[AMSTREAM] Sync with Wine Staging 3.9. CORE-14656
[reactos.git] / dll / 3rdparty / mbedtls / ecp_curves.c
1 /*
2 * Elliptic curves over GF(p): curve-specific data and functions
3 *
4 * Copyright (C) 2006-2015, ARM Limited, All Rights Reserved
5 * SPDX-License-Identifier: GPL-2.0
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License along
18 * with this program; if not, write to the Free Software Foundation, Inc.,
19 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * This file is part of mbed TLS (https://tls.mbed.org)
22 */
23
24 #if !defined(MBEDTLS_CONFIG_FILE)
25 #include "mbedtls/config.h"
26 #else
27 #include MBEDTLS_CONFIG_FILE
28 #endif
29
30 #if defined(MBEDTLS_ECP_C)
31
32 #include "mbedtls/ecp.h"
33
34 #include <string.h>
35
36 #if !defined(MBEDTLS_ECP_ALT)
37
38 #if ( defined(__ARMCC_VERSION) || defined(_MSC_VER) ) && \
39 !defined(inline) && !defined(__cplusplus)
40 #define inline __inline
41 #endif
42
43 /*
44 * Conversion macros for embedded constants:
45 * build lists of mbedtls_mpi_uint's from lists of unsigned char's grouped by 8, 4 or 2
46 */
47 #if defined(MBEDTLS_HAVE_INT32)
48
49 #define BYTES_TO_T_UINT_4( a, b, c, d ) \
50 ( (mbedtls_mpi_uint) a << 0 ) | \
51 ( (mbedtls_mpi_uint) b << 8 ) | \
52 ( (mbedtls_mpi_uint) c << 16 ) | \
53 ( (mbedtls_mpi_uint) d << 24 )
54
55 #define BYTES_TO_T_UINT_2( a, b ) \
56 BYTES_TO_T_UINT_4( a, b, 0, 0 )
57
58 #define BYTES_TO_T_UINT_8( a, b, c, d, e, f, g, h ) \
59 BYTES_TO_T_UINT_4( a, b, c, d ), \
60 BYTES_TO_T_UINT_4( e, f, g, h )
61
62 #else /* 64-bits */
63
64 #define BYTES_TO_T_UINT_8( a, b, c, d, e, f, g, h ) \
65 ( (mbedtls_mpi_uint) a << 0 ) | \
66 ( (mbedtls_mpi_uint) b << 8 ) | \
67 ( (mbedtls_mpi_uint) c << 16 ) | \
68 ( (mbedtls_mpi_uint) d << 24 ) | \
69 ( (mbedtls_mpi_uint) e << 32 ) | \
70 ( (mbedtls_mpi_uint) f << 40 ) | \
71 ( (mbedtls_mpi_uint) g << 48 ) | \
72 ( (mbedtls_mpi_uint) h << 56 )
73
74 #define BYTES_TO_T_UINT_4( a, b, c, d ) \
75 BYTES_TO_T_UINT_8( a, b, c, d, 0, 0, 0, 0 )
76
77 #define BYTES_TO_T_UINT_2( a, b ) \
78 BYTES_TO_T_UINT_8( a, b, 0, 0, 0, 0, 0, 0 )
79
80 #endif /* bits in mbedtls_mpi_uint */
81
82 /*
83 * Note: the constants are in little-endian order
84 * to be directly usable in MPIs
85 */
86
87 /*
88 * Domain parameters for secp192r1
89 */
90 #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
91 static const mbedtls_mpi_uint secp192r1_p[] = {
92 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
93 BYTES_TO_T_UINT_8( 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
94 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
95 };
96 static const mbedtls_mpi_uint secp192r1_b[] = {
97 BYTES_TO_T_UINT_8( 0xB1, 0xB9, 0x46, 0xC1, 0xEC, 0xDE, 0xB8, 0xFE ),
98 BYTES_TO_T_UINT_8( 0x49, 0x30, 0x24, 0x72, 0xAB, 0xE9, 0xA7, 0x0F ),
99 BYTES_TO_T_UINT_8( 0xE7, 0x80, 0x9C, 0xE5, 0x19, 0x05, 0x21, 0x64 ),
100 };
101 static const mbedtls_mpi_uint secp192r1_gx[] = {
102 BYTES_TO_T_UINT_8( 0x12, 0x10, 0xFF, 0x82, 0xFD, 0x0A, 0xFF, 0xF4 ),
103 BYTES_TO_T_UINT_8( 0x00, 0x88, 0xA1, 0x43, 0xEB, 0x20, 0xBF, 0x7C ),
104 BYTES_TO_T_UINT_8( 0xF6, 0x90, 0x30, 0xB0, 0x0E, 0xA8, 0x8D, 0x18 ),
105 };
106 static const mbedtls_mpi_uint secp192r1_gy[] = {
107 BYTES_TO_T_UINT_8( 0x11, 0x48, 0x79, 0x1E, 0xA1, 0x77, 0xF9, 0x73 ),
108 BYTES_TO_T_UINT_8( 0xD5, 0xCD, 0x24, 0x6B, 0xED, 0x11, 0x10, 0x63 ),
109 BYTES_TO_T_UINT_8( 0x78, 0xDA, 0xC8, 0xFF, 0x95, 0x2B, 0x19, 0x07 ),
110 };
111 static const mbedtls_mpi_uint secp192r1_n[] = {
112 BYTES_TO_T_UINT_8( 0x31, 0x28, 0xD2, 0xB4, 0xB1, 0xC9, 0x6B, 0x14 ),
113 BYTES_TO_T_UINT_8( 0x36, 0xF8, 0xDE, 0x99, 0xFF, 0xFF, 0xFF, 0xFF ),
114 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
115 };
116 #endif /* MBEDTLS_ECP_DP_SECP192R1_ENABLED */
117
118 /*
119 * Domain parameters for secp224r1
120 */
121 #if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
122 static const mbedtls_mpi_uint secp224r1_p[] = {
123 BYTES_TO_T_UINT_8( 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 ),
124 BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF ),
125 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
126 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00 ),
127 };
128 static const mbedtls_mpi_uint secp224r1_b[] = {
129 BYTES_TO_T_UINT_8( 0xB4, 0xFF, 0x55, 0x23, 0x43, 0x39, 0x0B, 0x27 ),
130 BYTES_TO_T_UINT_8( 0xBA, 0xD8, 0xBF, 0xD7, 0xB7, 0xB0, 0x44, 0x50 ),
131 BYTES_TO_T_UINT_8( 0x56, 0x32, 0x41, 0xF5, 0xAB, 0xB3, 0x04, 0x0C ),
132 BYTES_TO_T_UINT_4( 0x85, 0x0A, 0x05, 0xB4 ),
133 };
134 static const mbedtls_mpi_uint secp224r1_gx[] = {
135 BYTES_TO_T_UINT_8( 0x21, 0x1D, 0x5C, 0x11, 0xD6, 0x80, 0x32, 0x34 ),
136 BYTES_TO_T_UINT_8( 0x22, 0x11, 0xC2, 0x56, 0xD3, 0xC1, 0x03, 0x4A ),
137 BYTES_TO_T_UINT_8( 0xB9, 0x90, 0x13, 0x32, 0x7F, 0xBF, 0xB4, 0x6B ),
138 BYTES_TO_T_UINT_4( 0xBD, 0x0C, 0x0E, 0xB7 ),
139 };
140 static const mbedtls_mpi_uint secp224r1_gy[] = {
141 BYTES_TO_T_UINT_8( 0x34, 0x7E, 0x00, 0x85, 0x99, 0x81, 0xD5, 0x44 ),
142 BYTES_TO_T_UINT_8( 0x64, 0x47, 0x07, 0x5A, 0xA0, 0x75, 0x43, 0xCD ),
143 BYTES_TO_T_UINT_8( 0xE6, 0xDF, 0x22, 0x4C, 0xFB, 0x23, 0xF7, 0xB5 ),
144 BYTES_TO_T_UINT_4( 0x88, 0x63, 0x37, 0xBD ),
145 };
146 static const mbedtls_mpi_uint secp224r1_n[] = {
147 BYTES_TO_T_UINT_8( 0x3D, 0x2A, 0x5C, 0x5C, 0x45, 0x29, 0xDD, 0x13 ),
148 BYTES_TO_T_UINT_8( 0x3E, 0xF0, 0xB8, 0xE0, 0xA2, 0x16, 0xFF, 0xFF ),
149 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
150 BYTES_TO_T_UINT_4( 0xFF, 0xFF, 0xFF, 0xFF ),
151 };
152 #endif /* MBEDTLS_ECP_DP_SECP224R1_ENABLED */
153
154 /*
155 * Domain parameters for secp256r1
156 */
157 #if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
158 static const mbedtls_mpi_uint secp256r1_p[] = {
159 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
160 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00 ),
161 BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 ),
162 BYTES_TO_T_UINT_8( 0x01, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF ),
163 };
164 static const mbedtls_mpi_uint secp256r1_b[] = {
165 BYTES_TO_T_UINT_8( 0x4B, 0x60, 0xD2, 0x27, 0x3E, 0x3C, 0xCE, 0x3B ),
166 BYTES_TO_T_UINT_8( 0xF6, 0xB0, 0x53, 0xCC, 0xB0, 0x06, 0x1D, 0x65 ),
167 BYTES_TO_T_UINT_8( 0xBC, 0x86, 0x98, 0x76, 0x55, 0xBD, 0xEB, 0xB3 ),
168 BYTES_TO_T_UINT_8( 0xE7, 0x93, 0x3A, 0xAA, 0xD8, 0x35, 0xC6, 0x5A ),
169 };
170 static const mbedtls_mpi_uint secp256r1_gx[] = {
171 BYTES_TO_T_UINT_8( 0x96, 0xC2, 0x98, 0xD8, 0x45, 0x39, 0xA1, 0xF4 ),
172 BYTES_TO_T_UINT_8( 0xA0, 0x33, 0xEB, 0x2D, 0x81, 0x7D, 0x03, 0x77 ),
173 BYTES_TO_T_UINT_8( 0xF2, 0x40, 0xA4, 0x63, 0xE5, 0xE6, 0xBC, 0xF8 ),
174 BYTES_TO_T_UINT_8( 0x47, 0x42, 0x2C, 0xE1, 0xF2, 0xD1, 0x17, 0x6B ),
175 };
176 static const mbedtls_mpi_uint secp256r1_gy[] = {
177 BYTES_TO_T_UINT_8( 0xF5, 0x51, 0xBF, 0x37, 0x68, 0x40, 0xB6, 0xCB ),
178 BYTES_TO_T_UINT_8( 0xCE, 0x5E, 0x31, 0x6B, 0x57, 0x33, 0xCE, 0x2B ),
179 BYTES_TO_T_UINT_8( 0x16, 0x9E, 0x0F, 0x7C, 0x4A, 0xEB, 0xE7, 0x8E ),
180 BYTES_TO_T_UINT_8( 0x9B, 0x7F, 0x1A, 0xFE, 0xE2, 0x42, 0xE3, 0x4F ),
181 };
182 static const mbedtls_mpi_uint secp256r1_n[] = {
183 BYTES_TO_T_UINT_8( 0x51, 0x25, 0x63, 0xFC, 0xC2, 0xCA, 0xB9, 0xF3 ),
184 BYTES_TO_T_UINT_8( 0x84, 0x9E, 0x17, 0xA7, 0xAD, 0xFA, 0xE6, 0xBC ),
185 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
186 BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF ),
187 };
188 #endif /* MBEDTLS_ECP_DP_SECP256R1_ENABLED */
189
190 /*
191 * Domain parameters for secp384r1
192 */
193 #if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
194 static const mbedtls_mpi_uint secp384r1_p[] = {
195 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00 ),
196 BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF ),
197 BYTES_TO_T_UINT_8( 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
198 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
199 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
200 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
201 };
202 static const mbedtls_mpi_uint secp384r1_b[] = {
203 BYTES_TO_T_UINT_8( 0xEF, 0x2A, 0xEC, 0xD3, 0xED, 0xC8, 0x85, 0x2A ),
204 BYTES_TO_T_UINT_8( 0x9D, 0xD1, 0x2E, 0x8A, 0x8D, 0x39, 0x56, 0xC6 ),
205 BYTES_TO_T_UINT_8( 0x5A, 0x87, 0x13, 0x50, 0x8F, 0x08, 0x14, 0x03 ),
206 BYTES_TO_T_UINT_8( 0x12, 0x41, 0x81, 0xFE, 0x6E, 0x9C, 0x1D, 0x18 ),
207 BYTES_TO_T_UINT_8( 0x19, 0x2D, 0xF8, 0xE3, 0x6B, 0x05, 0x8E, 0x98 ),
208 BYTES_TO_T_UINT_8( 0xE4, 0xE7, 0x3E, 0xE2, 0xA7, 0x2F, 0x31, 0xB3 ),
209 };
210 static const mbedtls_mpi_uint secp384r1_gx[] = {
211 BYTES_TO_T_UINT_8( 0xB7, 0x0A, 0x76, 0x72, 0x38, 0x5E, 0x54, 0x3A ),
212 BYTES_TO_T_UINT_8( 0x6C, 0x29, 0x55, 0xBF, 0x5D, 0xF2, 0x02, 0x55 ),
213 BYTES_TO_T_UINT_8( 0x38, 0x2A, 0x54, 0x82, 0xE0, 0x41, 0xF7, 0x59 ),
214 BYTES_TO_T_UINT_8( 0x98, 0x9B, 0xA7, 0x8B, 0x62, 0x3B, 0x1D, 0x6E ),
215 BYTES_TO_T_UINT_8( 0x74, 0xAD, 0x20, 0xF3, 0x1E, 0xC7, 0xB1, 0x8E ),
216 BYTES_TO_T_UINT_8( 0x37, 0x05, 0x8B, 0xBE, 0x22, 0xCA, 0x87, 0xAA ),
217 };
218 static const mbedtls_mpi_uint secp384r1_gy[] = {
219 BYTES_TO_T_UINT_8( 0x5F, 0x0E, 0xEA, 0x90, 0x7C, 0x1D, 0x43, 0x7A ),
220 BYTES_TO_T_UINT_8( 0x9D, 0x81, 0x7E, 0x1D, 0xCE, 0xB1, 0x60, 0x0A ),
221 BYTES_TO_T_UINT_8( 0xC0, 0xB8, 0xF0, 0xB5, 0x13, 0x31, 0xDA, 0xE9 ),
222 BYTES_TO_T_UINT_8( 0x7C, 0x14, 0x9A, 0x28, 0xBD, 0x1D, 0xF4, 0xF8 ),
223 BYTES_TO_T_UINT_8( 0x29, 0xDC, 0x92, 0x92, 0xBF, 0x98, 0x9E, 0x5D ),
224 BYTES_TO_T_UINT_8( 0x6F, 0x2C, 0x26, 0x96, 0x4A, 0xDE, 0x17, 0x36 ),
225 };
226 static const mbedtls_mpi_uint secp384r1_n[] = {
227 BYTES_TO_T_UINT_8( 0x73, 0x29, 0xC5, 0xCC, 0x6A, 0x19, 0xEC, 0xEC ),
228 BYTES_TO_T_UINT_8( 0x7A, 0xA7, 0xB0, 0x48, 0xB2, 0x0D, 0x1A, 0x58 ),
229 BYTES_TO_T_UINT_8( 0xDF, 0x2D, 0x37, 0xF4, 0x81, 0x4D, 0x63, 0xC7 ),
230 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
231 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
232 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
233 };
234 #endif /* MBEDTLS_ECP_DP_SECP384R1_ENABLED */
235
236 /*
237 * Domain parameters for secp521r1
238 */
239 #if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
240 static const mbedtls_mpi_uint secp521r1_p[] = {
241 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
242 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
243 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
244 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
245 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
246 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
247 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
248 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
249 BYTES_TO_T_UINT_2( 0xFF, 0x01 ),
250 };
251 static const mbedtls_mpi_uint secp521r1_b[] = {
252 BYTES_TO_T_UINT_8( 0x00, 0x3F, 0x50, 0x6B, 0xD4, 0x1F, 0x45, 0xEF ),
253 BYTES_TO_T_UINT_8( 0xF1, 0x34, 0x2C, 0x3D, 0x88, 0xDF, 0x73, 0x35 ),
254 BYTES_TO_T_UINT_8( 0x07, 0xBF, 0xB1, 0x3B, 0xBD, 0xC0, 0x52, 0x16 ),
255 BYTES_TO_T_UINT_8( 0x7B, 0x93, 0x7E, 0xEC, 0x51, 0x39, 0x19, 0x56 ),
256 BYTES_TO_T_UINT_8( 0xE1, 0x09, 0xF1, 0x8E, 0x91, 0x89, 0xB4, 0xB8 ),
257 BYTES_TO_T_UINT_8( 0xF3, 0x15, 0xB3, 0x99, 0x5B, 0x72, 0xDA, 0xA2 ),
258 BYTES_TO_T_UINT_8( 0xEE, 0x40, 0x85, 0xB6, 0xA0, 0x21, 0x9A, 0x92 ),
259 BYTES_TO_T_UINT_8( 0x1F, 0x9A, 0x1C, 0x8E, 0x61, 0xB9, 0x3E, 0x95 ),
260 BYTES_TO_T_UINT_2( 0x51, 0x00 ),
261 };
262 static const mbedtls_mpi_uint secp521r1_gx[] = {
263 BYTES_TO_T_UINT_8( 0x66, 0xBD, 0xE5, 0xC2, 0x31, 0x7E, 0x7E, 0xF9 ),
264 BYTES_TO_T_UINT_8( 0x9B, 0x42, 0x6A, 0x85, 0xC1, 0xB3, 0x48, 0x33 ),
265 BYTES_TO_T_UINT_8( 0xDE, 0xA8, 0xFF, 0xA2, 0x27, 0xC1, 0x1D, 0xFE ),
266 BYTES_TO_T_UINT_8( 0x28, 0x59, 0xE7, 0xEF, 0x77, 0x5E, 0x4B, 0xA1 ),
267 BYTES_TO_T_UINT_8( 0xBA, 0x3D, 0x4D, 0x6B, 0x60, 0xAF, 0x28, 0xF8 ),
268 BYTES_TO_T_UINT_8( 0x21, 0xB5, 0x3F, 0x05, 0x39, 0x81, 0x64, 0x9C ),
269 BYTES_TO_T_UINT_8( 0x42, 0xB4, 0x95, 0x23, 0x66, 0xCB, 0x3E, 0x9E ),
270 BYTES_TO_T_UINT_8( 0xCD, 0xE9, 0x04, 0x04, 0xB7, 0x06, 0x8E, 0x85 ),
271 BYTES_TO_T_UINT_2( 0xC6, 0x00 ),
272 };
273 static const mbedtls_mpi_uint secp521r1_gy[] = {
274 BYTES_TO_T_UINT_8( 0x50, 0x66, 0xD1, 0x9F, 0x76, 0x94, 0xBE, 0x88 ),
275 BYTES_TO_T_UINT_8( 0x40, 0xC2, 0x72, 0xA2, 0x86, 0x70, 0x3C, 0x35 ),
276 BYTES_TO_T_UINT_8( 0x61, 0x07, 0xAD, 0x3F, 0x01, 0xB9, 0x50, 0xC5 ),
277 BYTES_TO_T_UINT_8( 0x40, 0x26, 0xF4, 0x5E, 0x99, 0x72, 0xEE, 0x97 ),
278 BYTES_TO_T_UINT_8( 0x2C, 0x66, 0x3E, 0x27, 0x17, 0xBD, 0xAF, 0x17 ),
279 BYTES_TO_T_UINT_8( 0x68, 0x44, 0x9B, 0x57, 0x49, 0x44, 0xF5, 0x98 ),
280 BYTES_TO_T_UINT_8( 0xD9, 0x1B, 0x7D, 0x2C, 0xB4, 0x5F, 0x8A, 0x5C ),
281 BYTES_TO_T_UINT_8( 0x04, 0xC0, 0x3B, 0x9A, 0x78, 0x6A, 0x29, 0x39 ),
282 BYTES_TO_T_UINT_2( 0x18, 0x01 ),
283 };
284 static const mbedtls_mpi_uint secp521r1_n[] = {
285 BYTES_TO_T_UINT_8( 0x09, 0x64, 0x38, 0x91, 0x1E, 0xB7, 0x6F, 0xBB ),
286 BYTES_TO_T_UINT_8( 0xAE, 0x47, 0x9C, 0x89, 0xB8, 0xC9, 0xB5, 0x3B ),
287 BYTES_TO_T_UINT_8( 0xD0, 0xA5, 0x09, 0xF7, 0x48, 0x01, 0xCC, 0x7F ),
288 BYTES_TO_T_UINT_8( 0x6B, 0x96, 0x2F, 0xBF, 0x83, 0x87, 0x86, 0x51 ),
289 BYTES_TO_T_UINT_8( 0xFA, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
290 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
291 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
292 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
293 BYTES_TO_T_UINT_2( 0xFF, 0x01 ),
294 };
295 #endif /* MBEDTLS_ECP_DP_SECP521R1_ENABLED */
296
297 #if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
298 static const mbedtls_mpi_uint secp192k1_p[] = {
299 BYTES_TO_T_UINT_8( 0x37, 0xEE, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF ),
300 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
301 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
302 };
303 static const mbedtls_mpi_uint secp192k1_a[] = {
304 BYTES_TO_T_UINT_2( 0x00, 0x00 ),
305 };
306 static const mbedtls_mpi_uint secp192k1_b[] = {
307 BYTES_TO_T_UINT_2( 0x03, 0x00 ),
308 };
309 static const mbedtls_mpi_uint secp192k1_gx[] = {
310 BYTES_TO_T_UINT_8( 0x7D, 0x6C, 0xE0, 0xEA, 0xB1, 0xD1, 0xA5, 0x1D ),
311 BYTES_TO_T_UINT_8( 0x34, 0xF4, 0xB7, 0x80, 0x02, 0x7D, 0xB0, 0x26 ),
312 BYTES_TO_T_UINT_8( 0xAE, 0xE9, 0x57, 0xC0, 0x0E, 0xF1, 0x4F, 0xDB ),
313 };
314 static const mbedtls_mpi_uint secp192k1_gy[] = {
315 BYTES_TO_T_UINT_8( 0x9D, 0x2F, 0x5E, 0xD9, 0x88, 0xAA, 0x82, 0x40 ),
316 BYTES_TO_T_UINT_8( 0x34, 0x86, 0xBE, 0x15, 0xD0, 0x63, 0x41, 0x84 ),
317 BYTES_TO_T_UINT_8( 0xA7, 0x28, 0x56, 0x9C, 0x6D, 0x2F, 0x2F, 0x9B ),
318 };
319 static const mbedtls_mpi_uint secp192k1_n[] = {
320 BYTES_TO_T_UINT_8( 0x8D, 0xFD, 0xDE, 0x74, 0x6A, 0x46, 0x69, 0x0F ),
321 BYTES_TO_T_UINT_8( 0x17, 0xFC, 0xF2, 0x26, 0xFE, 0xFF, 0xFF, 0xFF ),
322 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
323 };
324 #endif /* MBEDTLS_ECP_DP_SECP192K1_ENABLED */
325
326 #if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
327 static const mbedtls_mpi_uint secp224k1_p[] = {
328 BYTES_TO_T_UINT_8( 0x6D, 0xE5, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF ),
329 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
330 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
331 BYTES_TO_T_UINT_4( 0xFF, 0xFF, 0xFF, 0xFF ),
332 };
333 static const mbedtls_mpi_uint secp224k1_a[] = {
334 BYTES_TO_T_UINT_2( 0x00, 0x00 ),
335 };
336 static const mbedtls_mpi_uint secp224k1_b[] = {
337 BYTES_TO_T_UINT_2( 0x05, 0x00 ),
338 };
339 static const mbedtls_mpi_uint secp224k1_gx[] = {
340 BYTES_TO_T_UINT_8( 0x5C, 0xA4, 0xB7, 0xB6, 0x0E, 0x65, 0x7E, 0x0F ),
341 BYTES_TO_T_UINT_8( 0xA9, 0x75, 0x70, 0xE4, 0xE9, 0x67, 0xA4, 0x69 ),
342 BYTES_TO_T_UINT_8( 0xA1, 0x28, 0xFC, 0x30, 0xDF, 0x99, 0xF0, 0x4D ),
343 BYTES_TO_T_UINT_4( 0x33, 0x5B, 0x45, 0xA1 ),
344 };
345 static const mbedtls_mpi_uint secp224k1_gy[] = {
346 BYTES_TO_T_UINT_8( 0xA5, 0x61, 0x6D, 0x55, 0xDB, 0x4B, 0xCA, 0xE2 ),
347 BYTES_TO_T_UINT_8( 0x59, 0xBD, 0xB0, 0xC0, 0xF7, 0x19, 0xE3, 0xF7 ),
348 BYTES_TO_T_UINT_8( 0xD6, 0xFB, 0xCA, 0x82, 0x42, 0x34, 0xBA, 0x7F ),
349 BYTES_TO_T_UINT_4( 0xED, 0x9F, 0x08, 0x7E ),
350 };
351 static const mbedtls_mpi_uint secp224k1_n[] = {
352 BYTES_TO_T_UINT_8( 0xF7, 0xB1, 0x9F, 0x76, 0x71, 0xA9, 0xF0, 0xCA ),
353 BYTES_TO_T_UINT_8( 0x84, 0x61, 0xEC, 0xD2, 0xE8, 0xDC, 0x01, 0x00 ),
354 BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 ),
355 BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00 ),
356 };
357 #endif /* MBEDTLS_ECP_DP_SECP224K1_ENABLED */
358
359 #if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
360 static const mbedtls_mpi_uint secp256k1_p[] = {
361 BYTES_TO_T_UINT_8( 0x2F, 0xFC, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF ),
362 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
363 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
364 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
365 };
366 static const mbedtls_mpi_uint secp256k1_a[] = {
367 BYTES_TO_T_UINT_2( 0x00, 0x00 ),
368 };
369 static const mbedtls_mpi_uint secp256k1_b[] = {
370 BYTES_TO_T_UINT_2( 0x07, 0x00 ),
371 };
372 static const mbedtls_mpi_uint secp256k1_gx[] = {
373 BYTES_TO_T_UINT_8( 0x98, 0x17, 0xF8, 0x16, 0x5B, 0x81, 0xF2, 0x59 ),
374 BYTES_TO_T_UINT_8( 0xD9, 0x28, 0xCE, 0x2D, 0xDB, 0xFC, 0x9B, 0x02 ),
375 BYTES_TO_T_UINT_8( 0x07, 0x0B, 0x87, 0xCE, 0x95, 0x62, 0xA0, 0x55 ),
376 BYTES_TO_T_UINT_8( 0xAC, 0xBB, 0xDC, 0xF9, 0x7E, 0x66, 0xBE, 0x79 ),
377 };
378 static const mbedtls_mpi_uint secp256k1_gy[] = {
379 BYTES_TO_T_UINT_8( 0xB8, 0xD4, 0x10, 0xFB, 0x8F, 0xD0, 0x47, 0x9C ),
380 BYTES_TO_T_UINT_8( 0x19, 0x54, 0x85, 0xA6, 0x48, 0xB4, 0x17, 0xFD ),
381 BYTES_TO_T_UINT_8( 0xA8, 0x08, 0x11, 0x0E, 0xFC, 0xFB, 0xA4, 0x5D ),
382 BYTES_TO_T_UINT_8( 0x65, 0xC4, 0xA3, 0x26, 0x77, 0xDA, 0x3A, 0x48 ),
383 };
384 static const mbedtls_mpi_uint secp256k1_n[] = {
385 BYTES_TO_T_UINT_8( 0x41, 0x41, 0x36, 0xD0, 0x8C, 0x5E, 0xD2, 0xBF ),
386 BYTES_TO_T_UINT_8( 0x3B, 0xA0, 0x48, 0xAF, 0xE6, 0xDC, 0xAE, 0xBA ),
387 BYTES_TO_T_UINT_8( 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
388 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
389 };
390 #endif /* MBEDTLS_ECP_DP_SECP256K1_ENABLED */
391
392 /*
393 * Domain parameters for brainpoolP256r1 (RFC 5639 3.4)
394 */
395 #if defined(MBEDTLS_ECP_DP_BP256R1_ENABLED)
396 static const mbedtls_mpi_uint brainpoolP256r1_p[] = {
397 BYTES_TO_T_UINT_8( 0x77, 0x53, 0x6E, 0x1F, 0x1D, 0x48, 0x13, 0x20 ),
398 BYTES_TO_T_UINT_8( 0x28, 0x20, 0x26, 0xD5, 0x23, 0xF6, 0x3B, 0x6E ),
399 BYTES_TO_T_UINT_8( 0x72, 0x8D, 0x83, 0x9D, 0x90, 0x0A, 0x66, 0x3E ),
400 BYTES_TO_T_UINT_8( 0xBC, 0xA9, 0xEE, 0xA1, 0xDB, 0x57, 0xFB, 0xA9 ),
401 };
402 static const mbedtls_mpi_uint brainpoolP256r1_a[] = {
403 BYTES_TO_T_UINT_8( 0xD9, 0xB5, 0x30, 0xF3, 0x44, 0x4B, 0x4A, 0xE9 ),
404 BYTES_TO_T_UINT_8( 0x6C, 0x5C, 0xDC, 0x26, 0xC1, 0x55, 0x80, 0xFB ),
405 BYTES_TO_T_UINT_8( 0xE7, 0xFF, 0x7A, 0x41, 0x30, 0x75, 0xF6, 0xEE ),
406 BYTES_TO_T_UINT_8( 0x57, 0x30, 0x2C, 0xFC, 0x75, 0x09, 0x5A, 0x7D ),
407 };
408 static const mbedtls_mpi_uint brainpoolP256r1_b[] = {
409 BYTES_TO_T_UINT_8( 0xB6, 0x07, 0x8C, 0xFF, 0x18, 0xDC, 0xCC, 0x6B ),
410 BYTES_TO_T_UINT_8( 0xCE, 0xE1, 0xF7, 0x5C, 0x29, 0x16, 0x84, 0x95 ),
411 BYTES_TO_T_UINT_8( 0xBF, 0x7C, 0xD7, 0xBB, 0xD9, 0xB5, 0x30, 0xF3 ),
412 BYTES_TO_T_UINT_8( 0x44, 0x4B, 0x4A, 0xE9, 0x6C, 0x5C, 0xDC, 0x26 ),
413 };
414 static const mbedtls_mpi_uint brainpoolP256r1_gx[] = {
415 BYTES_TO_T_UINT_8( 0x62, 0x32, 0xCE, 0x9A, 0xBD, 0x53, 0x44, 0x3A ),
416 BYTES_TO_T_UINT_8( 0xC2, 0x23, 0xBD, 0xE3, 0xE1, 0x27, 0xDE, 0xB9 ),
417 BYTES_TO_T_UINT_8( 0xAF, 0xB7, 0x81, 0xFC, 0x2F, 0x48, 0x4B, 0x2C ),
418 BYTES_TO_T_UINT_8( 0xCB, 0x57, 0x7E, 0xCB, 0xB9, 0xAE, 0xD2, 0x8B ),
419 };
420 static const mbedtls_mpi_uint brainpoolP256r1_gy[] = {
421 BYTES_TO_T_UINT_8( 0x97, 0x69, 0x04, 0x2F, 0xC7, 0x54, 0x1D, 0x5C ),
422 BYTES_TO_T_UINT_8( 0x54, 0x8E, 0xED, 0x2D, 0x13, 0x45, 0x77, 0xC2 ),
423 BYTES_TO_T_UINT_8( 0xC9, 0x1D, 0x61, 0x14, 0x1A, 0x46, 0xF8, 0x97 ),
424 BYTES_TO_T_UINT_8( 0xFD, 0xC4, 0xDA, 0xC3, 0x35, 0xF8, 0x7E, 0x54 ),
425 };
426 static const mbedtls_mpi_uint brainpoolP256r1_n[] = {
427 BYTES_TO_T_UINT_8( 0xA7, 0x56, 0x48, 0x97, 0x82, 0x0E, 0x1E, 0x90 ),
428 BYTES_TO_T_UINT_8( 0xF7, 0xA6, 0x61, 0xB5, 0xA3, 0x7A, 0x39, 0x8C ),
429 BYTES_TO_T_UINT_8( 0x71, 0x8D, 0x83, 0x9D, 0x90, 0x0A, 0x66, 0x3E ),
430 BYTES_TO_T_UINT_8( 0xBC, 0xA9, 0xEE, 0xA1, 0xDB, 0x57, 0xFB, 0xA9 ),
431 };
432 #endif /* MBEDTLS_ECP_DP_BP256R1_ENABLED */
433
434 /*
435 * Domain parameters for brainpoolP384r1 (RFC 5639 3.6)
436 */
437 #if defined(MBEDTLS_ECP_DP_BP384R1_ENABLED)
438 static const mbedtls_mpi_uint brainpoolP384r1_p[] = {
439 BYTES_TO_T_UINT_8( 0x53, 0xEC, 0x07, 0x31, 0x13, 0x00, 0x47, 0x87 ),
440 BYTES_TO_T_UINT_8( 0x71, 0x1A, 0x1D, 0x90, 0x29, 0xA7, 0xD3, 0xAC ),
441 BYTES_TO_T_UINT_8( 0x23, 0x11, 0xB7, 0x7F, 0x19, 0xDA, 0xB1, 0x12 ),
442 BYTES_TO_T_UINT_8( 0xB4, 0x56, 0x54, 0xED, 0x09, 0x71, 0x2F, 0x15 ),
443 BYTES_TO_T_UINT_8( 0xDF, 0x41, 0xE6, 0x50, 0x7E, 0x6F, 0x5D, 0x0F ),
444 BYTES_TO_T_UINT_8( 0x28, 0x6D, 0x38, 0xA3, 0x82, 0x1E, 0xB9, 0x8C ),
445 };
446 static const mbedtls_mpi_uint brainpoolP384r1_a[] = {
447 BYTES_TO_T_UINT_8( 0x26, 0x28, 0xCE, 0x22, 0xDD, 0xC7, 0xA8, 0x04 ),
448 BYTES_TO_T_UINT_8( 0xEB, 0xD4, 0x3A, 0x50, 0x4A, 0x81, 0xA5, 0x8A ),
449 BYTES_TO_T_UINT_8( 0x0F, 0xF9, 0x91, 0xBA, 0xEF, 0x65, 0x91, 0x13 ),
450 BYTES_TO_T_UINT_8( 0x87, 0x27, 0xB2, 0x4F, 0x8E, 0xA2, 0xBE, 0xC2 ),
451 BYTES_TO_T_UINT_8( 0xA0, 0xAF, 0x05, 0xCE, 0x0A, 0x08, 0x72, 0x3C ),
452 BYTES_TO_T_UINT_8( 0x0C, 0x15, 0x8C, 0x3D, 0xC6, 0x82, 0xC3, 0x7B ),
453 };
454 static const mbedtls_mpi_uint brainpoolP384r1_b[] = {
455 BYTES_TO_T_UINT_8( 0x11, 0x4C, 0x50, 0xFA, 0x96, 0x86, 0xB7, 0x3A ),
456 BYTES_TO_T_UINT_8( 0x94, 0xC9, 0xDB, 0x95, 0x02, 0x39, 0xB4, 0x7C ),
457 BYTES_TO_T_UINT_8( 0xD5, 0x62, 0xEB, 0x3E, 0xA5, 0x0E, 0x88, 0x2E ),
458 BYTES_TO_T_UINT_8( 0xA6, 0xD2, 0xDC, 0x07, 0xE1, 0x7D, 0xB7, 0x2F ),
459 BYTES_TO_T_UINT_8( 0x7C, 0x44, 0xF0, 0x16, 0x54, 0xB5, 0x39, 0x8B ),
460 BYTES_TO_T_UINT_8( 0x26, 0x28, 0xCE, 0x22, 0xDD, 0xC7, 0xA8, 0x04 ),
461 };
462 static const mbedtls_mpi_uint brainpoolP384r1_gx[] = {
463 BYTES_TO_T_UINT_8( 0x1E, 0xAF, 0xD4, 0x47, 0xE2, 0xB2, 0x87, 0xEF ),
464 BYTES_TO_T_UINT_8( 0xAA, 0x46, 0xD6, 0x36, 0x34, 0xE0, 0x26, 0xE8 ),
465 BYTES_TO_T_UINT_8( 0xE8, 0x10, 0xBD, 0x0C, 0xFE, 0xCA, 0x7F, 0xDB ),
466 BYTES_TO_T_UINT_8( 0xE3, 0x4F, 0xF1, 0x7E, 0xE7, 0xA3, 0x47, 0x88 ),
467 BYTES_TO_T_UINT_8( 0x6B, 0x3F, 0xC1, 0xB7, 0x81, 0x3A, 0xA6, 0xA2 ),
468 BYTES_TO_T_UINT_8( 0xFF, 0x45, 0xCF, 0x68, 0xF0, 0x64, 0x1C, 0x1D ),
469 };
470 static const mbedtls_mpi_uint brainpoolP384r1_gy[] = {
471 BYTES_TO_T_UINT_8( 0x15, 0x53, 0x3C, 0x26, 0x41, 0x03, 0x82, 0x42 ),
472 BYTES_TO_T_UINT_8( 0x11, 0x81, 0x91, 0x77, 0x21, 0x46, 0x46, 0x0E ),
473 BYTES_TO_T_UINT_8( 0x28, 0x29, 0x91, 0xF9, 0x4F, 0x05, 0x9C, 0xE1 ),
474 BYTES_TO_T_UINT_8( 0x64, 0x58, 0xEC, 0xFE, 0x29, 0x0B, 0xB7, 0x62 ),
475 BYTES_TO_T_UINT_8( 0x52, 0xD5, 0xCF, 0x95, 0x8E, 0xEB, 0xB1, 0x5C ),
476 BYTES_TO_T_UINT_8( 0xA4, 0xC2, 0xF9, 0x20, 0x75, 0x1D, 0xBE, 0x8A ),
477 };
478 static const mbedtls_mpi_uint brainpoolP384r1_n[] = {
479 BYTES_TO_T_UINT_8( 0x65, 0x65, 0x04, 0xE9, 0x02, 0x32, 0x88, 0x3B ),
480 BYTES_TO_T_UINT_8( 0x10, 0xC3, 0x7F, 0x6B, 0xAF, 0xB6, 0x3A, 0xCF ),
481 BYTES_TO_T_UINT_8( 0xA7, 0x25, 0x04, 0xAC, 0x6C, 0x6E, 0x16, 0x1F ),
482 BYTES_TO_T_UINT_8( 0xB3, 0x56, 0x54, 0xED, 0x09, 0x71, 0x2F, 0x15 ),
483 BYTES_TO_T_UINT_8( 0xDF, 0x41, 0xE6, 0x50, 0x7E, 0x6F, 0x5D, 0x0F ),
484 BYTES_TO_T_UINT_8( 0x28, 0x6D, 0x38, 0xA3, 0x82, 0x1E, 0xB9, 0x8C ),
485 };
486 #endif /* MBEDTLS_ECP_DP_BP384R1_ENABLED */
487
488 /*
489 * Domain parameters for brainpoolP512r1 (RFC 5639 3.7)
490 */
491 #if defined(MBEDTLS_ECP_DP_BP512R1_ENABLED)
492 static const mbedtls_mpi_uint brainpoolP512r1_p[] = {
493 BYTES_TO_T_UINT_8( 0xF3, 0x48, 0x3A, 0x58, 0x56, 0x60, 0xAA, 0x28 ),
494 BYTES_TO_T_UINT_8( 0x85, 0xC6, 0x82, 0x2D, 0x2F, 0xFF, 0x81, 0x28 ),
495 BYTES_TO_T_UINT_8( 0xE6, 0x80, 0xA3, 0xE6, 0x2A, 0xA1, 0xCD, 0xAE ),
496 BYTES_TO_T_UINT_8( 0x42, 0x68, 0xC6, 0x9B, 0x00, 0x9B, 0x4D, 0x7D ),
497 BYTES_TO_T_UINT_8( 0x71, 0x08, 0x33, 0x70, 0xCA, 0x9C, 0x63, 0xD6 ),
498 BYTES_TO_T_UINT_8( 0x0E, 0xD2, 0xC9, 0xB3, 0xB3, 0x8D, 0x30, 0xCB ),
499 BYTES_TO_T_UINT_8( 0x07, 0xFC, 0xC9, 0x33, 0xAE, 0xE6, 0xD4, 0x3F ),
500 BYTES_TO_T_UINT_8( 0x8B, 0xC4, 0xE9, 0xDB, 0xB8, 0x9D, 0xDD, 0xAA ),
501 };
502 static const mbedtls_mpi_uint brainpoolP512r1_a[] = {
503 BYTES_TO_T_UINT_8( 0xCA, 0x94, 0xFC, 0x77, 0x4D, 0xAC, 0xC1, 0xE7 ),
504 BYTES_TO_T_UINT_8( 0xB9, 0xC7, 0xF2, 0x2B, 0xA7, 0x17, 0x11, 0x7F ),
505 BYTES_TO_T_UINT_8( 0xB5, 0xC8, 0x9A, 0x8B, 0xC9, 0xF1, 0x2E, 0x0A ),
506 BYTES_TO_T_UINT_8( 0xA1, 0x3A, 0x25, 0xA8, 0x5A, 0x5D, 0xED, 0x2D ),
507 BYTES_TO_T_UINT_8( 0xBC, 0x63, 0x98, 0xEA, 0xCA, 0x41, 0x34, 0xA8 ),
508 BYTES_TO_T_UINT_8( 0x10, 0x16, 0xF9, 0x3D, 0x8D, 0xDD, 0xCB, 0x94 ),
509 BYTES_TO_T_UINT_8( 0xC5, 0x4C, 0x23, 0xAC, 0x45, 0x71, 0x32, 0xE2 ),
510 BYTES_TO_T_UINT_8( 0x89, 0x3B, 0x60, 0x8B, 0x31, 0xA3, 0x30, 0x78 ),
511 };
512 static const mbedtls_mpi_uint brainpoolP512r1_b[] = {
513 BYTES_TO_T_UINT_8( 0x23, 0xF7, 0x16, 0x80, 0x63, 0xBD, 0x09, 0x28 ),
514 BYTES_TO_T_UINT_8( 0xDD, 0xE5, 0xBA, 0x5E, 0xB7, 0x50, 0x40, 0x98 ),
515 BYTES_TO_T_UINT_8( 0x67, 0x3E, 0x08, 0xDC, 0xCA, 0x94, 0xFC, 0x77 ),
516 BYTES_TO_T_UINT_8( 0x4D, 0xAC, 0xC1, 0xE7, 0xB9, 0xC7, 0xF2, 0x2B ),
517 BYTES_TO_T_UINT_8( 0xA7, 0x17, 0x11, 0x7F, 0xB5, 0xC8, 0x9A, 0x8B ),
518 BYTES_TO_T_UINT_8( 0xC9, 0xF1, 0x2E, 0x0A, 0xA1, 0x3A, 0x25, 0xA8 ),
519 BYTES_TO_T_UINT_8( 0x5A, 0x5D, 0xED, 0x2D, 0xBC, 0x63, 0x98, 0xEA ),
520 BYTES_TO_T_UINT_8( 0xCA, 0x41, 0x34, 0xA8, 0x10, 0x16, 0xF9, 0x3D ),
521 };
522 static const mbedtls_mpi_uint brainpoolP512r1_gx[] = {
523 BYTES_TO_T_UINT_8( 0x22, 0xF8, 0xB9, 0xBC, 0x09, 0x22, 0x35, 0x8B ),
524 BYTES_TO_T_UINT_8( 0x68, 0x5E, 0x6A, 0x40, 0x47, 0x50, 0x6D, 0x7C ),
525 BYTES_TO_T_UINT_8( 0x5F, 0x7D, 0xB9, 0x93, 0x7B, 0x68, 0xD1, 0x50 ),
526 BYTES_TO_T_UINT_8( 0x8D, 0xD4, 0xD0, 0xE2, 0x78, 0x1F, 0x3B, 0xFF ),
527 BYTES_TO_T_UINT_8( 0x8E, 0x09, 0xD0, 0xF4, 0xEE, 0x62, 0x3B, 0xB4 ),
528 BYTES_TO_T_UINT_8( 0xC1, 0x16, 0xD9, 0xB5, 0x70, 0x9F, 0xED, 0x85 ),
529 BYTES_TO_T_UINT_8( 0x93, 0x6A, 0x4C, 0x9C, 0x2E, 0x32, 0x21, 0x5A ),
530 BYTES_TO_T_UINT_8( 0x64, 0xD9, 0x2E, 0xD8, 0xBD, 0xE4, 0xAE, 0x81 ),
531 };
532 static const mbedtls_mpi_uint brainpoolP512r1_gy[] = {
533 BYTES_TO_T_UINT_8( 0x92, 0x08, 0xD8, 0x3A, 0x0F, 0x1E, 0xCD, 0x78 ),
534 BYTES_TO_T_UINT_8( 0x06, 0x54, 0xF0, 0xA8, 0x2F, 0x2B, 0xCA, 0xD1 ),
535 BYTES_TO_T_UINT_8( 0xAE, 0x63, 0x27, 0x8A, 0xD8, 0x4B, 0xCA, 0x5B ),
536 BYTES_TO_T_UINT_8( 0x5E, 0x48, 0x5F, 0x4A, 0x49, 0xDE, 0xDC, 0xB2 ),
537 BYTES_TO_T_UINT_8( 0x11, 0x81, 0x1F, 0x88, 0x5B, 0xC5, 0x00, 0xA0 ),
538 BYTES_TO_T_UINT_8( 0x1A, 0x7B, 0xA5, 0x24, 0x00, 0xF7, 0x09, 0xF2 ),
539 BYTES_TO_T_UINT_8( 0xFD, 0x22, 0x78, 0xCF, 0xA9, 0xBF, 0xEA, 0xC0 ),
540 BYTES_TO_T_UINT_8( 0xEC, 0x32, 0x63, 0x56, 0x5D, 0x38, 0xDE, 0x7D ),
541 };
542 static const mbedtls_mpi_uint brainpoolP512r1_n[] = {
543 BYTES_TO_T_UINT_8( 0x69, 0x00, 0xA9, 0x9C, 0x82, 0x96, 0x87, 0xB5 ),
544 BYTES_TO_T_UINT_8( 0xDD, 0xDA, 0x5D, 0x08, 0x81, 0xD3, 0xB1, 0x1D ),
545 BYTES_TO_T_UINT_8( 0x47, 0x10, 0xAC, 0x7F, 0x19, 0x61, 0x86, 0x41 ),
546 BYTES_TO_T_UINT_8( 0x19, 0x26, 0xA9, 0x4C, 0x41, 0x5C, 0x3E, 0x55 ),
547 BYTES_TO_T_UINT_8( 0x70, 0x08, 0x33, 0x70, 0xCA, 0x9C, 0x63, 0xD6 ),
548 BYTES_TO_T_UINT_8( 0x0E, 0xD2, 0xC9, 0xB3, 0xB3, 0x8D, 0x30, 0xCB ),
549 BYTES_TO_T_UINT_8( 0x07, 0xFC, 0xC9, 0x33, 0xAE, 0xE6, 0xD4, 0x3F ),
550 BYTES_TO_T_UINT_8( 0x8B, 0xC4, 0xE9, 0xDB, 0xB8, 0x9D, 0xDD, 0xAA ),
551 };
552 #endif /* MBEDTLS_ECP_DP_BP512R1_ENABLED */
553
554 /*
555 * Create an MPI from embedded constants
556 * (assumes len is an exact multiple of sizeof mbedtls_mpi_uint)
557 */
558 static inline void ecp_mpi_load( mbedtls_mpi *X, const mbedtls_mpi_uint *p, size_t len )
559 {
560 X->s = 1;
561 X->n = len / sizeof( mbedtls_mpi_uint );
562 X->p = (mbedtls_mpi_uint *) p;
563 }
564
565 /*
566 * Set an MPI to static value 1
567 */
568 static inline void ecp_mpi_set1( mbedtls_mpi *X )
569 {
570 static mbedtls_mpi_uint one[] = { 1 };
571 X->s = 1;
572 X->n = 1;
573 X->p = one;
574 }
575
576 /*
577 * Make group available from embedded constants
578 */
579 static int ecp_group_load( mbedtls_ecp_group *grp,
580 const mbedtls_mpi_uint *p, size_t plen,
581 const mbedtls_mpi_uint *a, size_t alen,
582 const mbedtls_mpi_uint *b, size_t blen,
583 const mbedtls_mpi_uint *gx, size_t gxlen,
584 const mbedtls_mpi_uint *gy, size_t gylen,
585 const mbedtls_mpi_uint *n, size_t nlen)
586 {
587 ecp_mpi_load( &grp->P, p, plen );
588 if( a != NULL )
589 ecp_mpi_load( &grp->A, a, alen );
590 ecp_mpi_load( &grp->B, b, blen );
591 ecp_mpi_load( &grp->N, n, nlen );
592
593 ecp_mpi_load( &grp->G.X, gx, gxlen );
594 ecp_mpi_load( &grp->G.Y, gy, gylen );
595 ecp_mpi_set1( &grp->G.Z );
596
597 grp->pbits = mbedtls_mpi_bitlen( &grp->P );
598 grp->nbits = mbedtls_mpi_bitlen( &grp->N );
599
600 grp->h = 1;
601
602 return( 0 );
603 }
604
605 #if defined(MBEDTLS_ECP_NIST_OPTIM)
606 /* Forward declarations */
607 #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
608 static int ecp_mod_p192( mbedtls_mpi * );
609 #endif
610 #if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
611 static int ecp_mod_p224( mbedtls_mpi * );
612 #endif
613 #if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
614 static int ecp_mod_p256( mbedtls_mpi * );
615 #endif
616 #if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
617 static int ecp_mod_p384( mbedtls_mpi * );
618 #endif
619 #if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
620 static int ecp_mod_p521( mbedtls_mpi * );
621 #endif
622
623 #define NIST_MODP( P ) grp->modp = ecp_mod_ ## P;
624 #else
625 #define NIST_MODP( P )
626 #endif /* MBEDTLS_ECP_NIST_OPTIM */
627
628 /* Additional forward declarations */
629 #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
630 static int ecp_mod_p255( mbedtls_mpi * );
631 #endif
632 #if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
633 static int ecp_mod_p192k1( mbedtls_mpi * );
634 #endif
635 #if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
636 static int ecp_mod_p224k1( mbedtls_mpi * );
637 #endif
638 #if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
639 static int ecp_mod_p256k1( mbedtls_mpi * );
640 #endif
641
642 #define LOAD_GROUP_A( G ) ecp_group_load( grp, \
643 G ## _p, sizeof( G ## _p ), \
644 G ## _a, sizeof( G ## _a ), \
645 G ## _b, sizeof( G ## _b ), \
646 G ## _gx, sizeof( G ## _gx ), \
647 G ## _gy, sizeof( G ## _gy ), \
648 G ## _n, sizeof( G ## _n ) )
649
650 #define LOAD_GROUP( G ) ecp_group_load( grp, \
651 G ## _p, sizeof( G ## _p ), \
652 NULL, 0, \
653 G ## _b, sizeof( G ## _b ), \
654 G ## _gx, sizeof( G ## _gx ), \
655 G ## _gy, sizeof( G ## _gy ), \
656 G ## _n, sizeof( G ## _n ) )
657
658 #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
659 /*
660 * Specialized function for creating the Curve25519 group
661 */
662 static int ecp_use_curve25519( mbedtls_ecp_group *grp )
663 {
664 int ret;
665
666 /* Actually ( A + 2 ) / 4 */
667 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &grp->A, 16, "01DB42" ) );
668
669 /* P = 2^255 - 19 */
670 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &grp->P, 1 ) );
671 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &grp->P, 255 ) );
672 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &grp->P, &grp->P, 19 ) );
673 grp->pbits = mbedtls_mpi_bitlen( &grp->P );
674
675 /* Y intentionaly not set, since we use x/z coordinates.
676 * This is used as a marker to identify Montgomery curves! */
677 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &grp->G.X, 9 ) );
678 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &grp->G.Z, 1 ) );
679 mbedtls_mpi_free( &grp->G.Y );
680
681 /* Actually, the required msb for private keys */
682 grp->nbits = 254;
683
684 cleanup:
685 if( ret != 0 )
686 mbedtls_ecp_group_free( grp );
687
688 return( ret );
689 }
690 #endif /* MBEDTLS_ECP_DP_CURVE25519_ENABLED */
691
692 /*
693 * Set a group using well-known domain parameters
694 */
695 int mbedtls_ecp_group_load( mbedtls_ecp_group *grp, mbedtls_ecp_group_id id )
696 {
697 mbedtls_ecp_group_free( grp );
698
699 grp->id = id;
700
701 switch( id )
702 {
703 #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
704 case MBEDTLS_ECP_DP_SECP192R1:
705 NIST_MODP( p192 );
706 return( LOAD_GROUP( secp192r1 ) );
707 #endif /* MBEDTLS_ECP_DP_SECP192R1_ENABLED */
708
709 #if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
710 case MBEDTLS_ECP_DP_SECP224R1:
711 NIST_MODP( p224 );
712 return( LOAD_GROUP( secp224r1 ) );
713 #endif /* MBEDTLS_ECP_DP_SECP224R1_ENABLED */
714
715 #if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
716 case MBEDTLS_ECP_DP_SECP256R1:
717 NIST_MODP( p256 );
718 return( LOAD_GROUP( secp256r1 ) );
719 #endif /* MBEDTLS_ECP_DP_SECP256R1_ENABLED */
720
721 #if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
722 case MBEDTLS_ECP_DP_SECP384R1:
723 NIST_MODP( p384 );
724 return( LOAD_GROUP( secp384r1 ) );
725 #endif /* MBEDTLS_ECP_DP_SECP384R1_ENABLED */
726
727 #if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
728 case MBEDTLS_ECP_DP_SECP521R1:
729 NIST_MODP( p521 );
730 return( LOAD_GROUP( secp521r1 ) );
731 #endif /* MBEDTLS_ECP_DP_SECP521R1_ENABLED */
732
733 #if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
734 case MBEDTLS_ECP_DP_SECP192K1:
735 grp->modp = ecp_mod_p192k1;
736 return( LOAD_GROUP_A( secp192k1 ) );
737 #endif /* MBEDTLS_ECP_DP_SECP192K1_ENABLED */
738
739 #if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
740 case MBEDTLS_ECP_DP_SECP224K1:
741 grp->modp = ecp_mod_p224k1;
742 return( LOAD_GROUP_A( secp224k1 ) );
743 #endif /* MBEDTLS_ECP_DP_SECP224K1_ENABLED */
744
745 #if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
746 case MBEDTLS_ECP_DP_SECP256K1:
747 grp->modp = ecp_mod_p256k1;
748 return( LOAD_GROUP_A( secp256k1 ) );
749 #endif /* MBEDTLS_ECP_DP_SECP256K1_ENABLED */
750
751 #if defined(MBEDTLS_ECP_DP_BP256R1_ENABLED)
752 case MBEDTLS_ECP_DP_BP256R1:
753 return( LOAD_GROUP_A( brainpoolP256r1 ) );
754 #endif /* MBEDTLS_ECP_DP_BP256R1_ENABLED */
755
756 #if defined(MBEDTLS_ECP_DP_BP384R1_ENABLED)
757 case MBEDTLS_ECP_DP_BP384R1:
758 return( LOAD_GROUP_A( brainpoolP384r1 ) );
759 #endif /* MBEDTLS_ECP_DP_BP384R1_ENABLED */
760
761 #if defined(MBEDTLS_ECP_DP_BP512R1_ENABLED)
762 case MBEDTLS_ECP_DP_BP512R1:
763 return( LOAD_GROUP_A( brainpoolP512r1 ) );
764 #endif /* MBEDTLS_ECP_DP_BP512R1_ENABLED */
765
766 #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
767 case MBEDTLS_ECP_DP_CURVE25519:
768 grp->modp = ecp_mod_p255;
769 return( ecp_use_curve25519( grp ) );
770 #endif /* MBEDTLS_ECP_DP_CURVE25519_ENABLED */
771
772 default:
773 mbedtls_ecp_group_free( grp );
774 return( MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE );
775 }
776 }
777
778 #if defined(MBEDTLS_ECP_NIST_OPTIM)
779 /*
780 * Fast reduction modulo the primes used by the NIST curves.
781 *
782 * These functions are critical for speed, but not needed for correct
783 * operations. So, we make the choice to heavily rely on the internals of our
784 * bignum library, which creates a tight coupling between these functions and
785 * our MPI implementation. However, the coupling between the ECP module and
786 * MPI remains loose, since these functions can be deactivated at will.
787 */
788
789 #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
790 /*
791 * Compared to the way things are presented in FIPS 186-3 D.2,
792 * we proceed in columns, from right (least significant chunk) to left,
793 * adding chunks to N in place, and keeping a carry for the next chunk.
794 * This avoids moving things around in memory, and uselessly adding zeros,
795 * compared to the more straightforward, line-oriented approach.
796 *
797 * For this prime we need to handle data in chunks of 64 bits.
798 * Since this is always a multiple of our basic mbedtls_mpi_uint, we can
799 * use a mbedtls_mpi_uint * to designate such a chunk, and small loops to handle it.
800 */
801
802 /* Add 64-bit chunks (dst += src) and update carry */
803 static inline void add64( mbedtls_mpi_uint *dst, mbedtls_mpi_uint *src, mbedtls_mpi_uint *carry )
804 {
805 unsigned char i;
806 mbedtls_mpi_uint c = 0;
807 for( i = 0; i < 8 / sizeof( mbedtls_mpi_uint ); i++, dst++, src++ )
808 {
809 *dst += c; c = ( *dst < c );
810 *dst += *src; c += ( *dst < *src );
811 }
812 *carry += c;
813 }
814
815 /* Add carry to a 64-bit chunk and update carry */
816 static inline void carry64( mbedtls_mpi_uint *dst, mbedtls_mpi_uint *carry )
817 {
818 unsigned char i;
819 for( i = 0; i < 8 / sizeof( mbedtls_mpi_uint ); i++, dst++ )
820 {
821 *dst += *carry;
822 *carry = ( *dst < *carry );
823 }
824 }
825
826 #define WIDTH 8 / sizeof( mbedtls_mpi_uint )
827 #define A( i ) N->p + i * WIDTH
828 #define ADD( i ) add64( p, A( i ), &c )
829 #define NEXT p += WIDTH; carry64( p, &c )
830 #define LAST p += WIDTH; *p = c; while( ++p < end ) *p = 0
831
832 /*
833 * Fast quasi-reduction modulo p192 (FIPS 186-3 D.2.1)
834 */
835 static int ecp_mod_p192( mbedtls_mpi *N )
836 {
837 int ret;
838 mbedtls_mpi_uint c = 0;
839 mbedtls_mpi_uint *p, *end;
840
841 /* Make sure we have enough blocks so that A(5) is legal */
842 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( N, 6 * WIDTH ) );
843
844 p = N->p;
845 end = p + N->n;
846
847 ADD( 3 ); ADD( 5 ); NEXT; // A0 += A3 + A5
848 ADD( 3 ); ADD( 4 ); ADD( 5 ); NEXT; // A1 += A3 + A4 + A5
849 ADD( 4 ); ADD( 5 ); LAST; // A2 += A4 + A5
850
851 cleanup:
852 return( ret );
853 }
854
855 #undef WIDTH
856 #undef A
857 #undef ADD
858 #undef NEXT
859 #undef LAST
860 #endif /* MBEDTLS_ECP_DP_SECP192R1_ENABLED */
861
862 #if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED) || \
863 defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED) || \
864 defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
865 /*
866 * The reader is advised to first understand ecp_mod_p192() since the same
867 * general structure is used here, but with additional complications:
868 * (1) chunks of 32 bits, and (2) subtractions.
869 */
870
871 /*
872 * For these primes, we need to handle data in chunks of 32 bits.
873 * This makes it more complicated if we use 64 bits limbs in MPI,
874 * which prevents us from using a uniform access method as for p192.
875 *
876 * So, we define a mini abstraction layer to access 32 bit chunks,
877 * load them in 'cur' for work, and store them back from 'cur' when done.
878 *
879 * While at it, also define the size of N in terms of 32-bit chunks.
880 */
881 #define LOAD32 cur = A( i );
882
883 #if defined(MBEDTLS_HAVE_INT32) /* 32 bit */
884
885 #define MAX32 N->n
886 #define A( j ) N->p[j]
887 #define STORE32 N->p[i] = cur;
888
889 #else /* 64-bit */
890
891 #define MAX32 N->n * 2
892 #define A( j ) j % 2 ? (uint32_t)( N->p[j/2] >> 32 ) : (uint32_t)( N->p[j/2] )
893 #define STORE32 \
894 if( i % 2 ) { \
895 N->p[i/2] &= 0x00000000FFFFFFFF; \
896 N->p[i/2] |= ((mbedtls_mpi_uint) cur) << 32; \
897 } else { \
898 N->p[i/2] &= 0xFFFFFFFF00000000; \
899 N->p[i/2] |= (mbedtls_mpi_uint) cur; \
900 }
901
902 #endif /* sizeof( mbedtls_mpi_uint ) */
903
904 /*
905 * Helpers for addition and subtraction of chunks, with signed carry.
906 */
907 static inline void add32( uint32_t *dst, uint32_t src, signed char *carry )
908 {
909 *dst += src;
910 *carry += ( *dst < src );
911 }
912
913 static inline void sub32( uint32_t *dst, uint32_t src, signed char *carry )
914 {
915 *carry -= ( *dst < src );
916 *dst -= src;
917 }
918
919 #define ADD( j ) add32( &cur, A( j ), &c );
920 #define SUB( j ) sub32( &cur, A( j ), &c );
921
922 /*
923 * Helpers for the main 'loop'
924 * (see fix_negative for the motivation of C)
925 */
926 #define INIT( b ) \
927 int ret; \
928 signed char c = 0, cc; \
929 uint32_t cur; \
930 size_t i = 0, bits = b; \
931 mbedtls_mpi C; \
932 mbedtls_mpi_uint Cp[ b / 8 / sizeof( mbedtls_mpi_uint) + 1 ]; \
933 \
934 C.s = 1; \
935 C.n = b / 8 / sizeof( mbedtls_mpi_uint) + 1; \
936 C.p = Cp; \
937 memset( Cp, 0, C.n * sizeof( mbedtls_mpi_uint ) ); \
938 \
939 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( N, b * 2 / 8 / sizeof( mbedtls_mpi_uint ) ) ); \
940 LOAD32;
941
942 #define NEXT \
943 STORE32; i++; LOAD32; \
944 cc = c; c = 0; \
945 if( cc < 0 ) \
946 sub32( &cur, -cc, &c ); \
947 else \
948 add32( &cur, cc, &c ); \
949
950 #define LAST \
951 STORE32; i++; \
952 cur = c > 0 ? c : 0; STORE32; \
953 cur = 0; while( ++i < MAX32 ) { STORE32; } \
954 if( c < 0 ) fix_negative( N, c, &C, bits );
955
956 /*
957 * If the result is negative, we get it in the form
958 * c * 2^(bits + 32) + N, with c negative and N positive shorter than 'bits'
959 */
960 static inline int fix_negative( mbedtls_mpi *N, signed char c, mbedtls_mpi *C, size_t bits )
961 {
962 int ret;
963
964 /* C = - c * 2^(bits + 32) */
965 #if !defined(MBEDTLS_HAVE_INT64)
966 ((void) bits);
967 #else
968 if( bits == 224 )
969 C->p[ C->n - 1 ] = ((mbedtls_mpi_uint) -c) << 32;
970 else
971 #endif
972 C->p[ C->n - 1 ] = (mbedtls_mpi_uint) -c;
973
974 /* N = - ( C - N ) */
975 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( N, C, N ) );
976 N->s = -1;
977
978 cleanup:
979
980 return( ret );
981 }
982
983 #if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
984 /*
985 * Fast quasi-reduction modulo p224 (FIPS 186-3 D.2.2)
986 */
987 static int ecp_mod_p224( mbedtls_mpi *N )
988 {
989 INIT( 224 );
990
991 SUB( 7 ); SUB( 11 ); NEXT; // A0 += -A7 - A11
992 SUB( 8 ); SUB( 12 ); NEXT; // A1 += -A8 - A12
993 SUB( 9 ); SUB( 13 ); NEXT; // A2 += -A9 - A13
994 SUB( 10 ); ADD( 7 ); ADD( 11 ); NEXT; // A3 += -A10 + A7 + A11
995 SUB( 11 ); ADD( 8 ); ADD( 12 ); NEXT; // A4 += -A11 + A8 + A12
996 SUB( 12 ); ADD( 9 ); ADD( 13 ); NEXT; // A5 += -A12 + A9 + A13
997 SUB( 13 ); ADD( 10 ); LAST; // A6 += -A13 + A10
998
999 cleanup:
1000 return( ret );
1001 }
1002 #endif /* MBEDTLS_ECP_DP_SECP224R1_ENABLED */
1003
1004 #if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
1005 /*
1006 * Fast quasi-reduction modulo p256 (FIPS 186-3 D.2.3)
1007 */
1008 static int ecp_mod_p256( mbedtls_mpi *N )
1009 {
1010 INIT( 256 );
1011
1012 ADD( 8 ); ADD( 9 );
1013 SUB( 11 ); SUB( 12 ); SUB( 13 ); SUB( 14 ); NEXT; // A0
1014
1015 ADD( 9 ); ADD( 10 );
1016 SUB( 12 ); SUB( 13 ); SUB( 14 ); SUB( 15 ); NEXT; // A1
1017
1018 ADD( 10 ); ADD( 11 );
1019 SUB( 13 ); SUB( 14 ); SUB( 15 ); NEXT; // A2
1020
1021 ADD( 11 ); ADD( 11 ); ADD( 12 ); ADD( 12 ); ADD( 13 );
1022 SUB( 15 ); SUB( 8 ); SUB( 9 ); NEXT; // A3
1023
1024 ADD( 12 ); ADD( 12 ); ADD( 13 ); ADD( 13 ); ADD( 14 );
1025 SUB( 9 ); SUB( 10 ); NEXT; // A4
1026
1027 ADD( 13 ); ADD( 13 ); ADD( 14 ); ADD( 14 ); ADD( 15 );
1028 SUB( 10 ); SUB( 11 ); NEXT; // A5
1029
1030 ADD( 14 ); ADD( 14 ); ADD( 15 ); ADD( 15 ); ADD( 14 ); ADD( 13 );
1031 SUB( 8 ); SUB( 9 ); NEXT; // A6
1032
1033 ADD( 15 ); ADD( 15 ); ADD( 15 ); ADD( 8 );
1034 SUB( 10 ); SUB( 11 ); SUB( 12 ); SUB( 13 ); LAST; // A7
1035
1036 cleanup:
1037 return( ret );
1038 }
1039 #endif /* MBEDTLS_ECP_DP_SECP256R1_ENABLED */
1040
1041 #if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
1042 /*
1043 * Fast quasi-reduction modulo p384 (FIPS 186-3 D.2.4)
1044 */
1045 static int ecp_mod_p384( mbedtls_mpi *N )
1046 {
1047 INIT( 384 );
1048
1049 ADD( 12 ); ADD( 21 ); ADD( 20 );
1050 SUB( 23 ); NEXT; // A0
1051
1052 ADD( 13 ); ADD( 22 ); ADD( 23 );
1053 SUB( 12 ); SUB( 20 ); NEXT; // A2
1054
1055 ADD( 14 ); ADD( 23 );
1056 SUB( 13 ); SUB( 21 ); NEXT; // A2
1057
1058 ADD( 15 ); ADD( 12 ); ADD( 20 ); ADD( 21 );
1059 SUB( 14 ); SUB( 22 ); SUB( 23 ); NEXT; // A3
1060
1061 ADD( 21 ); ADD( 21 ); ADD( 16 ); ADD( 13 ); ADD( 12 ); ADD( 20 ); ADD( 22 );
1062 SUB( 15 ); SUB( 23 ); SUB( 23 ); NEXT; // A4
1063
1064 ADD( 22 ); ADD( 22 ); ADD( 17 ); ADD( 14 ); ADD( 13 ); ADD( 21 ); ADD( 23 );
1065 SUB( 16 ); NEXT; // A5
1066
1067 ADD( 23 ); ADD( 23 ); ADD( 18 ); ADD( 15 ); ADD( 14 ); ADD( 22 );
1068 SUB( 17 ); NEXT; // A6
1069
1070 ADD( 19 ); ADD( 16 ); ADD( 15 ); ADD( 23 );
1071 SUB( 18 ); NEXT; // A7
1072
1073 ADD( 20 ); ADD( 17 ); ADD( 16 );
1074 SUB( 19 ); NEXT; // A8
1075
1076 ADD( 21 ); ADD( 18 ); ADD( 17 );
1077 SUB( 20 ); NEXT; // A9
1078
1079 ADD( 22 ); ADD( 19 ); ADD( 18 );
1080 SUB( 21 ); NEXT; // A10
1081
1082 ADD( 23 ); ADD( 20 ); ADD( 19 );
1083 SUB( 22 ); LAST; // A11
1084
1085 cleanup:
1086 return( ret );
1087 }
1088 #endif /* MBEDTLS_ECP_DP_SECP384R1_ENABLED */
1089
1090 #undef A
1091 #undef LOAD32
1092 #undef STORE32
1093 #undef MAX32
1094 #undef INIT
1095 #undef NEXT
1096 #undef LAST
1097
1098 #endif /* MBEDTLS_ECP_DP_SECP224R1_ENABLED ||
1099 MBEDTLS_ECP_DP_SECP256R1_ENABLED ||
1100 MBEDTLS_ECP_DP_SECP384R1_ENABLED */
1101
1102 #if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
1103 /*
1104 * Here we have an actual Mersenne prime, so things are more straightforward.
1105 * However, chunks are aligned on a 'weird' boundary (521 bits).
1106 */
1107
1108 /* Size of p521 in terms of mbedtls_mpi_uint */
1109 #define P521_WIDTH ( 521 / 8 / sizeof( mbedtls_mpi_uint ) + 1 )
1110
1111 /* Bits to keep in the most significant mbedtls_mpi_uint */
1112 #define P521_MASK 0x01FF
1113
1114 /*
1115 * Fast quasi-reduction modulo p521 (FIPS 186-3 D.2.5)
1116 * Write N as A1 + 2^521 A0, return A0 + A1
1117 */
1118 static int ecp_mod_p521( mbedtls_mpi *N )
1119 {
1120 int ret;
1121 size_t i;
1122 mbedtls_mpi M;
1123 mbedtls_mpi_uint Mp[P521_WIDTH + 1];
1124 /* Worst case for the size of M is when mbedtls_mpi_uint is 16 bits:
1125 * we need to hold bits 513 to 1056, which is 34 limbs, that is
1126 * P521_WIDTH + 1. Otherwise P521_WIDTH is enough. */
1127
1128 if( N->n < P521_WIDTH )
1129 return( 0 );
1130
1131 /* M = A1 */
1132 M.s = 1;
1133 M.n = N->n - ( P521_WIDTH - 1 );
1134 if( M.n > P521_WIDTH + 1 )
1135 M.n = P521_WIDTH + 1;
1136 M.p = Mp;
1137 memcpy( Mp, N->p + P521_WIDTH - 1, M.n * sizeof( mbedtls_mpi_uint ) );
1138 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &M, 521 % ( 8 * sizeof( mbedtls_mpi_uint ) ) ) );
1139
1140 /* N = A0 */
1141 N->p[P521_WIDTH - 1] &= P521_MASK;
1142 for( i = P521_WIDTH; i < N->n; i++ )
1143 N->p[i] = 0;
1144
1145 /* N = A0 + A1 */
1146 MBEDTLS_MPI_CHK( mbedtls_mpi_add_abs( N, N, &M ) );
1147
1148 cleanup:
1149 return( ret );
1150 }
1151
1152 #undef P521_WIDTH
1153 #undef P521_MASK
1154 #endif /* MBEDTLS_ECP_DP_SECP521R1_ENABLED */
1155
1156 #endif /* MBEDTLS_ECP_NIST_OPTIM */
1157
1158 #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
1159
1160 /* Size of p255 in terms of mbedtls_mpi_uint */
1161 #define P255_WIDTH ( 255 / 8 / sizeof( mbedtls_mpi_uint ) + 1 )
1162
1163 /*
1164 * Fast quasi-reduction modulo p255 = 2^255 - 19
1165 * Write N as A0 + 2^255 A1, return A0 + 19 * A1
1166 */
1167 static int ecp_mod_p255( mbedtls_mpi *N )
1168 {
1169 int ret;
1170 size_t i;
1171 mbedtls_mpi M;
1172 mbedtls_mpi_uint Mp[P255_WIDTH + 2];
1173
1174 if( N->n < P255_WIDTH )
1175 return( 0 );
1176
1177 /* M = A1 */
1178 M.s = 1;
1179 M.n = N->n - ( P255_WIDTH - 1 );
1180 if( M.n > P255_WIDTH + 1 )
1181 M.n = P255_WIDTH + 1;
1182 M.p = Mp;
1183 memset( Mp, 0, sizeof Mp );
1184 memcpy( Mp, N->p + P255_WIDTH - 1, M.n * sizeof( mbedtls_mpi_uint ) );
1185 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &M, 255 % ( 8 * sizeof( mbedtls_mpi_uint ) ) ) );
1186 M.n++; /* Make room for multiplication by 19 */
1187
1188 /* N = A0 */
1189 MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( N, 255, 0 ) );
1190 for( i = P255_WIDTH; i < N->n; i++ )
1191 N->p[i] = 0;
1192
1193 /* N = A0 + 19 * A1 */
1194 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &M, &M, 19 ) );
1195 MBEDTLS_MPI_CHK( mbedtls_mpi_add_abs( N, N, &M ) );
1196
1197 cleanup:
1198 return( ret );
1199 }
1200 #endif /* MBEDTLS_ECP_DP_CURVE25519_ENABLED */
1201
1202 #if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED) || \
1203 defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED) || \
1204 defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
1205 /*
1206 * Fast quasi-reduction modulo P = 2^s - R,
1207 * with R about 33 bits, used by the Koblitz curves.
1208 *
1209 * Write N as A0 + 2^224 A1, return A0 + R * A1.
1210 * Actually do two passes, since R is big.
1211 */
1212 #define P_KOBLITZ_MAX ( 256 / 8 / sizeof( mbedtls_mpi_uint ) ) // Max limbs in P
1213 #define P_KOBLITZ_R ( 8 / sizeof( mbedtls_mpi_uint ) ) // Limbs in R
1214 static inline int ecp_mod_koblitz( mbedtls_mpi *N, mbedtls_mpi_uint *Rp, size_t p_limbs,
1215 size_t adjust, size_t shift, mbedtls_mpi_uint mask )
1216 {
1217 int ret;
1218 size_t i;
1219 mbedtls_mpi M, R;
1220 mbedtls_mpi_uint Mp[P_KOBLITZ_MAX + P_KOBLITZ_R + 1];
1221
1222 if( N->n < p_limbs )
1223 return( 0 );
1224
1225 /* Init R */
1226 R.s = 1;
1227 R.p = Rp;
1228 R.n = P_KOBLITZ_R;
1229
1230 /* Common setup for M */
1231 M.s = 1;
1232 M.p = Mp;
1233
1234 /* M = A1 */
1235 M.n = N->n - ( p_limbs - adjust );
1236 if( M.n > p_limbs + adjust )
1237 M.n = p_limbs + adjust;
1238 memset( Mp, 0, sizeof Mp );
1239 memcpy( Mp, N->p + p_limbs - adjust, M.n * sizeof( mbedtls_mpi_uint ) );
1240 if( shift != 0 )
1241 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &M, shift ) );
1242 M.n += R.n; /* Make room for multiplication by R */
1243
1244 /* N = A0 */
1245 if( mask != 0 )
1246 N->p[p_limbs - 1] &= mask;
1247 for( i = p_limbs; i < N->n; i++ )
1248 N->p[i] = 0;
1249
1250 /* N = A0 + R * A1 */
1251 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &M, &M, &R ) );
1252 MBEDTLS_MPI_CHK( mbedtls_mpi_add_abs( N, N, &M ) );
1253
1254 /* Second pass */
1255
1256 /* M = A1 */
1257 M.n = N->n - ( p_limbs - adjust );
1258 if( M.n > p_limbs + adjust )
1259 M.n = p_limbs + adjust;
1260 memset( Mp, 0, sizeof Mp );
1261 memcpy( Mp, N->p + p_limbs - adjust, M.n * sizeof( mbedtls_mpi_uint ) );
1262 if( shift != 0 )
1263 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &M, shift ) );
1264 M.n += R.n; /* Make room for multiplication by R */
1265
1266 /* N = A0 */
1267 if( mask != 0 )
1268 N->p[p_limbs - 1] &= mask;
1269 for( i = p_limbs; i < N->n; i++ )
1270 N->p[i] = 0;
1271
1272 /* N = A0 + R * A1 */
1273 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &M, &M, &R ) );
1274 MBEDTLS_MPI_CHK( mbedtls_mpi_add_abs( N, N, &M ) );
1275
1276 cleanup:
1277 return( ret );
1278 }
1279 #endif /* MBEDTLS_ECP_DP_SECP192K1_ENABLED) ||
1280 MBEDTLS_ECP_DP_SECP224K1_ENABLED) ||
1281 MBEDTLS_ECP_DP_SECP256K1_ENABLED) */
1282
1283 #if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
1284 /*
1285 * Fast quasi-reduction modulo p192k1 = 2^192 - R,
1286 * with R = 2^32 + 2^12 + 2^8 + 2^7 + 2^6 + 2^3 + 1 = 0x0100001119
1287 */
1288 static int ecp_mod_p192k1( mbedtls_mpi *N )
1289 {
1290 static mbedtls_mpi_uint Rp[] = {
1291 BYTES_TO_T_UINT_8( 0xC9, 0x11, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00 ) };
1292
1293 return( ecp_mod_koblitz( N, Rp, 192 / 8 / sizeof( mbedtls_mpi_uint ), 0, 0, 0 ) );
1294 }
1295 #endif /* MBEDTLS_ECP_DP_SECP192K1_ENABLED */
1296
1297 #if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
1298 /*
1299 * Fast quasi-reduction modulo p224k1 = 2^224 - R,
1300 * with R = 2^32 + 2^12 + 2^11 + 2^9 + 2^7 + 2^4 + 2 + 1 = 0x0100001A93
1301 */
1302 static int ecp_mod_p224k1( mbedtls_mpi *N )
1303 {
1304 static mbedtls_mpi_uint Rp[] = {
1305 BYTES_TO_T_UINT_8( 0x93, 0x1A, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00 ) };
1306
1307 #if defined(MBEDTLS_HAVE_INT64)
1308 return( ecp_mod_koblitz( N, Rp, 4, 1, 32, 0xFFFFFFFF ) );
1309 #else
1310 return( ecp_mod_koblitz( N, Rp, 224 / 8 / sizeof( mbedtls_mpi_uint ), 0, 0, 0 ) );
1311 #endif
1312 }
1313
1314 #endif /* MBEDTLS_ECP_DP_SECP224K1_ENABLED */
1315
1316 #if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
1317 /*
1318 * Fast quasi-reduction modulo p256k1 = 2^256 - R,
1319 * with R = 2^32 + 2^9 + 2^8 + 2^7 + 2^6 + 2^4 + 1 = 0x01000003D1
1320 */
1321 static int ecp_mod_p256k1( mbedtls_mpi *N )
1322 {
1323 static mbedtls_mpi_uint Rp[] = {
1324 BYTES_TO_T_UINT_8( 0xD1, 0x03, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00 ) };
1325 return( ecp_mod_koblitz( N, Rp, 256 / 8 / sizeof( mbedtls_mpi_uint ), 0, 0, 0 ) );
1326 }
1327 #endif /* MBEDTLS_ECP_DP_SECP256K1_ENABLED */
1328
1329 #endif /* !MBEDTLS_ECP_ALT */
1330
1331 #endif /* MBEDTLS_ECP_C */