[D3DRM] Sync with Wine Staging 4.18. CORE-16441
[reactos.git] / dll / directx / wine / d3drm / math.c
1 /*
2 * Copyright 2007 David Adam
3 * Copyright 2007 Vijay Kiran Kamuju
4 *
5 * This library is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU Lesser General Public
7 * License as published by the Free Software Foundation; either
8 * version 2.1 of the License, or (at your option) any later version.
9 *
10 * This library is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * Lesser General Public License for more details.
14 *
15 * You should have received a copy of the GNU Lesser General Public
16 * License along with this library; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
18 */
19
20 #include "d3drm_private.h"
21
22 /* Create a RGB color from its components */
23 D3DCOLOR WINAPI D3DRMCreateColorRGB(D3DVALUE red, D3DVALUE green, D3DVALUE blue)
24 {
25 return D3DRMCreateColorRGBA(red, green, blue, 1.0f);
26 }
27 /* Create a RGBA color from its components */
28 D3DCOLOR WINAPI D3DRMCreateColorRGBA(D3DVALUE red, D3DVALUE green, D3DVALUE blue, D3DVALUE alpha)
29 {
30 D3DCOLOR color;
31
32 d3drm_set_color(&color, red, green, blue, alpha);
33
34 return color;
35 }
36
37 /* Determine the alpha part of a color */
38 D3DVALUE WINAPI D3DRMColorGetAlpha(D3DCOLOR color)
39 {
40 return (RGBA_GETALPHA(color)/255.0);
41 }
42
43 /* Determine the blue part of a color */
44 D3DVALUE WINAPI D3DRMColorGetBlue(D3DCOLOR color)
45 {
46 return (RGBA_GETBLUE(color)/255.0);
47 }
48
49 /* Determine the green part of a color */
50 D3DVALUE WINAPI D3DRMColorGetGreen(D3DCOLOR color)
51 {
52 return (RGBA_GETGREEN(color)/255.0);
53 }
54
55 /* Determine the red part of a color */
56 D3DVALUE WINAPI D3DRMColorGetRed(D3DCOLOR color)
57 {
58 return (RGBA_GETRED(color)/255.0);
59 }
60
61 /* Product of 2 quaternions */
62 D3DRMQUATERNION * WINAPI D3DRMQuaternionMultiply(D3DRMQUATERNION *q, D3DRMQUATERNION *a, D3DRMQUATERNION *b)
63 {
64 D3DRMQUATERNION temp;
65 D3DVECTOR cross_product;
66
67 D3DRMVectorCrossProduct(&cross_product, &a->v, &b->v);
68 temp.s = a->s * b->s - D3DRMVectorDotProduct(&a->v, &b->v);
69 temp.v.u1.x = a->s * b->v.u1.x + b->s * a->v.u1.x + cross_product.u1.x;
70 temp.v.u2.y = a->s * b->v.u2.y + b->s * a->v.u2.y + cross_product.u2.y;
71 temp.v.u3.z = a->s * b->v.u3.z + b->s * a->v.u3.z + cross_product.u3.z;
72
73 *q = temp;
74 return q;
75 }
76
77 /* Matrix for the Rotation that a unit quaternion represents */
78 void WINAPI D3DRMMatrixFromQuaternion(D3DRMMATRIX4D m, D3DRMQUATERNION *q)
79 {
80 D3DVALUE w,x,y,z;
81 w = q->s;
82 x = q->v.u1.x;
83 y = q->v.u2.y;
84 z = q->v.u3.z;
85 m[0][0] = 1.0-2.0*(y*y+z*z);
86 m[1][1] = 1.0-2.0*(x*x+z*z);
87 m[2][2] = 1.0-2.0*(x*x+y*y);
88 m[1][0] = 2.0*(x*y+z*w);
89 m[0][1] = 2.0*(x*y-z*w);
90 m[2][0] = 2.0*(x*z-y*w);
91 m[0][2] = 2.0*(x*z+y*w);
92 m[2][1] = 2.0*(y*z+x*w);
93 m[1][2] = 2.0*(y*z-x*w);
94 m[3][0] = 0.0;
95 m[3][1] = 0.0;
96 m[3][2] = 0.0;
97 m[0][3] = 0.0;
98 m[1][3] = 0.0;
99 m[2][3] = 0.0;
100 m[3][3] = 1.0;
101 }
102
103 /* Return a unit quaternion that represents a rotation of an angle around an axis */
104 D3DRMQUATERNION * WINAPI D3DRMQuaternionFromRotation(D3DRMQUATERNION *q, D3DVECTOR *v, D3DVALUE theta)
105 {
106 q->s = cos(theta/2.0);
107 D3DRMVectorScale(&q->v, D3DRMVectorNormalize(v), sin(theta/2.0));
108 return q;
109 }
110
111 /* Interpolation between two quaternions */
112 D3DRMQUATERNION * WINAPI D3DRMQuaternionSlerp(D3DRMQUATERNION *q,
113 D3DRMQUATERNION *a, D3DRMQUATERNION *b, D3DVALUE alpha)
114 {
115 D3DVALUE dot, epsilon, temp, theta, u;
116 D3DVECTOR v1, v2;
117
118 dot = a->s * b->s + D3DRMVectorDotProduct(&a->v, &b->v);
119 epsilon = 1.0f;
120 temp = 1.0f - alpha;
121 u = alpha;
122 if (dot < 0.0)
123 {
124 epsilon = -1.0;
125 dot = -dot;
126 }
127 if( 1.0f - dot > 0.001f )
128 {
129 theta = acos(dot);
130 temp = sin(theta * temp) / sin(theta);
131 u = sin(theta * alpha) / sin(theta);
132 }
133 q->s = temp * a->s + epsilon * u * b->s;
134 D3DRMVectorScale(&v1, &a->v, temp);
135 D3DRMVectorScale(&v2, &b->v, epsilon * u);
136 D3DRMVectorAdd(&q->v, &v1, &v2);
137 return q;
138 }
139
140 /* Add Two Vectors */
141 D3DVECTOR * WINAPI D3DRMVectorAdd(D3DVECTOR *d, D3DVECTOR *s1, D3DVECTOR *s2)
142 {
143 D3DVECTOR temp;
144
145 temp.u1.x=s1->u1.x + s2->u1.x;
146 temp.u2.y=s1->u2.y + s2->u2.y;
147 temp.u3.z=s1->u3.z + s2->u3.z;
148
149 *d = temp;
150 return d;
151 }
152
153 /* Subtract Two Vectors */
154 D3DVECTOR * WINAPI D3DRMVectorSubtract(D3DVECTOR *d, D3DVECTOR *s1, D3DVECTOR *s2)
155 {
156 D3DVECTOR temp;
157
158 temp.u1.x=s1->u1.x - s2->u1.x;
159 temp.u2.y=s1->u2.y - s2->u2.y;
160 temp.u3.z=s1->u3.z - s2->u3.z;
161
162 *d = temp;
163 return d;
164 }
165
166 /* Cross Product of Two Vectors */
167 D3DVECTOR * WINAPI D3DRMVectorCrossProduct(D3DVECTOR *d, D3DVECTOR *s1, D3DVECTOR *s2)
168 {
169 D3DVECTOR temp;
170
171 temp.u1.x=s1->u2.y * s2->u3.z - s1->u3.z * s2->u2.y;
172 temp.u2.y=s1->u3.z * s2->u1.x - s1->u1.x * s2->u3.z;
173 temp.u3.z=s1->u1.x * s2->u2.y - s1->u2.y * s2->u1.x;
174
175 *d = temp;
176 return d;
177 }
178
179 /* Dot Product of Two vectors */
180 D3DVALUE WINAPI D3DRMVectorDotProduct(D3DVECTOR *s1, D3DVECTOR *s2)
181 {
182 D3DVALUE dot_product;
183 dot_product=s1->u1.x * s2->u1.x + s1->u2.y * s2->u2.y + s1->u3.z * s2->u3.z;
184 return dot_product;
185 }
186
187 /* Norm of a vector */
188 D3DVALUE WINAPI D3DRMVectorModulus(D3DVECTOR *v)
189 {
190 D3DVALUE result;
191 result=sqrt(v->u1.x * v->u1.x + v->u2.y * v->u2.y + v->u3.z * v->u3.z);
192 return result;
193 }
194
195 /* Normalize a vector. Returns (1,0,0) if INPUT is the NULL vector. */
196 D3DVECTOR * WINAPI D3DRMVectorNormalize(D3DVECTOR *u)
197 {
198 D3DVALUE modulus = D3DRMVectorModulus(u);
199 if(modulus)
200 {
201 D3DRMVectorScale(u,u,1.0/modulus);
202 }
203 else
204 {
205 u->u1.x=1.0;
206 u->u2.y=0.0;
207 u->u3.z=0.0;
208 }
209 return u;
210 }
211
212 /* Returns a random unit vector */
213 D3DVECTOR * WINAPI D3DRMVectorRandom(D3DVECTOR *d)
214 {
215 d->u1.x = rand();
216 d->u2.y = rand();
217 d->u3.z = rand();
218 D3DRMVectorNormalize(d);
219 return d;
220 }
221
222 /* Reflection of a vector on a surface */
223 D3DVECTOR * WINAPI D3DRMVectorReflect(D3DVECTOR *r, D3DVECTOR *ray, D3DVECTOR *norm)
224 {
225 D3DVECTOR sca, temp;
226 D3DRMVectorSubtract(&temp, D3DRMVectorScale(&sca, norm, 2.0*D3DRMVectorDotProduct(ray,norm)), ray);
227
228 *r = temp;
229 return r;
230 }
231
232 /* Rotation of a vector */
233 D3DVECTOR * WINAPI D3DRMVectorRotate(D3DVECTOR *r, D3DVECTOR *v, D3DVECTOR *axis, D3DVALUE theta)
234 {
235 D3DRMQUATERNION quaternion1, quaternion2, quaternion3;
236 D3DVECTOR norm;
237
238 quaternion1.s = cos(theta * 0.5f);
239 quaternion2.s = cos(theta * 0.5f);
240 norm = *D3DRMVectorNormalize(axis);
241 D3DRMVectorScale(&quaternion1.v, &norm, sin(theta * 0.5f));
242 D3DRMVectorScale(&quaternion2.v, &norm, -sin(theta * 0.5f));
243 quaternion3.s = 0.0;
244 quaternion3.v = *v;
245 D3DRMQuaternionMultiply(&quaternion1, &quaternion1, &quaternion3);
246 D3DRMQuaternionMultiply(&quaternion1, &quaternion1, &quaternion2);
247
248 *r = *D3DRMVectorNormalize(&quaternion1.v);
249 return r;
250 }
251
252 /* Scale a vector */
253 D3DVECTOR * WINAPI D3DRMVectorScale(D3DVECTOR *d, D3DVECTOR *s, D3DVALUE factor)
254 {
255 D3DVECTOR temp;
256
257 temp.u1.x=factor * s->u1.x;
258 temp.u2.y=factor * s->u2.y;
259 temp.u3.z=factor * s->u3.z;
260
261 *d = temp;
262 return d;
263 }