y; (void) a;
1619 for( ; h > 0; --h) {
1620 UNROLL8(w, NOP, *cp++ = PACK(*r++, *g++, *b++));
1621 SKEW(r, g, b, fromskew);
1622 cp += toskew;
1623 }
1624 }
1625
1626 /*
1627 * 8-bit unpacked samples => RGBA w/ associated alpha
1628 */
1629 DECLARESepPutFunc(putRGBAAseparate8bittile)
1630 {
1631 (void) img; (void) x; (void) y;
1632 for( ; h > 0; --h) {
1633 UNROLL8(w, NOP, *cp++ = PACK4(*r++, *g++, *b++, *a++));
1634 SKEW4(r, g, b, a, fromskew);
1635 cp += toskew;
1636 }
1637 }
1638
1639 /*
1640 * 8-bit unpacked CMYK samples => RGBA
1641 */
1642 DECLARESepPutFunc(putCMYKseparate8bittile)
1643 {
1644 (void) img; (void) y;
1645 for( ; h > 0; --h) {
1646 uint32 rv, gv, bv, kv;
1647 for (x = w; x > 0; --x) {
1648 kv = 255 - *a++;
1649 rv = (kv*(255-*r++))/255;
1650 gv = (kv*(255-*g++))/255;
1651 bv = (kv*(255-*b++))/255;
1652 *cp++ = PACK4(rv,gv,bv,255);
1653 }
1654 SKEW4(r, g, b, a, fromskew);
1655 cp += toskew;
1656 }
1657 }
1658
1659 /*
1660 * 8-bit unpacked samples => RGBA w/ unassociated alpha
1661 */
1662 DECLARESepPutFunc(putRGBUAseparate8bittile)
1663 {
1664 (void) img; (void) y;
1665 for( ; h > 0; --h) {
1666 uint32 rv, gv, bv, av;
1667 uint8* m;
1668 for (x = w; x > 0; --x) {
1669 av = *a++;
1670 m = img->UaToAa+((size_t) av<<8);
1671 rv = m[*r++];
1672 gv = m[*g++];
1673 bv = m[*b++];
1674 *cp++ = PACK4(rv,gv,bv,av);
1675 }
1676 SKEW4(r, g, b, a, fromskew);
1677 cp += toskew;
1678 }
1679 }
1680
1681 /*
1682 * 16-bit unpacked samples => RGB
1683 */
1684 DECLARESepPutFunc(putRGBseparate16bittile)
1685 {
1686 uint16 *wr = (uint16*) r;
1687 uint16 *wg = (uint16*) g;
1688 uint16 *wb = (uint16*) b;
1689 (void) img; (void) y; (void) a;
1690 for( ; h > 0; --h) {
1691 for (x = 0; x < w; x++)
1692 *cp++ = PACK(img->Bitdepth16To8[*wr++],
1693 img->Bitdepth16To8[*wg++],
1694 img->Bitdepth16To8[*wb++]);
1695 SKEW(wr, wg, wb, fromskew);
1696 cp += toskew;
1697 }
1698 }
1699
1700 /*
1701 * 16-bit unpacked samples => RGBA w/ associated alpha
1702 */
1703 DECLARESepPutFunc(putRGBAAseparate16bittile)
1704 {
1705 uint16 *wr = (uint16*) r;
1706 uint16 *wg = (uint16*) g;
1707 uint16 *wb = (uint16*) b;
1708 uint16 *wa = (uint16*) a;
1709 (void) img; (void) y;
1710 for( ; h > 0; --h) {
1711 for (x = 0; x < w; x++)
1712 *cp++ = PACK4(img->Bitdepth16To8[*wr++],
1713 img->Bitdepth16To8[*wg++],
1714 img->Bitdepth16To8[*wb++],
1715 img->Bitdepth16To8[*wa++]);
1716 SKEW4(wr, wg, wb, wa, fromskew);
1717 cp += toskew;
1718 }
1719 }
1720
1721 /*
1722 * 16-bit unpacked samples => RGBA w/ unassociated alpha
1723 */
1724 DECLARESepPutFunc(putRGBUAseparate16bittile)
1725 {
1726 uint16 *wr = (uint16*) r;
1727 uint16 *wg = (uint16*) g;
1728 uint16 *wb = (uint16*) b;
1729 uint16 *wa = (uint16*) a;
1730 (void) img; (void) y;
1731 for( ; h > 0; --h) {
1732 uint32 r2,g2,b2,a2;
1733 uint8* m;
1734 for (x = w; x > 0; --x) {
1735 a2 = img->Bitdepth16To8[*wa++];
1736 m = img->UaToAa+((size_t) a2<<8);
1737 r2 = m[img->Bitdepth16To8[*wr++]];
1738 g2 = m[img->Bitdepth16To8[*wg++]];
1739 b2 = m[img->Bitdepth16To8[*wb++]];
1740 *cp++ = PACK4(r2,g2,b2,a2);
1741 }
1742 SKEW4(wr, wg, wb, wa, fromskew);
1743 cp += toskew;
1744 }
1745 }
1746
1747 /*
1748 * 8-bit packed CIE L*a*b 1976 samples => RGB
1749 */
1750 DECLAREContigPutFunc(putcontig8bitCIELab)
1751 {
1752 float X, Y, Z;
1753 uint32 r, g, b;
1754 (void) y;
1755 fromskew *= 3;
1756 for( ; h > 0; --h) {
1757 for (x = w; x > 0; --x) {
1758 TIFFCIELabToXYZ(img->cielab,
1759 (unsigned char)pp[0],
1760 (signed char)pp[1],
1761 (signed char)pp[2],
1762 &X, &Y, &Z);
1763 TIFFXYZToRGB(img->cielab, X, Y, Z, &r, &g, &b);
1764 *cp++ = PACK(r, g, b);
1765 pp += 3;
1766 }
1767 cp += toskew;
1768 pp += fromskew;
1769 }
1770 }
1771
1772 /*
1773 * YCbCr -> RGB conversion and packing routines.
1774 */
1775
1776 #define YCbCrtoRGB(dst, Y) { \
1777 uint32 r, g, b; \
1778 TIFFYCbCrtoRGB(img->ycbcr, (Y), Cb, Cr, &r, &g, &b); \
1779 dst = PACK(r, g, b); \
1780 }
1781
1782 /*
1783 * 8-bit packed YCbCr samples => RGB
1784 * This function is generic for different sampling sizes,
1785 * and can handle blocks sizes that aren't multiples of the
1786 * sampling size. However, it is substantially less optimized
1787 * than the specific sampling cases. It is used as a fallback
1788 * for difficult blocks.
1789 */
1790 #ifdef notdef
1791 static void putcontig8bitYCbCrGenericTile(
1792 TIFFRGBAImage* img,
1793 uint32* cp,
1794 uint32 x, uint32 y,
1795 uint32 w, uint32 h,
1796 int32 fromskew, int32 toskew,
1797 unsigned char* pp,
1798 int h_group,
1799 int v_group )
1800
1801 {
1802 uint32* cp1 = cp+w+toskew;
1803 uint32* cp2 = cp1+w+toskew;
1804 uint32* cp3 = cp2+w+toskew;
1805 int32 incr = 3*w+4*toskew;
1806 int32 Cb, Cr;
1807 int group_size = v_group * h_group + 2;
1808
1809 (void) y;
1810 fromskew = (fromskew * group_size) / h_group;
1811
1812 for( yy = 0; yy < h; yy++ )
1813 {
1814 unsigned char *pp_line;
1815 int y_line_group = yy / v_group;
1816 int y_remainder = yy - y_line_group * v_group;
1817
1818 pp_line = pp + v_line_group *
1819
1820
1821 for( xx = 0; xx < w; xx++ )
1822 {
1823 Cb = pp
1824 }
1825 }
1826 for (; h >= 4; h -= 4) {
1827 x = w>>2;
1828 do {
1829 Cb = pp[16];
1830 Cr = pp[17];
1831
1832 YCbCrtoRGB(cp [0], pp[ 0]);
1833 YCbCrtoRGB(cp [1], pp[ 1]);
1834 YCbCrtoRGB(cp [2], pp[ 2]);
1835 YCbCrtoRGB(cp [3], pp[ 3]);
1836 YCbCrtoRGB(cp1[0], pp[ 4]);
1837 YCbCrtoRGB(cp1[1], pp[ 5]);
1838 YCbCrtoRGB(cp1[2], pp[ 6]);
1839 YCbCrtoRGB(cp1[3], pp[ 7]);
1840 YCbCrtoRGB(cp2[0], pp[ 8]);
1841 YCbCrtoRGB(cp2[1], pp[ 9]);
1842 YCbCrtoRGB(cp2[2], pp[10]);
1843 YCbCrtoRGB(cp2[3], pp[11]);
1844 YCbCrtoRGB(cp3[0], pp[12]);
1845 YCbCrtoRGB(cp3[1], pp[13]);
1846 YCbCrtoRGB(cp3[2], pp[14]);
1847 YCbCrtoRGB(cp3[3], pp[15]);
1848
1849 cp += 4, cp1 += 4, cp2 += 4, cp3 += 4;
1850 pp += 18;
1851 } while (--x);
1852 cp += incr, cp1 += incr, cp2 += incr, cp3 += incr;
1853 pp += fromskew;
1854 }
1855 }
1856 #endif
1857
1858 /*
1859 * 8-bit packed YCbCr samples w/ 4,4 subsampling => RGB
1860 */
1861 DECLAREContigPutFunc(putcontig8bitYCbCr44tile)
1862 {
1863 uint32* cp1 = cp+w+toskew;
1864 uint32* cp2 = cp1+w+toskew;
1865 uint32* cp3 = cp2+w+toskew;
1866 int32 incr = 3*w+4*toskew;
1867
1868 (void) y;
1869 /* adjust fromskew */
1870 fromskew = (fromskew / 4) * (4*2+2);
1871 if ((h & 3) == 0 && (w & 3) == 0) {
1872 for (; h >= 4; h -= 4) {
1873 x = w>>2;
1874 do {
1875 int32 Cb = pp[16];
1876 int32 Cr = pp[17];
1877
1878 YCbCrtoRGB(cp [0], pp[ 0]);
1879 YCbCrtoRGB(cp [1], pp[ 1]);
1880 YCbCrtoRGB(cp [2], pp[ 2]);
1881 YCbCrtoRGB(cp [3], pp[ 3]);
1882 YCbCrtoRGB(cp1[0], pp[ 4]);
1883 YCbCrtoRGB(cp1[1], pp[ 5]);
1884 YCbCrtoRGB(cp1[2], pp[ 6]);
1885 YCbCrtoRGB(cp1[3], pp[ 7]);
1886 YCbCrtoRGB(cp2[0], pp[ 8]);
1887 YCbCrtoRGB(cp2[1], pp[ 9]);
1888 YCbCrtoRGB(cp2[2], pp[10]);
1889 YCbCrtoRGB(cp2[3], pp[11]);
1890 YCbCrtoRGB(cp3[0], pp[12]);
1891 YCbCrtoRGB(cp3[1], pp[13]);
1892 YCbCrtoRGB(cp3[2], pp[14]);
1893 YCbCrtoRGB(cp3[3], pp[15]);
1894
1895 cp += 4;
1896 cp1 += 4;
1897 cp2 += 4;
1898 cp3 += 4;
1899 pp += 18;
1900 } while (--x);
1901 cp += incr;
1902 cp1 += incr;
1903 cp2 += incr;
1904 cp3 += incr;
1905 pp += fromskew;
1906 }
1907 } else {
1908 while (h > 0) {
1909 for (x = w; x > 0;) {
1910 int32 Cb = pp[16];
1911 int32 Cr = pp[17];
1912 switch (x) {
1913 default:
1914 switch (h) {
1915 default: YCbCrtoRGB(cp3[3], pp[15]); /* FALLTHROUGH */
1916 case 3: YCbCrtoRGB(cp2[3], pp[11]); /* FALLTHROUGH */
1917 case 2: YCbCrtoRGB(cp1[3], pp[ 7]); /* FALLTHROUGH */
1918 case 1: YCbCrtoRGB(cp [3], pp[ 3]); /* FALLTHROUGH */
1919 } /* FALLTHROUGH */
1920 case 3:
1921 switch (h) {
1922 default: YCbCrtoRGB(cp3[2], pp[14]); /* FALLTHROUGH */
1923 case 3: YCbCrtoRGB(cp2[2], pp[10]); /* FALLTHROUGH */
1924 case 2: YCbCrtoRGB(cp1[2], pp[ 6]); /* FALLTHROUGH */
1925 case 1: YCbCrtoRGB(cp [2], pp[ 2]); /* FALLTHROUGH */
1926 } /* FALLTHROUGH */
1927 case 2:
1928 switch (h) {
1929 default: YCbCrtoRGB(cp3[1], pp[13]); /* FALLTHROUGH */
1930 case 3: YCbCrtoRGB(cp2[1], pp[ 9]); /* FALLTHROUGH */
1931 case 2: YCbCrtoRGB(cp1[1], pp[ 5]); /* FALLTHROUGH */
1932 case 1: YCbCrtoRGB(cp [1], pp[ 1]); /* FALLTHROUGH */
1933 } /* FALLTHROUGH */
1934 case 1:
1935 switch (h) {
1936 default: YCbCrtoRGB(cp3[0], pp[12]); /* FALLTHROUGH */
1937 case 3: YCbCrtoRGB(cp2[0], pp[ 8]); /* FALLTHROUGH */
1938 case 2: YCbCrtoRGB(cp1[0], pp[ 4]); /* FALLTHROUGH */
1939 case 1: YCbCrtoRGB(cp [0], pp[ 0]); /* FALLTHROUGH */
1940 } /* FALLTHROUGH */
1941 }
1942 if (x < 4) {
1943 cp += x; cp1 += x; cp2 += x; cp3 += x;
1944 x = 0;
1945 }
1946 else {
1947 cp += 4; cp1 += 4; cp2 += 4; cp3 += 4;
1948 x -= 4;
1949 }
1950 pp += 18;
1951 }
1952 if (h <= 4)
1953 break;
1954 h -= 4;
1955 cp += incr;
1956 cp1 += incr;
1957 cp2 += incr;
1958 cp3 += incr;
1959 pp += fromskew;
1960 }
1961 }
1962 }
1963
1964 /*
1965 * 8-bit packed YCbCr samples w/ 4,2 subsampling => RGB
1966 */
1967 DECLAREContigPutFunc(putcontig8bitYCbCr42tile)
1968 {
1969 uint32* cp1 = cp+w+toskew;
1970 int32 incr = 2*toskew+w;
1971
1972 (void) y;
1973 fromskew = (fromskew / 4) * (4*2+2);
1974 if ((w & 3) == 0 && (h & 1) == 0) {
1975 for (; h >= 2; h -= 2) {
1976 x = w>>2;
1977 do {
1978 int32 Cb = pp[8];
1979 int32 Cr = pp[9];
1980
1981 YCbCrtoRGB(cp [0], pp[0]);
1982 YCbCrtoRGB(cp [1], pp[1]);
1983 YCbCrtoRGB(cp [2], pp[2]);
1984 YCbCrtoRGB(cp [3], pp[3]);
1985 YCbCrtoRGB(cp1[0], pp[4]);
1986 YCbCrtoRGB(cp1[1], pp[5]);
1987 YCbCrtoRGB(cp1[2], pp[6]);
1988 YCbCrtoRGB(cp1[3], pp[7]);
1989
1990 cp += 4;
1991 cp1 += 4;
1992 pp += 10;
1993 } while (--x);
1994 cp += incr;
1995 cp1 += incr;
1996 pp += fromskew;
1997 }
1998 } else {
1999 while (h > 0) {
2000 for (x = w; x > 0;) {
2001 int32 Cb = pp[8];
2002 int32 Cr = pp[9];
2003 switch (x) {
2004 default:
2005 switch (h) {
2006 default: YCbCrtoRGB(cp1[3], pp[ 7]); /* FALLTHROUGH */
2007 case 1: YCbCrtoRGB(cp [3], pp[ 3]); /* FALLTHROUGH */
2008 } /* FALLTHROUGH */
2009 case 3:
2010 switch (h) {
2011 default: YCbCrtoRGB(cp1[2], pp[ 6]); /* FALLTHROUGH */
2012 case 1: YCbCrtoRGB(cp [2], pp[ 2]); /* FALLTHROUGH */
2013 } /* FALLTHROUGH */
2014 case 2:
2015 switch (h) {
2016 default: YCbCrtoRGB(cp1[1], pp[ 5]); /* FALLTHROUGH */
2017 case 1: YCbCrtoRGB(cp [1], pp[ 1]); /* FALLTHROUGH */
2018 } /* FALLTHROUGH */
2019 case 1:
2020 switch (h) {
2021 default: YCbCrtoRGB(cp1[0], pp[ 4]); /* FALLTHROUGH */
2022 case 1: YCbCrtoRGB(cp [0], pp[ 0]); /* FALLTHROUGH */
2023 } /* FALLTHROUGH */
2024 }
2025 if (x < 4) {
2026 cp += x; cp1 += x;
2027 x = 0;
2028 }
2029 else {
2030 cp += 4; cp1 += 4;
2031 x -= 4;
2032 }
2033 pp += 10;
2034 }
2035 if (h <= 2)
2036 break;
2037 h -= 2;
2038 cp += incr;
2039 cp1 += incr;
2040 pp += fromskew;
2041 }
2042 }
2043 }
2044
2045 /*
2046 * 8-bit packed YCbCr samples w/ 4,1 subsampling => RGB
2047 */
2048 DECLAREContigPutFunc(putcontig8bitYCbCr41tile)
2049 {
2050 (void) y;
2051 fromskew = (fromskew / 4) * (4*1+2);
2052 do {
2053 x = w>>2;
2054 while(x>0) {
2055 int32 Cb = pp[4];
2056 int32 Cr = pp[5];
2057
2058 YCbCrtoRGB(cp [0], pp[0]);
2059 YCbCrtoRGB(cp [1], pp[1]);
2060 YCbCrtoRGB(cp [2], pp[2]);
2061 YCbCrtoRGB(cp [3], pp[3]);
2062
2063 cp += 4;
2064 pp += 6;
2065 x--;
2066 }
2067
2068 if( (w&3) != 0 )
2069 {
2070 int32 Cb = pp[4];
2071 int32 Cr = pp[5];
2072
2073 switch( (w&3) ) {
2074 case 3: YCbCrtoRGB(cp [2], pp[2]); /*-fallthrough*/
2075 case 2: YCbCrtoRGB(cp [1], pp[1]); /*-fallthrough*/
2076 case 1: YCbCrtoRGB(cp [0], pp[0]); /*-fallthrough*/
2077 case 0: break;
2078 }
2079
2080 cp += (w&3);
2081 pp += 6;
2082 }
2083
2084 cp += toskew;
2085 pp += fromskew;
2086 } while (--h);
2087
2088 }
2089
2090 /*
2091 * 8-bit packed YCbCr samples w/ 2,2 subsampling => RGB
2092 */
2093 DECLAREContigPutFunc(putcontig8bitYCbCr22tile)
2094 {
2095 uint32* cp2;
2096 int32 incr = 2*toskew+w;
2097 (void) y;
2098 fromskew = (fromskew / 2) * (2*2+2);
2099 cp2 = cp+w+toskew;
2100 while (h>=2) {
2101 x = w;
2102 while (x>=2) {
2103 uint32 Cb = pp[4];
2104 uint32 Cr = pp[5];
2105 YCbCrtoRGB(cp[0], pp[0]);
2106 YCbCrtoRGB(cp[1], pp[1]);
2107 YCbCrtoRGB(cp2[0], pp[2]);
2108 YCbCrtoRGB(cp2[1], pp[3]);
2109 cp += 2;
2110 cp2 += 2;
2111 pp += 6;
2112 x -= 2;
2113 }
2114 if (x==1) {
2115 uint32 Cb = pp[4];
2116 uint32 Cr = pp[5];
2117 YCbCrtoRGB(cp[0], pp[0]);
2118 YCbCrtoRGB(cp2[0], pp[2]);
2119 cp ++ ;
2120 cp2 ++ ;
2121 pp += 6;
2122 }
2123 cp += incr;
2124 cp2 += incr;
2125 pp += fromskew;
2126 h-=2;
2127 }
2128 if (h==1) {
2129 x = w;
2130 while (x>=2) {
2131 uint32 Cb = pp[4];
2132 uint32 Cr = pp[5];
2133 YCbCrtoRGB(cp[0], pp[0]);
2134 YCbCrtoRGB(cp[1], pp[1]);
2135 cp += 2;
2136 cp2 += 2;
2137 pp += 6;
2138 x -= 2;
2139 }
2140 if (x==1) {
2141 uint32 Cb = pp[4];
2142 uint32 Cr = pp[5];
2143 YCbCrtoRGB(cp[0], pp[0]);
2144 }
2145 }
2146 }
2147
2148 /*
2149 * 8-bit packed YCbCr samples w/ 2,1 subsampling => RGB
2150 */
2151 DECLAREContigPutFunc(putcontig8bitYCbCr21tile)
2152 {
2153 (void) y;
2154 fromskew = (fromskew / 2) * (2*1+2);
2155 do {
2156 x = w>>1;
2157 while(x>0) {
2158 int32 Cb = pp[2];
2159 int32 Cr = pp[3];
2160
2161 YCbCrtoRGB(cp[0], pp[0]);
2162 YCbCrtoRGB(cp[1], pp[1]);
2163
2164 cp += 2;
2165 pp += 4;
2166 x --;
2167 }
2168
2169 if( (w&1) != 0 )
2170 {
2171 int32 Cb = pp[2];
2172 int32 Cr = pp[3];
2173
2174 YCbCrtoRGB(cp[0], pp[0]);
2175
2176 cp += 1;
2177 pp += 4;
2178 }
2179
2180 cp += toskew;
2181 pp += fromskew;
2182 } while (--h);
2183 }
2184
2185 /*
2186 * 8-bit packed YCbCr samples w/ 1,2 subsampling => RGB
2187 */
2188 DECLAREContigPutFunc(putcontig8bitYCbCr12tile)
2189 {
2190 uint32* cp2;
2191 int32 incr = 2*toskew+w;
2192 (void) y;
2193 fromskew = (fromskew / 1) * (1 * 2 + 2);
2194 cp2 = cp+w+toskew;
2195 while (h>=2) {
2196 x = w;
2197 do {
2198 uint32 Cb = pp[2];
2199 uint32 Cr = pp[3];
2200 YCbCrtoRGB(cp[0], pp[0]);
2201 YCbCrtoRGB(cp2[0], pp[1]);
2202 cp ++;
2203 cp2 ++;
2204 pp += 4;
2205 } while (--x);
2206 cp += incr;
2207 cp2 += incr;
2208 pp += fromskew;
2209 h-=2;
2210 }
2211 if (h==1) {
2212 x = w;
2213 do {
2214 uint32 Cb = pp[2];
2215 uint32 Cr = pp[3];
2216 YCbCrtoRGB(cp[0], pp[0]);
2217 cp ++;
2218 pp += 4;
2219 } while (--x);
2220 }
2221 }
2222
2223 /*
2224 * 8-bit packed YCbCr samples w/ no subsampling => RGB
2225 */
2226 DECLAREContigPutFunc(putcontig8bitYCbCr11tile)
2227 {
2228 (void) y;
2229 fromskew = (fromskew / 1) * (1 * 1 + 2);
2230 do {
2231 x = w; /* was x = w>>1; patched 2000/09/25 warmerda@home.com */
2232 do {
2233 int32 Cb = pp[1];
2234 int32 Cr = pp[2];
2235
2236 YCbCrtoRGB(*cp++, pp[0]);
2237
2238 pp += 3;
2239 } while (--x);
2240 cp += toskew;
2241 pp += fromskew;
2242 } while (--h);
2243 }
2244
2245 /*
2246 * 8-bit packed YCbCr samples w/ no subsampling => RGB
2247 */
2248 DECLARESepPutFunc(putseparate8bitYCbCr11tile)
2249 {
2250 (void) y;
2251 (void) a;
2252 /* TODO: naming of input vars is still off, change obfuscating declaration inside define, or resolve obfuscation */
2253 for( ; h > 0; --h) {
2254 x = w;
2255 do {
2256 uint32 dr, dg, db;
2257 TIFFYCbCrtoRGB(img->ycbcr,*r++,*g++,*b++,&dr,&dg,&db);
2258 *cp++ = PACK(dr,dg,db);
2259 } while (--x);
2260 SKEW(r, g, b, fromskew);
2261 cp += toskew;
2262 }
2263 }
2264 #undef YCbCrtoRGB
2265
2266 static int isInRefBlackWhiteRange(float f)
2267 {
2268 return f > (float)(-0x7FFFFFFF + 128) && f < (float)0x7FFFFFFF;
2269 }
2270
2271 static int
2272 initYCbCrConversion(TIFFRGBAImage* img)
2273 {
2274 static const char module[] = "initYCbCrConversion";
2275
2276 float *luma, *refBlackWhite;
2277
2278 if (img->ycbcr == NULL) {
2279 img->ycbcr = (TIFFYCbCrToRGB*) _TIFFmalloc(
2280 TIFFroundup_32(sizeof (TIFFYCbCrToRGB), sizeof (long))
2281 + 4*256*sizeof (TIFFRGBValue)
2282 + 2*256*sizeof (int)
2283 + 3*256*sizeof (int32)
2284 );
2285 if (img->ycbcr == NULL) {
2286 TIFFErrorExt(img->tif->tif_clientdata, module,
2287 "No space for YCbCr->RGB conversion state");
2288 return (0);
2289 }
2290 }
2291
2292 TIFFGetFieldDefaulted(img->tif, TIFFTAG_YCBCRCOEFFICIENTS, &luma);
2293 TIFFGetFieldDefaulted(img->tif, TIFFTAG_REFERENCEBLACKWHITE,
2294 &refBlackWhite);
2295
2296 /* Do some validation to avoid later issues. Detect NaN for now */
2297 /* and also if lumaGreen is zero since we divide by it later */
2298 if( luma[0] != luma[0] ||
2299 luma[1] != luma[1] ||
2300 luma[1] == 0.0 ||
2301 luma[2] != luma[2] )
2302 {
2303 TIFFErrorExt(img->tif->tif_clientdata, module,
2304 "Invalid values for YCbCrCoefficients tag");
2305 return (0);
2306 }
2307
2308 if( !isInRefBlackWhiteRange(refBlackWhite[0]) ||
2309 !isInRefBlackWhiteRange(refBlackWhite[1]) ||
2310 !isInRefBlackWhiteRange(refBlackWhite[2]) ||
2311 !isInRefBlackWhiteRange(refBlackWhite[3]) ||
2312 !isInRefBlackWhiteRange(refBlackWhite[4]) ||
2313 !isInRefBlackWhiteRange(refBlackWhite[5]) )
2314 {
2315 TIFFErrorExt(img->tif->tif_clientdata, module,
2316 "Invalid values for ReferenceBlackWhite tag");
2317 return (0);
2318 }
2319
2320 if (TIFFYCbCrToRGBInit(img->ycbcr, luma, refBlackWhite) < 0)
2321 return(0);
2322 return (1);
2323 }
2324
2325 static tileContigRoutine
2326 initCIELabConversion(TIFFRGBAImage* img)
2327 {
2328 static const char module[] = "initCIELabConversion";
2329
2330 float *whitePoint;
2331 float refWhite[3];
2332
2333 TIFFGetFieldDefaulted(img->tif, TIFFTAG_WHITEPOINT, &whitePoint);
2334 if (whitePoint[1] == 0.0f ) {
2335 TIFFErrorExt(img->tif->tif_clientdata, module,
2336 "Invalid value for WhitePoint tag.");
2337 return NULL;
2338 }
2339
2340 if (!img->cielab) {
2341 img->cielab = (TIFFCIELabToRGB *)
2342 _TIFFmalloc(sizeof(TIFFCIELabToRGB));
2343 if (!img->cielab) {
2344 TIFFErrorExt(img->tif->tif_clientdata, module,
2345 "No space for CIE L*a*b*->RGB conversion state.");
2346 return NULL;
2347 }
2348 }
2349
2350 refWhite[1] = 100.0F;
2351 refWhite[0] = whitePoint[0] / whitePoint[1] * refWhite[1];
2352 refWhite[2] = (1.0F - whitePoint[0] - whitePoint[1])
2353 / whitePoint[1] * refWhite[1];
2354 if (TIFFCIELabToRGBInit(img->cielab, &display_sRGB, refWhite) < 0) {
2355 TIFFErrorExt(img->tif->tif_clientdata, module,
2356 "Failed to initialize CIE L*a*b*->RGB conversion state.");
2357 _TIFFfree(img->cielab);
2358 return NULL;
2359 }
2360
2361 return putcontig8bitCIELab;
2362 }
2363
2364 /*
2365 * Greyscale images with less than 8 bits/sample are handled
2366 * with a table to avoid lots of shifts and masks. The table
2367 * is setup so that put*bwtile (below) can retrieve 8/bitspersample
2368 * pixel values simply by indexing into the table with one
2369 * number.
2370 */
2371 static int
2372 makebwmap(TIFFRGBAImage* img)
2373 {
2374 TIFFRGBValue* Map = img->Map;
2375 int bitspersample = img->bitspersample;
2376 int nsamples = 8 / bitspersample;
2377 int i;
2378 uint32* p;
2379
2380 if( nsamples == 0 )
2381 nsamples = 1;
2382
2383 img->BWmap = (uint32**) _TIFFmalloc(
2384 256*sizeof (uint32 *)+(256*nsamples*sizeof(uint32)));
2385 if (img->BWmap == NULL) {
2386 TIFFErrorExt(img->tif->tif_clientdata, TIFFFileName(img->tif), "No space for B&W mapping table");
2387 return (0);
2388 }
2389 p = (uint32*)(img->BWmap + 256);
2390 for (i = 0; i < 256; i++) {
2391 TIFFRGBValue c;
2392 img->BWmap[i] = p;
2393 switch (bitspersample) {
2394 #define GREY(x) c = Map[x]; *p++ = PACK(c,c,c);
2395 case 1:
2396 GREY(i>>7);
2397 GREY((i>>6)&1);
2398 GREY((i>>5)&1);
2399 GREY((i>>4)&1);
2400 GREY((i>>3)&1);
2401 GREY((i>>2)&1);
2402 GREY((i>>1)&1);
2403 GREY(i&1);
2404 break;
2405 case 2:
2406 GREY(i>>6);
2407 GREY((i>>4)&3);
2408 GREY((i>>2)&3);
2409 GREY(i&3);
2410 break;
2411 case 4:
2412 GREY(i>>4);
2413 GREY(i&0xf);
2414 break;
2415 case 8:
2416 case 16:
2417 GREY(i);
2418 break;
2419 }
2420 #undef GREY
2421 }
2422 return (1);
2423 }
2424
2425 /*
2426 * Construct a mapping table to convert from the range
2427 * of the data samples to [0,255] --for display. This
2428 * process also handles inverting B&W images when needed.
2429 */
2430 static int
2431 setupMap(TIFFRGBAImage* img)
2432 {
2433 int32 x, range;
2434
2435 range = (int32)((1L<<img->bitspersample)-1);
2436
2437 /* treat 16 bit the same as eight bit */
2438 if( img->bitspersample == 16 )
2439 range = (int32) 255;
2440
2441 img->Map = (TIFFRGBValue*) _TIFFmalloc((range+1) * sizeof (TIFFRGBValue));
2442 if (img->Map == NULL) {
2443 TIFFErrorExt(img->tif->tif_clientdata, TIFFFileName(img->tif),
2444 "No space for photometric conversion table");
2445 return (0);
2446 }
2447 if (img->photometric == PHOTOMETRIC_MINISWHITE) {
2448 for (x = 0; x <= range; x++)
2449 img->Map[x] = (TIFFRGBValue) (((range - x) * 255) / range);
2450 } else {
2451 for (x = 0; x <= range; x++)
2452 img->Map[x] = (TIFFRGBValue) ((x * 255) / range);
2453 }
2454 if (img->bitspersample <= 16 &&
2455 (img->photometric == PHOTOMETRIC_MINISBLACK ||
2456 img->photometric == PHOTOMETRIC_MINISWHITE)) {
2457 /*
2458 * Use photometric mapping table to construct
2459 * unpacking tables for samples <= 8 bits.
2460 */
2461 if (!makebwmap(img))
2462 return (0);
2463 /* no longer need Map, free it */
2464 _TIFFfree(img->Map);
2465 img->Map = NULL;
2466 }
2467 return (1);
2468 }
2469
2470 static int
2471 checkcmap(TIFFRGBAImage* img)
2472 {
2473 uint16* r = img->redcmap;
2474 uint16* g = img->greencmap;
2475 uint16* b = img->bluecmap;
2476 long n = 1L<<img->bitspersample;
2477
2478 while (n-- > 0)
2479 if (*r++ >= 256 || *g++ >= 256 || *b++ >= 256)
2480 return (16);
2481 return (8);
2482 }
2483
2484 static void
2485 cvtcmap(TIFFRGBAImage* img)
2486 {
2487 uint16* r = img->redcmap;
2488 uint16* g = img->greencmap;
2489 uint16* b = img->bluecmap;
2490 long i;
2491
2492 for (i = (1L<<img->bitspersample)-1; i >= 0; i--) {
2493 #define CVT(x) ((uint16)((x)>>8))
2494 r[i] = CVT(r[i]);
2495 g[i] = CVT(g[i]);
2496 b[i] = CVT(b[i]);
2497 #undef CVT
2498 }
2499 }
2500
2501 /*
2502 * Palette images with <= 8 bits/sample are handled
2503 * with a table to avoid lots of shifts and masks. The table
2504 * is setup so that put*cmaptile (below) can retrieve 8/bitspersample
2505 * pixel values simply by indexing into the table with one
2506 * number.
2507 */
2508 static int
2509 makecmap(TIFFRGBAImage* img)
2510 {
2511 int bitspersample = img->bitspersample;
2512 int nsamples = 8 / bitspersample;
2513 uint16* r = img->redcmap;
2514 uint16* g = img->greencmap;
2515 uint16* b = img->bluecmap;
2516 uint32 *p;
2517 int i;
2518
2519 img->PALmap = (uint32**) _TIFFmalloc(
2520 256*sizeof (uint32 *)+(256*nsamples*sizeof(uint32)));
2521 if (img->PALmap == NULL) {
2522 TIFFErrorExt(img->tif->tif_clientdata, TIFFFileName(img->tif), "No space for Palette mapping table");
2523 return (0);
2524 }
2525 p = (uint32*)(img->PALmap + 256);
2526 for (i = 0; i < 256; i++) {
2527 TIFFRGBValue c;
2528 img->PALmap[i] = p;
2529 #define CMAP(x) c = (TIFFRGBValue) x; *p++ = PACK(r[c]&0xff, g[c]&0xff, b[c]&0xff);
2530 switch (bitspersample) {
2531 case 1:
2532 CMAP(i>>7);
2533 CMAP((i>>6)&1);
2534 CMAP((i>>5)&1);
2535 CMAP((i>>4)&1);
2536 CMAP((i>>3)&1);
2537 CMAP((i>>2)&1);
2538 CMAP((i>>1)&1);
2539 CMAP(i&1);
2540 break;
2541 case 2:
2542 CMAP(i>>6);
2543 CMAP((i>>4)&3);
2544 CMAP((i>>2)&3);
2545 CMAP(i&3);
2546 break;
2547 case 4:
2548 CMAP(i>>4);
2549 CMAP(i&0xf);
2550 break;
2551 case 8:
2552 CMAP(i);
2553 break;
2554 }
2555 #undef CMAP
2556 }
2557 return (1);
2558 }
2559
2560 /*
2561 * Construct any mapping table used
2562 * by the associated put routine.
2563 */
2564 static int
2565 buildMap(TIFFRGBAImage* img)
2566 {
2567 switch (img->photometric) {
2568 case PHOTOMETRIC_RGB:
2569 case PHOTOMETRIC_YCBCR:
2570 case PHOTOMETRIC_SEPARATED:
2571 if (img->bitspersample == 8)
2572 break;
2573 /* fall through... */
2574 case PHOTOMETRIC_MINISBLACK:
2575 case PHOTOMETRIC_MINISWHITE:
2576 if (!setupMap(img))
2577 return (0);
2578 break;
2579 case PHOTOMETRIC_PALETTE:
2580 /*
2581 * Convert 16-bit colormap to 8-bit (unless it looks
2582 * like an old-style 8-bit colormap).
2583 */
2584 if (checkcmap(img) == 16)
2585 cvtcmap(img);
2586 else
2587 TIFFWarningExt(img->tif->tif_clientdata, TIFFFileName(img->tif), "Assuming 8-bit colormap");
2588 /*
2589 * Use mapping table and colormap to construct
2590 * unpacking tables for samples < 8 bits.
2591 */
2592 if (img->bitspersample <= 8 && !makecmap(img))
2593 return (0);
2594 break;
2595 }
2596 return (1);
2597 }
2598
2599 /*
2600 * Select the appropriate conversion routine for packed data.
2601 */
2602 static int
2603 PickContigCase(TIFFRGBAImage* img)
2604 {
2605 img->get = TIFFIsTiled(img->tif) ? gtTileContig : gtStripContig;
2606 img->put.contig = NULL;
2607 switch (img->photometric) {
2608 case PHOTOMETRIC_RGB:
2609 switch (img->bitspersample) {
2610 case 8:
2611 if (img->alpha == EXTRASAMPLE_ASSOCALPHA &&
2612 img->samplesperpixel >= 4)
2613 img->put.contig = putRGBAAcontig8bittile;
2614 else if (img->alpha == EXTRASAMPLE_UNASSALPHA &&
2615 img->samplesperpixel >= 4)
2616 {
2617 if (BuildMapUaToAa(img))
2618 img->put.contig = putRGBUAcontig8bittile;
2619 }
2620 else if( img->samplesperpixel >= 3 )
2621 img->put.contig = putRGBcontig8bittile;
2622 break;
2623 case 16:
2624 if (img->alpha == EXTRASAMPLE_ASSOCALPHA &&
2625 img->samplesperpixel >=4 )
2626 {
2627 if (BuildMapBitdepth16To8(img))
2628 img->put.contig = putRGBAAcontig16bittile;
2629 }
2630 else if (img->alpha == EXTRASAMPLE_UNASSALPHA &&
2631 img->samplesperpixel >=4 )
2632 {
2633 if (BuildMapBitdepth16To8(img) &&
2634 BuildMapUaToAa(img))
2635 img->put.contig = putRGBUAcontig16bittile;
2636 }
2637 else if( img->samplesperpixel >=3 )
2638 {
2639 if (BuildMapBitdepth16To8(img))
2640 img->put.contig = putRGBcontig16bittile;
2641 }
2642 break;
2643 }
2644 break;
2645 case PHOTOMETRIC_SEPARATED:
2646 if (img->samplesperpixel >=4 && buildMap(img)) {
2647 if (img->bitspersample == 8) {
2648 if (!img->Map)
2649 img->put.contig = putRGBcontig8bitCMYKtile;
2650 else
2651 img->put.contig = putRGBcontig8bitCMYKMaptile;
2652 }
2653 }
2654 break;
2655 case PHOTOMETRIC_PALETTE:
2656 if (buildMap(img)) {
2657 switch (img->bitspersample) {
2658 case 8:
2659 img->put.contig = put8bitcmaptile;
2660 break;
2661 case 4:
2662 img->put.contig = put4bitcmaptile;
2663 break;
2664 case 2:
2665 img->put.contig = put2bitcmaptile;
2666 break;
2667 case 1:
2668 img->put.contig = put1bitcmaptile;
2669 break;
2670 }
2671 }
2672 break;
2673 case PHOTOMETRIC_MINISWHITE:
2674 case PHOTOMETRIC_MINISBLACK:
2675 if (buildMap(img)) {
2676 switch (img->bitspersample) {
2677 case 16:
2678 img->put.contig = put16bitbwtile;
2679 break;
2680 case 8:
2681 if (img->alpha && img->samplesperpixel == 2)
2682 img->put.contig = putagreytile;
2683 else
2684 img->put.contig = putgreytile;
2685 break;
2686 case 4:
2687 img->put.contig = put4bitbwtile;
2688 break;
2689 case 2:
2690 img->put.contig = put2bitbwtile;
2691 break;
2692 case 1:
2693 img->put.contig = put1bitbwtile;
2694 break;
2695 }
2696 }
2697 break;
2698 case PHOTOMETRIC_YCBCR:
2699 if ((img->bitspersample==8) && (img->samplesperpixel==3))
2700 {
2701 if (initYCbCrConversion(img)!=0)
2702 {
2703 /*
2704 * The 6.0 spec says that subsampling must be
2705 * one of 1, 2, or 4, and that vertical subsampling
2706 * must always be <= horizontal subsampling; so
2707 * there are only a few possibilities and we just
2708 * enumerate the cases.
2709 * Joris: added support for the [1,2] case, nonetheless, to accommodate
2710 * some OJPEG files
2711 */
2712 uint16 SubsamplingHor;
2713 uint16 SubsamplingVer;
2714 TIFFGetFieldDefaulted(img->tif, TIFFTAG_YCBCRSUBSAMPLING, &SubsamplingHor, &SubsamplingVer);
2715 switch ((SubsamplingHor<<4)|SubsamplingVer) {
2716 case 0x44:
2717 img->put.contig = putcontig8bitYCbCr44tile;
2718 break;
2719 case 0x42:
2720 img->put.contig = putcontig8bitYCbCr42tile;
2721 break;
2722 case 0x41:
2723 img->put.contig = putcontig8bitYCbCr41tile;
2724 break;
2725 case 0x22:
2726 img->put.contig = putcontig8bitYCbCr22tile;
2727 break;
2728 case 0x21:
2729 img->put.contig = putcontig8bitYCbCr21tile;
2730 break;
2731 case 0x12:
2732 img->put.contig = putcontig8bitYCbCr12tile;
2733 break;
2734 case 0x11:
2735 img->put.contig = putcontig8bitYCbCr11tile;
2736 break;
2737 }
2738 }
2739 }
2740 break;
2741 case PHOTOMETRIC_CIELAB:
2742 if (img->samplesperpixel == 3 && buildMap(img)) {
2743 if (img->bitspersample == 8)
2744 img->put.contig = initCIELabConversion(img);
2745 break;
2746 }
2747 }
2748 return ((img->get!=NULL) && (img->put.contig!=NULL));
2749 }
2750
2751 /*
2752 * Select the appropriate conversion routine for unpacked data.
2753 *
2754 * NB: we assume that unpacked single channel data is directed
2755 * to the "packed routines.
2756 */
2757 static int
2758 PickSeparateCase(TIFFRGBAImage* img)
2759 {
2760 img->get = TIFFIsTiled(img->tif) ? gtTileSeparate : gtStripSeparate;
2761 img->put.separate = NULL;
2762 switch (img->photometric) {
2763 case PHOTOMETRIC_MINISWHITE:
2764 case PHOTOMETRIC_MINISBLACK:
2765 /* greyscale images processed pretty much as RGB by gtTileSeparate */
2766 case PHOTOMETRIC_RGB:
2767 switch (img->bitspersample) {
2768 case 8:
2769 if (img->alpha == EXTRASAMPLE_ASSOCALPHA)
2770 img->put.separate = putRGBAAseparate8bittile;
2771 else if (img->alpha == EXTRASAMPLE_UNASSALPHA)
2772 {
2773 if (BuildMapUaToAa(img))
2774 img->put.separate = putRGBUAseparate8bittile;
2775 }
2776 else
2777 img->put.separate = putRGBseparate8bittile;
2778 break;
2779 case 16:
2780 if (img->alpha == EXTRASAMPLE_ASSOCALPHA)
2781 {
2782 if (BuildMapBitdepth16To8(img))
2783 img->put.separate = putRGBAAseparate16bittile;
2784 }
2785 else if (img->alpha == EXTRASAMPLE_UNASSALPHA)
2786 {
2787 if (BuildMapBitdepth16To8(img) &&
2788 BuildMapUaToAa(img))
2789 img->put.separate = putRGBUAseparate16bittile;
2790 }
2791 else
2792 {
2793 if (BuildMapBitdepth16To8(img))
2794 img->put.separate = putRGBseparate16bittile;
2795 }
2796 break;
2797 }
2798 break;
2799 case PHOTOMETRIC_SEPARATED:
2800 if (img->bitspersample == 8 && img->samplesperpixel == 4)
2801 {
2802 img->alpha = 1; // Not alpha, but seems like the only way to get 4th band
2803 img->put.separate = putCMYKseparate8bittile;
2804 }
2805 break;
2806 case PHOTOMETRIC_YCBCR:
2807 if ((img->bitspersample==8) && (img->samplesperpixel==3))
2808 {
2809 if (initYCbCrConversion(img)!=0)
2810 {
2811 uint16 hs, vs;
2812 TIFFGetFieldDefaulted(img->tif, TIFFTAG_YCBCRSUBSAMPLING, &hs, &vs);
2813 switch ((hs<<4)|vs) {
2814 case 0x11:
2815 img->put.separate = putseparate8bitYCbCr11tile;
2816 break;
2817 /* TODO: add other cases here */
2818 }
2819 }
2820 }
2821 break;
2822 }
2823 return ((img->get!=NULL) && (img->put.separate!=NULL));
2824 }
2825
2826 static int
2827 BuildMapUaToAa(TIFFRGBAImage* img)
2828 {
2829 static const char module[]="BuildMapUaToAa";
2830 uint8* m;
2831 uint16 na,nv;
2832 assert(img->UaToAa==NULL);
2833 img->UaToAa=_TIFFmalloc(65536);
2834 if (img->UaToAa==NULL)
2835 {
2836 TIFFErrorExt(img->tif->tif_clientdata,module,"Out of memory");
2837 return(0);
2838 }
2839 m=img->UaToAa;
2840 for (na=0; na<256; na++)
2841 {
2842 for (nv=0; nv<256; nv++)
2843 *m++=(uint8)((nv*na+127)/255);
2844 }
2845 return(1);
2846 }
2847
2848 static int
2849 BuildMapBitdepth16To8(TIFFRGBAImage* img)
2850 {
2851 static const char module[]="BuildMapBitdepth16To8";
2852 uint8* m;
2853 uint32 n;
2854 assert(img->Bitdepth16To8==NULL);
2855 img->Bitdepth16To8=_TIFFmalloc(65536);
2856 if (img->Bitdepth16To8==NULL)
2857 {
2858 TIFFErrorExt(img->tif->tif_clientdata,module,"Out of memory");
2859 return(0);
2860 }
2861 m=img->Bitdepth16To8;
2862 for (n=0; n<65536; n++)
2863 *m++=(uint8)((n+128)/257);
2864 return(1);
2865 }
2866
2867
2868 /*
2869 * Read a whole strip off data from the file, and convert to RGBA form.
2870 * If this is the last strip, then it will only contain the portion of
2871 * the strip that is actually within the image space. The result is
2872 * organized in bottom to top form.
2873 */
2874
2875
2876 int
2877 TIFFReadRGBAStrip(TIFF* tif, uint32 row, uint32 * raster )
2878
2879 {
2880 return TIFFReadRGBAStripExt(tif, row, raster, 0 );
2881 }
2882
2883 int
2884 TIFFReadRGBAStripExt(TIFF* tif, uint32 row, uint32 * raster, int stop_on_error)
2885
2886 {
2887 char emsg[1024] = "";
2888 TIFFRGBAImage img;
2889 int ok;
2890 uint32 rowsperstrip, rows_to_read;
2891
2892 if( TIFFIsTiled( tif ) )
2893 {
2894 TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif),
2895 "Can't use TIFFReadRGBAStrip() with tiled file.");
2896 return (0);
2897 }
2898
2899 TIFFGetFieldDefaulted(tif, TIFFTAG_ROWSPERSTRIP, &rowsperstrip);
2900 if( (row % rowsperstrip) != 0 )
2901 {
2902 TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif),
2903 "Row passed to TIFFReadRGBAStrip() must be first in a strip.");
2904 return (0);
2905 }
2906
2907 if (TIFFRGBAImageOK(tif, emsg) && TIFFRGBAImageBegin(&img, tif, stop_on_error, emsg)) {
2908
2909 img.row_offset = row;
2910 img.col_offset = 0;
2911
2912 if( row + rowsperstrip > img.height )
2913 rows_to_read = img.height - row;
2914 else
2915 rows_to_read = rowsperstrip;
2916
2917 ok = TIFFRGBAImageGet(&img, raster, img.width, rows_to_read );
2918
2919 TIFFRGBAImageEnd(&img);
2920 } else {
2921 TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "%s", emsg);
2922 ok = 0;
2923 }
2924
2925 return (ok);
2926 }
2927
2928 /*
2929 * Read a whole tile off data from the file, and convert to RGBA form.
2930 * The returned RGBA data is organized from bottom to top of tile,
2931 * and may include zeroed areas if the tile extends off the image.
2932 */
2933
2934 int
2935 TIFFReadRGBATile(TIFF* tif, uint32 col, uint32 row, uint32 * raster)
2936
2937 {
2938 return TIFFReadRGBATileExt(tif, col, row, raster, 0 );
2939 }
2940
2941
2942 int
2943 TIFFReadRGBATileExt(TIFF* tif, uint32 col, uint32 row, uint32 * raster, int stop_on_error )
2944 {
2945 char emsg[1024] = "";
2946 TIFFRGBAImage img;
2947 int ok;
2948 uint32 tile_xsize, tile_ysize;
2949 uint32 read_xsize, read_ysize;
2950 uint32 i_row;
2951
2952 /*
2953 * Verify that our request is legal - on a tile file, and on a
2954 * tile boundary.
2955 */
2956
2957 if( !TIFFIsTiled( tif ) )
2958 {
2959 TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif),
2960 "Can't use TIFFReadRGBATile() with stripped file.");
2961 return (0);
2962 }
2963
2964 TIFFGetFieldDefaulted(tif, TIFFTAG_TILEWIDTH, &tile_xsize);
2965 TIFFGetFieldDefaulted(tif, TIFFTAG_TILELENGTH, &tile_ysize);
2966 if( (col % tile_xsize) != 0 || (row % tile_ysize) != 0 )
2967 {
2968 TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif),
2969 "Row/col passed to TIFFReadRGBATile() must be top"
2970 "left corner of a tile.");
2971 return (0);
2972 }
2973
2974 /*
2975 * Setup the RGBA reader.
2976 */
2977
2978 if (!TIFFRGBAImageOK(tif, emsg)
2979 || !TIFFRGBAImageBegin(&img, tif, stop_on_error, emsg)) {
2980 TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "%s", emsg);
2981 return( 0 );
2982 }
2983
2984 /*
2985 * The TIFFRGBAImageGet() function doesn't allow us to get off the
2986 * edge of the image, even to fill an otherwise valid tile. So we
2987 * figure out how much we can read, and fix up the tile buffer to
2988 * a full tile configuration afterwards.
2989 */
2990
2991 if( row + tile_ysize > img.height )
2992 read_ysize = img.height - row;
2993 else
2994 read_ysize = tile_ysize;
2995
2996 if( col + tile_xsize > img.width )
2997 read_xsize = img.width - col;
2998 else
2999 read_xsize = tile_xsize;
3000
3001 /*
3002 * Read the chunk of imagery.
3003 */
3004
3005 img.row_offset = row;
3006 img.col_offset = col;
3007
3008 ok = TIFFRGBAImageGet(&img, raster, read_xsize, read_ysize );
3009
3010 TIFFRGBAImageEnd(&img);
3011
3012 /*
3013 * If our read was incomplete we will need to fix up the tile by
3014 * shifting the data around as if a full tile of data is being returned.
3015 *
3016 * This is all the more complicated because the image is organized in
3017 * bottom to top format.
3018 */
3019
3020 if( read_xsize == tile_xsize && read_ysize == tile_ysize )
3021 return( ok );
3022
3023 for( i_row = 0; i_row < read_ysize; i_row++ ) {
3024 memmove( raster + (tile_ysize - i_row - 1) * tile_xsize,
3025 raster + (read_ysize - i_row - 1) * read_xsize,
3026 read_xsize * sizeof(uint32) );
3027 _TIFFmemset( raster + (tile_ysize - i_row - 1) * tile_xsize+read_xsize,
3028 0, sizeof(uint32) * (tile_xsize - read_xsize) );
3029 }
3030
3031 for( i_row = read_ysize; i_row < tile_ysize; i_row++ ) {
3032 _TIFFmemset( raster + (tile_ysize - i_row - 1) * tile_xsize,
3033 0, sizeof(uint32) * tile_xsize );
3034 }
3035
3036 return (ok);
3037 }
3038
3039 /* vim: set ts=8 sts=8 sw=8 noet: */
3040 /*
3041 * Local Variables:
3042 * mode: c
3043 * c-basic-offset: 8
3044 * fill-column: 78
3045 * End:
3046 */