[CABINET] Sync with Wine Staging 3.3. CORE-14434
[reactos.git] / dll / win32 / cabinet / cabinet.h
1 /*
2 * cabinet.h
3 *
4 * Copyright 2002 Greg Turner
5 * Copyright 2005 Gerold Jens Wucherpfennig
6 *
7 * This library is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
11 *
12 * This library is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with this library; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
20 */
21 #ifndef __WINE_CABINET_H
22 #define __WINE_CABINET_H
23
24 #include <stdarg.h>
25
26 #include "windef.h"
27 #include "winbase.h"
28 #include "winnt.h"
29 #include "fdi.h"
30 #include "fci.h"
31
32 /* from msvcrt/sys/stat.h */
33 #define _S_IWRITE 0x0080
34 #define _S_IREAD 0x0100
35
36 /* from msvcrt/fcntl.h */
37 #define _O_RDONLY 0
38 #define _O_WRONLY 1
39 #define _O_RDWR 2
40 #define _O_ACCMODE (_O_RDONLY|_O_WRONLY|_O_RDWR)
41 #define _O_APPEND 0x0008
42 #define _O_RANDOM 0x0010
43 #define _O_SEQUENTIAL 0x0020
44 #define _O_TEMPORARY 0x0040
45 #define _O_NOINHERIT 0x0080
46 #define _O_CREAT 0x0100
47 #define _O_TRUNC 0x0200
48 #define _O_EXCL 0x0400
49 #define _O_SHORT_LIVED 0x1000
50 #define _O_TEXT 0x4000
51 #define _O_BINARY 0x8000
52
53 #define CAB_SPLITMAX (10)
54
55 #define CAB_SEARCH_SIZE (32*1024)
56
57 typedef unsigned char cab_UBYTE; /* 8 bits */
58 typedef UINT16 cab_UWORD; /* 16 bits */
59 typedef UINT32 cab_ULONG; /* 32 bits */
60 typedef INT32 cab_LONG; /* 32 bits */
61
62 typedef UINT32 cab_off_t;
63
64 /* number of bits in a ULONG */
65 #define CAB_ULONG_BITS (sizeof(cab_ULONG) * 8) /* CHAR_BIT */
66
67 /* structure offsets */
68 #define cfhead_Signature (0x00)
69 #define cfhead_CabinetSize (0x08)
70 #define cfhead_FileOffset (0x10)
71 #define cfhead_MinorVersion (0x18)
72 #define cfhead_MajorVersion (0x19)
73 #define cfhead_NumFolders (0x1A)
74 #define cfhead_NumFiles (0x1C)
75 #define cfhead_Flags (0x1E)
76 #define cfhead_SetID (0x20)
77 #define cfhead_CabinetIndex (0x22)
78 #define cfhead_SIZEOF (0x24)
79 #define cfheadext_HeaderReserved (0x00)
80 #define cfheadext_FolderReserved (0x02)
81 #define cfheadext_DataReserved (0x03)
82 #define cfheadext_SIZEOF (0x04)
83 #define cffold_DataOffset (0x00)
84 #define cffold_NumBlocks (0x04)
85 #define cffold_CompType (0x06)
86 #define cffold_SIZEOF (0x08)
87 #define cffile_UncompressedSize (0x00)
88 #define cffile_FolderOffset (0x04)
89 #define cffile_FolderIndex (0x08)
90 #define cffile_Date (0x0A)
91 #define cffile_Time (0x0C)
92 #define cffile_Attribs (0x0E)
93 #define cffile_SIZEOF (0x10)
94 #define cfdata_CheckSum (0x00)
95 #define cfdata_CompressedSize (0x04)
96 #define cfdata_UncompressedSize (0x06)
97 #define cfdata_SIZEOF (0x08)
98
99 /* flags */
100 #define cffoldCOMPTYPE_MASK (0x000f)
101 #define cffoldCOMPTYPE_NONE (0x0000)
102 #define cffoldCOMPTYPE_MSZIP (0x0001)
103 #define cffoldCOMPTYPE_QUANTUM (0x0002)
104 #define cffoldCOMPTYPE_LZX (0x0003)
105 #define cfheadPREV_CABINET (0x0001)
106 #define cfheadNEXT_CABINET (0x0002)
107 #define cfheadRESERVE_PRESENT (0x0004)
108 #define cffileCONTINUED_FROM_PREV (0xFFFD)
109 #define cffileCONTINUED_TO_NEXT (0xFFFE)
110 #define cffileCONTINUED_PREV_AND_NEXT (0xFFFF)
111 #define cffile_A_RDONLY (0x01)
112 #define cffile_A_HIDDEN (0x02)
113 #define cffile_A_SYSTEM (0x04)
114 #define cffile_A_ARCH (0x20)
115 #define cffile_A_EXEC (0x40)
116 #define cffile_A_NAME_IS_UTF (0x80)
117
118 /****************************************************************************/
119 /* our archiver information / state */
120
121 /* MSZIP stuff */
122 #define ZIPWSIZE 0x8000 /* window size */
123 #define ZIPLBITS 9 /* bits in base literal/length lookup table */
124 #define ZIPDBITS 6 /* bits in base distance lookup table */
125 #define ZIPBMAX 16 /* maximum bit length of any code */
126 #define ZIPN_MAX 288 /* maximum number of codes in any set */
127
128 struct Ziphuft {
129 cab_UBYTE e; /* number of extra bits or operation */
130 cab_UBYTE b; /* number of bits in this code or subcode */
131 union {
132 cab_UWORD n; /* literal, length base, or distance base */
133 struct Ziphuft *t; /* pointer to next level of table */
134 } v;
135 };
136
137 struct ZIPstate {
138 cab_ULONG window_posn; /* current offset within the window */
139 cab_ULONG bb; /* bit buffer */
140 cab_ULONG bk; /* bits in bit buffer */
141 cab_ULONG ll[288+32]; /* literal/length and distance code lengths */
142 cab_ULONG c[ZIPBMAX+1]; /* bit length count table */
143 cab_LONG lx[ZIPBMAX+1]; /* memory for l[-1..ZIPBMAX-1] */
144 struct Ziphuft *u[ZIPBMAX]; /* table stack */
145 cab_ULONG v[ZIPN_MAX]; /* values in order of bit length */
146 cab_ULONG x[ZIPBMAX+1]; /* bit offsets, then code stack */
147 cab_UBYTE *inpos;
148 };
149
150 /* Quantum stuff */
151
152 struct QTMmodelsym {
153 cab_UWORD sym, cumfreq;
154 };
155
156 struct QTMmodel {
157 int shiftsleft, entries;
158 struct QTMmodelsym *syms;
159 cab_UWORD tabloc[256];
160 };
161
162 struct QTMstate {
163 cab_UBYTE *window; /* the actual decoding window */
164 cab_ULONG window_size; /* window size (1Kb through 2Mb) */
165 cab_ULONG actual_size; /* window size when it was first allocated */
166 cab_ULONG window_posn; /* current offset within the window */
167
168 struct QTMmodel model7;
169 struct QTMmodelsym m7sym[7+1];
170
171 struct QTMmodel model4, model5, model6pos, model6len;
172 struct QTMmodelsym m4sym[0x18 + 1];
173 struct QTMmodelsym m5sym[0x24 + 1];
174 struct QTMmodelsym m6psym[0x2a + 1], m6lsym[0x1b + 1];
175
176 struct QTMmodel model00, model40, model80, modelC0;
177 struct QTMmodelsym m00sym[0x40 + 1], m40sym[0x40 + 1];
178 struct QTMmodelsym m80sym[0x40 + 1], mC0sym[0x40 + 1];
179 };
180
181 /* LZX stuff */
182
183 /* some constants defined by the LZX specification */
184 #define LZX_MIN_MATCH (2)
185 #define LZX_MAX_MATCH (257)
186 #define LZX_NUM_CHARS (256)
187 #define LZX_BLOCKTYPE_INVALID (0) /* also blocktypes 4-7 invalid */
188 #define LZX_BLOCKTYPE_VERBATIM (1)
189 #define LZX_BLOCKTYPE_ALIGNED (2)
190 #define LZX_BLOCKTYPE_UNCOMPRESSED (3)
191 #define LZX_PRETREE_NUM_ELEMENTS (20)
192 #define LZX_ALIGNED_NUM_ELEMENTS (8) /* aligned offset tree #elements */
193 #define LZX_NUM_PRIMARY_LENGTHS (7) /* this one missing from spec! */
194 #define LZX_NUM_SECONDARY_LENGTHS (249) /* length tree #elements */
195
196 /* LZX huffman defines: tweak tablebits as desired */
197 #define LZX_PRETREE_MAXSYMBOLS (LZX_PRETREE_NUM_ELEMENTS)
198 #define LZX_PRETREE_TABLEBITS (6)
199 #define LZX_MAINTREE_MAXSYMBOLS (LZX_NUM_CHARS + 50*8)
200 #define LZX_MAINTREE_TABLEBITS (12)
201 #define LZX_LENGTH_MAXSYMBOLS (LZX_NUM_SECONDARY_LENGTHS+1)
202 #define LZX_LENGTH_TABLEBITS (12)
203 #define LZX_ALIGNED_MAXSYMBOLS (LZX_ALIGNED_NUM_ELEMENTS)
204 #define LZX_ALIGNED_TABLEBITS (7)
205
206 #define LZX_LENTABLE_SAFETY (64) /* we allow length table decoding overruns */
207
208 #define LZX_DECLARE_TABLE(tbl) \
209 cab_UWORD tbl##_table[(1<<LZX_##tbl##_TABLEBITS) + (LZX_##tbl##_MAXSYMBOLS<<1)];\
210 cab_UBYTE tbl##_len [LZX_##tbl##_MAXSYMBOLS + LZX_LENTABLE_SAFETY]
211
212 struct LZXstate {
213 cab_UBYTE *window; /* the actual decoding window */
214 cab_ULONG window_size; /* window size (32Kb through 2Mb) */
215 cab_ULONG actual_size; /* window size when it was first allocated */
216 cab_ULONG window_posn; /* current offset within the window */
217 cab_ULONG R0, R1, R2; /* for the LRU offset system */
218 cab_UWORD main_elements; /* number of main tree elements */
219 int header_read; /* have we started decoding at all yet? */
220 cab_UWORD block_type; /* type of this block */
221 cab_ULONG block_length; /* uncompressed length of this block */
222 cab_ULONG block_remaining; /* uncompressed bytes still left to decode */
223 cab_ULONG frames_read; /* the number of CFDATA blocks processed */
224 cab_LONG intel_filesize; /* magic header value used for transform */
225 cab_LONG intel_curpos; /* current offset in transform space */
226 int intel_started; /* have we seen any translatable data yet? */
227
228 LZX_DECLARE_TABLE(PRETREE);
229 LZX_DECLARE_TABLE(MAINTREE);
230 LZX_DECLARE_TABLE(LENGTH);
231 LZX_DECLARE_TABLE(ALIGNED);
232 };
233
234 struct lzx_bits {
235 cab_ULONG bb;
236 int bl;
237 cab_UBYTE *ip;
238 };
239
240 /* CAB data blocks are <= 32768 bytes in uncompressed form. Uncompressed
241 * blocks have zero growth. MSZIP guarantees that it won't grow above
242 * uncompressed size by more than 12 bytes. LZX guarantees it won't grow
243 * more than 6144 bytes.
244 */
245 #define CAB_BLOCKMAX (32768)
246 #define CAB_INPUTMAX (CAB_BLOCKMAX+6144)
247
248 struct cab_file {
249 struct cab_file *next; /* next file in sequence */
250 struct cab_folder *folder; /* folder that contains this file */
251 LPCSTR filename; /* output name of file */
252 HANDLE fh; /* open file handle or NULL */
253 cab_ULONG length; /* uncompressed length of file */
254 cab_ULONG offset; /* uncompressed offset in folder */
255 cab_UWORD index; /* magic index number of folder */
256 cab_UWORD time, date, attribs; /* MS-DOS time/date/attributes */
257 };
258
259
260 struct cab_folder {
261 struct cab_folder *next;
262 struct cabinet *cab[CAB_SPLITMAX]; /* cabinet(s) this folder spans */
263 cab_off_t offset[CAB_SPLITMAX]; /* offset to data blocks */
264 cab_UWORD comp_type; /* compression format/window size */
265 cab_ULONG comp_size; /* compressed size of folder */
266 cab_UBYTE num_splits; /* number of split blocks + 1 */
267 cab_UWORD num_blocks; /* total number of blocks */
268 struct cab_file *contfile; /* the first split file */
269 };
270
271 struct cabinet {
272 struct cabinet *next; /* for making a list of cabinets */
273 LPCSTR filename; /* input name of cabinet */
274 HANDLE *fh; /* open file handle or NULL */
275 cab_off_t filelen; /* length of cabinet file */
276 cab_off_t blocks_off; /* offset to data blocks in file */
277 struct cabinet *prevcab, *nextcab; /* multipart cabinet chains */
278 char *prevname, *nextname; /* and their filenames */
279 char *previnfo, *nextinfo; /* and their visible names */
280 struct cab_folder *folders; /* first folder in this cabinet */
281 struct cab_file *files; /* first file in this cabinet */
282 cab_UBYTE block_resv; /* reserved space in datablocks */
283 cab_UBYTE flags; /* header flags */
284 };
285
286 typedef struct cds_forward {
287 struct cab_folder *current; /* current folder we're extracting from */
288 cab_ULONG offset; /* uncompressed offset within folder */
289 cab_UBYTE *outpos; /* (high level) start of data to use up */
290 cab_UWORD outlen; /* (high level) amount of data to use up */
291 cab_UWORD split; /* at which split in current folder? */
292 int (*decompress)(int, int, struct cds_forward *); /* chosen compress fn */
293 cab_UBYTE inbuf[CAB_INPUTMAX+2]; /* +2 for lzx bitbuffer overflows! */
294 cab_UBYTE outbuf[CAB_BLOCKMAX];
295 cab_UBYTE q_length_base[27], q_length_extra[27], q_extra_bits[42];
296 cab_ULONG q_position_base[42];
297 cab_ULONG lzx_position_base[51];
298 cab_UBYTE extra_bits[51];
299 union {
300 struct ZIPstate zip;
301 struct QTMstate qtm;
302 struct LZXstate lzx;
303 } methods;
304 } cab_decomp_state;
305
306 /*
307 * the rest of these are somewhat kludgy macros which are shared between fdi.c
308 * and cabextract.c.
309 */
310
311 /* Bitstream reading macros (Quantum / normal byte order)
312 *
313 * Q_INIT_BITSTREAM should be used first to set up the system
314 * Q_READ_BITS(var,n) takes N bits from the buffer and puts them in var.
315 * unlike LZX, this can loop several times to get the
316 * requisite number of bits.
317 * Q_FILL_BUFFER adds more data to the bit buffer, if there is room
318 * for another 16 bits.
319 * Q_PEEK_BITS(n) extracts (without removing) N bits from the bit
320 * buffer
321 * Q_REMOVE_BITS(n) removes N bits from the bit buffer
322 *
323 * These bit access routines work by using the area beyond the MSB and the
324 * LSB as a free source of zeroes. This avoids having to mask any bits.
325 * So we have to know the bit width of the bitbuffer variable. This is
326 * defined as ULONG_BITS.
327 *
328 * ULONG_BITS should be at least 16 bits. Unlike LZX's Huffman decoding,
329 * Quantum's arithmetic decoding only needs 1 bit at a time, it doesn't
330 * need an assured number. Retrieving larger bitstrings can be done with
331 * multiple reads and fills of the bitbuffer. The code should work fine
332 * for machines where ULONG >= 32 bits.
333 *
334 * Also note that Quantum reads bytes in normal order; LZX is in
335 * little-endian order.
336 */
337
338 #define Q_INIT_BITSTREAM do { bitsleft = 0; bitbuf = 0; } while (0)
339
340 #define Q_FILL_BUFFER do { \
341 if (bitsleft <= (CAB_ULONG_BITS - 16)) { \
342 bitbuf |= ((inpos[0]<<8)|inpos[1]) << (CAB_ULONG_BITS-16 - bitsleft); \
343 bitsleft += 16; inpos += 2; \
344 } \
345 } while (0)
346
347 #define Q_PEEK_BITS(n) (bitbuf >> (CAB_ULONG_BITS - (n)))
348 #define Q_REMOVE_BITS(n) ((bitbuf <<= (n)), (bitsleft -= (n)))
349
350 #define Q_READ_BITS(v,n) do { \
351 (v) = 0; \
352 for (bitsneed = (n); bitsneed; bitsneed -= bitrun) { \
353 Q_FILL_BUFFER; \
354 bitrun = (bitsneed > bitsleft) ? bitsleft : bitsneed; \
355 (v) = ((v) << bitrun) | Q_PEEK_BITS(bitrun); \
356 Q_REMOVE_BITS(bitrun); \
357 } \
358 } while (0)
359
360 #define Q_MENTRIES(model) (QTM(model).entries)
361 #define Q_MSYM(model,symidx) (QTM(model).syms[(symidx)].sym)
362 #define Q_MSYMFREQ(model,symidx) (QTM(model).syms[(symidx)].cumfreq)
363
364 /* GET_SYMBOL(model, var) fetches the next symbol from the stated model
365 * and puts it in var. it may need to read the bitstream to do this.
366 */
367 #define GET_SYMBOL(m, var) do { \
368 range = ((H - L) & 0xFFFF) + 1; \
369 symf = ((((C - L + 1) * Q_MSYMFREQ(m,0)) - 1) / range) & 0xFFFF; \
370 \
371 for (i=1; i < Q_MENTRIES(m); i++) { \
372 if (Q_MSYMFREQ(m,i) <= symf) break; \
373 } \
374 (var) = Q_MSYM(m,i-1); \
375 \
376 range = (H - L) + 1; \
377 H = L + ((Q_MSYMFREQ(m,i-1) * range) / Q_MSYMFREQ(m,0)) - 1; \
378 L = L + ((Q_MSYMFREQ(m,i) * range) / Q_MSYMFREQ(m,0)); \
379 while (1) { \
380 if ((L & 0x8000) != (H & 0x8000)) { \
381 if ((L & 0x4000) && !(H & 0x4000)) { \
382 /* underflow case */ \
383 C ^= 0x4000; L &= 0x3FFF; H |= 0x4000; \
384 } \
385 else break; \
386 } \
387 L <<= 1; H = (H << 1) | 1; \
388 Q_FILL_BUFFER; \
389 C = (C << 1) | Q_PEEK_BITS(1); \
390 Q_REMOVE_BITS(1); \
391 } \
392 \
393 QTMupdatemodel(&(QTM(m)), i); \
394 } while (0)
395
396 /* Bitstream reading macros (LZX / intel little-endian byte order)
397 *
398 * INIT_BITSTREAM should be used first to set up the system
399 * READ_BITS(var,n) takes N bits from the buffer and puts them in var
400 *
401 * ENSURE_BITS(n) ensures there are at least N bits in the bit buffer.
402 * it can guarantee up to 17 bits (i.e. it can read in
403 * 16 new bits when there is down to 1 bit in the buffer,
404 * and it can read 32 bits when there are 0 bits in the
405 * buffer).
406 * PEEK_BITS(n) extracts (without removing) N bits from the bit buffer
407 * REMOVE_BITS(n) removes N bits from the bit buffer
408 *
409 * These bit access routines work by using the area beyond the MSB and the
410 * LSB as a free source of zeroes. This avoids having to mask any bits.
411 * So we have to know the bit width of the bitbuffer variable.
412 */
413
414 #define INIT_BITSTREAM do { bitsleft = 0; bitbuf = 0; } while (0)
415
416 /* Quantum reads bytes in normal order; LZX is little-endian order */
417 #define ENSURE_BITS(n) \
418 while (bitsleft < (n)) { \
419 bitbuf |= ((inpos[1]<<8)|inpos[0]) << (CAB_ULONG_BITS-16 - bitsleft); \
420 bitsleft += 16; inpos+=2; \
421 }
422
423 #define PEEK_BITS(n) (bitbuf >> (CAB_ULONG_BITS - (n)))
424 #define REMOVE_BITS(n) ((bitbuf <<= (n)), (bitsleft -= (n)))
425
426 #define READ_BITS(v,n) do { \
427 if (n) { \
428 ENSURE_BITS(n); \
429 (v) = PEEK_BITS(n); \
430 REMOVE_BITS(n); \
431 } \
432 else { \
433 (v) = 0; \
434 } \
435 } while (0)
436
437 /* Huffman macros */
438
439 #define TABLEBITS(tbl) (LZX_##tbl##_TABLEBITS)
440 #define MAXSYMBOLS(tbl) (LZX_##tbl##_MAXSYMBOLS)
441 #define SYMTABLE(tbl) (LZX(tbl##_table))
442 #define LENTABLE(tbl) (LZX(tbl##_len))
443
444 /* BUILD_TABLE(tablename) builds a huffman lookup table from code lengths.
445 * In reality, it just calls make_decode_table() with the appropriate
446 * values - they're all fixed by some #defines anyway, so there's no point
447 * writing each call out in full by hand.
448 */
449 #define BUILD_TABLE(tbl) \
450 if (make_decode_table( \
451 MAXSYMBOLS(tbl), TABLEBITS(tbl), LENTABLE(tbl), SYMTABLE(tbl) \
452 )) { return DECR_ILLEGALDATA; }
453
454 /* READ_HUFFSYM(tablename, var) decodes one huffman symbol from the
455 * bitstream using the stated table and puts it in var.
456 */
457 #define READ_HUFFSYM(tbl,var) do { \
458 ENSURE_BITS(16); \
459 hufftbl = SYMTABLE(tbl); \
460 if ((i = hufftbl[PEEK_BITS(TABLEBITS(tbl))]) >= MAXSYMBOLS(tbl)) { \
461 j = 1 << (CAB_ULONG_BITS - TABLEBITS(tbl)); \
462 do { \
463 j >>= 1; i <<= 1; i |= (bitbuf & j) ? 1 : 0; \
464 if (!j) { return DECR_ILLEGALDATA; } \
465 } while ((i = hufftbl[i]) >= MAXSYMBOLS(tbl)); \
466 } \
467 j = LENTABLE(tbl)[(var) = i]; \
468 REMOVE_BITS(j); \
469 } while (0)
470
471 /* READ_LENGTHS(tablename, first, last) reads in code lengths for symbols
472 * first to last in the given table. The code lengths are stored in their
473 * own special LZX way.
474 */
475 #define READ_LENGTHS(tbl,first,last,fn) do { \
476 lb.bb = bitbuf; lb.bl = bitsleft; lb.ip = inpos; \
477 if (fn(LENTABLE(tbl),(first),(last),&lb,decomp_state)) { \
478 return DECR_ILLEGALDATA; \
479 } \
480 bitbuf = lb.bb; bitsleft = lb.bl; inpos = lb.ip; \
481 } while (0)
482
483 /* Tables for deflate from PKZIP's appnote.txt. */
484
485 #define THOSE_ZIP_CONSTS \
486 static const cab_UBYTE Zipborder[] = /* Order of the bit length code lengths */ \
487 { 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15}; \
488 static const cab_UWORD Zipcplens[] = /* Copy lengths for literal codes 257..285 */ \
489 { 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31, 35, 43, 51, \
490 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0}; \
491 static const cab_UWORD Zipcplext[] = /* Extra bits for literal codes 257..285 */ \
492 { 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, \
493 4, 5, 5, 5, 5, 0, 99, 99}; /* 99==invalid */ \
494 static const cab_UWORD Zipcpdist[] = /* Copy offsets for distance codes 0..29 */ \
495 { 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193, 257, 385, \
496 513, 769, 1025, 1537, 2049, 3073, 4097, 6145, 8193, 12289, 16385, 24577}; \
497 static const cab_UWORD Zipcpdext[] = /* Extra bits for distance codes */ \
498 { 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, \
499 10, 11, 11, 12, 12, 13, 13}; \
500 /* And'ing with Zipmask[n] masks the lower n bits */ \
501 static const cab_UWORD Zipmask[17] = { \
502 0x0000, 0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff, \
503 0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff \
504 }
505
506 /* SESSION Operation */
507 #define EXTRACT_FILLFILELIST 0x00000001
508 #define EXTRACT_EXTRACTFILES 0x00000002
509
510 struct FILELIST{
511 LPSTR FileName;
512 struct FILELIST *next;
513 BOOL DoExtract;
514 };
515
516 typedef struct {
517 INT FileSize;
518 ERF Error;
519 struct FILELIST *FileList;
520 INT FileCount;
521 INT Operation;
522 CHAR Destination[MAX_PATH];
523 CHAR CurrentFile[MAX_PATH];
524 CHAR Reserved[MAX_PATH];
525 struct FILELIST *FilterList;
526 } SESSION;
527
528 #endif /* __WINE_CABINET_H */