[LIBTIFF] Update to version 4.1.0. CORE-16550
[reactos.git] / dll / 3rdparty / libtiff / tif_getimage.c
1 /*
2 * Copyright (c) 1991-1997 Sam Leffler
3 * Copyright (c) 1991-1997 Silicon Graphics, Inc.
4 *
5 * Permission to use, copy, modify, distribute, and sell this software and
6 * its documentation for any purpose is hereby granted without fee, provided
7 * that (i) the above copyright notices and this permission notice appear in
8 * all copies of the software and related documentation, and (ii) the names of
9 * Sam Leffler and Silicon Graphics may not be used in any advertising or
10 * publicity relating to the software without the specific, prior written
11 * permission of Sam Leffler and Silicon Graphics.
12 *
13 * THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND,
14 * EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY
15 * WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
16 *
17 * IN NO EVENT SHALL SAM LEFFLER OR SILICON GRAPHICS BE LIABLE FOR
18 * ANY SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND,
19 * OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
20 * WHETHER OR NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF
21 * LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
22 * OF THIS SOFTWARE.
23 */
24
25 /*
26 * TIFF Library
27 *
28 * Read and return a packed RGBA image.
29 */
30 #include <precomp.h>
31 //#include <stdio.h>
32
33 static int gtTileContig(TIFFRGBAImage*, uint32*, uint32, uint32);
34 static int gtTileSeparate(TIFFRGBAImage*, uint32*, uint32, uint32);
35 static int gtStripContig(TIFFRGBAImage*, uint32*, uint32, uint32);
36 static int gtStripSeparate(TIFFRGBAImage*, uint32*, uint32, uint32);
37 static int PickContigCase(TIFFRGBAImage*);
38 static int PickSeparateCase(TIFFRGBAImage*);
39
40 static int BuildMapUaToAa(TIFFRGBAImage* img);
41 static int BuildMapBitdepth16To8(TIFFRGBAImage* img);
42
43 static const char photoTag[] = "PhotometricInterpretation";
44
45 /*
46 * Helper constants used in Orientation tag handling
47 */
48 #define FLIP_VERTICALLY 0x01
49 #define FLIP_HORIZONTALLY 0x02
50
51 /*
52 * Color conversion constants. We will define display types here.
53 */
54
55 static const TIFFDisplay display_sRGB = {
56 { /* XYZ -> luminance matrix */
57 { 3.2410F, -1.5374F, -0.4986F },
58 { -0.9692F, 1.8760F, 0.0416F },
59 { 0.0556F, -0.2040F, 1.0570F }
60 },
61 100.0F, 100.0F, 100.0F, /* Light o/p for reference white */
62 255, 255, 255, /* Pixel values for ref. white */
63 1.0F, 1.0F, 1.0F, /* Residual light o/p for black pixel */
64 2.4F, 2.4F, 2.4F, /* Gamma values for the three guns */
65 };
66
67 /*
68 * Check the image to see if TIFFReadRGBAImage can deal with it.
69 * 1/0 is returned according to whether or not the image can
70 * be handled. If 0 is returned, emsg contains the reason
71 * why it is being rejected.
72 */
73 int
74 TIFFRGBAImageOK(TIFF* tif, char emsg[1024])
75 {
76 TIFFDirectory* td = &tif->tif_dir;
77 uint16 photometric;
78 int colorchannels;
79
80 if (!tif->tif_decodestatus) {
81 sprintf(emsg, "Sorry, requested compression method is not configured");
82 return (0);
83 }
84 switch (td->td_bitspersample) {
85 case 1:
86 case 2:
87 case 4:
88 case 8:
89 case 16:
90 break;
91 default:
92 sprintf(emsg, "Sorry, can not handle images with %d-bit samples",
93 td->td_bitspersample);
94 return (0);
95 }
96 if (td->td_sampleformat == SAMPLEFORMAT_IEEEFP) {
97 sprintf(emsg, "Sorry, can not handle images with IEEE floating-point samples");
98 return (0);
99 }
100 colorchannels = td->td_samplesperpixel - td->td_extrasamples;
101 if (!TIFFGetField(tif, TIFFTAG_PHOTOMETRIC, &photometric)) {
102 switch (colorchannels) {
103 case 1:
104 photometric = PHOTOMETRIC_MINISBLACK;
105 break;
106 case 3:
107 photometric = PHOTOMETRIC_RGB;
108 break;
109 default:
110 sprintf(emsg, "Missing needed %s tag", photoTag);
111 return (0);
112 }
113 }
114 switch (photometric) {
115 case PHOTOMETRIC_MINISWHITE:
116 case PHOTOMETRIC_MINISBLACK:
117 case PHOTOMETRIC_PALETTE:
118 if (td->td_planarconfig == PLANARCONFIG_CONTIG
119 && td->td_samplesperpixel != 1
120 && td->td_bitspersample < 8 ) {
121 sprintf(emsg,
122 "Sorry, can not handle contiguous data with %s=%d, "
123 "and %s=%d and Bits/Sample=%d",
124 photoTag, photometric,
125 "Samples/pixel", td->td_samplesperpixel,
126 td->td_bitspersample);
127 return (0);
128 }
129 /*
130 * We should likely validate that any extra samples are either
131 * to be ignored, or are alpha, and if alpha we should try to use
132 * them. But for now we won't bother with this.
133 */
134 break;
135 case PHOTOMETRIC_YCBCR:
136 /*
137 * TODO: if at all meaningful and useful, make more complete
138 * support check here, or better still, refactor to let supporting
139 * code decide whether there is support and what meaningful
140 * error to return
141 */
142 break;
143 case PHOTOMETRIC_RGB:
144 if (colorchannels < 3) {
145 sprintf(emsg, "Sorry, can not handle RGB image with %s=%d",
146 "Color channels", colorchannels);
147 return (0);
148 }
149 break;
150 case PHOTOMETRIC_SEPARATED:
151 {
152 uint16 inkset;
153 TIFFGetFieldDefaulted(tif, TIFFTAG_INKSET, &inkset);
154 if (inkset != INKSET_CMYK) {
155 sprintf(emsg,
156 "Sorry, can not handle separated image with %s=%d",
157 "InkSet", inkset);
158 return 0;
159 }
160 if (td->td_samplesperpixel < 4) {
161 sprintf(emsg,
162 "Sorry, can not handle separated image with %s=%d",
163 "Samples/pixel", td->td_samplesperpixel);
164 return 0;
165 }
166 break;
167 }
168 case PHOTOMETRIC_LOGL:
169 if (td->td_compression != COMPRESSION_SGILOG) {
170 sprintf(emsg, "Sorry, LogL data must have %s=%d",
171 "Compression", COMPRESSION_SGILOG);
172 return (0);
173 }
174 break;
175 case PHOTOMETRIC_LOGLUV:
176 if (td->td_compression != COMPRESSION_SGILOG &&
177 td->td_compression != COMPRESSION_SGILOG24) {
178 sprintf(emsg, "Sorry, LogLuv data must have %s=%d or %d",
179 "Compression", COMPRESSION_SGILOG, COMPRESSION_SGILOG24);
180 return (0);
181 }
182 if (td->td_planarconfig != PLANARCONFIG_CONTIG) {
183 sprintf(emsg, "Sorry, can not handle LogLuv images with %s=%d",
184 "Planarconfiguration", td->td_planarconfig);
185 return (0);
186 }
187 if ( td->td_samplesperpixel != 3 || colorchannels != 3 ) {
188 sprintf(emsg,
189 "Sorry, can not handle image with %s=%d, %s=%d",
190 "Samples/pixel", td->td_samplesperpixel,
191 "colorchannels", colorchannels);
192 return 0;
193 }
194 break;
195 case PHOTOMETRIC_CIELAB:
196 if ( td->td_samplesperpixel != 3 || colorchannels != 3 || td->td_bitspersample != 8 ) {
197 sprintf(emsg,
198 "Sorry, can not handle image with %s=%d, %s=%d and %s=%d",
199 "Samples/pixel", td->td_samplesperpixel,
200 "colorchannels", colorchannels,
201 "Bits/sample", td->td_bitspersample);
202 return 0;
203 }
204 break;
205 default:
206 sprintf(emsg, "Sorry, can not handle image with %s=%d",
207 photoTag, photometric);
208 return (0);
209 }
210 return (1);
211 }
212
213 void
214 TIFFRGBAImageEnd(TIFFRGBAImage* img)
215 {
216 if (img->Map) {
217 _TIFFfree(img->Map);
218 img->Map = NULL;
219 }
220 if (img->BWmap) {
221 _TIFFfree(img->BWmap);
222 img->BWmap = NULL;
223 }
224 if (img->PALmap) {
225 _TIFFfree(img->PALmap);
226 img->PALmap = NULL;
227 }
228 if (img->ycbcr) {
229 _TIFFfree(img->ycbcr);
230 img->ycbcr = NULL;
231 }
232 if (img->cielab) {
233 _TIFFfree(img->cielab);
234 img->cielab = NULL;
235 }
236 if (img->UaToAa) {
237 _TIFFfree(img->UaToAa);
238 img->UaToAa = NULL;
239 }
240 if (img->Bitdepth16To8) {
241 _TIFFfree(img->Bitdepth16To8);
242 img->Bitdepth16To8 = NULL;
243 }
244
245 if( img->redcmap ) {
246 _TIFFfree( img->redcmap );
247 _TIFFfree( img->greencmap );
248 _TIFFfree( img->bluecmap );
249 img->redcmap = img->greencmap = img->bluecmap = NULL;
250 }
251 }
252
253 static int
254 isCCITTCompression(TIFF* tif)
255 {
256 uint16 compress;
257 TIFFGetField(tif, TIFFTAG_COMPRESSION, &compress);
258 return (compress == COMPRESSION_CCITTFAX3 ||
259 compress == COMPRESSION_CCITTFAX4 ||
260 compress == COMPRESSION_CCITTRLE ||
261 compress == COMPRESSION_CCITTRLEW);
262 }
263
264 int
265 TIFFRGBAImageBegin(TIFFRGBAImage* img, TIFF* tif, int stop, char emsg[1024])
266 {
267 uint16* sampleinfo;
268 uint16 extrasamples;
269 uint16 planarconfig;
270 uint16 compress;
271 int colorchannels;
272 uint16 *red_orig, *green_orig, *blue_orig;
273 int n_color;
274
275 if( !TIFFRGBAImageOK(tif, emsg) )
276 return 0;
277
278 /* Initialize to normal values */
279 img->row_offset = 0;
280 img->col_offset = 0;
281 img->redcmap = NULL;
282 img->greencmap = NULL;
283 img->bluecmap = NULL;
284 img->Map = NULL;
285 img->BWmap = NULL;
286 img->PALmap = NULL;
287 img->ycbcr = NULL;
288 img->cielab = NULL;
289 img->UaToAa = NULL;
290 img->Bitdepth16To8 = NULL;
291 img->req_orientation = ORIENTATION_BOTLEFT; /* It is the default */
292
293 img->tif = tif;
294 img->stoponerr = stop;
295 TIFFGetFieldDefaulted(tif, TIFFTAG_BITSPERSAMPLE, &img->bitspersample);
296 switch (img->bitspersample) {
297 case 1:
298 case 2:
299 case 4:
300 case 8:
301 case 16:
302 break;
303 default:
304 sprintf(emsg, "Sorry, can not handle images with %d-bit samples",
305 img->bitspersample);
306 goto fail_return;
307 }
308 img->alpha = 0;
309 TIFFGetFieldDefaulted(tif, TIFFTAG_SAMPLESPERPIXEL, &img->samplesperpixel);
310 TIFFGetFieldDefaulted(tif, TIFFTAG_EXTRASAMPLES,
311 &extrasamples, &sampleinfo);
312 if (extrasamples >= 1)
313 {
314 switch (sampleinfo[0]) {
315 case EXTRASAMPLE_UNSPECIFIED: /* Workaround for some images without */
316 if (img->samplesperpixel > 3) /* correct info about alpha channel */
317 img->alpha = EXTRASAMPLE_ASSOCALPHA;
318 break;
319 case EXTRASAMPLE_ASSOCALPHA: /* data is pre-multiplied */
320 case EXTRASAMPLE_UNASSALPHA: /* data is not pre-multiplied */
321 img->alpha = sampleinfo[0];
322 break;
323 }
324 }
325
326 #ifdef DEFAULT_EXTRASAMPLE_AS_ALPHA
327 if( !TIFFGetField(tif, TIFFTAG_PHOTOMETRIC, &img->photometric))
328 img->photometric = PHOTOMETRIC_MINISWHITE;
329
330 if( extrasamples == 0
331 && img->samplesperpixel == 4
332 && img->photometric == PHOTOMETRIC_RGB )
333 {
334 img->alpha = EXTRASAMPLE_ASSOCALPHA;
335 extrasamples = 1;
336 }
337 #endif
338
339 colorchannels = img->samplesperpixel - extrasamples;
340 TIFFGetFieldDefaulted(tif, TIFFTAG_COMPRESSION, &compress);
341 TIFFGetFieldDefaulted(tif, TIFFTAG_PLANARCONFIG, &planarconfig);
342 if (!TIFFGetField(tif, TIFFTAG_PHOTOMETRIC, &img->photometric)) {
343 switch (colorchannels) {
344 case 1:
345 if (isCCITTCompression(tif))
346 img->photometric = PHOTOMETRIC_MINISWHITE;
347 else
348 img->photometric = PHOTOMETRIC_MINISBLACK;
349 break;
350 case 3:
351 img->photometric = PHOTOMETRIC_RGB;
352 break;
353 default:
354 sprintf(emsg, "Missing needed %s tag", photoTag);
355 goto fail_return;
356 }
357 }
358 switch (img->photometric) {
359 case PHOTOMETRIC_PALETTE:
360 if (!TIFFGetField(tif, TIFFTAG_COLORMAP,
361 &red_orig, &green_orig, &blue_orig)) {
362 sprintf(emsg, "Missing required \"Colormap\" tag");
363 goto fail_return;
364 }
365
366 /* copy the colormaps so we can modify them */
367 n_color = (1U << img->bitspersample);
368 img->redcmap = (uint16 *) _TIFFmalloc(sizeof(uint16)*n_color);
369 img->greencmap = (uint16 *) _TIFFmalloc(sizeof(uint16)*n_color);
370 img->bluecmap = (uint16 *) _TIFFmalloc(sizeof(uint16)*n_color);
371 if( !img->redcmap || !img->greencmap || !img->bluecmap ) {
372 sprintf(emsg, "Out of memory for colormap copy");
373 goto fail_return;
374 }
375
376 _TIFFmemcpy( img->redcmap, red_orig, n_color * 2 );
377 _TIFFmemcpy( img->greencmap, green_orig, n_color * 2 );
378 _TIFFmemcpy( img->bluecmap, blue_orig, n_color * 2 );
379
380 /* fall through... */
381 case PHOTOMETRIC_MINISWHITE:
382 case PHOTOMETRIC_MINISBLACK:
383 if (planarconfig == PLANARCONFIG_CONTIG
384 && img->samplesperpixel != 1
385 && img->bitspersample < 8 ) {
386 sprintf(emsg,
387 "Sorry, can not handle contiguous data with %s=%d, "
388 "and %s=%d and Bits/Sample=%d",
389 photoTag, img->photometric,
390 "Samples/pixel", img->samplesperpixel,
391 img->bitspersample);
392 goto fail_return;
393 }
394 break;
395 case PHOTOMETRIC_YCBCR:
396 /* It would probably be nice to have a reality check here. */
397 if (planarconfig == PLANARCONFIG_CONTIG)
398 /* can rely on libjpeg to convert to RGB */
399 /* XXX should restore current state on exit */
400 switch (compress) {
401 case COMPRESSION_JPEG:
402 /*
403 * TODO: when complete tests verify complete desubsampling
404 * and YCbCr handling, remove use of TIFFTAG_JPEGCOLORMODE in
405 * favor of tif_getimage.c native handling
406 */
407 TIFFSetField(tif, TIFFTAG_JPEGCOLORMODE, JPEGCOLORMODE_RGB);
408 img->photometric = PHOTOMETRIC_RGB;
409 break;
410 default:
411 /* do nothing */;
412 break;
413 }
414 /*
415 * TODO: if at all meaningful and useful, make more complete
416 * support check here, or better still, refactor to let supporting
417 * code decide whether there is support and what meaningful
418 * error to return
419 */
420 break;
421 case PHOTOMETRIC_RGB:
422 if (colorchannels < 3) {
423 sprintf(emsg, "Sorry, can not handle RGB image with %s=%d",
424 "Color channels", colorchannels);
425 goto fail_return;
426 }
427 break;
428 case PHOTOMETRIC_SEPARATED:
429 {
430 uint16 inkset;
431 TIFFGetFieldDefaulted(tif, TIFFTAG_INKSET, &inkset);
432 if (inkset != INKSET_CMYK) {
433 sprintf(emsg, "Sorry, can not handle separated image with %s=%d",
434 "InkSet", inkset);
435 goto fail_return;
436 }
437 if (img->samplesperpixel < 4) {
438 sprintf(emsg, "Sorry, can not handle separated image with %s=%d",
439 "Samples/pixel", img->samplesperpixel);
440 goto fail_return;
441 }
442 }
443 break;
444 case PHOTOMETRIC_LOGL:
445 if (compress != COMPRESSION_SGILOG) {
446 sprintf(emsg, "Sorry, LogL data must have %s=%d",
447 "Compression", COMPRESSION_SGILOG);
448 goto fail_return;
449 }
450 TIFFSetField(tif, TIFFTAG_SGILOGDATAFMT, SGILOGDATAFMT_8BIT);
451 img->photometric = PHOTOMETRIC_MINISBLACK; /* little white lie */
452 img->bitspersample = 8;
453 break;
454 case PHOTOMETRIC_LOGLUV:
455 if (compress != COMPRESSION_SGILOG && compress != COMPRESSION_SGILOG24) {
456 sprintf(emsg, "Sorry, LogLuv data must have %s=%d or %d",
457 "Compression", COMPRESSION_SGILOG, COMPRESSION_SGILOG24);
458 goto fail_return;
459 }
460 if (planarconfig != PLANARCONFIG_CONTIG) {
461 sprintf(emsg, "Sorry, can not handle LogLuv images with %s=%d",
462 "Planarconfiguration", planarconfig);
463 return (0);
464 }
465 TIFFSetField(tif, TIFFTAG_SGILOGDATAFMT, SGILOGDATAFMT_8BIT);
466 img->photometric = PHOTOMETRIC_RGB; /* little white lie */
467 img->bitspersample = 8;
468 break;
469 case PHOTOMETRIC_CIELAB:
470 break;
471 default:
472 sprintf(emsg, "Sorry, can not handle image with %s=%d",
473 photoTag, img->photometric);
474 goto fail_return;
475 }
476 TIFFGetField(tif, TIFFTAG_IMAGEWIDTH, &img->width);
477 TIFFGetField(tif, TIFFTAG_IMAGELENGTH, &img->height);
478 TIFFGetFieldDefaulted(tif, TIFFTAG_ORIENTATION, &img->orientation);
479 img->isContig =
480 !(planarconfig == PLANARCONFIG_SEPARATE && img->samplesperpixel > 1);
481 if (img->isContig) {
482 if (!PickContigCase(img)) {
483 sprintf(emsg, "Sorry, can not handle image");
484 goto fail_return;
485 }
486 } else {
487 if (!PickSeparateCase(img)) {
488 sprintf(emsg, "Sorry, can not handle image");
489 goto fail_return;
490 }
491 }
492 return 1;
493
494 fail_return:
495 TIFFRGBAImageEnd( img );
496 return 0;
497 }
498
499 int
500 TIFFRGBAImageGet(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h)
501 {
502 if (img->get == NULL) {
503 TIFFErrorExt(img->tif->tif_clientdata, TIFFFileName(img->tif), "No \"get\" routine setup");
504 return (0);
505 }
506 if (img->put.any == NULL) {
507 TIFFErrorExt(img->tif->tif_clientdata, TIFFFileName(img->tif),
508 "No \"put\" routine setupl; probably can not handle image format");
509 return (0);
510 }
511 return (*img->get)(img, raster, w, h);
512 }
513
514 /*
515 * Read the specified image into an ABGR-format rastertaking in account
516 * specified orientation.
517 */
518 int
519 TIFFReadRGBAImageOriented(TIFF* tif,
520 uint32 rwidth, uint32 rheight, uint32* raster,
521 int orientation, int stop)
522 {
523 char emsg[1024] = "";
524 TIFFRGBAImage img;
525 int ok;
526
527 if (TIFFRGBAImageOK(tif, emsg) && TIFFRGBAImageBegin(&img, tif, stop, emsg)) {
528 img.req_orientation = (uint16)orientation;
529 /* XXX verify rwidth and rheight against width and height */
530 ok = TIFFRGBAImageGet(&img, raster+(rheight-img.height)*rwidth,
531 rwidth, img.height);
532 TIFFRGBAImageEnd(&img);
533 } else {
534 TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "%s", emsg);
535 ok = 0;
536 }
537 return (ok);
538 }
539
540 /*
541 * Read the specified image into an ABGR-format raster. Use bottom left
542 * origin for raster by default.
543 */
544 int
545 TIFFReadRGBAImage(TIFF* tif,
546 uint32 rwidth, uint32 rheight, uint32* raster, int stop)
547 {
548 return TIFFReadRGBAImageOriented(tif, rwidth, rheight, raster,
549 ORIENTATION_BOTLEFT, stop);
550 }
551
552 static int
553 setorientation(TIFFRGBAImage* img)
554 {
555 switch (img->orientation) {
556 case ORIENTATION_TOPLEFT:
557 case ORIENTATION_LEFTTOP:
558 if (img->req_orientation == ORIENTATION_TOPRIGHT ||
559 img->req_orientation == ORIENTATION_RIGHTTOP)
560 return FLIP_HORIZONTALLY;
561 else if (img->req_orientation == ORIENTATION_BOTRIGHT ||
562 img->req_orientation == ORIENTATION_RIGHTBOT)
563 return FLIP_HORIZONTALLY | FLIP_VERTICALLY;
564 else if (img->req_orientation == ORIENTATION_BOTLEFT ||
565 img->req_orientation == ORIENTATION_LEFTBOT)
566 return FLIP_VERTICALLY;
567 else
568 return 0;
569 case ORIENTATION_TOPRIGHT:
570 case ORIENTATION_RIGHTTOP:
571 if (img->req_orientation == ORIENTATION_TOPLEFT ||
572 img->req_orientation == ORIENTATION_LEFTTOP)
573 return FLIP_HORIZONTALLY;
574 else if (img->req_orientation == ORIENTATION_BOTRIGHT ||
575 img->req_orientation == ORIENTATION_RIGHTBOT)
576 return FLIP_VERTICALLY;
577 else if (img->req_orientation == ORIENTATION_BOTLEFT ||
578 img->req_orientation == ORIENTATION_LEFTBOT)
579 return FLIP_HORIZONTALLY | FLIP_VERTICALLY;
580 else
581 return 0;
582 case ORIENTATION_BOTRIGHT:
583 case ORIENTATION_RIGHTBOT:
584 if (img->req_orientation == ORIENTATION_TOPLEFT ||
585 img->req_orientation == ORIENTATION_LEFTTOP)
586 return FLIP_HORIZONTALLY | FLIP_VERTICALLY;
587 else if (img->req_orientation == ORIENTATION_TOPRIGHT ||
588 img->req_orientation == ORIENTATION_RIGHTTOP)
589 return FLIP_VERTICALLY;
590 else if (img->req_orientation == ORIENTATION_BOTLEFT ||
591 img->req_orientation == ORIENTATION_LEFTBOT)
592 return FLIP_HORIZONTALLY;
593 else
594 return 0;
595 case ORIENTATION_BOTLEFT:
596 case ORIENTATION_LEFTBOT:
597 if (img->req_orientation == ORIENTATION_TOPLEFT ||
598 img->req_orientation == ORIENTATION_LEFTTOP)
599 return FLIP_VERTICALLY;
600 else if (img->req_orientation == ORIENTATION_TOPRIGHT ||
601 img->req_orientation == ORIENTATION_RIGHTTOP)
602 return FLIP_HORIZONTALLY | FLIP_VERTICALLY;
603 else if (img->req_orientation == ORIENTATION_BOTRIGHT ||
604 img->req_orientation == ORIENTATION_RIGHTBOT)
605 return FLIP_HORIZONTALLY;
606 else
607 return 0;
608 default: /* NOTREACHED */
609 return 0;
610 }
611 }
612
613 /*
614 * Get an tile-organized image that has
615 * PlanarConfiguration contiguous if SamplesPerPixel > 1
616 * or
617 * SamplesPerPixel == 1
618 */
619 static int
620 gtTileContig(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h)
621 {
622 TIFF* tif = img->tif;
623 tileContigRoutine put = img->put.contig;
624 uint32 col, row, y, rowstoread;
625 tmsize_t pos;
626 uint32 tw, th;
627 unsigned char* buf = NULL;
628 int32 fromskew, toskew;
629 uint32 nrow;
630 int ret = 1, flip;
631 uint32 this_tw, tocol;
632 int32 this_toskew, leftmost_toskew;
633 int32 leftmost_fromskew;
634 uint32 leftmost_tw;
635 tmsize_t bufsize;
636
637 bufsize = TIFFTileSize(tif);
638 if (bufsize == 0) {
639 TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "%s", "No space for tile buffer");
640 return (0);
641 }
642
643 TIFFGetField(tif, TIFFTAG_TILEWIDTH, &tw);
644 TIFFGetField(tif, TIFFTAG_TILELENGTH, &th);
645
646 flip = setorientation(img);
647 if (flip & FLIP_VERTICALLY) {
648 y = h - 1;
649 toskew = -(int32)(tw + w);
650 }
651 else {
652 y = 0;
653 toskew = -(int32)(tw - w);
654 }
655
656 /*
657 * Leftmost tile is clipped on left side if col_offset > 0.
658 */
659 leftmost_fromskew = img->col_offset % tw;
660 leftmost_tw = tw - leftmost_fromskew;
661 leftmost_toskew = toskew + leftmost_fromskew;
662 for (row = 0; ret != 0 && row < h; row += nrow)
663 {
664 rowstoread = th - (row + img->row_offset) % th;
665 nrow = (row + rowstoread > h ? h - row : rowstoread);
666 fromskew = leftmost_fromskew;
667 this_tw = leftmost_tw;
668 this_toskew = leftmost_toskew;
669 tocol = 0;
670 col = img->col_offset;
671 while (tocol < w)
672 {
673 if (_TIFFReadTileAndAllocBuffer(tif, (void**) &buf, bufsize, col,
674 row+img->row_offset, 0, 0)==(tmsize_t)(-1) &&
675 (buf == NULL || img->stoponerr))
676 {
677 ret = 0;
678 break;
679 }
680 pos = ((row+img->row_offset) % th) * TIFFTileRowSize(tif) + \
681 ((tmsize_t) fromskew * img->samplesperpixel);
682 if (tocol + this_tw > w)
683 {
684 /*
685 * Rightmost tile is clipped on right side.
686 */
687 fromskew = tw - (w - tocol);
688 this_tw = tw - fromskew;
689 this_toskew = toskew + fromskew;
690 }
691 (*put)(img, raster+y*w+tocol, tocol, y, this_tw, nrow, fromskew, this_toskew, buf + pos);
692 tocol += this_tw;
693 col += this_tw;
694 /*
695 * After the leftmost tile, tiles are no longer clipped on left side.
696 */
697 fromskew = 0;
698 this_tw = tw;
699 this_toskew = toskew;
700 }
701
702 y += ((flip & FLIP_VERTICALLY) ? -(int32) nrow : (int32) nrow);
703 }
704 _TIFFfree(buf);
705
706 if (flip & FLIP_HORIZONTALLY) {
707 uint32 line;
708
709 for (line = 0; line < h; line++) {
710 uint32 *left = raster + (line * w);
711 uint32 *right = left + w - 1;
712
713 while ( left < right ) {
714 uint32 temp = *left;
715 *left = *right;
716 *right = temp;
717 left++;
718 right--;
719 }
720 }
721 }
722
723 return (ret);
724 }
725
726 /*
727 * Get an tile-organized image that has
728 * SamplesPerPixel > 1
729 * PlanarConfiguration separated
730 * We assume that all such images are RGB.
731 */
732 static int
733 gtTileSeparate(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h)
734 {
735 TIFF* tif = img->tif;
736 tileSeparateRoutine put = img->put.separate;
737 uint32 col, row, y, rowstoread;
738 tmsize_t pos;
739 uint32 tw, th;
740 unsigned char* buf = NULL;
741 unsigned char* p0 = NULL;
742 unsigned char* p1 = NULL;
743 unsigned char* p2 = NULL;
744 unsigned char* pa = NULL;
745 tmsize_t tilesize;
746 tmsize_t bufsize;
747 int32 fromskew, toskew;
748 int alpha = img->alpha;
749 uint32 nrow;
750 int ret = 1, flip;
751 uint16 colorchannels;
752 uint32 this_tw, tocol;
753 int32 this_toskew, leftmost_toskew;
754 int32 leftmost_fromskew;
755 uint32 leftmost_tw;
756
757 tilesize = TIFFTileSize(tif);
758 bufsize = _TIFFMultiplySSize(tif, alpha?4:3,tilesize, "gtTileSeparate");
759 if (bufsize == 0) {
760 return (0);
761 }
762
763 TIFFGetField(tif, TIFFTAG_TILEWIDTH, &tw);
764 TIFFGetField(tif, TIFFTAG_TILELENGTH, &th);
765
766 flip = setorientation(img);
767 if (flip & FLIP_VERTICALLY) {
768 y = h - 1;
769 toskew = -(int32)(tw + w);
770 }
771 else {
772 y = 0;
773 toskew = -(int32)(tw - w);
774 }
775
776 switch( img->photometric )
777 {
778 case PHOTOMETRIC_MINISWHITE:
779 case PHOTOMETRIC_MINISBLACK:
780 case PHOTOMETRIC_PALETTE:
781 colorchannels = 1;
782 break;
783
784 default:
785 colorchannels = 3;
786 break;
787 }
788
789 /*
790 * Leftmost tile is clipped on left side if col_offset > 0.
791 */
792 leftmost_fromskew = img->col_offset % tw;
793 leftmost_tw = tw - leftmost_fromskew;
794 leftmost_toskew = toskew + leftmost_fromskew;
795 for (row = 0; ret != 0 && row < h; row += nrow)
796 {
797 rowstoread = th - (row + img->row_offset) % th;
798 nrow = (row + rowstoread > h ? h - row : rowstoread);
799 fromskew = leftmost_fromskew;
800 this_tw = leftmost_tw;
801 this_toskew = leftmost_toskew;
802 tocol = 0;
803 col = img->col_offset;
804 while (tocol < w)
805 {
806 if( buf == NULL )
807 {
808 if (_TIFFReadTileAndAllocBuffer(
809 tif, (void**) &buf, bufsize, col,
810 row+img->row_offset,0,0)==(tmsize_t)(-1)
811 && (buf == NULL || img->stoponerr))
812 {
813 ret = 0;
814 break;
815 }
816 p0 = buf;
817 if( colorchannels == 1 )
818 {
819 p2 = p1 = p0;
820 pa = (alpha?(p0+3*tilesize):NULL);
821 }
822 else
823 {
824 p1 = p0 + tilesize;
825 p2 = p1 + tilesize;
826 pa = (alpha?(p2+tilesize):NULL);
827 }
828 }
829 else if (TIFFReadTile(tif, p0, col,
830 row+img->row_offset,0,0)==(tmsize_t)(-1) && img->stoponerr)
831 {
832 ret = 0;
833 break;
834 }
835 if (colorchannels > 1
836 && TIFFReadTile(tif, p1, col,
837 row+img->row_offset,0,1) == (tmsize_t)(-1)
838 && img->stoponerr)
839 {
840 ret = 0;
841 break;
842 }
843 if (colorchannels > 1
844 && TIFFReadTile(tif, p2, col,
845 row+img->row_offset,0,2) == (tmsize_t)(-1)
846 && img->stoponerr)
847 {
848 ret = 0;
849 break;
850 }
851 if (alpha
852 && TIFFReadTile(tif,pa,col,
853 row+img->row_offset,0,colorchannels) == (tmsize_t)(-1)
854 && img->stoponerr)
855 {
856 ret = 0;
857 break;
858 }
859
860 pos = ((row+img->row_offset) % th) * TIFFTileRowSize(tif) + \
861 ((tmsize_t) fromskew * img->samplesperpixel);
862 if (tocol + this_tw > w)
863 {
864 /*
865 * Rightmost tile is clipped on right side.
866 */
867 fromskew = tw - (w - tocol);
868 this_tw = tw - fromskew;
869 this_toskew = toskew + fromskew;
870 }
871 (*put)(img, raster+y*w+tocol, tocol, y, this_tw, nrow, fromskew, this_toskew, \
872 p0 + pos, p1 + pos, p2 + pos, (alpha?(pa+pos):NULL));
873 tocol += this_tw;
874 col += this_tw;
875 /*
876 * After the leftmost tile, tiles are no longer clipped on left side.
877 */
878 fromskew = 0;
879 this_tw = tw;
880 this_toskew = toskew;
881 }
882
883 y += ((flip & FLIP_VERTICALLY) ?-(int32) nrow : (int32) nrow);
884 }
885
886 if (flip & FLIP_HORIZONTALLY) {
887 uint32 line;
888
889 for (line = 0; line < h; line++) {
890 uint32 *left = raster + (line * w);
891 uint32 *right = left + w - 1;
892
893 while ( left < right ) {
894 uint32 temp = *left;
895 *left = *right;
896 *right = temp;
897 left++;
898 right--;
899 }
900 }
901 }
902
903 _TIFFfree(buf);
904 return (ret);
905 }
906
907 /*
908 * Get a strip-organized image that has
909 * PlanarConfiguration contiguous if SamplesPerPixel > 1
910 * or
911 * SamplesPerPixel == 1
912 */
913 static int
914 gtStripContig(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h)
915 {
916 TIFF* tif = img->tif;
917 tileContigRoutine put = img->put.contig;
918 uint32 row, y, nrow, nrowsub, rowstoread;
919 tmsize_t pos;
920 unsigned char* buf = NULL;
921 uint32 rowsperstrip;
922 uint16 subsamplinghor,subsamplingver;
923 uint32 imagewidth = img->width;
924 tmsize_t scanline;
925 int32 fromskew, toskew;
926 int ret = 1, flip;
927 tmsize_t maxstripsize;
928
929 TIFFGetFieldDefaulted(tif, TIFFTAG_YCBCRSUBSAMPLING, &subsamplinghor, &subsamplingver);
930 if( subsamplingver == 0 ) {
931 TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "Invalid vertical YCbCr subsampling");
932 return (0);
933 }
934
935 maxstripsize = TIFFStripSize(tif);
936
937 flip = setorientation(img);
938 if (flip & FLIP_VERTICALLY) {
939 y = h - 1;
940 toskew = -(int32)(w + w);
941 } else {
942 y = 0;
943 toskew = -(int32)(w - w);
944 }
945
946 TIFFGetFieldDefaulted(tif, TIFFTAG_ROWSPERSTRIP, &rowsperstrip);
947
948 scanline = TIFFScanlineSize(tif);
949 fromskew = (w < imagewidth ? imagewidth - w : 0);
950 for (row = 0; row < h; row += nrow)
951 {
952 uint32 temp;
953 rowstoread = rowsperstrip - (row + img->row_offset) % rowsperstrip;
954 nrow = (row + rowstoread > h ? h - row : rowstoread);
955 nrowsub = nrow;
956 if ((nrowsub%subsamplingver)!=0)
957 nrowsub+=subsamplingver-nrowsub%subsamplingver;
958 temp = (row + img->row_offset)%rowsperstrip + nrowsub;
959 if( scanline > 0 && temp > (size_t)(TIFF_TMSIZE_T_MAX / scanline) )
960 {
961 TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "Integer overflow in gtStripContig");
962 return 0;
963 }
964 if (_TIFFReadEncodedStripAndAllocBuffer(tif,
965 TIFFComputeStrip(tif,row+img->row_offset, 0),
966 (void**)(&buf),
967 maxstripsize,
968 temp * scanline)==(tmsize_t)(-1)
969 && (buf == NULL || img->stoponerr))
970 {
971 ret = 0;
972 break;
973 }
974
975 pos = ((row + img->row_offset) % rowsperstrip) * scanline + \
976 ((tmsize_t) img->col_offset * img->samplesperpixel);
977 (*put)(img, raster+y*w, 0, y, w, nrow, fromskew, toskew, buf + pos);
978 y += ((flip & FLIP_VERTICALLY) ? -(int32) nrow : (int32) nrow);
979 }
980
981 if (flip & FLIP_HORIZONTALLY) {
982 uint32 line;
983
984 for (line = 0; line < h; line++) {
985 uint32 *left = raster + (line * w);
986 uint32 *right = left + w - 1;
987
988 while ( left < right ) {
989 uint32 temp = *left;
990 *left = *right;
991 *right = temp;
992 left++;
993 right--;
994 }
995 }
996 }
997
998 _TIFFfree(buf);
999 return (ret);
1000 }
1001
1002 /*
1003 * Get a strip-organized image with
1004 * SamplesPerPixel > 1
1005 * PlanarConfiguration separated
1006 * We assume that all such images are RGB.
1007 */
1008 static int
1009 gtStripSeparate(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h)
1010 {
1011 TIFF* tif = img->tif;
1012 tileSeparateRoutine put = img->put.separate;
1013 unsigned char *buf = NULL;
1014 unsigned char *p0 = NULL, *p1 = NULL, *p2 = NULL, *pa = NULL;
1015 uint32 row, y, nrow, rowstoread;
1016 tmsize_t pos;
1017 tmsize_t scanline;
1018 uint32 rowsperstrip, offset_row;
1019 uint32 imagewidth = img->width;
1020 tmsize_t stripsize;
1021 tmsize_t bufsize;
1022 int32 fromskew, toskew;
1023 int alpha = img->alpha;
1024 int ret = 1, flip;
1025 uint16 colorchannels;
1026
1027 stripsize = TIFFStripSize(tif);
1028 bufsize = _TIFFMultiplySSize(tif,alpha?4:3,stripsize, "gtStripSeparate");
1029 if (bufsize == 0) {
1030 return (0);
1031 }
1032
1033 flip = setorientation(img);
1034 if (flip & FLIP_VERTICALLY) {
1035 y = h - 1;
1036 toskew = -(int32)(w + w);
1037 }
1038 else {
1039 y = 0;
1040 toskew = -(int32)(w - w);
1041 }
1042
1043 switch( img->photometric )
1044 {
1045 case PHOTOMETRIC_MINISWHITE:
1046 case PHOTOMETRIC_MINISBLACK:
1047 case PHOTOMETRIC_PALETTE:
1048 colorchannels = 1;
1049 break;
1050
1051 default:
1052 colorchannels = 3;
1053 break;
1054 }
1055
1056 TIFFGetFieldDefaulted(tif, TIFFTAG_ROWSPERSTRIP, &rowsperstrip);
1057 scanline = TIFFScanlineSize(tif);
1058 fromskew = (w < imagewidth ? imagewidth - w : 0);
1059 for (row = 0; row < h; row += nrow)
1060 {
1061 uint32 temp;
1062 rowstoread = rowsperstrip - (row + img->row_offset) % rowsperstrip;
1063 nrow = (row + rowstoread > h ? h - row : rowstoread);
1064 offset_row = row + img->row_offset;
1065 temp = (row + img->row_offset)%rowsperstrip + nrow;
1066 if( scanline > 0 && temp > (size_t)(TIFF_TMSIZE_T_MAX / scanline) )
1067 {
1068 TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "Integer overflow in gtStripSeparate");
1069 return 0;
1070 }
1071 if( buf == NULL )
1072 {
1073 if (_TIFFReadEncodedStripAndAllocBuffer(
1074 tif, TIFFComputeStrip(tif, offset_row, 0),
1075 (void**) &buf, bufsize,
1076 temp * scanline)==(tmsize_t)(-1)
1077 && (buf == NULL || img->stoponerr))
1078 {
1079 ret = 0;
1080 break;
1081 }
1082 p0 = buf;
1083 if( colorchannels == 1 )
1084 {
1085 p2 = p1 = p0;
1086 pa = (alpha?(p0+3*stripsize):NULL);
1087 }
1088 else
1089 {
1090 p1 = p0 + stripsize;
1091 p2 = p1 + stripsize;
1092 pa = (alpha?(p2+stripsize):NULL);
1093 }
1094 }
1095 else if (TIFFReadEncodedStrip(tif, TIFFComputeStrip(tif, offset_row, 0),
1096 p0, temp * scanline)==(tmsize_t)(-1)
1097 && img->stoponerr)
1098 {
1099 ret = 0;
1100 break;
1101 }
1102 if (colorchannels > 1
1103 && TIFFReadEncodedStrip(tif, TIFFComputeStrip(tif, offset_row, 1),
1104 p1, temp * scanline) == (tmsize_t)(-1)
1105 && img->stoponerr)
1106 {
1107 ret = 0;
1108 break;
1109 }
1110 if (colorchannels > 1
1111 && TIFFReadEncodedStrip(tif, TIFFComputeStrip(tif, offset_row, 2),
1112 p2, temp * scanline) == (tmsize_t)(-1)
1113 && img->stoponerr)
1114 {
1115 ret = 0;
1116 break;
1117 }
1118 if (alpha)
1119 {
1120 if (TIFFReadEncodedStrip(tif, TIFFComputeStrip(tif, offset_row, colorchannels),
1121 pa, temp * scanline)==(tmsize_t)(-1)
1122 && img->stoponerr)
1123 {
1124 ret = 0;
1125 break;
1126 }
1127 }
1128
1129 pos = ((row + img->row_offset) % rowsperstrip) * scanline + \
1130 ((tmsize_t) img->col_offset * img->samplesperpixel);
1131 (*put)(img, raster+y*w, 0, y, w, nrow, fromskew, toskew, p0 + pos, p1 + pos,
1132 p2 + pos, (alpha?(pa+pos):NULL));
1133 y += ((flip & FLIP_VERTICALLY) ? -(int32) nrow : (int32) nrow);
1134 }
1135
1136 if (flip & FLIP_HORIZONTALLY) {
1137 uint32 line;
1138
1139 for (line = 0; line < h; line++) {
1140 uint32 *left = raster + (line * w);
1141 uint32 *right = left + w - 1;
1142
1143 while ( left < right ) {
1144 uint32 temp = *left;
1145 *left = *right;
1146 *right = temp;
1147 left++;
1148 right--;
1149 }
1150 }
1151 }
1152
1153 _TIFFfree(buf);
1154 return (ret);
1155 }
1156
1157 /*
1158 * The following routines move decoded data returned
1159 * from the TIFF library into rasters filled with packed
1160 * ABGR pixels (i.e. suitable for passing to lrecwrite.)
1161 *
1162 * The routines have been created according to the most
1163 * important cases and optimized. PickContigCase and
1164 * PickSeparateCase analyze the parameters and select
1165 * the appropriate "get" and "put" routine to use.
1166 */
1167 #define REPEAT8(op) REPEAT4(op); REPEAT4(op)
1168 #define REPEAT4(op) REPEAT2(op); REPEAT2(op)
1169 #define REPEAT2(op) op; op
1170 #define CASE8(x,op) \
1171 switch (x) { \
1172 case 7: op; /*-fallthrough*/ \
1173 case 6: op; /*-fallthrough*/ \
1174 case 5: op; /*-fallthrough*/ \
1175 case 4: op; /*-fallthrough*/ \
1176 case 3: op; /*-fallthrough*/ \
1177 case 2: op; /*-fallthrough*/ \
1178 case 1: op; \
1179 }
1180 #define CASE4(x,op) switch (x) { case 3: op; /*-fallthrough*/ case 2: op; /*-fallthrough*/ case 1: op; }
1181 #define NOP
1182
1183 #define UNROLL8(w, op1, op2) { \
1184 uint32 _x; \
1185 for (_x = w; _x >= 8; _x -= 8) { \
1186 op1; \
1187 REPEAT8(op2); \
1188 } \
1189 if (_x > 0) { \
1190 op1; \
1191 CASE8(_x,op2); \
1192 } \
1193 }
1194 #define UNROLL4(w, op1, op2) { \
1195 uint32 _x; \
1196 for (_x = w; _x >= 4; _x -= 4) { \
1197 op1; \
1198 REPEAT4(op2); \
1199 } \
1200 if (_x > 0) { \
1201 op1; \
1202 CASE4(_x,op2); \
1203 } \
1204 }
1205 #define UNROLL2(w, op1, op2) { \
1206 uint32 _x; \
1207 for (_x = w; _x >= 2; _x -= 2) { \
1208 op1; \
1209 REPEAT2(op2); \
1210 } \
1211 if (_x) { \
1212 op1; \
1213 op2; \
1214 } \
1215 }
1216
1217 #define SKEW(r,g,b,skew) { r += skew; g += skew; b += skew; }
1218 #define SKEW4(r,g,b,a,skew) { r += skew; g += skew; b += skew; a+= skew; }
1219
1220 #define A1 (((uint32)0xffL)<<24)
1221 #define PACK(r,g,b) \
1222 ((uint32)(r)|((uint32)(g)<<8)|((uint32)(b)<<16)|A1)
1223 #define PACK4(r,g,b,a) \
1224 ((uint32)(r)|((uint32)(g)<<8)|((uint32)(b)<<16)|((uint32)(a)<<24))
1225 #define W2B(v) (((v)>>8)&0xff)
1226 /* TODO: PACKW should have be made redundant in favor of Bitdepth16To8 LUT */
1227 #define PACKW(r,g,b) \
1228 ((uint32)W2B(r)|((uint32)W2B(g)<<8)|((uint32)W2B(b)<<16)|A1)
1229 #define PACKW4(r,g,b,a) \
1230 ((uint32)W2B(r)|((uint32)W2B(g)<<8)|((uint32)W2B(b)<<16)|((uint32)W2B(a)<<24))
1231
1232 #define DECLAREContigPutFunc(name) \
1233 static void name(\
1234 TIFFRGBAImage* img, \
1235 uint32* cp, \
1236 uint32 x, uint32 y, \
1237 uint32 w, uint32 h, \
1238 int32 fromskew, int32 toskew, \
1239 unsigned char* pp \
1240 )
1241
1242 /*
1243 * 8-bit palette => colormap/RGB
1244 */
1245 DECLAREContigPutFunc(put8bitcmaptile)
1246 {
1247 uint32** PALmap = img->PALmap;
1248 int samplesperpixel = img->samplesperpixel;
1249
1250 (void) y;
1251 for( ; h > 0; --h) {
1252 for (x = w; x > 0; --x)
1253 {
1254 *cp++ = PALmap[*pp][0];
1255 pp += samplesperpixel;
1256 }
1257 cp += toskew;
1258 pp += fromskew;
1259 }
1260 }
1261
1262 /*
1263 * 4-bit palette => colormap/RGB
1264 */
1265 DECLAREContigPutFunc(put4bitcmaptile)
1266 {
1267 uint32** PALmap = img->PALmap;
1268
1269 (void) x; (void) y;
1270 fromskew /= 2;
1271 for( ; h > 0; --h) {
1272 uint32* bw;
1273 UNROLL2(w, bw = PALmap[*pp++], *cp++ = *bw++);
1274 cp += toskew;
1275 pp += fromskew;
1276 }
1277 }
1278
1279 /*
1280 * 2-bit palette => colormap/RGB
1281 */
1282 DECLAREContigPutFunc(put2bitcmaptile)
1283 {
1284 uint32** PALmap = img->PALmap;
1285
1286 (void) x; (void) y;
1287 fromskew /= 4;
1288 for( ; h > 0; --h) {
1289 uint32* bw;
1290 UNROLL4(w, bw = PALmap[*pp++], *cp++ = *bw++);
1291 cp += toskew;
1292 pp += fromskew;
1293 }
1294 }
1295
1296 /*
1297 * 1-bit palette => colormap/RGB
1298 */
1299 DECLAREContigPutFunc(put1bitcmaptile)
1300 {
1301 uint32** PALmap = img->PALmap;
1302
1303 (void) x; (void) y;
1304 fromskew /= 8;
1305 for( ; h > 0; --h) {
1306 uint32* bw;
1307 UNROLL8(w, bw = PALmap[*pp++], *cp++ = *bw++);
1308 cp += toskew;
1309 pp += fromskew;
1310 }
1311 }
1312
1313 /*
1314 * 8-bit greyscale => colormap/RGB
1315 */
1316 DECLAREContigPutFunc(putgreytile)
1317 {
1318 int samplesperpixel = img->samplesperpixel;
1319 uint32** BWmap = img->BWmap;
1320
1321 (void) y;
1322 for( ; h > 0; --h) {
1323 for (x = w; x > 0; --x)
1324 {
1325 *cp++ = BWmap[*pp][0];
1326 pp += samplesperpixel;
1327 }
1328 cp += toskew;
1329 pp += fromskew;
1330 }
1331 }
1332
1333 /*
1334 * 8-bit greyscale with associated alpha => colormap/RGBA
1335 */
1336 DECLAREContigPutFunc(putagreytile)
1337 {
1338 int samplesperpixel = img->samplesperpixel;
1339 uint32** BWmap = img->BWmap;
1340
1341 (void) y;
1342 for( ; h > 0; --h) {
1343 for (x = w; x > 0; --x)
1344 {
1345 *cp++ = BWmap[*pp][0] & ((uint32)*(pp+1) << 24 | ~A1);
1346 pp += samplesperpixel;
1347 }
1348 cp += toskew;
1349 pp += fromskew;
1350 }
1351 }
1352
1353 /*
1354 * 16-bit greyscale => colormap/RGB
1355 */
1356 DECLAREContigPutFunc(put16bitbwtile)
1357 {
1358 int samplesperpixel = img->samplesperpixel;
1359 uint32** BWmap = img->BWmap;
1360
1361 (void) y;
1362 for( ; h > 0; --h) {
1363 uint16 *wp = (uint16 *) pp;
1364
1365 for (x = w; x > 0; --x)
1366 {
1367 /* use high order byte of 16bit value */
1368
1369 *cp++ = BWmap[*wp >> 8][0];
1370 pp += 2 * samplesperpixel;
1371 wp += samplesperpixel;
1372 }
1373 cp += toskew;
1374 pp += fromskew;
1375 }
1376 }
1377
1378 /*
1379 * 1-bit bilevel => colormap/RGB
1380 */
1381 DECLAREContigPutFunc(put1bitbwtile)
1382 {
1383 uint32** BWmap = img->BWmap;
1384
1385 (void) x; (void) y;
1386 fromskew /= 8;
1387 for( ; h > 0; --h) {
1388 uint32* bw;
1389 UNROLL8(w, bw = BWmap[*pp++], *cp++ = *bw++);
1390 cp += toskew;
1391 pp += fromskew;
1392 }
1393 }
1394
1395 /*
1396 * 2-bit greyscale => colormap/RGB
1397 */
1398 DECLAREContigPutFunc(put2bitbwtile)
1399 {
1400 uint32** BWmap = img->BWmap;
1401
1402 (void) x; (void) y;
1403 fromskew /= 4;
1404 for( ; h > 0; --h) {
1405 uint32* bw;
1406 UNROLL4(w, bw = BWmap[*pp++], *cp++ = *bw++);
1407 cp += toskew;
1408 pp += fromskew;
1409 }
1410 }
1411
1412 /*
1413 * 4-bit greyscale => colormap/RGB
1414 */
1415 DECLAREContigPutFunc(put4bitbwtile)
1416 {
1417 uint32** BWmap = img->BWmap;
1418
1419 (void) x; (void) y;
1420 fromskew /= 2;
1421 for( ; h > 0; --h) {
1422 uint32* bw;
1423 UNROLL2(w, bw = BWmap[*pp++], *cp++ = *bw++);
1424 cp += toskew;
1425 pp += fromskew;
1426 }
1427 }
1428
1429 /*
1430 * 8-bit packed samples, no Map => RGB
1431 */
1432 DECLAREContigPutFunc(putRGBcontig8bittile)
1433 {
1434 int samplesperpixel = img->samplesperpixel;
1435
1436 (void) x; (void) y;
1437 fromskew *= samplesperpixel;
1438 for( ; h > 0; --h) {
1439 UNROLL8(w, NOP,
1440 *cp++ = PACK(pp[0], pp[1], pp[2]);
1441 pp += samplesperpixel);
1442 cp += toskew;
1443 pp += fromskew;
1444 }
1445 }
1446
1447 /*
1448 * 8-bit packed samples => RGBA w/ associated alpha
1449 * (known to have Map == NULL)
1450 */
1451 DECLAREContigPutFunc(putRGBAAcontig8bittile)
1452 {
1453 int samplesperpixel = img->samplesperpixel;
1454
1455 (void) x; (void) y;
1456 fromskew *= samplesperpixel;
1457 for( ; h > 0; --h) {
1458 UNROLL8(w, NOP,
1459 *cp++ = PACK4(pp[0], pp[1], pp[2], pp[3]);
1460 pp += samplesperpixel);
1461 cp += toskew;
1462 pp += fromskew;
1463 }
1464 }
1465
1466 /*
1467 * 8-bit packed samples => RGBA w/ unassociated alpha
1468 * (known to have Map == NULL)
1469 */
1470 DECLAREContigPutFunc(putRGBUAcontig8bittile)
1471 {
1472 int samplesperpixel = img->samplesperpixel;
1473 (void) y;
1474 fromskew *= samplesperpixel;
1475 for( ; h > 0; --h) {
1476 uint32 r, g, b, a;
1477 uint8* m;
1478 for (x = w; x > 0; --x) {
1479 a = pp[3];
1480 m = img->UaToAa+((size_t) a<<8);
1481 r = m[pp[0]];
1482 g = m[pp[1]];
1483 b = m[pp[2]];
1484 *cp++ = PACK4(r,g,b,a);
1485 pp += samplesperpixel;
1486 }
1487 cp += toskew;
1488 pp += fromskew;
1489 }
1490 }
1491
1492 /*
1493 * 16-bit packed samples => RGB
1494 */
1495 DECLAREContigPutFunc(putRGBcontig16bittile)
1496 {
1497 int samplesperpixel = img->samplesperpixel;
1498 uint16 *wp = (uint16 *)pp;
1499 (void) y;
1500 fromskew *= samplesperpixel;
1501 for( ; h > 0; --h) {
1502 for (x = w; x > 0; --x) {
1503 *cp++ = PACK(img->Bitdepth16To8[wp[0]],
1504 img->Bitdepth16To8[wp[1]],
1505 img->Bitdepth16To8[wp[2]]);
1506 wp += samplesperpixel;
1507 }
1508 cp += toskew;
1509 wp += fromskew;
1510 }
1511 }
1512
1513 /*
1514 * 16-bit packed samples => RGBA w/ associated alpha
1515 * (known to have Map == NULL)
1516 */
1517 DECLAREContigPutFunc(putRGBAAcontig16bittile)
1518 {
1519 int samplesperpixel = img->samplesperpixel;
1520 uint16 *wp = (uint16 *)pp;
1521 (void) y;
1522 fromskew *= samplesperpixel;
1523 for( ; h > 0; --h) {
1524 for (x = w; x > 0; --x) {
1525 *cp++ = PACK4(img->Bitdepth16To8[wp[0]],
1526 img->Bitdepth16To8[wp[1]],
1527 img->Bitdepth16To8[wp[2]],
1528 img->Bitdepth16To8[wp[3]]);
1529 wp += samplesperpixel;
1530 }
1531 cp += toskew;
1532 wp += fromskew;
1533 }
1534 }
1535
1536 /*
1537 * 16-bit packed samples => RGBA w/ unassociated alpha
1538 * (known to have Map == NULL)
1539 */
1540 DECLAREContigPutFunc(putRGBUAcontig16bittile)
1541 {
1542 int samplesperpixel = img->samplesperpixel;
1543 uint16 *wp = (uint16 *)pp;
1544 (void) y;
1545 fromskew *= samplesperpixel;
1546 for( ; h > 0; --h) {
1547 uint32 r,g,b,a;
1548 uint8* m;
1549 for (x = w; x > 0; --x) {
1550 a = img->Bitdepth16To8[wp[3]];
1551 m = img->UaToAa+((size_t) a<<8);
1552 r = m[img->Bitdepth16To8[wp[0]]];
1553 g = m[img->Bitdepth16To8[wp[1]]];
1554 b = m[img->Bitdepth16To8[wp[2]]];
1555 *cp++ = PACK4(r,g,b,a);
1556 wp += samplesperpixel;
1557 }
1558 cp += toskew;
1559 wp += fromskew;
1560 }
1561 }
1562
1563 /*
1564 * 8-bit packed CMYK samples w/o Map => RGB
1565 *
1566 * NB: The conversion of CMYK->RGB is *very* crude.
1567 */
1568 DECLAREContigPutFunc(putRGBcontig8bitCMYKtile)
1569 {
1570 int samplesperpixel = img->samplesperpixel;
1571 uint16 r, g, b, k;
1572
1573 (void) x; (void) y;
1574 fromskew *= samplesperpixel;
1575 for( ; h > 0; --h) {
1576 UNROLL8(w, NOP,
1577 k = 255 - pp[3];
1578 r = (k*(255-pp[0]))/255;
1579 g = (k*(255-pp[1]))/255;
1580 b = (k*(255-pp[2]))/255;
1581 *cp++ = PACK(r, g, b);
1582 pp += samplesperpixel);
1583 cp += toskew;
1584 pp += fromskew;
1585 }
1586 }
1587
1588 /*
1589 * 8-bit packed CMYK samples w/Map => RGB
1590 *
1591 * NB: The conversion of CMYK->RGB is *very* crude.
1592 */
1593 DECLAREContigPutFunc(putRGBcontig8bitCMYKMaptile)
1594 {
1595 int samplesperpixel = img->samplesperpixel;
1596 TIFFRGBValue* Map = img->Map;
1597 uint16 r, g, b, k;
1598
1599 (void) y;
1600 fromskew *= samplesperpixel;
1601 for( ; h > 0; --h) {
1602 for (x = w; x > 0; --x) {
1603 k = 255 - pp[3];
1604 r = (k*(255-pp[0]))/255;
1605 g = (k*(255-pp[1]))/255;
1606 b = (k*(255-pp[2]))/255;
1607 *cp++ = PACK(Map[r], Map[g], Map[b]);
1608 pp += samplesperpixel;
1609 }
1610 pp += fromskew;
1611 cp += toskew;
1612 }
1613 }
1614
1615 #define DECLARESepPutFunc(name) \
1616 static void name(\
1617 TIFFRGBAImage* img,\
1618 uint32* cp,\
1619 uint32 x, uint32 y, \
1620 uint32 w, uint32 h,\
1621 int32 fromskew, int32 toskew,\
1622 unsigned char* r, unsigned char* g, unsigned char* b, unsigned char* a\
1623 )
1624
1625 /*
1626 * 8-bit unpacked samples => RGB
1627 */
1628 DECLARESepPutFunc(putRGBseparate8bittile)
1629 {
1630 (void) img; (void) x; (void) y; (void) a;
1631 for( ; h > 0; --h) {
1632 UNROLL8(w, NOP, *cp++ = PACK(*r++, *g++, *b++));
1633 SKEW(r, g, b, fromskew);
1634 cp += toskew;
1635 }
1636 }
1637
1638 /*
1639 * 8-bit unpacked samples => RGBA w/ associated alpha
1640 */
1641 DECLARESepPutFunc(putRGBAAseparate8bittile)
1642 {
1643 (void) img; (void) x; (void) y;
1644 for( ; h > 0; --h) {
1645 UNROLL8(w, NOP, *cp++ = PACK4(*r++, *g++, *b++, *a++));
1646 SKEW4(r, g, b, a, fromskew);
1647 cp += toskew;
1648 }
1649 }
1650
1651 /*
1652 * 8-bit unpacked CMYK samples => RGBA
1653 */
1654 DECLARESepPutFunc(putCMYKseparate8bittile)
1655 {
1656 (void) img; (void) y;
1657 for( ; h > 0; --h) {
1658 uint32 rv, gv, bv, kv;
1659 for (x = w; x > 0; --x) {
1660 kv = 255 - *a++;
1661 rv = (kv*(255-*r++))/255;
1662 gv = (kv*(255-*g++))/255;
1663 bv = (kv*(255-*b++))/255;
1664 *cp++ = PACK4(rv,gv,bv,255);
1665 }
1666 SKEW4(r, g, b, a, fromskew);
1667 cp += toskew;
1668 }
1669 }
1670
1671 /*
1672 * 8-bit unpacked samples => RGBA w/ unassociated alpha
1673 */
1674 DECLARESepPutFunc(putRGBUAseparate8bittile)
1675 {
1676 (void) img; (void) y;
1677 for( ; h > 0; --h) {
1678 uint32 rv, gv, bv, av;
1679 uint8* m;
1680 for (x = w; x > 0; --x) {
1681 av = *a++;
1682 m = img->UaToAa+((size_t) av<<8);
1683 rv = m[*r++];
1684 gv = m[*g++];
1685 bv = m[*b++];
1686 *cp++ = PACK4(rv,gv,bv,av);
1687 }
1688 SKEW4(r, g, b, a, fromskew);
1689 cp += toskew;
1690 }
1691 }
1692
1693 /*
1694 * 16-bit unpacked samples => RGB
1695 */
1696 DECLARESepPutFunc(putRGBseparate16bittile)
1697 {
1698 uint16 *wr = (uint16*) r;
1699 uint16 *wg = (uint16*) g;
1700 uint16 *wb = (uint16*) b;
1701 (void) img; (void) y; (void) a;
1702 for( ; h > 0; --h) {
1703 for (x = 0; x < w; x++)
1704 *cp++ = PACK(img->Bitdepth16To8[*wr++],
1705 img->Bitdepth16To8[*wg++],
1706 img->Bitdepth16To8[*wb++]);
1707 SKEW(wr, wg, wb, fromskew);
1708 cp += toskew;
1709 }
1710 }
1711
1712 /*
1713 * 16-bit unpacked samples => RGBA w/ associated alpha
1714 */
1715 DECLARESepPutFunc(putRGBAAseparate16bittile)
1716 {
1717 uint16 *wr = (uint16*) r;
1718 uint16 *wg = (uint16*) g;
1719 uint16 *wb = (uint16*) b;
1720 uint16 *wa = (uint16*) a;
1721 (void) img; (void) y;
1722 for( ; h > 0; --h) {
1723 for (x = 0; x < w; x++)
1724 *cp++ = PACK4(img->Bitdepth16To8[*wr++],
1725 img->Bitdepth16To8[*wg++],
1726 img->Bitdepth16To8[*wb++],
1727 img->Bitdepth16To8[*wa++]);
1728 SKEW4(wr, wg, wb, wa, fromskew);
1729 cp += toskew;
1730 }
1731 }
1732
1733 /*
1734 * 16-bit unpacked samples => RGBA w/ unassociated alpha
1735 */
1736 DECLARESepPutFunc(putRGBUAseparate16bittile)
1737 {
1738 uint16 *wr = (uint16*) r;
1739 uint16 *wg = (uint16*) g;
1740 uint16 *wb = (uint16*) b;
1741 uint16 *wa = (uint16*) a;
1742 (void) img; (void) y;
1743 for( ; h > 0; --h) {
1744 uint32 r2,g2,b2,a2;
1745 uint8* m;
1746 for (x = w; x > 0; --x) {
1747 a2 = img->Bitdepth16To8[*wa++];
1748 m = img->UaToAa+((size_t) a2<<8);
1749 r2 = m[img->Bitdepth16To8[*wr++]];
1750 g2 = m[img->Bitdepth16To8[*wg++]];
1751 b2 = m[img->Bitdepth16To8[*wb++]];
1752 *cp++ = PACK4(r2,g2,b2,a2);
1753 }
1754 SKEW4(wr, wg, wb, wa, fromskew);
1755 cp += toskew;
1756 }
1757 }
1758
1759 /*
1760 * 8-bit packed CIE L*a*b 1976 samples => RGB
1761 */
1762 DECLAREContigPutFunc(putcontig8bitCIELab)
1763 {
1764 float X, Y, Z;
1765 uint32 r, g, b;
1766 (void) y;
1767 fromskew *= 3;
1768 for( ; h > 0; --h) {
1769 for (x = w; x > 0; --x) {
1770 TIFFCIELabToXYZ(img->cielab,
1771 (unsigned char)pp[0],
1772 (signed char)pp[1],
1773 (signed char)pp[2],
1774 &X, &Y, &Z);
1775 TIFFXYZToRGB(img->cielab, X, Y, Z, &r, &g, &b);
1776 *cp++ = PACK(r, g, b);
1777 pp += 3;
1778 }
1779 cp += toskew;
1780 pp += fromskew;
1781 }
1782 }
1783
1784 /*
1785 * YCbCr -> RGB conversion and packing routines.
1786 */
1787
1788 #define YCbCrtoRGB(dst, Y) { \
1789 uint32 r, g, b; \
1790 TIFFYCbCrtoRGB(img->ycbcr, (Y), Cb, Cr, &r, &g, &b); \
1791 dst = PACK(r, g, b); \
1792 }
1793
1794 /*
1795 * 8-bit packed YCbCr samples => RGB
1796 * This function is generic for different sampling sizes,
1797 * and can handle blocks sizes that aren't multiples of the
1798 * sampling size. However, it is substantially less optimized
1799 * than the specific sampling cases. It is used as a fallback
1800 * for difficult blocks.
1801 */
1802 #ifdef notdef
1803 static void putcontig8bitYCbCrGenericTile(
1804 TIFFRGBAImage* img,
1805 uint32* cp,
1806 uint32 x, uint32 y,
1807 uint32 w, uint32 h,
1808 int32 fromskew, int32 toskew,
1809 unsigned char* pp,
1810 int h_group,
1811 int v_group )
1812
1813 {
1814 uint32* cp1 = cp+w+toskew;
1815 uint32* cp2 = cp1+w+toskew;
1816 uint32* cp3 = cp2+w+toskew;
1817 int32 incr = 3*w+4*toskew;
1818 int32 Cb, Cr;
1819 int group_size = v_group * h_group + 2;
1820
1821 (void) y;
1822 fromskew = (fromskew * group_size) / h_group;
1823
1824 for( yy = 0; yy < h; yy++ )
1825 {
1826 unsigned char *pp_line;
1827 int y_line_group = yy / v_group;
1828 int y_remainder = yy - y_line_group * v_group;
1829
1830 pp_line = pp + v_line_group *
1831
1832
1833 for( xx = 0; xx < w; xx++ )
1834 {
1835 Cb = pp
1836 }
1837 }
1838 for (; h >= 4; h -= 4) {
1839 x = w>>2;
1840 do {
1841 Cb = pp[16];
1842 Cr = pp[17];
1843
1844 YCbCrtoRGB(cp [0], pp[ 0]);
1845 YCbCrtoRGB(cp [1], pp[ 1]);
1846 YCbCrtoRGB(cp [2], pp[ 2]);
1847 YCbCrtoRGB(cp [3], pp[ 3]);
1848 YCbCrtoRGB(cp1[0], pp[ 4]);
1849 YCbCrtoRGB(cp1[1], pp[ 5]);
1850 YCbCrtoRGB(cp1[2], pp[ 6]);
1851 YCbCrtoRGB(cp1[3], pp[ 7]);
1852 YCbCrtoRGB(cp2[0], pp[ 8]);
1853 YCbCrtoRGB(cp2[1], pp[ 9]);
1854 YCbCrtoRGB(cp2[2], pp[10]);
1855 YCbCrtoRGB(cp2[3], pp[11]);
1856 YCbCrtoRGB(cp3[0], pp[12]);
1857 YCbCrtoRGB(cp3[1], pp[13]);
1858 YCbCrtoRGB(cp3[2], pp[14]);
1859 YCbCrtoRGB(cp3[3], pp[15]);
1860
1861 cp += 4, cp1 += 4, cp2 += 4, cp3 += 4;
1862 pp += 18;
1863 } while (--x);
1864 cp += incr, cp1 += incr, cp2 += incr, cp3 += incr;
1865 pp += fromskew;
1866 }
1867 }
1868 #endif
1869
1870 /*
1871 * 8-bit packed YCbCr samples w/ 4,4 subsampling => RGB
1872 */
1873 DECLAREContigPutFunc(putcontig8bitYCbCr44tile)
1874 {
1875 uint32* cp1 = cp+w+toskew;
1876 uint32* cp2 = cp1+w+toskew;
1877 uint32* cp3 = cp2+w+toskew;
1878 int32 incr = 3*w+4*toskew;
1879
1880 (void) y;
1881 /* adjust fromskew */
1882 fromskew = (fromskew / 4) * (4*2+2);
1883 if ((h & 3) == 0 && (w & 3) == 0) {
1884 for (; h >= 4; h -= 4) {
1885 x = w>>2;
1886 do {
1887 int32 Cb = pp[16];
1888 int32 Cr = pp[17];
1889
1890 YCbCrtoRGB(cp [0], pp[ 0]);
1891 YCbCrtoRGB(cp [1], pp[ 1]);
1892 YCbCrtoRGB(cp [2], pp[ 2]);
1893 YCbCrtoRGB(cp [3], pp[ 3]);
1894 YCbCrtoRGB(cp1[0], pp[ 4]);
1895 YCbCrtoRGB(cp1[1], pp[ 5]);
1896 YCbCrtoRGB(cp1[2], pp[ 6]);
1897 YCbCrtoRGB(cp1[3], pp[ 7]);
1898 YCbCrtoRGB(cp2[0], pp[ 8]);
1899 YCbCrtoRGB(cp2[1], pp[ 9]);
1900 YCbCrtoRGB(cp2[2], pp[10]);
1901 YCbCrtoRGB(cp2[3], pp[11]);
1902 YCbCrtoRGB(cp3[0], pp[12]);
1903 YCbCrtoRGB(cp3[1], pp[13]);
1904 YCbCrtoRGB(cp3[2], pp[14]);
1905 YCbCrtoRGB(cp3[3], pp[15]);
1906
1907 cp += 4;
1908 cp1 += 4;
1909 cp2 += 4;
1910 cp3 += 4;
1911 pp += 18;
1912 } while (--x);
1913 cp += incr;
1914 cp1 += incr;
1915 cp2 += incr;
1916 cp3 += incr;
1917 pp += fromskew;
1918 }
1919 } else {
1920 while (h > 0) {
1921 for (x = w; x > 0;) {
1922 int32 Cb = pp[16];
1923 int32 Cr = pp[17];
1924 switch (x) {
1925 default:
1926 switch (h) {
1927 default: YCbCrtoRGB(cp3[3], pp[15]); /* FALLTHROUGH */
1928 case 3: YCbCrtoRGB(cp2[3], pp[11]); /* FALLTHROUGH */
1929 case 2: YCbCrtoRGB(cp1[3], pp[ 7]); /* FALLTHROUGH */
1930 case 1: YCbCrtoRGB(cp [3], pp[ 3]); /* FALLTHROUGH */
1931 } /* FALLTHROUGH */
1932 case 3:
1933 switch (h) {
1934 default: YCbCrtoRGB(cp3[2], pp[14]); /* FALLTHROUGH */
1935 case 3: YCbCrtoRGB(cp2[2], pp[10]); /* FALLTHROUGH */
1936 case 2: YCbCrtoRGB(cp1[2], pp[ 6]); /* FALLTHROUGH */
1937 case 1: YCbCrtoRGB(cp [2], pp[ 2]); /* FALLTHROUGH */
1938 } /* FALLTHROUGH */
1939 case 2:
1940 switch (h) {
1941 default: YCbCrtoRGB(cp3[1], pp[13]); /* FALLTHROUGH */
1942 case 3: YCbCrtoRGB(cp2[1], pp[ 9]); /* FALLTHROUGH */
1943 case 2: YCbCrtoRGB(cp1[1], pp[ 5]); /* FALLTHROUGH */
1944 case 1: YCbCrtoRGB(cp [1], pp[ 1]); /* FALLTHROUGH */
1945 } /* FALLTHROUGH */
1946 case 1:
1947 switch (h) {
1948 default: YCbCrtoRGB(cp3[0], pp[12]); /* FALLTHROUGH */
1949 case 3: YCbCrtoRGB(cp2[0], pp[ 8]); /* FALLTHROUGH */
1950 case 2: YCbCrtoRGB(cp1[0], pp[ 4]); /* FALLTHROUGH */
1951 case 1: YCbCrtoRGB(cp [0], pp[ 0]); /* FALLTHROUGH */
1952 } /* FALLTHROUGH */
1953 }
1954 if (x < 4) {
1955 cp += x; cp1 += x; cp2 += x; cp3 += x;
1956 x = 0;
1957 }
1958 else {
1959 cp += 4; cp1 += 4; cp2 += 4; cp3 += 4;
1960 x -= 4;
1961 }
1962 pp += 18;
1963 }
1964 if (h <= 4)
1965 break;
1966 h -= 4;
1967 cp += incr;
1968 cp1 += incr;
1969 cp2 += incr;
1970 cp3 += incr;
1971 pp += fromskew;
1972 }
1973 }
1974 }
1975
1976 /*
1977 * 8-bit packed YCbCr samples w/ 4,2 subsampling => RGB
1978 */
1979 DECLAREContigPutFunc(putcontig8bitYCbCr42tile)
1980 {
1981 uint32* cp1 = cp+w+toskew;
1982 int32 incr = 2*toskew+w;
1983
1984 (void) y;
1985 fromskew = (fromskew / 4) * (4*2+2);
1986 if ((w & 3) == 0 && (h & 1) == 0) {
1987 for (; h >= 2; h -= 2) {
1988 x = w>>2;
1989 do {
1990 int32 Cb = pp[8];
1991 int32 Cr = pp[9];
1992
1993 YCbCrtoRGB(cp [0], pp[0]);
1994 YCbCrtoRGB(cp [1], pp[1]);
1995 YCbCrtoRGB(cp [2], pp[2]);
1996 YCbCrtoRGB(cp [3], pp[3]);
1997 YCbCrtoRGB(cp1[0], pp[4]);
1998 YCbCrtoRGB(cp1[1], pp[5]);
1999 YCbCrtoRGB(cp1[2], pp[6]);
2000 YCbCrtoRGB(cp1[3], pp[7]);
2001
2002 cp += 4;
2003 cp1 += 4;
2004 pp += 10;
2005 } while (--x);
2006 cp += incr;
2007 cp1 += incr;
2008 pp += fromskew;
2009 }
2010 } else {
2011 while (h > 0) {
2012 for (x = w; x > 0;) {
2013 int32 Cb = pp[8];
2014 int32 Cr = pp[9];
2015 switch (x) {
2016 default:
2017 switch (h) {
2018 default: YCbCrtoRGB(cp1[3], pp[ 7]); /* FALLTHROUGH */
2019 case 1: YCbCrtoRGB(cp [3], pp[ 3]); /* FALLTHROUGH */
2020 } /* FALLTHROUGH */
2021 case 3:
2022 switch (h) {
2023 default: YCbCrtoRGB(cp1[2], pp[ 6]); /* FALLTHROUGH */
2024 case 1: YCbCrtoRGB(cp [2], pp[ 2]); /* FALLTHROUGH */
2025 } /* FALLTHROUGH */
2026 case 2:
2027 switch (h) {
2028 default: YCbCrtoRGB(cp1[1], pp[ 5]); /* FALLTHROUGH */
2029 case 1: YCbCrtoRGB(cp [1], pp[ 1]); /* FALLTHROUGH */
2030 } /* FALLTHROUGH */
2031 case 1:
2032 switch (h) {
2033 default: YCbCrtoRGB(cp1[0], pp[ 4]); /* FALLTHROUGH */
2034 case 1: YCbCrtoRGB(cp [0], pp[ 0]); /* FALLTHROUGH */
2035 } /* FALLTHROUGH */
2036 }
2037 if (x < 4) {
2038 cp += x; cp1 += x;
2039 x = 0;
2040 }
2041 else {
2042 cp += 4; cp1 += 4;
2043 x -= 4;
2044 }
2045 pp += 10;
2046 }
2047 if (h <= 2)
2048 break;
2049 h -= 2;
2050 cp += incr;
2051 cp1 += incr;
2052 pp += fromskew;
2053 }
2054 }
2055 }
2056
2057 /*
2058 * 8-bit packed YCbCr samples w/ 4,1 subsampling => RGB
2059 */
2060 DECLAREContigPutFunc(putcontig8bitYCbCr41tile)
2061 {
2062 (void) y;
2063 fromskew = (fromskew / 4) * (4*1+2);
2064 do {
2065 x = w>>2;
2066 while(x>0) {
2067 int32 Cb = pp[4];
2068 int32 Cr = pp[5];
2069
2070 YCbCrtoRGB(cp [0], pp[0]);
2071 YCbCrtoRGB(cp [1], pp[1]);
2072 YCbCrtoRGB(cp [2], pp[2]);
2073 YCbCrtoRGB(cp [3], pp[3]);
2074
2075 cp += 4;
2076 pp += 6;
2077 x--;
2078 }
2079
2080 if( (w&3) != 0 )
2081 {
2082 int32 Cb = pp[4];
2083 int32 Cr = pp[5];
2084
2085 switch( (w&3) ) {
2086 case 3: YCbCrtoRGB(cp [2], pp[2]); /*-fallthrough*/
2087 case 2: YCbCrtoRGB(cp [1], pp[1]); /*-fallthrough*/
2088 case 1: YCbCrtoRGB(cp [0], pp[0]); /*-fallthrough*/
2089 case 0: break;
2090 }
2091
2092 cp += (w&3);
2093 pp += 6;
2094 }
2095
2096 cp += toskew;
2097 pp += fromskew;
2098 } while (--h);
2099
2100 }
2101
2102 /*
2103 * 8-bit packed YCbCr samples w/ 2,2 subsampling => RGB
2104 */
2105 DECLAREContigPutFunc(putcontig8bitYCbCr22tile)
2106 {
2107 uint32* cp2;
2108 int32 incr = 2*toskew+w;
2109 (void) y;
2110 fromskew = (fromskew / 2) * (2*2+2);
2111 cp2 = cp+w+toskew;
2112 while (h>=2) {
2113 x = w;
2114 while (x>=2) {
2115 uint32 Cb = pp[4];
2116 uint32 Cr = pp[5];
2117 YCbCrtoRGB(cp[0], pp[0]);
2118 YCbCrtoRGB(cp[1], pp[1]);
2119 YCbCrtoRGB(cp2[0], pp[2]);
2120 YCbCrtoRGB(cp2[1], pp[3]);
2121 cp += 2;
2122 cp2 += 2;
2123 pp += 6;
2124 x -= 2;
2125 }
2126 if (x==1) {
2127 uint32 Cb = pp[4];
2128 uint32 Cr = pp[5];
2129 YCbCrtoRGB(cp[0], pp[0]);
2130 YCbCrtoRGB(cp2[0], pp[2]);
2131 cp ++ ;
2132 cp2 ++ ;
2133 pp += 6;
2134 }
2135 cp += incr;
2136 cp2 += incr;
2137 pp += fromskew;
2138 h-=2;
2139 }
2140 if (h==1) {
2141 x = w;
2142 while (x>=2) {
2143 uint32 Cb = pp[4];
2144 uint32 Cr = pp[5];
2145 YCbCrtoRGB(cp[0], pp[0]);
2146 YCbCrtoRGB(cp[1], pp[1]);
2147 cp += 2;
2148 cp2 += 2;
2149 pp += 6;
2150 x -= 2;
2151 }
2152 if (x==1) {
2153 uint32 Cb = pp[4];
2154 uint32 Cr = pp[5];
2155 YCbCrtoRGB(cp[0], pp[0]);
2156 }
2157 }
2158 }
2159
2160 /*
2161 * 8-bit packed YCbCr samples w/ 2,1 subsampling => RGB
2162 */
2163 DECLAREContigPutFunc(putcontig8bitYCbCr21tile)
2164 {
2165 (void) y;
2166 fromskew = (fromskew / 2) * (2*1+2);
2167 do {
2168 x = w>>1;
2169 while(x>0) {
2170 int32 Cb = pp[2];
2171 int32 Cr = pp[3];
2172
2173 YCbCrtoRGB(cp[0], pp[0]);
2174 YCbCrtoRGB(cp[1], pp[1]);
2175
2176 cp += 2;
2177 pp += 4;
2178 x --;
2179 }
2180
2181 if( (w&1) != 0 )
2182 {
2183 int32 Cb = pp[2];
2184 int32 Cr = pp[3];
2185
2186 YCbCrtoRGB(cp[0], pp[0]);
2187
2188 cp += 1;
2189 pp += 4;
2190 }
2191
2192 cp += toskew;
2193 pp += fromskew;
2194 } while (--h);
2195 }
2196
2197 /*
2198 * 8-bit packed YCbCr samples w/ 1,2 subsampling => RGB
2199 */
2200 DECLAREContigPutFunc(putcontig8bitYCbCr12tile)
2201 {
2202 uint32* cp2;
2203 int32 incr = 2*toskew+w;
2204 (void) y;
2205 fromskew = (fromskew / 1) * (1 * 2 + 2);
2206 cp2 = cp+w+toskew;
2207 while (h>=2) {
2208 x = w;
2209 do {
2210 uint32 Cb = pp[2];
2211 uint32 Cr = pp[3];
2212 YCbCrtoRGB(cp[0], pp[0]);
2213 YCbCrtoRGB(cp2[0], pp[1]);
2214 cp ++;
2215 cp2 ++;
2216 pp += 4;
2217 } while (--x);
2218 cp += incr;
2219 cp2 += incr;
2220 pp += fromskew;
2221 h-=2;
2222 }
2223 if (h==1) {
2224 x = w;
2225 do {
2226 uint32 Cb = pp[2];
2227 uint32 Cr = pp[3];
2228 YCbCrtoRGB(cp[0], pp[0]);
2229 cp ++;
2230 pp += 4;
2231 } while (--x);
2232 }
2233 }
2234
2235 /*
2236 * 8-bit packed YCbCr samples w/ no subsampling => RGB
2237 */
2238 DECLAREContigPutFunc(putcontig8bitYCbCr11tile)
2239 {
2240 (void) y;
2241 fromskew = (fromskew / 1) * (1 * 1 + 2);
2242 do {
2243 x = w; /* was x = w>>1; patched 2000/09/25 warmerda@home.com */
2244 do {
2245 int32 Cb = pp[1];
2246 int32 Cr = pp[2];
2247
2248 YCbCrtoRGB(*cp++, pp[0]);
2249
2250 pp += 3;
2251 } while (--x);
2252 cp += toskew;
2253 pp += fromskew;
2254 } while (--h);
2255 }
2256
2257 /*
2258 * 8-bit packed YCbCr samples w/ no subsampling => RGB
2259 */
2260 DECLARESepPutFunc(putseparate8bitYCbCr11tile)
2261 {
2262 (void) y;
2263 (void) a;
2264 /* TODO: naming of input vars is still off, change obfuscating declaration inside define, or resolve obfuscation */
2265 for( ; h > 0; --h) {
2266 x = w;
2267 do {
2268 uint32 dr, dg, db;
2269 TIFFYCbCrtoRGB(img->ycbcr,*r++,*g++,*b++,&dr,&dg,&db);
2270 *cp++ = PACK(dr,dg,db);
2271 } while (--x);
2272 SKEW(r, g, b, fromskew);
2273 cp += toskew;
2274 }
2275 }
2276 #undef YCbCrtoRGB
2277
2278 static int isInRefBlackWhiteRange(float f)
2279 {
2280 return f > (float)(-0x7FFFFFFF + 128) && f < (float)0x7FFFFFFF;
2281 }
2282
2283 static int
2284 initYCbCrConversion(TIFFRGBAImage* img)
2285 {
2286 static const char module[] = "initYCbCrConversion";
2287
2288 float *luma, *refBlackWhite;
2289
2290 if (img->ycbcr == NULL) {
2291 img->ycbcr = (TIFFYCbCrToRGB*) _TIFFmalloc(
2292 TIFFroundup_32(sizeof (TIFFYCbCrToRGB), sizeof (long))
2293 + 4*256*sizeof (TIFFRGBValue)
2294 + 2*256*sizeof (int)
2295 + 3*256*sizeof (int32)
2296 );
2297 if (img->ycbcr == NULL) {
2298 TIFFErrorExt(img->tif->tif_clientdata, module,
2299 "No space for YCbCr->RGB conversion state");
2300 return (0);
2301 }
2302 }
2303
2304 TIFFGetFieldDefaulted(img->tif, TIFFTAG_YCBCRCOEFFICIENTS, &luma);
2305 TIFFGetFieldDefaulted(img->tif, TIFFTAG_REFERENCEBLACKWHITE,
2306 &refBlackWhite);
2307
2308 /* Do some validation to avoid later issues. Detect NaN for now */
2309 /* and also if lumaGreen is zero since we divide by it later */
2310 if( luma[0] != luma[0] ||
2311 luma[1] != luma[1] ||
2312 luma[1] == 0.0 ||
2313 luma[2] != luma[2] )
2314 {
2315 TIFFErrorExt(img->tif->tif_clientdata, module,
2316 "Invalid values for YCbCrCoefficients tag");
2317 return (0);
2318 }
2319
2320 if( !isInRefBlackWhiteRange(refBlackWhite[0]) ||
2321 !isInRefBlackWhiteRange(refBlackWhite[1]) ||
2322 !isInRefBlackWhiteRange(refBlackWhite[2]) ||
2323 !isInRefBlackWhiteRange(refBlackWhite[3]) ||
2324 !isInRefBlackWhiteRange(refBlackWhite[4]) ||
2325 !isInRefBlackWhiteRange(refBlackWhite[5]) )
2326 {
2327 TIFFErrorExt(img->tif->tif_clientdata, module,
2328 "Invalid values for ReferenceBlackWhite tag");
2329 return (0);
2330 }
2331
2332 if (TIFFYCbCrToRGBInit(img->ycbcr, luma, refBlackWhite) < 0)
2333 return(0);
2334 return (1);
2335 }
2336
2337 static tileContigRoutine
2338 initCIELabConversion(TIFFRGBAImage* img)
2339 {
2340 static const char module[] = "initCIELabConversion";
2341
2342 float *whitePoint;
2343 float refWhite[3];
2344
2345 TIFFGetFieldDefaulted(img->tif, TIFFTAG_WHITEPOINT, &whitePoint);
2346 if (whitePoint[1] == 0.0f ) {
2347 TIFFErrorExt(img->tif->tif_clientdata, module,
2348 "Invalid value for WhitePoint tag.");
2349 return NULL;
2350 }
2351
2352 if (!img->cielab) {
2353 img->cielab = (TIFFCIELabToRGB *)
2354 _TIFFmalloc(sizeof(TIFFCIELabToRGB));
2355 if (!img->cielab) {
2356 TIFFErrorExt(img->tif->tif_clientdata, module,
2357 "No space for CIE L*a*b*->RGB conversion state.");
2358 return NULL;
2359 }
2360 }
2361
2362 refWhite[1] = 100.0F;
2363 refWhite[0] = whitePoint[0] / whitePoint[1] * refWhite[1];
2364 refWhite[2] = (1.0F - whitePoint[0] - whitePoint[1])
2365 / whitePoint[1] * refWhite[1];
2366 if (TIFFCIELabToRGBInit(img->cielab, &display_sRGB, refWhite) < 0) {
2367 TIFFErrorExt(img->tif->tif_clientdata, module,
2368 "Failed to initialize CIE L*a*b*->RGB conversion state.");
2369 _TIFFfree(img->cielab);
2370 return NULL;
2371 }
2372
2373 return putcontig8bitCIELab;
2374 }
2375
2376 /*
2377 * Greyscale images with less than 8 bits/sample are handled
2378 * with a table to avoid lots of shifts and masks. The table
2379 * is setup so that put*bwtile (below) can retrieve 8/bitspersample
2380 * pixel values simply by indexing into the table with one
2381 * number.
2382 */
2383 static int
2384 makebwmap(TIFFRGBAImage* img)
2385 {
2386 TIFFRGBValue* Map = img->Map;
2387 int bitspersample = img->bitspersample;
2388 int nsamples = 8 / bitspersample;
2389 int i;
2390 uint32* p;
2391
2392 if( nsamples == 0 )
2393 nsamples = 1;
2394
2395 img->BWmap = (uint32**) _TIFFmalloc(
2396 256*sizeof (uint32 *)+(256*nsamples*sizeof(uint32)));
2397 if (img->BWmap == NULL) {
2398 TIFFErrorExt(img->tif->tif_clientdata, TIFFFileName(img->tif), "No space for B&W mapping table");
2399 return (0);
2400 }
2401 p = (uint32*)(img->BWmap + 256);
2402 for (i = 0; i < 256; i++) {
2403 TIFFRGBValue c;
2404 img->BWmap[i] = p;
2405 switch (bitspersample) {
2406 #define GREY(x) c = Map[x]; *p++ = PACK(c,c,c);
2407 case 1:
2408 GREY(i>>7);
2409 GREY((i>>6)&1);
2410 GREY((i>>5)&1);
2411 GREY((i>>4)&1);
2412 GREY((i>>3)&1);
2413 GREY((i>>2)&1);
2414 GREY((i>>1)&1);
2415 GREY(i&1);
2416 break;
2417 case 2:
2418 GREY(i>>6);
2419 GREY((i>>4)&3);
2420 GREY((i>>2)&3);
2421 GREY(i&3);
2422 break;
2423 case 4:
2424 GREY(i>>4);
2425 GREY(i&0xf);
2426 break;
2427 case 8:
2428 case 16:
2429 GREY(i);
2430 break;
2431 }
2432 #undef GREY
2433 }
2434 return (1);
2435 }
2436
2437 /*
2438 * Construct a mapping table to convert from the range
2439 * of the data samples to [0,255] --for display. This
2440 * process also handles inverting B&W images when needed.
2441 */
2442 static int
2443 setupMap(TIFFRGBAImage* img)
2444 {
2445 int32 x, range;
2446
2447 range = (int32)((1L<<img->bitspersample)-1);
2448
2449 /* treat 16 bit the same as eight bit */
2450 if( img->bitspersample == 16 )
2451 range = (int32) 255;
2452
2453 img->Map = (TIFFRGBValue*) _TIFFmalloc((range+1) * sizeof (TIFFRGBValue));
2454 if (img->Map == NULL) {
2455 TIFFErrorExt(img->tif->tif_clientdata, TIFFFileName(img->tif),
2456 "No space for photometric conversion table");
2457 return (0);
2458 }
2459 if (img->photometric == PHOTOMETRIC_MINISWHITE) {
2460 for (x = 0; x <= range; x++)
2461 img->Map[x] = (TIFFRGBValue) (((range - x) * 255) / range);
2462 } else {
2463 for (x = 0; x <= range; x++)
2464 img->Map[x] = (TIFFRGBValue) ((x * 255) / range);
2465 }
2466 if (img->bitspersample <= 16 &&
2467 (img->photometric == PHOTOMETRIC_MINISBLACK ||
2468 img->photometric == PHOTOMETRIC_MINISWHITE)) {
2469 /*
2470 * Use photometric mapping table to construct
2471 * unpacking tables for samples <= 8 bits.
2472 */
2473 if (!makebwmap(img))
2474 return (0);
2475 /* no longer need Map, free it */
2476 _TIFFfree(img->Map);
2477 img->Map = NULL;
2478 }
2479 return (1);
2480 }
2481
2482 static int
2483 checkcmap(TIFFRGBAImage* img)
2484 {
2485 uint16* r = img->redcmap;
2486 uint16* g = img->greencmap;
2487 uint16* b = img->bluecmap;
2488 long n = 1L<<img->bitspersample;
2489
2490 while (n-- > 0)
2491 if (*r++ >= 256 || *g++ >= 256 || *b++ >= 256)
2492 return (16);
2493 return (8);
2494 }
2495
2496 static void
2497 cvtcmap(TIFFRGBAImage* img)
2498 {
2499 uint16* r = img->redcmap;
2500 uint16* g = img->greencmap;
2501 uint16* b = img->bluecmap;
2502 long i;
2503
2504 for (i = (1L<<img->bitspersample)-1; i >= 0; i--) {
2505 #define CVT(x) ((uint16)((x)>>8))
2506 r[i] = CVT(r[i]);
2507 g[i] = CVT(g[i]);
2508 b[i] = CVT(b[i]);
2509 #undef CVT
2510 }
2511 }
2512
2513 /*
2514 * Palette images with <= 8 bits/sample are handled
2515 * with a table to avoid lots of shifts and masks. The table
2516 * is setup so that put*cmaptile (below) can retrieve 8/bitspersample
2517 * pixel values simply by indexing into the table with one
2518 * number.
2519 */
2520 static int
2521 makecmap(TIFFRGBAImage* img)
2522 {
2523 int bitspersample = img->bitspersample;
2524 int nsamples = 8 / bitspersample;
2525 uint16* r = img->redcmap;
2526 uint16* g = img->greencmap;
2527 uint16* b = img->bluecmap;
2528 uint32 *p;
2529 int i;
2530
2531 img->PALmap = (uint32**) _TIFFmalloc(
2532 256*sizeof (uint32 *)+(256*nsamples*sizeof(uint32)));
2533 if (img->PALmap == NULL) {
2534 TIFFErrorExt(img->tif->tif_clientdata, TIFFFileName(img->tif), "No space for Palette mapping table");
2535 return (0);
2536 }
2537 p = (uint32*)(img->PALmap + 256);
2538 for (i = 0; i < 256; i++) {
2539 TIFFRGBValue c;
2540 img->PALmap[i] = p;
2541 #define CMAP(x) c = (TIFFRGBValue) x; *p++ = PACK(r[c]&0xff, g[c]&0xff, b[c]&0xff);
2542 switch (bitspersample) {
2543 case 1:
2544 CMAP(i>>7);
2545 CMAP((i>>6)&1);
2546 CMAP((i>>5)&1);
2547 CMAP((i>>4)&1);
2548 CMAP((i>>3)&1);
2549 CMAP((i>>2)&1);
2550 CMAP((i>>1)&1);
2551 CMAP(i&1);
2552 break;
2553 case 2:
2554 CMAP(i>>6);
2555 CMAP((i>>4)&3);
2556 CMAP((i>>2)&3);
2557 CMAP(i&3);
2558 break;
2559 case 4:
2560 CMAP(i>>4);
2561 CMAP(i&0xf);
2562 break;
2563 case 8:
2564 CMAP(i);
2565 break;
2566 }
2567 #undef CMAP
2568 }
2569 return (1);
2570 }
2571
2572 /*
2573 * Construct any mapping table used
2574 * by the associated put routine.
2575 */
2576 static int
2577 buildMap(TIFFRGBAImage* img)
2578 {
2579 switch (img->photometric) {
2580 case PHOTOMETRIC_RGB:
2581 case PHOTOMETRIC_YCBCR:
2582 case PHOTOMETRIC_SEPARATED:
2583 if (img->bitspersample == 8)
2584 break;
2585 /* fall through... */
2586 case PHOTOMETRIC_MINISBLACK:
2587 case PHOTOMETRIC_MINISWHITE:
2588 if (!setupMap(img))
2589 return (0);
2590 break;
2591 case PHOTOMETRIC_PALETTE:
2592 /*
2593 * Convert 16-bit colormap to 8-bit (unless it looks
2594 * like an old-style 8-bit colormap).
2595 */
2596 if (checkcmap(img) == 16)
2597 cvtcmap(img);
2598 else
2599 TIFFWarningExt(img->tif->tif_clientdata, TIFFFileName(img->tif), "Assuming 8-bit colormap");
2600 /*
2601 * Use mapping table and colormap to construct
2602 * unpacking tables for samples < 8 bits.
2603 */
2604 if (img->bitspersample <= 8 && !makecmap(img))
2605 return (0);
2606 break;
2607 }
2608 return (1);
2609 }
2610
2611 /*
2612 * Select the appropriate conversion routine for packed data.
2613 */
2614 static int
2615 PickContigCase(TIFFRGBAImage* img)
2616 {
2617 img->get = TIFFIsTiled(img->tif) ? gtTileContig : gtStripContig;
2618 img->put.contig = NULL;
2619 switch (img->photometric) {
2620 case PHOTOMETRIC_RGB:
2621 switch (img->bitspersample) {
2622 case 8:
2623 if (img->alpha == EXTRASAMPLE_ASSOCALPHA &&
2624 img->samplesperpixel >= 4)
2625 img->put.contig = putRGBAAcontig8bittile;
2626 else if (img->alpha == EXTRASAMPLE_UNASSALPHA &&
2627 img->samplesperpixel >= 4)
2628 {
2629 if (BuildMapUaToAa(img))
2630 img->put.contig = putRGBUAcontig8bittile;
2631 }
2632 else if( img->samplesperpixel >= 3 )
2633 img->put.contig = putRGBcontig8bittile;
2634 break;
2635 case 16:
2636 if (img->alpha == EXTRASAMPLE_ASSOCALPHA &&
2637 img->samplesperpixel >=4 )
2638 {
2639 if (BuildMapBitdepth16To8(img))
2640 img->put.contig = putRGBAAcontig16bittile;
2641 }
2642 else if (img->alpha == EXTRASAMPLE_UNASSALPHA &&
2643 img->samplesperpixel >=4 )
2644 {
2645 if (BuildMapBitdepth16To8(img) &&
2646 BuildMapUaToAa(img))
2647 img->put.contig = putRGBUAcontig16bittile;
2648 }
2649 else if( img->samplesperpixel >=3 )
2650 {
2651 if (BuildMapBitdepth16To8(img))
2652 img->put.contig = putRGBcontig16bittile;
2653 }
2654 break;
2655 }
2656 break;
2657 case PHOTOMETRIC_SEPARATED:
2658 if (img->samplesperpixel >=4 && buildMap(img)) {
2659 if (img->bitspersample == 8) {
2660 if (!img->Map)
2661 img->put.contig = putRGBcontig8bitCMYKtile;
2662 else
2663 img->put.contig = putRGBcontig8bitCMYKMaptile;
2664 }
2665 }
2666 break;
2667 case PHOTOMETRIC_PALETTE:
2668 if (buildMap(img)) {
2669 switch (img->bitspersample) {
2670 case 8:
2671 img->put.contig = put8bitcmaptile;
2672 break;
2673 case 4:
2674 img->put.contig = put4bitcmaptile;
2675 break;
2676 case 2:
2677 img->put.contig = put2bitcmaptile;
2678 break;
2679 case 1:
2680 img->put.contig = put1bitcmaptile;
2681 break;
2682 }
2683 }
2684 break;
2685 case PHOTOMETRIC_MINISWHITE:
2686 case PHOTOMETRIC_MINISBLACK:
2687 if (buildMap(img)) {
2688 switch (img->bitspersample) {
2689 case 16:
2690 img->put.contig = put16bitbwtile;
2691 break;
2692 case 8:
2693 if (img->alpha && img->samplesperpixel == 2)
2694 img->put.contig = putagreytile;
2695 else
2696 img->put.contig = putgreytile;
2697 break;
2698 case 4:
2699 img->put.contig = put4bitbwtile;
2700 break;
2701 case 2:
2702 img->put.contig = put2bitbwtile;
2703 break;
2704 case 1:
2705 img->put.contig = put1bitbwtile;
2706 break;
2707 }
2708 }
2709 break;
2710 case PHOTOMETRIC_YCBCR:
2711 if ((img->bitspersample==8) && (img->samplesperpixel==3))
2712 {
2713 if (initYCbCrConversion(img)!=0)
2714 {
2715 /*
2716 * The 6.0 spec says that subsampling must be
2717 * one of 1, 2, or 4, and that vertical subsampling
2718 * must always be <= horizontal subsampling; so
2719 * there are only a few possibilities and we just
2720 * enumerate the cases.
2721 * Joris: added support for the [1,2] case, nonetheless, to accommodate
2722 * some OJPEG files
2723 */
2724 uint16 SubsamplingHor;
2725 uint16 SubsamplingVer;
2726 TIFFGetFieldDefaulted(img->tif, TIFFTAG_YCBCRSUBSAMPLING, &SubsamplingHor, &SubsamplingVer);
2727 switch ((SubsamplingHor<<4)|SubsamplingVer) {
2728 case 0x44:
2729 img->put.contig = putcontig8bitYCbCr44tile;
2730 break;
2731 case 0x42:
2732 img->put.contig = putcontig8bitYCbCr42tile;
2733 break;
2734 case 0x41:
2735 img->put.contig = putcontig8bitYCbCr41tile;
2736 break;
2737 case 0x22:
2738 img->put.contig = putcontig8bitYCbCr22tile;
2739 break;
2740 case 0x21:
2741 img->put.contig = putcontig8bitYCbCr21tile;
2742 break;
2743 case 0x12:
2744 img->put.contig = putcontig8bitYCbCr12tile;
2745 break;
2746 case 0x11:
2747 img->put.contig = putcontig8bitYCbCr11tile;
2748 break;
2749 }
2750 }
2751 }
2752 break;
2753 case PHOTOMETRIC_CIELAB:
2754 if (img->samplesperpixel == 3 && buildMap(img)) {
2755 if (img->bitspersample == 8)
2756 img->put.contig = initCIELabConversion(img);
2757 break;
2758 }
2759 }
2760 return ((img->get!=NULL) && (img->put.contig!=NULL));
2761 }
2762
2763 /*
2764 * Select the appropriate conversion routine for unpacked data.
2765 *
2766 * NB: we assume that unpacked single channel data is directed
2767 * to the "packed routines.
2768 */
2769 static int
2770 PickSeparateCase(TIFFRGBAImage* img)
2771 {
2772 img->get = TIFFIsTiled(img->tif) ? gtTileSeparate : gtStripSeparate;
2773 img->put.separate = NULL;
2774 switch (img->photometric) {
2775 case PHOTOMETRIC_MINISWHITE:
2776 case PHOTOMETRIC_MINISBLACK:
2777 /* greyscale images processed pretty much as RGB by gtTileSeparate */
2778 case PHOTOMETRIC_RGB:
2779 switch (img->bitspersample) {
2780 case 8:
2781 if (img->alpha == EXTRASAMPLE_ASSOCALPHA)
2782 img->put.separate = putRGBAAseparate8bittile;
2783 else if (img->alpha == EXTRASAMPLE_UNASSALPHA)
2784 {
2785 if (BuildMapUaToAa(img))
2786 img->put.separate = putRGBUAseparate8bittile;
2787 }
2788 else
2789 img->put.separate = putRGBseparate8bittile;
2790 break;
2791 case 16:
2792 if (img->alpha == EXTRASAMPLE_ASSOCALPHA)
2793 {
2794 if (BuildMapBitdepth16To8(img))
2795 img->put.separate = putRGBAAseparate16bittile;
2796 }
2797 else if (img->alpha == EXTRASAMPLE_UNASSALPHA)
2798 {
2799 if (BuildMapBitdepth16To8(img) &&
2800 BuildMapUaToAa(img))
2801 img->put.separate = putRGBUAseparate16bittile;
2802 }
2803 else
2804 {
2805 if (BuildMapBitdepth16To8(img))
2806 img->put.separate = putRGBseparate16bittile;
2807 }
2808 break;
2809 }
2810 break;
2811 case PHOTOMETRIC_SEPARATED:
2812 if (img->bitspersample == 8 && img->samplesperpixel == 4)
2813 {
2814 img->alpha = 1; // Not alpha, but seems like the only way to get 4th band
2815 img->put.separate = putCMYKseparate8bittile;
2816 }
2817 break;
2818 case PHOTOMETRIC_YCBCR:
2819 if ((img->bitspersample==8) && (img->samplesperpixel==3))
2820 {
2821 if (initYCbCrConversion(img)!=0)
2822 {
2823 uint16 hs, vs;
2824 TIFFGetFieldDefaulted(img->tif, TIFFTAG_YCBCRSUBSAMPLING, &hs, &vs);
2825 switch ((hs<<4)|vs) {
2826 case 0x11:
2827 img->put.separate = putseparate8bitYCbCr11tile;
2828 break;
2829 /* TODO: add other cases here */
2830 }
2831 }
2832 }
2833 break;
2834 }
2835 return ((img->get!=NULL) && (img->put.separate!=NULL));
2836 }
2837
2838 static int
2839 BuildMapUaToAa(TIFFRGBAImage* img)
2840 {
2841 static const char module[]="BuildMapUaToAa";
2842 uint8* m;
2843 uint16 na,nv;
2844 assert(img->UaToAa==NULL);
2845 img->UaToAa=_TIFFmalloc(65536);
2846 if (img->UaToAa==NULL)
2847 {
2848 TIFFErrorExt(img->tif->tif_clientdata,module,"Out of memory");
2849 return(0);
2850 }
2851 m=img->UaToAa;
2852 for (na=0; na<256; na++)
2853 {
2854 for (nv=0; nv<256; nv++)
2855 *m++=(uint8)((nv*na+127)/255);
2856 }
2857 return(1);
2858 }
2859
2860 static int
2861 BuildMapBitdepth16To8(TIFFRGBAImage* img)
2862 {
2863 static const char module[]="BuildMapBitdepth16To8";
2864 uint8* m;
2865 uint32 n;
2866 assert(img->Bitdepth16To8==NULL);
2867 img->Bitdepth16To8=_TIFFmalloc(65536);
2868 if (img->Bitdepth16To8==NULL)
2869 {
2870 TIFFErrorExt(img->tif->tif_clientdata,module,"Out of memory");
2871 return(0);
2872 }
2873 m=img->Bitdepth16To8;
2874 for (n=0; n<65536; n++)
2875 *m++=(uint8)((n+128)/257);
2876 return(1);
2877 }
2878
2879
2880 /*
2881 * Read a whole strip off data from the file, and convert to RGBA form.
2882 * If this is the last strip, then it will only contain the portion of
2883 * the strip that is actually within the image space. The result is
2884 * organized in bottom to top form.
2885 */
2886
2887
2888 int
2889 TIFFReadRGBAStrip(TIFF* tif, uint32 row, uint32 * raster )
2890
2891 {
2892 return TIFFReadRGBAStripExt(tif, row, raster, 0 );
2893 }
2894
2895 int
2896 TIFFReadRGBAStripExt(TIFF* tif, uint32 row, uint32 * raster, int stop_on_error)
2897
2898 {
2899 char emsg[1024] = "";
2900 TIFFRGBAImage img;
2901 int ok;
2902 uint32 rowsperstrip, rows_to_read;
2903
2904 if( TIFFIsTiled( tif ) )
2905 {
2906 TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif),
2907 "Can't use TIFFReadRGBAStrip() with tiled file.");
2908 return (0);
2909 }
2910
2911 TIFFGetFieldDefaulted(tif, TIFFTAG_ROWSPERSTRIP, &rowsperstrip);
2912 if( (row % rowsperstrip) != 0 )
2913 {
2914 TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif),
2915 "Row passed to TIFFReadRGBAStrip() must be first in a strip.");
2916 return (0);
2917 }
2918
2919 if (TIFFRGBAImageOK(tif, emsg) && TIFFRGBAImageBegin(&img, tif, stop_on_error, emsg)) {
2920
2921 img.row_offset = row;
2922 img.col_offset = 0;
2923
2924 if( row + rowsperstrip > img.height )
2925 rows_to_read = img.height - row;
2926 else
2927 rows_to_read = rowsperstrip;
2928
2929 ok = TIFFRGBAImageGet(&img, raster, img.width, rows_to_read );
2930
2931 TIFFRGBAImageEnd(&img);
2932 } else {
2933 TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "%s", emsg);
2934 ok = 0;
2935 }
2936
2937 return (ok);
2938 }
2939
2940 /*
2941 * Read a whole tile off data from the file, and convert to RGBA form.
2942 * The returned RGBA data is organized from bottom to top of tile,
2943 * and may include zeroed areas if the tile extends off the image.
2944 */
2945
2946 int
2947 TIFFReadRGBATile(TIFF* tif, uint32 col, uint32 row, uint32 * raster)
2948
2949 {
2950 return TIFFReadRGBATileExt(tif, col, row, raster, 0 );
2951 }
2952
2953
2954 int
2955 TIFFReadRGBATileExt(TIFF* tif, uint32 col, uint32 row, uint32 * raster, int stop_on_error )
2956 {
2957 char emsg[1024] = "";
2958 TIFFRGBAImage img;
2959 int ok;
2960 uint32 tile_xsize, tile_ysize;
2961 uint32 read_xsize, read_ysize;
2962 uint32 i_row;
2963
2964 /*
2965 * Verify that our request is legal - on a tile file, and on a
2966 * tile boundary.
2967 */
2968
2969 if( !TIFFIsTiled( tif ) )
2970 {
2971 TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif),
2972 "Can't use TIFFReadRGBATile() with striped file.");
2973 return (0);
2974 }
2975
2976 TIFFGetFieldDefaulted(tif, TIFFTAG_TILEWIDTH, &tile_xsize);
2977 TIFFGetFieldDefaulted(tif, TIFFTAG_TILELENGTH, &tile_ysize);
2978 if( (col % tile_xsize) != 0 || (row % tile_ysize) != 0 )
2979 {
2980 TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif),
2981 "Row/col passed to TIFFReadRGBATile() must be top"
2982 "left corner of a tile.");
2983 return (0);
2984 }
2985
2986 /*
2987 * Setup the RGBA reader.
2988 */
2989
2990 if (!TIFFRGBAImageOK(tif, emsg)
2991 || !TIFFRGBAImageBegin(&img, tif, stop_on_error, emsg)) {
2992 TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "%s", emsg);
2993 return( 0 );
2994 }
2995
2996 /*
2997 * The TIFFRGBAImageGet() function doesn't allow us to get off the
2998 * edge of the image, even to fill an otherwise valid tile. So we
2999 * figure out how much we can read, and fix up the tile buffer to
3000 * a full tile configuration afterwards.
3001 */
3002
3003 if( row + tile_ysize > img.height )
3004 read_ysize = img.height - row;
3005 else
3006 read_ysize = tile_ysize;
3007
3008 if( col + tile_xsize > img.width )
3009 read_xsize = img.width - col;
3010 else
3011 read_xsize = tile_xsize;
3012
3013 /*
3014 * Read the chunk of imagery.
3015 */
3016
3017 img.row_offset = row;
3018 img.col_offset = col;
3019
3020 ok = TIFFRGBAImageGet(&img, raster, read_xsize, read_ysize );
3021
3022 TIFFRGBAImageEnd(&img);
3023
3024 /*
3025 * If our read was incomplete we will need to fix up the tile by
3026 * shifting the data around as if a full tile of data is being returned.
3027 *
3028 * This is all the more complicated because the image is organized in
3029 * bottom to top format.
3030 */
3031
3032 if( read_xsize == tile_xsize && read_ysize == tile_ysize )
3033 return( ok );
3034
3035 for( i_row = 0; i_row < read_ysize; i_row++ ) {
3036 memmove( raster