sync with trunk r46493
[reactos.git] / dll / win32 / rsaenh / rsaenh.c
1 /*
2 * dlls/rsaenh/rsaenh.c
3 * RSAENH - RSA encryption for Wine
4 *
5 * Copyright 2002 TransGaming Technologies (David Hammerton)
6 * Copyright 2004 Mike McCormack for CodeWeavers
7 * Copyright 2004, 2005 Michael Jung
8 * Copyright 2007 Vijay Kiran Kamuju
9 *
10 * This library is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU Lesser General Public
12 * License as published by the Free Software Foundation; either
13 * version 2.1 of the License, or (at your option) any later version.
14 *
15 * This library is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * Lesser General Public License for more details.
19 *
20 * You should have received a copy of the GNU Lesser General Public
21 * License along with this library; if not, write to the Free Software
22 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
23 */
24
25 #include "config.h"
26 #include "wine/port.h"
27 #include "wine/library.h"
28 #include "wine/debug.h"
29
30 #include <stdarg.h>
31 #include <stdio.h>
32
33 #include "windef.h"
34 #include "winbase.h"
35 #include "winreg.h"
36 #include "wincrypt.h"
37 #include "handle.h"
38 #include "implglue.h"
39 #include "objbase.h"
40
41 WINE_DEFAULT_DEBUG_CHANNEL(crypt);
42
43 /******************************************************************************
44 * CRYPTHASH - hash objects
45 */
46 #define RSAENH_MAGIC_HASH 0x85938417u
47 #define RSAENH_MAX_HASH_SIZE 104
48 #define RSAENH_HASHSTATE_HASHING 1
49 #define RSAENH_HASHSTATE_FINISHED 2
50 typedef struct _RSAENH_TLS1PRF_PARAMS
51 {
52 CRYPT_DATA_BLOB blobLabel;
53 CRYPT_DATA_BLOB blobSeed;
54 } RSAENH_TLS1PRF_PARAMS;
55
56 typedef struct tagCRYPTHASH
57 {
58 OBJECTHDR header;
59 ALG_ID aiAlgid;
60 HCRYPTKEY hKey;
61 HCRYPTPROV hProv;
62 DWORD dwHashSize;
63 DWORD dwState;
64 HASH_CONTEXT context;
65 BYTE abHashValue[RSAENH_MAX_HASH_SIZE];
66 PHMAC_INFO pHMACInfo;
67 RSAENH_TLS1PRF_PARAMS tpPRFParams;
68 } CRYPTHASH;
69
70 /******************************************************************************
71 * CRYPTKEY - key objects
72 */
73 #define RSAENH_MAGIC_KEY 0x73620457u
74 #define RSAENH_MAX_KEY_SIZE 48
75 #define RSAENH_MAX_BLOCK_SIZE 24
76 #define RSAENH_KEYSTATE_IDLE 0
77 #define RSAENH_KEYSTATE_ENCRYPTING 1
78 #define RSAENH_KEYSTATE_MASTERKEY 2
79 typedef struct _RSAENH_SCHANNEL_INFO
80 {
81 SCHANNEL_ALG saEncAlg;
82 SCHANNEL_ALG saMACAlg;
83 CRYPT_DATA_BLOB blobClientRandom;
84 CRYPT_DATA_BLOB blobServerRandom;
85 } RSAENH_SCHANNEL_INFO;
86
87 typedef struct tagCRYPTKEY
88 {
89 OBJECTHDR header;
90 ALG_ID aiAlgid;
91 HCRYPTPROV hProv;
92 DWORD dwMode;
93 DWORD dwModeBits;
94 DWORD dwPermissions;
95 DWORD dwKeyLen;
96 DWORD dwEffectiveKeyLen;
97 DWORD dwSaltLen;
98 DWORD dwBlockLen;
99 DWORD dwState;
100 KEY_CONTEXT context;
101 BYTE abKeyValue[RSAENH_MAX_KEY_SIZE];
102 BYTE abInitVector[RSAENH_MAX_BLOCK_SIZE];
103 BYTE abChainVector[RSAENH_MAX_BLOCK_SIZE];
104 RSAENH_SCHANNEL_INFO siSChannelInfo;
105 } CRYPTKEY;
106
107 /******************************************************************************
108 * KEYCONTAINER - key containers
109 */
110 #define RSAENH_PERSONALITY_BASE 0u
111 #define RSAENH_PERSONALITY_STRONG 1u
112 #define RSAENH_PERSONALITY_ENHANCED 2u
113 #define RSAENH_PERSONALITY_SCHANNEL 3u
114 #define RSAENH_PERSONALITY_AES 4u
115
116 #define RSAENH_MAGIC_CONTAINER 0x26384993u
117 typedef struct tagKEYCONTAINER
118 {
119 OBJECTHDR header;
120 DWORD dwFlags;
121 DWORD dwPersonality;
122 DWORD dwEnumAlgsCtr;
123 DWORD dwEnumContainersCtr;
124 CHAR szName[MAX_PATH];
125 CHAR szProvName[MAX_PATH];
126 HCRYPTKEY hKeyExchangeKeyPair;
127 HCRYPTKEY hSignatureKeyPair;
128 } KEYCONTAINER;
129
130 /******************************************************************************
131 * Some magic constants
132 */
133 #define RSAENH_ENCRYPT 1
134 #define RSAENH_DECRYPT 0
135 #define RSAENH_HMAC_DEF_IPAD_CHAR 0x36
136 #define RSAENH_HMAC_DEF_OPAD_CHAR 0x5c
137 #define RSAENH_HMAC_DEF_PAD_LEN 64
138 #define RSAENH_DES_EFFECTIVE_KEYLEN 56
139 #define RSAENH_DES_STORAGE_KEYLEN 64
140 #define RSAENH_3DES112_EFFECTIVE_KEYLEN 112
141 #define RSAENH_3DES112_STORAGE_KEYLEN 128
142 #define RSAENH_3DES_EFFECTIVE_KEYLEN 168
143 #define RSAENH_3DES_STORAGE_KEYLEN 192
144 #define RSAENH_MAGIC_RSA2 0x32415352
145 #define RSAENH_MAGIC_RSA1 0x31415352
146 #define RSAENH_PKC_BLOCKTYPE 0x02
147 #define RSAENH_SSL3_VERSION_MAJOR 3
148 #define RSAENH_SSL3_VERSION_MINOR 0
149 #define RSAENH_TLS1_VERSION_MAJOR 3
150 #define RSAENH_TLS1_VERSION_MINOR 1
151 #define RSAENH_REGKEY "Software\\Wine\\Crypto\\RSA\\%s"
152
153 #define RSAENH_MIN(a,b) ((a)<(b)?(a):(b))
154 /******************************************************************************
155 * aProvEnumAlgsEx - Defines the capabilities of the CSP personalities.
156 */
157 #define RSAENH_MAX_ENUMALGS 24
158 #define RSAENH_PCT1_SSL2_SSL3_TLS1 (CRYPT_FLAG_PCT1|CRYPT_FLAG_SSL2|CRYPT_FLAG_SSL3|CRYPT_FLAG_TLS1)
159 static const PROV_ENUMALGS_EX aProvEnumAlgsEx[5][RSAENH_MAX_ENUMALGS+1] =
160 {
161 {
162 {CALG_RC2, 40, 40, 56,0, 4,"RC2", 24,"RSA Data Security's RC2"},
163 {CALG_RC4, 40, 40, 56,0, 4,"RC4", 24,"RSA Data Security's RC4"},
164 {CALG_DES, 56, 56, 56,0, 4,"DES", 31,"Data Encryption Standard (DES)"},
165 {CALG_SHA, 160,160, 160,CRYPT_FLAG_SIGNING, 6,"SHA-1", 30,"Secure Hash Algorithm (SHA-1)"},
166 {CALG_MD2, 128,128, 128,CRYPT_FLAG_SIGNING, 4,"MD2", 23,"Message Digest 2 (MD2)"},
167 {CALG_MD4, 128,128, 128,CRYPT_FLAG_SIGNING, 4,"MD4", 23,"Message Digest 4 (MD4)"},
168 {CALG_MD5, 128,128, 128,CRYPT_FLAG_SIGNING, 4,"MD5", 23,"Message Digest 5 (MD5)"},
169 {CALG_SSL3_SHAMD5,288,288,288,0, 12,"SSL3 SHAMD5",12,"SSL3 SHAMD5"},
170 {CALG_MAC, 0, 0, 0,0, 4,"MAC", 28,"Message Authentication Code"},
171 {CALG_RSA_SIGN, 512,384,16384,CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC,9,"RSA_SIGN",14,"RSA Signature"},
172 {CALG_RSA_KEYX, 512,384, 1024,CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC,9,"RSA_KEYX",17,"RSA Key Exchange"},
173 {CALG_HMAC, 0, 0, 0,0, 5,"HMAC", 18,"Hugo's MAC (HMAC)"},
174 {0, 0, 0, 0,0, 1,"", 1,""}
175 },
176 {
177 {CALG_RC2, 128, 40, 128,0, 4,"RC2", 24,"RSA Data Security's RC2"},
178 {CALG_RC4, 128, 40, 128,0, 4,"RC4", 24,"RSA Data Security's RC4"},
179 {CALG_DES, 56, 56, 56,0, 4,"DES", 31,"Data Encryption Standard (DES)"},
180 {CALG_3DES_112, 112,112, 112,0, 13,"3DES TWO KEY",19,"Two Key Triple DES"},
181 {CALG_3DES, 168,168, 168,0, 5,"3DES", 21,"Three Key Triple DES"},
182 {CALG_SHA, 160,160, 160,CRYPT_FLAG_SIGNING, 6,"SHA-1", 30,"Secure Hash Algorithm (SHA-1)"},
183 {CALG_MD2, 128,128, 128,CRYPT_FLAG_SIGNING, 4,"MD2", 23,"Message Digest 2 (MD2)"},
184 {CALG_MD4, 128,128, 128,CRYPT_FLAG_SIGNING, 4,"MD4", 23,"Message Digest 4 (MD4)"},
185 {CALG_MD5, 128,128, 128,CRYPT_FLAG_SIGNING, 4,"MD5", 23,"Message Digest 5 (MD5)"},
186 {CALG_SSL3_SHAMD5,288,288,288,0, 12,"SSL3 SHAMD5",12,"SSL3 SHAMD5"},
187 {CALG_MAC, 0, 0, 0,0, 4,"MAC", 28,"Message Authentication Code"},
188 {CALG_RSA_SIGN,1024,384,16384,CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC,9,"RSA_SIGN",14,"RSA Signature"},
189 {CALG_RSA_KEYX,1024,384,16384,CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC,9,"RSA_KEYX",17,"RSA Key Exchange"},
190 {CALG_HMAC, 0, 0, 0,0, 5,"HMAC", 18,"Hugo's MAC (HMAC)"},
191 {0, 0, 0, 0,0, 1,"", 1,""}
192 },
193 {
194 {CALG_RC2, 128, 40, 128,0, 4,"RC2", 24,"RSA Data Security's RC2"},
195 {CALG_RC4, 128, 40, 128,0, 4,"RC4", 24,"RSA Data Security's RC4"},
196 {CALG_DES, 56, 56, 56,0, 4,"DES", 31,"Data Encryption Standard (DES)"},
197 {CALG_3DES_112, 112,112, 112,0, 13,"3DES TWO KEY",19,"Two Key Triple DES"},
198 {CALG_3DES, 168,168, 168,0, 5,"3DES", 21,"Three Key Triple DES"},
199 {CALG_SHA, 160,160, 160,CRYPT_FLAG_SIGNING, 6,"SHA-1", 30,"Secure Hash Algorithm (SHA-1)"},
200 {CALG_MD2, 128,128, 128,CRYPT_FLAG_SIGNING, 4,"MD2", 23,"Message Digest 2 (MD2)"},
201 {CALG_MD4, 128,128, 128,CRYPT_FLAG_SIGNING, 4,"MD4", 23,"Message Digest 4 (MD4)"},
202 {CALG_MD5, 128,128, 128,CRYPT_FLAG_SIGNING, 4,"MD5", 23,"Message Digest 5 (MD5)"},
203 {CALG_SSL3_SHAMD5,288,288,288,0, 12,"SSL3 SHAMD5",12,"SSL3 SHAMD5"},
204 {CALG_MAC, 0, 0, 0,0, 4,"MAC", 28,"Message Authentication Code"},
205 {CALG_RSA_SIGN,1024,384,16384,CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC,9,"RSA_SIGN",14,"RSA Signature"},
206 {CALG_RSA_KEYX,1024,384,16384,CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC,9,"RSA_KEYX",17,"RSA Key Exchange"},
207 {CALG_HMAC, 0, 0, 0,0, 5,"HMAC", 18,"Hugo's MAC (HMAC)"},
208 {0, 0, 0, 0,0, 1,"", 1,""}
209 },
210 {
211 {CALG_RC2, 128, 40, 128,RSAENH_PCT1_SSL2_SSL3_TLS1, 4,"RC2", 24,"RSA Data Security's RC2"},
212 {CALG_RC4, 128, 40, 128,RSAENH_PCT1_SSL2_SSL3_TLS1, 4,"RC4", 24,"RSA Data Security's RC4"},
213 {CALG_DES, 56, 56, 56,RSAENH_PCT1_SSL2_SSL3_TLS1, 4,"DES", 31,"Data Encryption Standard (DES)"},
214 {CALG_3DES_112, 112,112, 112,RSAENH_PCT1_SSL2_SSL3_TLS1,13,"3DES TWO KEY",19,"Two Key Triple DES"},
215 {CALG_3DES, 168,168, 168,RSAENH_PCT1_SSL2_SSL3_TLS1, 5,"3DES", 21,"Three Key Triple DES"},
216 {CALG_SHA,160,160,160,CRYPT_FLAG_SIGNING|RSAENH_PCT1_SSL2_SSL3_TLS1,6,"SHA-1",30,"Secure Hash Algorithm (SHA-1)"},
217 {CALG_MD5,128,128,128,CRYPT_FLAG_SIGNING|RSAENH_PCT1_SSL2_SSL3_TLS1,4,"MD5",23,"Message Digest 5 (MD5)"},
218 {CALG_SSL3_SHAMD5,288,288,288,0, 12,"SSL3 SHAMD5",12,"SSL3 SHAMD5"},
219 {CALG_MAC, 0, 0, 0,0, 4,"MAC", 28,"Message Authentication Code"},
220 {CALG_RSA_SIGN,1024,384,16384,CRYPT_FLAG_SIGNING|RSAENH_PCT1_SSL2_SSL3_TLS1,9,"RSA_SIGN",14,"RSA Signature"},
221 {CALG_RSA_KEYX,1024,384,16384,CRYPT_FLAG_SIGNING|RSAENH_PCT1_SSL2_SSL3_TLS1,9,"RSA_KEYX",17,"RSA Key Exchange"},
222 {CALG_HMAC, 0, 0, 0,0, 5,"HMAC", 18,"Hugo's MAC (HMAC)"},
223 {CALG_PCT1_MASTER,128,128,128,CRYPT_FLAG_PCT1, 12,"PCT1 MASTER",12,"PCT1 Master"},
224 {CALG_SSL2_MASTER,40,40, 192,CRYPT_FLAG_SSL2, 12,"SSL2 MASTER",12,"SSL2 Master"},
225 {CALG_SSL3_MASTER,384,384,384,CRYPT_FLAG_SSL3, 12,"SSL3 MASTER",12,"SSL3 Master"},
226 {CALG_TLS1_MASTER,384,384,384,CRYPT_FLAG_TLS1, 12,"TLS1 MASTER",12,"TLS1 Master"},
227 {CALG_SCHANNEL_MASTER_HASH,0,0,-1,0, 16,"SCH MASTER HASH",21,"SChannel Master Hash"},
228 {CALG_SCHANNEL_MAC_KEY,0,0,-1,0, 12,"SCH MAC KEY",17,"SChannel MAC Key"},
229 {CALG_SCHANNEL_ENC_KEY,0,0,-1,0, 12,"SCH ENC KEY",24,"SChannel Encryption Key"},
230 {CALG_TLS1PRF, 0, 0, -1,0, 9,"TLS1 PRF", 28,"TLS1 Pseudo Random Function"},
231 {0, 0, 0, 0,0, 1,"", 1,""}
232 },
233 {
234 {CALG_RC2, 128, 40, 128,0, 4,"RC2", 24,"RSA Data Security's RC2"},
235 {CALG_RC4, 128, 40, 128,0, 4,"RC4", 24,"RSA Data Security's RC4"},
236 {CALG_DES, 56, 56, 56,0, 4,"DES", 31,"Data Encryption Standard (DES)"},
237 {CALG_3DES_112, 112,112, 112,0, 13,"3DES TWO KEY",19,"Two Key Triple DES"},
238 {CALG_3DES, 168,168, 168,0, 5,"3DES", 21,"Three Key Triple DES"},
239 {CALG_AES, 128,128, 128,0, 4,"AES", 35,"Advanced Encryption Standard (AES)"},
240 {CALG_AES_128, 128,128, 128,0, 8,"AES-128", 39,"Advanced Encryption Standard (AES-128)"},
241 {CALG_AES_192, 192,192, 192,0, 8,"AES-192", 39,"Advanced Encryption Standard (AES-192)"},
242 {CALG_AES_256, 256,256, 256,0, 8,"AES-256", 39,"Advanced Encryption Standard (AES-256)"},
243 {CALG_SHA, 160,160, 160,CRYPT_FLAG_SIGNING, 6,"SHA-1", 30,"Secure Hash Algorithm (SHA-1)"},
244 {CALG_SHA_256, 256,256, 256,CRYPT_FLAG_SIGNING, 6,"SHA-256", 30,"Secure Hash Algorithm (SHA-256)"},
245 {CALG_SHA_384, 384,384, 384,CRYPT_FLAG_SIGNING, 6,"SHA-384", 30,"Secure Hash Algorithm (SHA-284)"},
246 {CALG_SHA_512, 512,512, 512,CRYPT_FLAG_SIGNING, 6,"SHA-512", 30,"Secure Hash Algorithm (SHA-512)"},
247 {CALG_MD2, 128,128, 128,CRYPT_FLAG_SIGNING, 4,"MD2", 23,"Message Digest 2 (MD2)"},
248 {CALG_MD4, 128,128, 128,CRYPT_FLAG_SIGNING, 4,"MD4", 23,"Message Digest 4 (MD4)"},
249 {CALG_MD5, 128,128, 128,CRYPT_FLAG_SIGNING, 4,"MD5", 23,"Message Digest 5 (MD5)"},
250 {CALG_SSL3_SHAMD5,288,288,288,0, 12,"SSL3 SHAMD5",12,"SSL3 SHAMD5"},
251 {CALG_MAC, 0, 0, 0,0, 4,"MAC", 28,"Message Authentication Code"},
252 {CALG_RSA_SIGN,1024,384,16384,CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC,9,"RSA_SIGN",14,"RSA Signature"},
253 {CALG_RSA_KEYX,1024,384,16384,CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC,9,"RSA_KEYX",17,"RSA Key Exchange"},
254 {CALG_HMAC, 0, 0, 0,0, 5,"HMAC", 18,"Hugo's MAC (HMAC)"},
255 {0, 0, 0, 0,0, 1,"", 1,""}
256 }
257 };
258
259 /******************************************************************************
260 * API forward declarations
261 */
262 BOOL WINAPI
263 RSAENH_CPGetKeyParam(
264 HCRYPTPROV hProv,
265 HCRYPTKEY hKey,
266 DWORD dwParam,
267 BYTE *pbData,
268 DWORD *pdwDataLen,
269 DWORD dwFlags
270 );
271
272 BOOL WINAPI
273 RSAENH_CPEncrypt(
274 HCRYPTPROV hProv,
275 HCRYPTKEY hKey,
276 HCRYPTHASH hHash,
277 BOOL Final,
278 DWORD dwFlags,
279 BYTE *pbData,
280 DWORD *pdwDataLen,
281 DWORD dwBufLen
282 );
283
284 BOOL WINAPI
285 RSAENH_CPCreateHash(
286 HCRYPTPROV hProv,
287 ALG_ID Algid,
288 HCRYPTKEY hKey,
289 DWORD dwFlags,
290 HCRYPTHASH *phHash
291 );
292
293 BOOL WINAPI
294 RSAENH_CPSetHashParam(
295 HCRYPTPROV hProv,
296 HCRYPTHASH hHash,
297 DWORD dwParam,
298 BYTE *pbData, DWORD dwFlags
299 );
300
301 BOOL WINAPI
302 RSAENH_CPGetHashParam(
303 HCRYPTPROV hProv,
304 HCRYPTHASH hHash,
305 DWORD dwParam,
306 BYTE *pbData,
307 DWORD *pdwDataLen,
308 DWORD dwFlags
309 );
310
311 BOOL WINAPI
312 RSAENH_CPDestroyHash(
313 HCRYPTPROV hProv,
314 HCRYPTHASH hHash
315 );
316
317 static BOOL crypt_export_key(
318 CRYPTKEY *pCryptKey,
319 HCRYPTKEY hPubKey,
320 DWORD dwBlobType,
321 DWORD dwFlags,
322 BOOL force,
323 BYTE *pbData,
324 DWORD *pdwDataLen
325 );
326
327 static BOOL import_key(
328 HCRYPTPROV hProv,
329 CONST BYTE *pbData,
330 DWORD dwDataLen,
331 HCRYPTKEY hPubKey,
332 DWORD dwFlags,
333 BOOL fStoreKey,
334 HCRYPTKEY *phKey
335 );
336
337 BOOL WINAPI
338 RSAENH_CPHashData(
339 HCRYPTPROV hProv,
340 HCRYPTHASH hHash,
341 CONST BYTE *pbData,
342 DWORD dwDataLen,
343 DWORD dwFlags
344 );
345
346 /******************************************************************************
347 * CSP's handle table (used by all acquired key containers)
348 */
349 static struct handle_table handle_table;
350
351 /******************************************************************************
352 * DllMain (RSAENH.@)
353 *
354 * Initializes and destroys the handle table for the CSP's handles.
355 */
356 int WINAPI DllMain(HINSTANCE hInstance, DWORD fdwReason, PVOID pvReserved)
357 {
358 switch (fdwReason)
359 {
360 case DLL_PROCESS_ATTACH:
361 DisableThreadLibraryCalls(hInstance);
362 init_handle_table(&handle_table);
363 break;
364
365 case DLL_PROCESS_DETACH:
366 destroy_handle_table(&handle_table);
367 break;
368 }
369 return 1;
370 }
371
372 /******************************************************************************
373 * copy_param [Internal]
374 *
375 * Helper function that supports the standard WINAPI protocol for querying data
376 * of dynamic size.
377 *
378 * PARAMS
379 * pbBuffer [O] Buffer where the queried parameter is copied to, if it is large enough.
380 * May be NUL if the required buffer size is to be queried only.
381 * pdwBufferSize [I/O] In: Size of the buffer at pbBuffer
382 * Out: Size of parameter pbParam
383 * pbParam [I] Parameter value.
384 * dwParamSize [I] Size of pbParam
385 *
386 * RETURN
387 * Success: TRUE (pbParam was copied into pbBuffer or pbBuffer is NULL)
388 * Failure: FALSE (pbBuffer is not large enough to hold pbParam). Last error: ERROR_MORE_DATA
389 */
390 static inline BOOL copy_param(
391 BYTE *pbBuffer, DWORD *pdwBufferSize, CONST BYTE *pbParam, DWORD dwParamSize)
392 {
393 if (pbBuffer)
394 {
395 if (dwParamSize > *pdwBufferSize)
396 {
397 SetLastError(ERROR_MORE_DATA);
398 *pdwBufferSize = dwParamSize;
399 return FALSE;
400 }
401 memcpy(pbBuffer, pbParam, dwParamSize);
402 }
403 *pdwBufferSize = dwParamSize;
404 return TRUE;
405 }
406
407 /******************************************************************************
408 * get_algid_info [Internal]
409 *
410 * Query CSP capabilities for a given crypto algorithm.
411 *
412 * PARAMS
413 * hProv [I] Handle to a key container of the CSP whose capabilities are to be queried.
414 * algid [I] Identifier of the crypto algorithm about which information is requested.
415 *
416 * RETURNS
417 * Success: Pointer to a PROV_ENUMALGS_EX struct containing information about the crypto algorithm.
418 * Failure: NULL (algid not supported)
419 */
420 static inline const PROV_ENUMALGS_EX* get_algid_info(HCRYPTPROV hProv, ALG_ID algid) {
421 const PROV_ENUMALGS_EX *iterator;
422 KEYCONTAINER *pKeyContainer;
423
424 if (!lookup_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER, (OBJECTHDR**)&pKeyContainer)) {
425 SetLastError(NTE_BAD_UID);
426 return NULL;
427 }
428
429 for (iterator = aProvEnumAlgsEx[pKeyContainer->dwPersonality]; iterator->aiAlgid; iterator++) {
430 if (iterator->aiAlgid == algid) return iterator;
431 }
432
433 SetLastError(NTE_BAD_ALGID);
434 return NULL;
435 }
436
437 /******************************************************************************
438 * copy_data_blob [Internal]
439 *
440 * deeply copies a DATA_BLOB
441 *
442 * PARAMS
443 * dst [O] That's where the blob will be copied to
444 * src [I] Source blob
445 *
446 * RETURNS
447 * Success: TRUE
448 * Failure: FALSE (GetLastError() == NTE_NO_MEMORY
449 *
450 * NOTES
451 * Use free_data_blob to release resources occupied by copy_data_blob.
452 */
453 static inline BOOL copy_data_blob(PCRYPT_DATA_BLOB dst, CONST PCRYPT_DATA_BLOB src) {
454 dst->pbData = HeapAlloc(GetProcessHeap(), 0, src->cbData);
455 if (!dst->pbData) {
456 SetLastError(NTE_NO_MEMORY);
457 return FALSE;
458 }
459 dst->cbData = src->cbData;
460 memcpy(dst->pbData, src->pbData, src->cbData);
461 return TRUE;
462 }
463
464 /******************************************************************************
465 * concat_data_blobs [Internal]
466 *
467 * Concatenates two blobs
468 *
469 * PARAMS
470 * dst [O] The new blob will be copied here
471 * src1 [I] Prefix blob
472 * src2 [I] Appendix blob
473 *
474 * RETURNS
475 * Success: TRUE
476 * Failure: FALSE (GetLastError() == NTE_NO_MEMORY)
477 *
478 * NOTES
479 * Release resources occupied by concat_data_blobs with free_data_blobs
480 */
481 static inline BOOL concat_data_blobs(PCRYPT_DATA_BLOB dst, CONST PCRYPT_DATA_BLOB src1,
482 CONST PCRYPT_DATA_BLOB src2)
483 {
484 dst->cbData = src1->cbData + src2->cbData;
485 dst->pbData = HeapAlloc(GetProcessHeap(), 0, dst->cbData);
486 if (!dst->pbData) {
487 SetLastError(NTE_NO_MEMORY);
488 return FALSE;
489 }
490 memcpy(dst->pbData, src1->pbData, src1->cbData);
491 memcpy(dst->pbData + src1->cbData, src2->pbData, src2->cbData);
492 return TRUE;
493 }
494
495 /******************************************************************************
496 * free_data_blob [Internal]
497 *
498 * releases resource occupied by a dynamically allocated CRYPT_DATA_BLOB
499 *
500 * PARAMS
501 * pBlob [I] Heap space occupied by pBlob->pbData is released
502 */
503 static inline void free_data_blob(PCRYPT_DATA_BLOB pBlob) {
504 HeapFree(GetProcessHeap(), 0, pBlob->pbData);
505 }
506
507 /******************************************************************************
508 * init_data_blob [Internal]
509 */
510 static inline void init_data_blob(PCRYPT_DATA_BLOB pBlob) {
511 pBlob->pbData = NULL;
512 pBlob->cbData = 0;
513 }
514
515 /******************************************************************************
516 * free_hmac_info [Internal]
517 *
518 * Deeply free an HMAC_INFO struct.
519 *
520 * PARAMS
521 * hmac_info [I] Pointer to the HMAC_INFO struct to be freed.
522 *
523 * NOTES
524 * See Internet RFC 2104 for details on the HMAC algorithm.
525 */
526 static inline void free_hmac_info(PHMAC_INFO hmac_info) {
527 if (!hmac_info) return;
528 HeapFree(GetProcessHeap(), 0, hmac_info->pbInnerString);
529 HeapFree(GetProcessHeap(), 0, hmac_info->pbOuterString);
530 HeapFree(GetProcessHeap(), 0, hmac_info);
531 }
532
533 /******************************************************************************
534 * copy_hmac_info [Internal]
535 *
536 * Deeply copy an HMAC_INFO struct
537 *
538 * PARAMS
539 * dst [O] Pointer to a location where the pointer to the HMAC_INFO copy will be stored.
540 * src [I] Pointer to the HMAC_INFO struct to be copied.
541 *
542 * RETURNS
543 * Success: TRUE
544 * Failure: FALSE
545 *
546 * NOTES
547 * See Internet RFC 2104 for details on the HMAC algorithm.
548 */
549 static BOOL copy_hmac_info(PHMAC_INFO *dst, const HMAC_INFO *src) {
550 if (!src) return FALSE;
551 *dst = HeapAlloc(GetProcessHeap(), 0, sizeof(HMAC_INFO));
552 if (!*dst) return FALSE;
553 **dst = *src;
554 (*dst)->pbInnerString = NULL;
555 (*dst)->pbOuterString = NULL;
556 if ((*dst)->cbInnerString == 0) (*dst)->cbInnerString = RSAENH_HMAC_DEF_PAD_LEN;
557 (*dst)->pbInnerString = HeapAlloc(GetProcessHeap(), 0, (*dst)->cbInnerString);
558 if (!(*dst)->pbInnerString) {
559 free_hmac_info(*dst);
560 return FALSE;
561 }
562 if (src->cbInnerString)
563 memcpy((*dst)->pbInnerString, src->pbInnerString, src->cbInnerString);
564 else
565 memset((*dst)->pbInnerString, RSAENH_HMAC_DEF_IPAD_CHAR, RSAENH_HMAC_DEF_PAD_LEN);
566 if ((*dst)->cbOuterString == 0) (*dst)->cbOuterString = RSAENH_HMAC_DEF_PAD_LEN;
567 (*dst)->pbOuterString = HeapAlloc(GetProcessHeap(), 0, (*dst)->cbOuterString);
568 if (!(*dst)->pbOuterString) {
569 free_hmac_info(*dst);
570 return FALSE;
571 }
572 if (src->cbOuterString)
573 memcpy((*dst)->pbOuterString, src->pbOuterString, src->cbOuterString);
574 else
575 memset((*dst)->pbOuterString, RSAENH_HMAC_DEF_OPAD_CHAR, RSAENH_HMAC_DEF_PAD_LEN);
576 return TRUE;
577 }
578
579 /******************************************************************************
580 * destroy_hash [Internal]
581 *
582 * Destructor for hash objects
583 *
584 * PARAMS
585 * pCryptHash [I] Pointer to the hash object to be destroyed.
586 * Will be invalid after function returns!
587 */
588 static void destroy_hash(OBJECTHDR *pObject)
589 {
590 CRYPTHASH *pCryptHash = (CRYPTHASH*)pObject;
591
592 free_hmac_info(pCryptHash->pHMACInfo);
593 free_data_blob(&pCryptHash->tpPRFParams.blobLabel);
594 free_data_blob(&pCryptHash->tpPRFParams.blobSeed);
595 HeapFree(GetProcessHeap(), 0, pCryptHash);
596 }
597
598 /******************************************************************************
599 * init_hash [Internal]
600 *
601 * Initialize (or reset) a hash object
602 *
603 * PARAMS
604 * pCryptHash [I] The hash object to be initialized.
605 */
606 static inline BOOL init_hash(CRYPTHASH *pCryptHash) {
607 DWORD dwLen;
608
609 switch (pCryptHash->aiAlgid)
610 {
611 case CALG_HMAC:
612 if (pCryptHash->pHMACInfo) {
613 const PROV_ENUMALGS_EX *pAlgInfo;
614
615 pAlgInfo = get_algid_info(pCryptHash->hProv, pCryptHash->pHMACInfo->HashAlgid);
616 if (!pAlgInfo) return FALSE;
617 pCryptHash->dwHashSize = pAlgInfo->dwDefaultLen >> 3;
618 init_hash_impl(pCryptHash->pHMACInfo->HashAlgid, &pCryptHash->context);
619 update_hash_impl(pCryptHash->pHMACInfo->HashAlgid, &pCryptHash->context,
620 pCryptHash->pHMACInfo->pbInnerString,
621 pCryptHash->pHMACInfo->cbInnerString);
622 }
623 return TRUE;
624
625 case CALG_MAC:
626 dwLen = sizeof(DWORD);
627 RSAENH_CPGetKeyParam(pCryptHash->hProv, pCryptHash->hKey, KP_BLOCKLEN,
628 (BYTE*)&pCryptHash->dwHashSize, &dwLen, 0);
629 pCryptHash->dwHashSize >>= 3;
630 return TRUE;
631
632 default:
633 return init_hash_impl(pCryptHash->aiAlgid, &pCryptHash->context);
634 }
635 }
636
637 /******************************************************************************
638 * update_hash [Internal]
639 *
640 * Hashes the given data and updates the hash object's state accordingly
641 *
642 * PARAMS
643 * pCryptHash [I] Hash object to be updated.
644 * pbData [I] Pointer to data stream to be hashed.
645 * dwDataLen [I] Length of data stream.
646 */
647 static inline void update_hash(CRYPTHASH *pCryptHash, CONST BYTE *pbData, DWORD dwDataLen) {
648 BYTE *pbTemp;
649
650 switch (pCryptHash->aiAlgid)
651 {
652 case CALG_HMAC:
653 if (pCryptHash->pHMACInfo)
654 update_hash_impl(pCryptHash->pHMACInfo->HashAlgid, &pCryptHash->context,
655 pbData, dwDataLen);
656 break;
657
658 case CALG_MAC:
659 pbTemp = HeapAlloc(GetProcessHeap(), 0, dwDataLen);
660 if (!pbTemp) return;
661 memcpy(pbTemp, pbData, dwDataLen);
662 RSAENH_CPEncrypt(pCryptHash->hProv, pCryptHash->hKey, 0, FALSE, 0,
663 pbTemp, &dwDataLen, dwDataLen);
664 HeapFree(GetProcessHeap(), 0, pbTemp);
665 break;
666
667 default:
668 update_hash_impl(pCryptHash->aiAlgid, &pCryptHash->context, pbData, dwDataLen);
669 }
670 }
671
672 /******************************************************************************
673 * finalize_hash [Internal]
674 *
675 * Finalizes the hash, after all data has been hashed with update_hash.
676 * No additional data can be hashed afterwards until the hash gets initialized again.
677 *
678 * PARAMS
679 * pCryptHash [I] Hash object to be finalized.
680 */
681 static inline void finalize_hash(CRYPTHASH *pCryptHash) {
682 DWORD dwDataLen;
683
684 switch (pCryptHash->aiAlgid)
685 {
686 case CALG_HMAC:
687 if (pCryptHash->pHMACInfo) {
688 BYTE abHashValue[RSAENH_MAX_HASH_SIZE];
689
690 finalize_hash_impl(pCryptHash->pHMACInfo->HashAlgid, &pCryptHash->context,
691 pCryptHash->abHashValue);
692 memcpy(abHashValue, pCryptHash->abHashValue, pCryptHash->dwHashSize);
693 init_hash_impl(pCryptHash->pHMACInfo->HashAlgid, &pCryptHash->context);
694 update_hash_impl(pCryptHash->pHMACInfo->HashAlgid, &pCryptHash->context,
695 pCryptHash->pHMACInfo->pbOuterString,
696 pCryptHash->pHMACInfo->cbOuterString);
697 update_hash_impl(pCryptHash->pHMACInfo->HashAlgid, &pCryptHash->context,
698 abHashValue, pCryptHash->dwHashSize);
699 finalize_hash_impl(pCryptHash->pHMACInfo->HashAlgid, &pCryptHash->context,
700 pCryptHash->abHashValue);
701 }
702 break;
703
704 case CALG_MAC:
705 dwDataLen = 0;
706 RSAENH_CPEncrypt(pCryptHash->hProv, pCryptHash->hKey, 0, TRUE, 0,
707 pCryptHash->abHashValue, &dwDataLen, pCryptHash->dwHashSize);
708 break;
709
710 default:
711 finalize_hash_impl(pCryptHash->aiAlgid, &pCryptHash->context, pCryptHash->abHashValue);
712 }
713 }
714
715 /******************************************************************************
716 * destroy_key [Internal]
717 *
718 * Destructor for key objects
719 *
720 * PARAMS
721 * pCryptKey [I] Pointer to the key object to be destroyed.
722 * Will be invalid after function returns!
723 */
724 static void destroy_key(OBJECTHDR *pObject)
725 {
726 CRYPTKEY *pCryptKey = (CRYPTKEY*)pObject;
727
728 free_key_impl(pCryptKey->aiAlgid, &pCryptKey->context);
729 free_data_blob(&pCryptKey->siSChannelInfo.blobClientRandom);
730 free_data_blob(&pCryptKey->siSChannelInfo.blobServerRandom);
731 HeapFree(GetProcessHeap(), 0, pCryptKey);
732 }
733
734 /******************************************************************************
735 * setup_key [Internal]
736 *
737 * Initialize (or reset) a key object
738 *
739 * PARAMS
740 * pCryptKey [I] The key object to be initialized.
741 */
742 static inline void setup_key(CRYPTKEY *pCryptKey) {
743 pCryptKey->dwState = RSAENH_KEYSTATE_IDLE;
744 memcpy(pCryptKey->abChainVector, pCryptKey->abInitVector, sizeof(pCryptKey->abChainVector));
745 setup_key_impl(pCryptKey->aiAlgid, &pCryptKey->context, pCryptKey->dwKeyLen,
746 pCryptKey->dwEffectiveKeyLen, pCryptKey->dwSaltLen,
747 pCryptKey->abKeyValue);
748 }
749
750 /******************************************************************************
751 * new_key [Internal]
752 *
753 * Creates a new key object without assigning the actual binary key value.
754 * This is done by CPDeriveKey, CPGenKey or CPImportKey, which call this function.
755 *
756 * PARAMS
757 * hProv [I] Handle to the provider to which the created key will belong.
758 * aiAlgid [I] The new key shall use the crypto algorithm idenfied by aiAlgid.
759 * dwFlags [I] Upper 16 bits give the key length.
760 * Lower 16 bits: CRYPT_EXPORTABLE, CRYPT_CREATE_SALT,
761 * CRYPT_NO_SALT
762 * ppCryptKey [O] Pointer to the created key
763 *
764 * RETURNS
765 * Success: Handle to the created key.
766 * Failure: INVALID_HANDLE_VALUE
767 */
768 static HCRYPTKEY new_key(HCRYPTPROV hProv, ALG_ID aiAlgid, DWORD dwFlags, CRYPTKEY **ppCryptKey)
769 {
770 HCRYPTKEY hCryptKey;
771 CRYPTKEY *pCryptKey;
772 DWORD dwKeyLen = HIWORD(dwFlags);
773 const PROV_ENUMALGS_EX *peaAlgidInfo;
774
775 *ppCryptKey = NULL;
776
777 /*
778 * Retrieve the CSP's capabilities for the given ALG_ID value
779 */
780 peaAlgidInfo = get_algid_info(hProv, aiAlgid);
781 if (!peaAlgidInfo) return (HCRYPTKEY)INVALID_HANDLE_VALUE;
782
783 TRACE("alg = %s, dwKeyLen = %d\n", debugstr_a(peaAlgidInfo->szName),
784 dwKeyLen);
785 /*
786 * Assume the default key length, if none is specified explicitly
787 */
788 if (dwKeyLen == 0) dwKeyLen = peaAlgidInfo->dwDefaultLen;
789
790 /*
791 * Check if the requested key length is supported by the current CSP.
792 * Adjust key length's for DES algorithms.
793 */
794 switch (aiAlgid) {
795 case CALG_DES:
796 if (dwKeyLen == RSAENH_DES_EFFECTIVE_KEYLEN) {
797 dwKeyLen = RSAENH_DES_STORAGE_KEYLEN;
798 }
799 if (dwKeyLen != RSAENH_DES_STORAGE_KEYLEN) {
800 SetLastError(NTE_BAD_FLAGS);
801 return (HCRYPTKEY)INVALID_HANDLE_VALUE;
802 }
803 break;
804
805 case CALG_3DES_112:
806 if (dwKeyLen == RSAENH_3DES112_EFFECTIVE_KEYLEN) {
807 dwKeyLen = RSAENH_3DES112_STORAGE_KEYLEN;
808 }
809 if (dwKeyLen != RSAENH_3DES112_STORAGE_KEYLEN) {
810 SetLastError(NTE_BAD_FLAGS);
811 return (HCRYPTKEY)INVALID_HANDLE_VALUE;
812 }
813 break;
814
815 case CALG_3DES:
816 if (dwKeyLen == RSAENH_3DES_EFFECTIVE_KEYLEN) {
817 dwKeyLen = RSAENH_3DES_STORAGE_KEYLEN;
818 }
819 if (dwKeyLen != RSAENH_3DES_STORAGE_KEYLEN) {
820 SetLastError(NTE_BAD_FLAGS);
821 return (HCRYPTKEY)INVALID_HANDLE_VALUE;
822 }
823 break;
824
825 default:
826 if (dwKeyLen % 8 ||
827 dwKeyLen > peaAlgidInfo->dwMaxLen ||
828 dwKeyLen < peaAlgidInfo->dwMinLen)
829 {
830 TRACE("key len %d out of bounds (%d, %d)\n", dwKeyLen,
831 peaAlgidInfo->dwMinLen, peaAlgidInfo->dwMaxLen);
832 SetLastError(NTE_BAD_DATA);
833 return (HCRYPTKEY)INVALID_HANDLE_VALUE;
834 }
835 }
836
837 hCryptKey = new_object(&handle_table, sizeof(CRYPTKEY), RSAENH_MAGIC_KEY,
838 destroy_key, (OBJECTHDR**)&pCryptKey);
839 if (hCryptKey != (HCRYPTKEY)INVALID_HANDLE_VALUE)
840 {
841 pCryptKey->aiAlgid = aiAlgid;
842 pCryptKey->hProv = hProv;
843 pCryptKey->dwModeBits = 0;
844 pCryptKey->dwPermissions = CRYPT_ENCRYPT | CRYPT_DECRYPT | CRYPT_READ | CRYPT_WRITE |
845 CRYPT_MAC;
846 if (dwFlags & CRYPT_EXPORTABLE)
847 pCryptKey->dwPermissions |= CRYPT_EXPORT;
848 pCryptKey->dwKeyLen = dwKeyLen >> 3;
849 pCryptKey->dwEffectiveKeyLen = 0;
850 if ((dwFlags & CRYPT_CREATE_SALT) || (dwKeyLen == 40 && !(dwFlags & CRYPT_NO_SALT)))
851 pCryptKey->dwSaltLen = 16 /*FIXME*/ - pCryptKey->dwKeyLen;
852 else
853 pCryptKey->dwSaltLen = 0;
854 memset(pCryptKey->abKeyValue, 0, sizeof(pCryptKey->abKeyValue));
855 memset(pCryptKey->abInitVector, 0, sizeof(pCryptKey->abInitVector));
856 init_data_blob(&pCryptKey->siSChannelInfo.blobClientRandom);
857 init_data_blob(&pCryptKey->siSChannelInfo.blobServerRandom);
858
859 switch(aiAlgid)
860 {
861 case CALG_PCT1_MASTER:
862 case CALG_SSL2_MASTER:
863 case CALG_SSL3_MASTER:
864 case CALG_TLS1_MASTER:
865 case CALG_RC4:
866 pCryptKey->dwBlockLen = 0;
867 pCryptKey->dwMode = 0;
868 break;
869
870 case CALG_RC2:
871 case CALG_DES:
872 case CALG_3DES_112:
873 case CALG_3DES:
874 pCryptKey->dwBlockLen = 8;
875 pCryptKey->dwMode = CRYPT_MODE_CBC;
876 break;
877
878 case CALG_AES:
879 case CALG_AES_128:
880 case CALG_AES_192:
881 case CALG_AES_256:
882 pCryptKey->dwBlockLen = 16;
883 pCryptKey->dwMode = CRYPT_MODE_ECB;
884 break;
885
886 case CALG_RSA_KEYX:
887 case CALG_RSA_SIGN:
888 pCryptKey->dwBlockLen = dwKeyLen >> 3;
889 pCryptKey->dwMode = 0;
890 break;
891 }
892
893 *ppCryptKey = pCryptKey;
894 }
895
896 return hCryptKey;
897 }
898
899 /******************************************************************************
900 * map_key_spec_to_key_pair_name [Internal]
901 *
902 * Returns the name of the registry value associated with a key spec.
903 *
904 * PARAMS
905 * dwKeySpec [I] AT_KEYEXCHANGE or AT_SIGNATURE
906 *
907 * RETURNS
908 * Success: Name of registry value.
909 * Failure: NULL
910 */
911 static LPCSTR map_key_spec_to_key_pair_name(DWORD dwKeySpec)
912 {
913 LPCSTR szValueName;
914
915 switch (dwKeySpec)
916 {
917 case AT_KEYEXCHANGE:
918 szValueName = "KeyExchangeKeyPair";
919 break;
920 case AT_SIGNATURE:
921 szValueName = "SignatureKeyPair";
922 break;
923 default:
924 WARN("invalid key spec %d\n", dwKeySpec);
925 szValueName = NULL;
926 }
927 return szValueName;
928 }
929
930 /******************************************************************************
931 * store_key_pair [Internal]
932 *
933 * Stores a key pair to the registry
934 *
935 * PARAMS
936 * hCryptKey [I] Handle to the key to be stored
937 * hKey [I] Registry key where the key pair is to be stored
938 * dwKeySpec [I] AT_KEYEXCHANGE or AT_SIGNATURE
939 * dwFlags [I] Flags for protecting the key
940 */
941 static void store_key_pair(HCRYPTKEY hCryptKey, HKEY hKey, DWORD dwKeySpec, DWORD dwFlags)
942 {
943 LPCSTR szValueName;
944 DATA_BLOB blobIn, blobOut;
945 CRYPTKEY *pKey;
946 DWORD dwLen;
947 BYTE *pbKey;
948
949 if (!(szValueName = map_key_spec_to_key_pair_name(dwKeySpec)))
950 return;
951 if (lookup_handle(&handle_table, hCryptKey, RSAENH_MAGIC_KEY,
952 (OBJECTHDR**)&pKey))
953 {
954 if (crypt_export_key(pKey, 0, PRIVATEKEYBLOB, 0, TRUE, 0, &dwLen))
955 {
956 pbKey = HeapAlloc(GetProcessHeap(), 0, dwLen);
957 if (pbKey)
958 {
959 if (crypt_export_key(pKey, 0, PRIVATEKEYBLOB, 0, TRUE, pbKey,
960 &dwLen))
961 {
962 blobIn.pbData = pbKey;
963 blobIn.cbData = dwLen;
964
965 if (CryptProtectData(&blobIn, NULL, NULL, NULL, NULL,
966 dwFlags, &blobOut))
967 {
968 RegSetValueExA(hKey, szValueName, 0, REG_BINARY,
969 blobOut.pbData, blobOut.cbData);
970 LocalFree(blobOut.pbData);
971 }
972 }
973 HeapFree(GetProcessHeap(), 0, pbKey);
974 }
975 }
976 }
977 }
978
979 /******************************************************************************
980 * map_key_spec_to_permissions_name [Internal]
981 *
982 * Returns the name of the registry value associated with the permissions for
983 * a key spec.
984 *
985 * PARAMS
986 * dwKeySpec [I] AT_KEYEXCHANGE or AT_SIGNATURE
987 *
988 * RETURNS
989 * Success: Name of registry value.
990 * Failure: NULL
991 */
992 static LPCSTR map_key_spec_to_permissions_name(DWORD dwKeySpec)
993 {
994 LPCSTR szValueName;
995
996 switch (dwKeySpec)
997 {
998 case AT_KEYEXCHANGE:
999 szValueName = "KeyExchangePermissions";
1000 break;
1001 case AT_SIGNATURE:
1002 szValueName = "SignaturePermissions";
1003 break;
1004 default:
1005 WARN("invalid key spec %d\n", dwKeySpec);
1006 szValueName = NULL;
1007 }
1008 return szValueName;
1009 }
1010
1011 /******************************************************************************
1012 * store_key_permissions [Internal]
1013 *
1014 * Stores a key's permissions to the registry
1015 *
1016 * PARAMS
1017 * hCryptKey [I] Handle to the key whose permissions are to be stored
1018 * hKey [I] Registry key where the key permissions are to be stored
1019 * dwKeySpec [I] AT_KEYEXCHANGE or AT_SIGNATURE
1020 */
1021 static void store_key_permissions(HCRYPTKEY hCryptKey, HKEY hKey, DWORD dwKeySpec)
1022 {
1023 LPCSTR szValueName;
1024 CRYPTKEY *pKey;
1025
1026 if (!(szValueName = map_key_spec_to_permissions_name(dwKeySpec)))
1027 return;
1028 if (lookup_handle(&handle_table, hCryptKey, RSAENH_MAGIC_KEY,
1029 (OBJECTHDR**)&pKey))
1030 RegSetValueExA(hKey, szValueName, 0, REG_DWORD,
1031 (BYTE *)&pKey->dwPermissions,
1032 sizeof(pKey->dwPermissions));
1033 }
1034
1035 /******************************************************************************
1036 * create_container_key [Internal]
1037 *
1038 * Creates the registry key for a key container's persistent storage.
1039 *
1040 * PARAMS
1041 * pKeyContainer [I] Pointer to the key container
1042 * sam [I] Desired registry access
1043 * phKey [O] Returned key
1044 */
1045 static BOOL create_container_key(KEYCONTAINER *pKeyContainer, REGSAM sam, HKEY *phKey)
1046 {
1047 CHAR szRSABase[MAX_PATH];
1048 HKEY hRootKey;
1049
1050 sprintf(szRSABase, RSAENH_REGKEY, pKeyContainer->szName);
1051
1052 if (pKeyContainer->dwFlags & CRYPT_MACHINE_KEYSET)
1053 hRootKey = HKEY_LOCAL_MACHINE;
1054 else
1055 hRootKey = HKEY_CURRENT_USER;
1056
1057 /* @@ Wine registry key: HKLM\Software\Wine\Crypto\RSA */
1058 /* @@ Wine registry key: HKCU\Software\Wine\Crypto\RSA */
1059 return RegCreateKeyExA(hRootKey, szRSABase, 0, NULL,
1060 REG_OPTION_NON_VOLATILE, sam, NULL, phKey, NULL)
1061 == ERROR_SUCCESS;
1062 }
1063
1064 /******************************************************************************
1065 * open_container_key [Internal]
1066 *
1067 * Opens a key container's persistent storage for reading.
1068 *
1069 * PARAMS
1070 * pszContainerName [I] Name of the container to be opened. May be the empty
1071 * string if the parent key of all containers is to be
1072 * opened.
1073 * dwFlags [I] Flags indicating which keyset to be opened.
1074 * phKey [O] Returned key
1075 */
1076 static BOOL open_container_key(LPCSTR pszContainerName, DWORD dwFlags, HKEY *phKey)
1077 {
1078 CHAR szRSABase[MAX_PATH];
1079 HKEY hRootKey;
1080
1081 sprintf(szRSABase, RSAENH_REGKEY, pszContainerName);
1082
1083 if (dwFlags & CRYPT_MACHINE_KEYSET)
1084 hRootKey = HKEY_LOCAL_MACHINE;
1085 else
1086 hRootKey = HKEY_CURRENT_USER;
1087
1088 /* @@ Wine registry key: HKLM\Software\Wine\Crypto\RSA */
1089 /* @@ Wine registry key: HKCU\Software\Wine\Crypto\RSA */
1090 return RegOpenKeyExA(hRootKey, szRSABase, 0, KEY_READ, phKey) ==
1091 ERROR_SUCCESS;
1092 }
1093
1094 /******************************************************************************
1095 * delete_container_key [Internal]
1096 *
1097 * Deletes a key container's persistent storage.
1098 *
1099 * PARAMS
1100 * pszContainerName [I] Name of the container to be opened.
1101 * dwFlags [I] Flags indicating which keyset to be opened.
1102 */
1103 static BOOL delete_container_key(LPCSTR pszContainerName, DWORD dwFlags)
1104 {
1105 CHAR szRegKey[MAX_PATH];
1106
1107 if (snprintf(szRegKey, MAX_PATH, RSAENH_REGKEY, pszContainerName) >= MAX_PATH) {
1108 SetLastError(NTE_BAD_KEYSET_PARAM);
1109 return FALSE;
1110 } else {
1111 HKEY hRootKey;
1112 if (dwFlags & CRYPT_MACHINE_KEYSET)
1113 hRootKey = HKEY_LOCAL_MACHINE;
1114 else
1115 hRootKey = HKEY_CURRENT_USER;
1116 if (!RegDeleteKeyA(hRootKey, szRegKey)) {
1117 SetLastError(ERROR_SUCCESS);
1118 return TRUE;
1119 } else {
1120 SetLastError(NTE_BAD_KEYSET);
1121 return FALSE;
1122 }
1123 }
1124 }
1125
1126 /******************************************************************************
1127 * store_key_container_keys [Internal]
1128 *
1129 * Stores key container's keys in a persistent location.
1130 *
1131 * PARAMS
1132 * pKeyContainer [I] Pointer to the key container whose keys are to be saved
1133 */
1134 static void store_key_container_keys(KEYCONTAINER *pKeyContainer)
1135 {
1136 HKEY hKey;
1137 DWORD dwFlags;
1138
1139 /* On WinXP, persistent keys are stored in a file located at:
1140 * $AppData$\\Microsoft\\Crypto\\RSA\\$SID$\\some_hex_string
1141 */
1142
1143 if (pKeyContainer->dwFlags & CRYPT_MACHINE_KEYSET)
1144 dwFlags = CRYPTPROTECT_LOCAL_MACHINE;
1145 else
1146 dwFlags = 0;
1147
1148 if (create_container_key(pKeyContainer, KEY_WRITE, &hKey))
1149 {
1150 store_key_pair(pKeyContainer->hKeyExchangeKeyPair, hKey,
1151 AT_KEYEXCHANGE, dwFlags);
1152 store_key_pair(pKeyContainer->hSignatureKeyPair, hKey,
1153 AT_SIGNATURE, dwFlags);
1154 RegCloseKey(hKey);
1155 }
1156 }
1157
1158 /******************************************************************************
1159 * store_key_container_permissions [Internal]
1160 *
1161 * Stores key container's key permissions in a persistent location.
1162 *
1163 * PARAMS
1164 * pKeyContainer [I] Pointer to the key container whose key permissions are to
1165 * be saved
1166 */
1167 static void store_key_container_permissions(KEYCONTAINER *pKeyContainer)
1168 {
1169 HKEY hKey;
1170 DWORD dwFlags;
1171
1172 /* On WinXP, persistent keys are stored in a file located at:
1173 * $AppData$\\Microsoft\\Crypto\\RSA\\$SID$\\some_hex_string
1174 */
1175
1176 if (pKeyContainer->dwFlags & CRYPT_MACHINE_KEYSET)
1177 dwFlags = CRYPTPROTECT_LOCAL_MACHINE;
1178 else
1179 dwFlags = 0;
1180
1181 if (create_container_key(pKeyContainer, KEY_WRITE, &hKey))
1182 {
1183 store_key_permissions(pKeyContainer->hKeyExchangeKeyPair, hKey,
1184 AT_KEYEXCHANGE);
1185 store_key_permissions(pKeyContainer->hSignatureKeyPair, hKey,
1186 AT_SIGNATURE);
1187 RegCloseKey(hKey);
1188 }
1189 }
1190
1191 /******************************************************************************
1192 * release_key_container_keys [Internal]
1193 *
1194 * Releases key container's keys.
1195 *
1196 * PARAMS
1197 * pKeyContainer [I] Pointer to the key container whose keys are to be released.
1198 */
1199 static void release_key_container_keys(KEYCONTAINER *pKeyContainer)
1200 {
1201 release_handle(&handle_table, pKeyContainer->hKeyExchangeKeyPair,
1202 RSAENH_MAGIC_KEY);
1203 release_handle(&handle_table, pKeyContainer->hSignatureKeyPair,
1204 RSAENH_MAGIC_KEY);
1205 }
1206
1207 /******************************************************************************
1208 * destroy_key_container [Internal]
1209 *
1210 * Destructor for key containers.
1211 *
1212 * PARAMS
1213 * pObjectHdr [I] Pointer to the key container to be destroyed.
1214 */
1215 static void destroy_key_container(OBJECTHDR *pObjectHdr)
1216 {
1217 KEYCONTAINER *pKeyContainer = (KEYCONTAINER*)pObjectHdr;
1218
1219 if (!(pKeyContainer->dwFlags & CRYPT_VERIFYCONTEXT))
1220 {
1221 store_key_container_keys(pKeyContainer);
1222 store_key_container_permissions(pKeyContainer);
1223 release_key_container_keys(pKeyContainer);
1224 }
1225 else
1226 release_key_container_keys(pKeyContainer);
1227 HeapFree( GetProcessHeap(), 0, pKeyContainer );
1228 }
1229
1230 /******************************************************************************
1231 * new_key_container [Internal]
1232 *
1233 * Create a new key container. The personality (RSA Base, Strong or Enhanced CP)
1234 * of the CSP is determined via the pVTable->pszProvName string.
1235 *
1236 * PARAMS
1237 * pszContainerName [I] Name of the key container.
1238 * pVTable [I] Callback functions and context info provided by the OS
1239 *
1240 * RETURNS
1241 * Success: Handle to the new key container.
1242 * Failure: INVALID_HANDLE_VALUE
1243 */
1244 static HCRYPTPROV new_key_container(PCCH pszContainerName, DWORD dwFlags, const VTableProvStruc *pVTable)
1245 {
1246 KEYCONTAINER *pKeyContainer;
1247 HCRYPTPROV hKeyContainer;
1248
1249 hKeyContainer = new_object(&handle_table, sizeof(KEYCONTAINER), RSAENH_MAGIC_CONTAINER,
1250 destroy_key_container, (OBJECTHDR**)&pKeyContainer);
1251 if (hKeyContainer != (HCRYPTPROV)INVALID_HANDLE_VALUE)
1252 {
1253 lstrcpynA(pKeyContainer->szName, pszContainerName, MAX_PATH);
1254 pKeyContainer->dwFlags = dwFlags;
1255 pKeyContainer->dwEnumAlgsCtr = 0;
1256 pKeyContainer->hKeyExchangeKeyPair = (HCRYPTKEY)INVALID_HANDLE_VALUE;
1257 pKeyContainer->hSignatureKeyPair = (HCRYPTKEY)INVALID_HANDLE_VALUE;
1258 if (pVTable && pVTable->pszProvName) {
1259 lstrcpynA(pKeyContainer->szProvName, pVTable->pszProvName, MAX_PATH);
1260 if (!strcmp(pVTable->pszProvName, MS_DEF_PROV_A)) {
1261 pKeyContainer->dwPersonality = RSAENH_PERSONALITY_BASE;
1262 } else if (!strcmp(pVTable->pszProvName, MS_ENHANCED_PROV_A)) {
1263 pKeyContainer->dwPersonality = RSAENH_PERSONALITY_ENHANCED;
1264 } else if (!strcmp(pVTable->pszProvName, MS_DEF_RSA_SCHANNEL_PROV_A)) {
1265 pKeyContainer->dwPersonality = RSAENH_PERSONALITY_SCHANNEL;
1266 } else if (!strcmp(pVTable->pszProvName, MS_ENH_RSA_AES_PROV_A)) {
1267 pKeyContainer->dwPersonality = RSAENH_PERSONALITY_AES;
1268 } else {
1269 pKeyContainer->dwPersonality = RSAENH_PERSONALITY_STRONG;
1270 }
1271 }
1272
1273 /* The new key container has to be inserted into the CSP immediately
1274 * after creation to be available for CPGetProvParam's PP_ENUMCONTAINERS. */
1275 if (!(dwFlags & CRYPT_VERIFYCONTEXT)) {
1276 HKEY hKey;
1277
1278 if (create_container_key(pKeyContainer, KEY_WRITE, &hKey))
1279 RegCloseKey(hKey);
1280 }
1281 }
1282
1283 return hKeyContainer;
1284 }
1285
1286 /******************************************************************************
1287 * read_key_value [Internal]
1288 *
1289 * Reads a key pair value from the registry
1290 *
1291 * PARAMS
1292 * hKeyContainer [I] Crypt provider to use to import the key
1293 * hKey [I] Registry key from which to read the key pair
1294 * dwKeySpec [I] AT_KEYEXCHANGE or AT_SIGNATURE
1295 * dwFlags [I] Flags for unprotecting the key
1296 * phCryptKey [O] Returned key
1297 */
1298 static BOOL read_key_value(HCRYPTPROV hKeyContainer, HKEY hKey, DWORD dwKeySpec, DWORD dwFlags, HCRYPTKEY *phCryptKey)
1299 {
1300 LPCSTR szValueName;
1301 DWORD dwValueType, dwLen;
1302 BYTE *pbKey;
1303 DATA_BLOB blobIn, blobOut;
1304 BOOL ret = FALSE;
1305
1306 if (!(szValueName = map_key_spec_to_key_pair_name(dwKeySpec)))
1307 return FALSE;
1308 if (RegQueryValueExA(hKey, szValueName, 0, &dwValueType, NULL, &dwLen) ==
1309 ERROR_SUCCESS)
1310 {
1311 pbKey = HeapAlloc(GetProcessHeap(), 0, dwLen);
1312 if (pbKey)
1313 {
1314 if (RegQueryValueExA(hKey, szValueName, 0, &dwValueType, pbKey, &dwLen) ==
1315 ERROR_SUCCESS)
1316 {
1317 blobIn.pbData = pbKey;
1318 blobIn.cbData = dwLen;
1319
1320 if (CryptUnprotectData(&blobIn, NULL, NULL, NULL, NULL,
1321 dwFlags, &blobOut))
1322 {
1323 ret = import_key(hKeyContainer, blobOut.pbData, blobOut.cbData, 0, 0,
1324 FALSE, phCryptKey);
1325 LocalFree(blobOut.pbData);
1326 }
1327 }
1328 HeapFree(GetProcessHeap(), 0, pbKey);
1329 }
1330 }
1331 if (ret)
1332 {
1333 CRYPTKEY *pKey;
1334
1335 if (lookup_handle(&handle_table, *phCryptKey, RSAENH_MAGIC_KEY,
1336 (OBJECTHDR**)&pKey))
1337 {
1338 if ((szValueName = map_key_spec_to_permissions_name(dwKeySpec)))
1339 {
1340 dwLen = sizeof(pKey->dwPermissions);
1341 RegQueryValueExA(hKey, szValueName, 0, NULL,
1342 (BYTE *)&pKey->dwPermissions, &dwLen);
1343 }
1344 }
1345 }
1346 return ret;
1347 }
1348
1349 /******************************************************************************
1350 * read_key_container [Internal]
1351 *
1352 * Tries to read the persistent state of the key container (mainly the signature
1353 * and key exchange private keys) given by pszContainerName.
1354 *
1355 * PARAMS
1356 * pszContainerName [I] Name of the key container to read from the registry
1357 * pVTable [I] Pointer to context data provided by the operating system
1358 *
1359 * RETURNS
1360 * Success: Handle to the key container read from the registry
1361 * Failure: INVALID_HANDLE_VALUE
1362 */
1363 static HCRYPTPROV read_key_container(PCHAR pszContainerName, DWORD dwFlags, const VTableProvStruc *pVTable)
1364 {
1365 HKEY hKey;
1366 KEYCONTAINER *pKeyContainer;
1367 HCRYPTPROV hKeyContainer;
1368 HCRYPTKEY hCryptKey;
1369
1370 if (!open_container_key(pszContainerName, dwFlags, &hKey))
1371 {
1372 SetLastError(NTE_BAD_KEYSET);
1373 return (HCRYPTPROV)INVALID_HANDLE_VALUE;
1374 }
1375
1376 hKeyContainer = new_key_container(pszContainerName, dwFlags, pVTable);
1377 if (hKeyContainer != (HCRYPTPROV)INVALID_HANDLE_VALUE)
1378 {
1379 DWORD dwProtectFlags = (dwFlags & CRYPT_MACHINE_KEYSET) ?
1380 CRYPTPROTECT_LOCAL_MACHINE : 0;
1381
1382 if (!lookup_handle(&handle_table, hKeyContainer, RSAENH_MAGIC_CONTAINER,
1383 (OBJECTHDR**)&pKeyContainer))
1384 return (HCRYPTPROV)INVALID_HANDLE_VALUE;
1385
1386 /* read_key_value calls import_key, which calls import_private_key,
1387 * which implicitly installs the key value into the appropriate key
1388 * container key. Thus the ref count is incremented twice, once for
1389 * the output key value, and once for the implicit install, and needs
1390 * to be decremented to balance the two.
1391 */
1392 if (read_key_value(hKeyContainer, hKey, AT_KEYEXCHANGE,
1393 dwProtectFlags, &hCryptKey))
1394 release_handle(&handle_table, hCryptKey, RSAENH_MAGIC_KEY);
1395 if (read_key_value(hKeyContainer, hKey, AT_SIGNATURE,
1396 dwProtectFlags, &hCryptKey))
1397 release_handle(&handle_table, hCryptKey, RSAENH_MAGIC_KEY);
1398 }
1399
1400 return hKeyContainer;
1401 }
1402
1403 /******************************************************************************
1404 * build_hash_signature [Internal]
1405 *
1406 * Builds a padded version of a hash to match the length of the RSA key modulus.
1407 *
1408 * PARAMS
1409 * pbSignature [O] The padded hash object is stored here.
1410 * dwLen [I] Length of the pbSignature buffer.
1411 * aiAlgid [I] Algorithm identifier of the hash to be padded.
1412 * abHashValue [I] The value of the hash object.
1413 * dwHashLen [I] Length of the hash value.
1414 * dwFlags [I] Selection of padding algorithm.
1415 *
1416 * RETURNS
1417 * Success: TRUE
1418 * Failure: FALSE (NTE_BAD_ALGID)
1419 */
1420 static BOOL build_hash_signature(BYTE *pbSignature, DWORD dwLen, ALG_ID aiAlgid,
1421 CONST BYTE *abHashValue, DWORD dwHashLen, DWORD dwFlags)
1422 {
1423 /* These prefixes are meant to be concatenated with hash values of the
1424 * respective kind to form a PKCS #7 DigestInfo. */
1425 static const struct tagOIDDescriptor {
1426 ALG_ID aiAlgid;
1427 DWORD dwLen;
1428 CONST BYTE abOID[19];
1429 } aOIDDescriptor[8] = {
1430 { CALG_MD2, 18, { 0x30, 0x20, 0x30, 0x0c, 0x06, 0x08, 0x2a, 0x86, 0x48,
1431 0x86, 0xf7, 0x0d, 0x02, 0x02, 0x05, 0x00, 0x04, 0x10 } },
1432 { CALG_MD4, 18, { 0x30, 0x20, 0x30, 0x0c, 0x06, 0x08, 0x2a, 0x86, 0x48,
1433 0x86, 0xf7, 0x0d, 0x02, 0x04, 0x05, 0x00, 0x04, 0x10 } },
1434 { CALG_MD5, 18, { 0x30, 0x20, 0x30, 0x0c, 0x06, 0x08, 0x2a, 0x86, 0x48,
1435 0x86, 0xf7, 0x0d, 0x02, 0x05, 0x05, 0x00, 0x04, 0x10 } },
1436 { CALG_SHA, 15, { 0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2b, 0x0e, 0x03,
1437 0x02, 0x1a, 0x05, 0x00, 0x04, 0x14 } },
1438 { CALG_SHA_256, 19, { 0x30, 0x31, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86,
1439 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01,
1440 0x05, 0x00, 0x04, 0x20 } },
1441 { CALG_SHA_384, 19, { 0x30, 0x41, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86,
1442 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01,
1443 0x05, 0x00, 0x04, 0x30 } },
1444 { CALG_SHA_384, 19, { 0x30, 0x51, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86,
1445 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01,
1446 0x05, 0x00, 0x04, 0x40 } },
1447 { 0, 0, { 0 } }
1448 };
1449 DWORD dwIdxOID, i, j;
1450
1451 for (dwIdxOID = 0; aOIDDescriptor[dwIdxOID].aiAlgid; dwIdxOID++) {
1452 if (aOIDDescriptor[dwIdxOID].aiAlgid == aiAlgid) break;
1453 }
1454
1455 if (!aOIDDescriptor[dwIdxOID].aiAlgid) {
1456 SetLastError(NTE_BAD_ALGID);
1457 return FALSE;
1458 }
1459
1460 /* Build the padded signature */
1461 if (dwFlags & CRYPT_X931_FORMAT) {
1462 pbSignature[0] = 0x6b;
1463 for (i=1; i < dwLen - dwHashLen - 3; i++) {
1464 pbSignature[i] = 0xbb;
1465 }
1466 pbSignature[i++] = 0xba;
1467 for (j=0; j < dwHashLen; j++, i++) {
1468 pbSignature[i] = abHashValue[j];
1469 }
1470 pbSignature[i++] = 0x33;
1471 pbSignature[i++] = 0xcc;
1472 } else {
1473 pbSignature[0] = 0x00;
1474 pbSignature[1] = 0x01;
1475 if (dwFlags & CRYPT_NOHASHOID) {
1476 for (i=2; i < dwLen - 1 - dwHashLen; i++) {
1477 pbSignature[i] = 0xff;
1478 }
1479 pbSignature[i++] = 0x00;
1480 } else {
1481 for (i=2; i < dwLen - 1 - aOIDDescriptor[dwIdxOID].dwLen - dwHashLen; i++) {
1482 pbSignature[i] = 0xff;
1483 }
1484 pbSignature[i++] = 0x00;
1485 for (j=0; j < aOIDDescriptor[dwIdxOID].dwLen; j++) {
1486 pbSignature[i++] = aOIDDescriptor[dwIdxOID].abOID[j];
1487 }
1488 }
1489 for (j=0; j < dwHashLen; j++) {
1490 pbSignature[i++] = abHashValue[j];
1491 }
1492 }
1493
1494 return TRUE;
1495 }
1496
1497 /******************************************************************************
1498 * tls1_p [Internal]
1499 *
1500 * This is an implementation of the 'P_hash' helper function for TLS1's PRF.
1501 * It is used exclusively by tls1_prf. For details see RFC 2246, chapter 5.
1502 * The pseudo random stream generated by this function is exclusive or'ed with
1503 * the data in pbBuffer.
1504 *
1505 * PARAMS
1506 * hHMAC [I] HMAC object, which will be used in pseudo random generation
1507 * pblobSeed [I] Seed value
1508 * pbBuffer [I/O] Pseudo random stream will be xor'ed to the provided data
1509 * dwBufferLen [I] Number of pseudo random bytes desired
1510 *
1511 * RETURNS
1512 * Success: TRUE
1513 * Failure: FALSE
1514 */
1515 static BOOL tls1_p(HCRYPTHASH hHMAC, CONST PCRYPT_DATA_BLOB pblobSeed, PBYTE pbBuffer, DWORD dwBufferLen)
1516 {
1517 CRYPTHASH *pHMAC;
1518 BYTE abAi[RSAENH_MAX_HASH_SIZE];
1519 DWORD i = 0;
1520
1521 if (!lookup_handle(&handle_table, hHMAC, RSAENH_MAGIC_HASH, (OBJECTHDR**)&pHMAC)) {
1522 SetLastError(NTE_BAD_HASH);
1523 return FALSE;
1524 }
1525
1526 /* compute A_1 = HMAC(seed) */
1527 init_hash(pHMAC);
1528 update_hash(pHMAC, pblobSeed->pbData, pblobSeed->cbData);
1529 finalize_hash(pHMAC);
1530 memcpy(abAi, pHMAC->abHashValue, pHMAC->dwHashSize);
1531
1532 do {
1533 /* compute HMAC(A_i + seed) */
1534 init_hash(pHMAC);
1535 update_hash(pHMAC, abAi, pHMAC->dwHashSize);
1536 update_hash(pHMAC, pblobSeed->pbData, pblobSeed->cbData);
1537 finalize_hash(pHMAC);
1538
1539 /* pseudo random stream := CONCAT_{i=1..n} ( HMAC(A_i + seed) ) */
1540 do {
1541 if (i >= dwBufferLen) break;
1542 pbBuffer[i] ^= pHMAC->abHashValue[i % pHMAC->dwHashSize];
1543 i++;
1544 } while (i % pHMAC->dwHashSize);
1545
1546 /* compute A_{i+1} = HMAC(A_i) */
1547 init_hash(pHMAC);
1548 update_hash(pHMAC, abAi, pHMAC->dwHashSize);
1549 finalize_hash(pHMAC);
1550 memcpy(abAi, pHMAC->abHashValue, pHMAC->dwHashSize);
1551 } while (i < dwBufferLen);
1552
1553 return TRUE;
1554 }
1555
1556 /******************************************************************************
1557 * tls1_prf [Internal]
1558 *
1559 * TLS1 pseudo random function as specified in RFC 2246, chapter 5
1560 *
1561 * PARAMS
1562 * hProv [I] Key container used to compute the pseudo random stream
1563 * hSecret [I] Key that holds the (pre-)master secret
1564 * pblobLabel [I] Descriptive label
1565 * pblobSeed [I] Seed value
1566 * pbBuffer [O] Pseudo random numbers will be stored here
1567 * dwBufferLen [I] Number of pseudo random bytes desired
1568 *
1569 * RETURNS
1570 * Success: TRUE
1571 * Failure: FALSE
1572 */
1573 static BOOL tls1_prf(HCRYPTPROV hProv, HCRYPTPROV hSecret, CONST PCRYPT_DATA_BLOB pblobLabel,
1574 CONST PCRYPT_DATA_BLOB pblobSeed, PBYTE pbBuffer, DWORD dwBufferLen)
1575 {
1576 HMAC_INFO hmacInfo = { 0, NULL, 0, NULL, 0 };
1577 HCRYPTHASH hHMAC = (HCRYPTHASH)INVALID_HANDLE_VALUE;
1578 HCRYPTKEY hHalfSecret = (HCRYPTKEY)INVALID_HANDLE_VALUE;
1579 CRYPTKEY *pHalfSecret, *pSecret;
1580 DWORD dwHalfSecretLen;
1581 BOOL result = FALSE;
1582 CRYPT_DATA_BLOB blobLabelSeed;
1583
1584 TRACE("(hProv=%08lx, hSecret=%08lx, pblobLabel=%p, pblobSeed=%p, pbBuffer=%p, dwBufferLen=%d)\n",
1585 hProv, hSecret, pblobLabel, pblobSeed, pbBuffer, dwBufferLen);
1586
1587 if (!lookup_handle(&handle_table, hSecret, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pSecret)) {
1588 SetLastError(NTE_FAIL);
1589 return FALSE;
1590 }
1591
1592 dwHalfSecretLen = (pSecret->dwKeyLen+1)/2;
1593
1594 /* concatenation of the label and the seed */
1595 if (!concat_data_blobs(&blobLabelSeed, pblobLabel, pblobSeed)) goto exit;
1596
1597 /* zero out the buffer, since two random streams will be xor'ed into it. */
1598 memset(pbBuffer, 0, dwBufferLen);
1599
1600 /* build a 'fake' key, to hold the secret. CALG_SSL2_MASTER is used since it provides
1601 * the biggest range of valid key lengths. */
1602 hHalfSecret = new_key(hProv, CALG_SSL2_MASTER, MAKELONG(0,dwHalfSecretLen*8), &pHalfSecret);
1603 if (hHalfSecret == (HCRYPTKEY)INVALID_HANDLE_VALUE) goto exit;
1604
1605 /* Derive an HMAC_MD5 hash and call the helper function. */
1606 memcpy(pHalfSecret->abKeyValue, pSecret->abKeyValue, dwHalfSecretLen);
1607 if (!RSAENH_CPCreateHash(hProv, CALG_HMAC, hHalfSecret, 0, &hHMAC)) goto exit;
1608 hmacInfo.HashAlgid = CALG_MD5;
1609 if (!RSAENH_CPSetHashParam(hProv, hHMAC, HP_HMAC_INFO, (BYTE*)&hmacInfo, 0)) goto exit;
1610 if (!tls1_p(hHMAC, &blobLabelSeed, pbBuffer, dwBufferLen)) goto exit;
1611
1612 /* Reconfigure to HMAC_SHA hash and call helper function again. */
1613 memcpy(pHalfSecret->abKeyValue, pSecret->abKeyValue + (pSecret->dwKeyLen/2), dwHalfSecretLen);
1614 hmacInfo.HashAlgid = CALG_SHA;
1615 if (!RSAENH_CPSetHashParam(hProv, hHMAC, HP_HMAC_INFO, (BYTE*)&hmacInfo, 0)) goto exit;
1616 if (!tls1_p(hHMAC, &blobLabelSeed, pbBuffer, dwBufferLen)) goto exit;
1617
1618 result = TRUE;
1619 exit:
1620 release_handle(&handle_table, hHalfSecret, RSAENH_MAGIC_KEY);
1621 if (hHMAC != (HCRYPTHASH)INVALID_HANDLE_VALUE) RSAENH_CPDestroyHash(hProv, hHMAC);
1622 free_data_blob(&blobLabelSeed);
1623 return result;
1624 }
1625
1626 /******************************************************************************
1627 * pad_data [Internal]
1628 *
1629 * Helper function for data padding according to PKCS1 #2
1630 *
1631 * PARAMS
1632 * abData [I] The data to be padded
1633 * dwDataLen [I] Length of the data
1634 * abBuffer [O] Padded data will be stored here
1635 * dwBufferLen [I] Length of the buffer (also length of padded data)
1636 * dwFlags [I] Padding format (CRYPT_SSL2_FALLBACK)
1637 *
1638 * RETURN
1639 * Success: TRUE
1640 * Failure: FALSE (NTE_BAD_LEN, too much data to pad)
1641 */
1642 static BOOL pad_data(CONST BYTE *abData, DWORD dwDataLen, BYTE *abBuffer, DWORD dwBufferLen,
1643 DWORD dwFlags)
1644 {
1645 DWORD i;
1646
1647 /* Ensure there is enough space for PKCS1 #2 padding */
1648 if (dwDataLen > dwBufferLen-11) {
1649 SetLastError(NTE_BAD_LEN);
1650 return FALSE;
1651 }
1652
1653 memmove(abBuffer + dwBufferLen - dwDataLen, abData, dwDataLen);
1654
1655 abBuffer[0] = 0x00;
1656 abBuffer[1] = RSAENH_PKC_BLOCKTYPE;
1657 for (i=2; i < dwBufferLen - dwDataLen - 1; i++)
1658 do gen_rand_impl(&abBuffer[i], 1); while (!abBuffer[i]);
1659 if (dwFlags & CRYPT_SSL2_FALLBACK)
1660 for (i-=8; i < dwBufferLen - dwDataLen - 1; i++)
1661 abBuffer[i] = 0x03;
1662 abBuffer[i] = 0x00;
1663
1664 return TRUE;
1665 }
1666
1667 /******************************************************************************
1668 * unpad_data [Internal]
1669 *
1670 * Remove the PKCS1 padding from RSA decrypted data
1671 *
1672 * PARAMS
1673 * abData [I] The padded data
1674 * dwDataLen [I] Length of the padded data
1675 * abBuffer [O] Data without padding will be stored here
1676 * dwBufferLen [I/O] I: Length of the buffer, O: Length of unpadded data
1677 * dwFlags [I] Currently none defined
1678 *
1679 * RETURNS
1680 * Success: TRUE
1681 * Failure: FALSE, (NTE_BAD_DATA, no valid PKCS1 padding or buffer too small)
1682 */
1683 static BOOL unpad_data(CONST BYTE *abData, DWORD dwDataLen, BYTE *abBuffer, DWORD *dwBufferLen,
1684 DWORD dwFlags)
1685 {
1686 DWORD i;
1687
1688 for (i=2; i<dwDataLen; i++)
1689 if (!abData[i])
1690 break;
1691
1692 if ((i == dwDataLen) || (*dwBufferLen < dwDataLen - i - 1) ||
1693 (abData[0] != 0x00) || (abData[1] != RSAENH_PKC_BLOCKTYPE))
1694 {
1695 SetLastError(NTE_BAD_DATA);
1696 return FALSE;
1697 }
1698
1699 *dwBufferLen = dwDataLen - i - 1;
1700 memmove(abBuffer, abData + i + 1, *dwBufferLen);
1701 return TRUE;
1702 }
1703
1704 /******************************************************************************
1705 * CPAcquireContext (RSAENH.@)
1706 *
1707 * Acquire a handle to the key container specified by pszContainer
1708 *
1709 * PARAMS
1710 * phProv [O] Pointer to the location the acquired handle will be written to.
1711 * pszContainer [I] Name of the desired key container. See Notes
1712 * dwFlags [I] Flags. See Notes.
1713 * pVTable [I] Pointer to a PVTableProvStruct containing callbacks.
1714 *
1715 * RETURNS
1716 * Success: TRUE
1717 * Failure: FALSE
1718 *
1719 * NOTES
1720 * If pszContainer is NULL or points to a zero length string the user's login
1721 * name will be used as the key container name.
1722 *
1723 * If the CRYPT_NEW_KEYSET flag is set in dwFlags a new keyset will be created.
1724 * If a keyset with the given name already exists, the function fails and sets
1725 * last error to NTE_EXISTS. If CRYPT_NEW_KEYSET is not set and the specified
1726 * key container does not exist, function fails and sets last error to
1727 * NTE_BAD_KEYSET.
1728 */
1729 BOOL WINAPI RSAENH_CPAcquireContext(HCRYPTPROV *phProv, LPSTR pszContainer,
1730 DWORD dwFlags, PVTableProvStruc pVTable)
1731 {
1732 CHAR szKeyContainerName[MAX_PATH];
1733
1734 TRACE("(phProv=%p, pszContainer=%s, dwFlags=%08x, pVTable=%p)\n", phProv,
1735 debugstr_a(pszContainer), dwFlags, pVTable);
1736
1737 if (pszContainer && *pszContainer)
1738 {
1739 lstrcpynA(szKeyContainerName, pszContainer, MAX_PATH);
1740 }
1741 else
1742 {
1743 DWORD dwLen = sizeof(szKeyContainerName);
1744 if (!GetUserNameA(szKeyContainerName, &dwLen)) return FALSE;
1745 }
1746
1747 switch (dwFlags & (CRYPT_NEWKEYSET|CRYPT_VERIFYCONTEXT|CRYPT_DELETEKEYSET))
1748 {
1749 case 0:
1750 *phProv = read_key_container(szKeyContainerName, dwFlags, pVTable);
1751 break;
1752
1753 case CRYPT_DELETEKEYSET:
1754 return delete_container_key(szKeyContainerName, dwFlags);
1755
1756 case CRYPT_NEWKEYSET:
1757 *phProv = read_key_container(szKeyContainerName, dwFlags, pVTable);
1758 if (*phProv != (HCRYPTPROV)INVALID_HANDLE_VALUE)
1759 {
1760 release_handle(&handle_table, *phProv, RSAENH_MAGIC_CONTAINER);
1761 TRACE("Can't create new keyset, already exists\n");
1762 SetLastError(NTE_EXISTS);
1763 return FALSE;
1764 }
1765 *phProv = new_key_container(szKeyContainerName, dwFlags, pVTable);
1766 break;
1767
1768 case CRYPT_VERIFYCONTEXT|CRYPT_NEWKEYSET:
1769 case CRYPT_VERIFYCONTEXT:
1770 if (pszContainer && *pszContainer) {
1771 TRACE("pszContainer should be empty\n");
1772 SetLastError(NTE_BAD_FLAGS);
1773 return FALSE;
1774 }
1775 *phProv = new_key_container("", dwFlags, pVTable);
1776 break;
1777
1778 default:
1779 *phProv = (HCRYPTPROV)INVALID_HANDLE_VALUE;
1780 SetLastError(NTE_BAD_FLAGS);
1781 return FALSE;
1782 }
1783
1784 if (*phProv != (HCRYPTPROV)INVALID_HANDLE_VALUE) {
1785 SetLastError(ERROR_SUCCESS);
1786 return TRUE;
1787 } else {
1788 return FALSE;
1789 }
1790 }
1791
1792 /******************************************************************************
1793 * CPCreateHash (RSAENH.@)
1794 *
1795 * CPCreateHash creates and initalizes a new hash object.
1796 *
1797 * PARAMS
1798 * hProv [I] Handle to the key container to which the new hash will belong.
1799 * Algid [I] Identifies the hash algorithm, which will be used for the hash.
1800 * hKey [I] Handle to a session key applied for keyed hashes.
1801 * dwFlags [I] Currently no flags defined. Must be zero.
1802 * phHash [O] Points to the location where a handle to the new hash will be stored.
1803 *
1804 * RETURNS
1805 * Success: TRUE
1806 * Failure: FALSE
1807 *
1808 * NOTES
1809 * hKey is a handle to a session key applied in keyed hashes like MAC and HMAC.
1810 * If a normal hash object is to be created (like e.g. MD2 or SHA1) hKey must be zero.
1811 */
1812 BOOL WINAPI RSAENH_CPCreateHash(HCRYPTPROV hProv, ALG_ID Algid, HCRYPTKEY hKey, DWORD dwFlags,
1813 HCRYPTHASH *phHash)
1814 {
1815 CRYPTKEY *pCryptKey;
1816 CRYPTHASH *pCryptHash;
1817 const PROV_ENUMALGS_EX *peaAlgidInfo;
1818
1819 TRACE("(hProv=%08lx, Algid=%08x, hKey=%08lx, dwFlags=%08x, phHash=%p)\n", hProv, Algid, hKey,
1820 dwFlags, phHash);
1821
1822 peaAlgidInfo = get_algid_info(hProv, Algid);
1823 if (!peaAlgidInfo) return FALSE;
1824
1825 if (dwFlags)
1826 {
1827 SetLastError(NTE_BAD_FLAGS);
1828 return FALSE;
1829 }
1830
1831 if (Algid == CALG_MAC || Algid == CALG_HMAC || Algid == CALG_SCHANNEL_MASTER_HASH ||
1832 Algid == CALG_TLS1PRF)
1833 {
1834 if (!lookup_handle(&handle_table, hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pCryptKey)) {
1835 SetLastError(NTE_BAD_KEY);
1836 return FALSE;
1837 }
1838
1839 if ((Algid == CALG_MAC) && (GET_ALG_TYPE(pCryptKey->aiAlgid) != ALG_TYPE_BLOCK)) {
1840 SetLastError(NTE_BAD_KEY);
1841 return FALSE;
1842 }
1843
1844 if ((Algid == CALG_SCHANNEL_MASTER_HASH || Algid == CALG_TLS1PRF) &&
1845 (pCryptKey->aiAlgid != CALG_TLS1_MASTER))
1846 {
1847 SetLastError(NTE_BAD_KEY);
1848 return FALSE;
1849 }
1850
1851 if ((Algid == CALG_TLS1PRF) && (pCryptKey->dwState != RSAENH_KEYSTATE_MASTERKEY)) {
1852 SetLastError(NTE_BAD_KEY_STATE);
1853 return FALSE;
1854 }
1855 }
1856
1857 *phHash = new_object(&handle_table, sizeof(CRYPTHASH), RSAENH_MAGIC_HASH,
1858 destroy_hash, (OBJECTHDR**)&pCryptHash);
1859 if (!pCryptHash) return FALSE;
1860
1861 pCryptHash->aiAlgid = Algid;
1862 pCryptHash->hKey = hKey;
1863 pCryptHash->hProv = hProv;
1864 pCryptHash->dwState = RSAENH_HASHSTATE_HASHING;
1865 pCryptHash->pHMACInfo = NULL;
1866 pCryptHash->dwHashSize = peaAlgidInfo->dwDefaultLen >> 3;
1867 init_data_blob(&pCryptHash->tpPRFParams.blobLabel);
1868 init_data_blob(&pCryptHash->tpPRFParams.blobSeed);
1869
1870 if (Algid == CALG_SCHANNEL_MASTER_HASH) {
1871 static const char keyex[] = "key expansion";
1872 BYTE key_expansion[sizeof keyex];
1873 CRYPT_DATA_BLOB blobRandom, blobKeyExpansion = { 13, key_expansion };
1874
1875 memcpy( key_expansion, keyex, sizeof keyex );
1876
1877 if (pCryptKey->dwState != RSAENH_KEYSTATE_MASTERKEY) {
1878 static const char msec[] = "master secret";
1879 BYTE master_secret[sizeof msec];
1880 CRYPT_DATA_BLOB blobLabel = { 13, master_secret };
1881 BYTE abKeyValue[48];
1882
1883 memcpy( master_secret, msec, sizeof msec );
1884
1885 /* See RFC 2246, chapter 8.1 */
1886 if (!concat_data_blobs(&blobRandom,
1887 &pCryptKey->siSChannelInfo.blobClientRandom,
1888 &pCryptKey->siSChannelInfo.blobServerRandom))
1889 {
1890 return FALSE;
1891 }
1892 tls1_prf(hProv, hKey, &blobLabel, &blobRandom, abKeyValue, 48);
1893 pCryptKey->dwState = RSAENH_KEYSTATE_MASTERKEY;
1894 memcpy(pCryptKey->abKeyValue, abKeyValue, 48);
1895 free_data_blob(&blobRandom);
1896 }
1897
1898 /* See RFC 2246, chapter 6.3 */
1899 if (!concat_data_blobs(&blobRandom,
1900 &pCryptKey->siSChannelInfo.blobServerRandom,
1901 &pCryptKey->siSChannelInfo.blobClientRandom))
1902 {
1903 return FALSE;
1904 }
1905 tls1_prf(hProv, hKey, &blobKeyExpansion, &blobRandom, pCryptHash->abHashValue,
1906 RSAENH_MAX_HASH_SIZE);
1907 free_data_blob(&blobRandom);
1908 }
1909
1910 return init_hash(pCryptHash);
1911 }
1912
1913 /******************************************************************************
1914 * CPDestroyHash (RSAENH.@)
1915 *
1916 * Releases the handle to a hash object. The object is destroyed if it's reference
1917 * count reaches zero.
1918 *
1919 * PARAMS
1920 * hProv [I] Handle to the key container to which the hash object belongs.
1921 * hHash [I] Handle to the hash object to be released.
1922 *
1923 * RETURNS
1924 * Success: TRUE
1925 * Failure: FALSE
1926 */
1927 BOOL WINAPI RSAENH_CPDestroyHash(HCRYPTPROV hProv, HCRYPTHASH hHash)
1928 {
1929 TRACE("(hProv=%08lx, hHash=%08lx)\n", hProv, hHash);
1930
1931 if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
1932 {
1933 SetLastError(NTE_BAD_UID);
1934 return FALSE;
1935 }
1936
1937 if (!release_handle(&handle_table, hHash, RSAENH_MAGIC_HASH))
1938 {
1939 SetLastError(NTE_BAD_HASH);
1940 return FALSE;
1941 }
1942
1943 return TRUE;
1944 }
1945
1946 /******************************************************************************
1947 * CPDestroyKey (RSAENH.@)
1948 *
1949 * Releases the handle to a key object. The object is destroyed if it's reference
1950 * count reaches zero.
1951 *
1952 * PARAMS
1953 * hProv [I] Handle to the key container to which the key object belongs.
1954 * hKey [I] Handle to the key object to be released.
1955 *
1956 * RETURNS
1957 * Success: TRUE
1958 * Failure: FALSE
1959 */
1960 BOOL WINAPI RSAENH_CPDestroyKey(HCRYPTPROV hProv, HCRYPTKEY hKey)
1961 {
1962 TRACE("(hProv=%08lx, hKey=%08lx)\n", hProv, hKey);
1963
1964 if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
1965 {
1966 SetLastError(NTE_BAD_UID);
1967 return FALSE;
1968 }
1969
1970 if (!release_handle(&handle_table, hKey, RSAENH_MAGIC_KEY))
1971 {
1972 SetLastError(NTE_BAD_KEY);
1973 return FALSE;
1974 }
1975
1976 return TRUE;
1977 }
1978
1979 /******************************************************************************
1980 * CPDuplicateHash (RSAENH.@)
1981 *
1982 * Clones a hash object including it's current state.
1983 *
1984 * PARAMS
1985 * hUID [I] Handle to the key container the hash belongs to.
1986 * hHash [I] Handle to the hash object to be cloned.
1987 * pdwReserved [I] Reserved. Must be NULL.
1988 * dwFlags [I] No flags are currently defined. Must be 0.
1989 * phHash [O] Handle to the cloned hash object.
1990 *
1991 * RETURNS
1992 * Success: TRUE.
1993 * Failure: FALSE.
1994 */
1995 BOOL WINAPI RSAENH_CPDuplicateHash(HCRYPTPROV hUID, HCRYPTHASH hHash, DWORD *pdwReserved,
1996 DWORD dwFlags, HCRYPTHASH *phHash)
1997 {
1998 CRYPTHASH *pSrcHash, *pDestHash;
1999
2000 TRACE("(hUID=%08lx, hHash=%08lx, pdwReserved=%p, dwFlags=%08x, phHash=%p)\n", hUID, hHash,
2001 pdwReserved, dwFlags, phHash);
2002
2003 if (!is_valid_handle(&handle_table, hUID, RSAENH_MAGIC_CONTAINER))
2004 {
2005 SetLastError(NTE_BAD_UID);
2006 return FALSE;
2007 }
2008
2009 if (!lookup_handle(&handle_table, hHash, RSAENH_MAGIC_HASH, (OBJECTHDR**)&pSrcHash))
2010 {
2011 SetLastError(NTE_BAD_HASH);
2012 return FALSE;
2013 }
2014
2015 if (!phHash || pdwReserved || dwFlags)
2016 {
2017 SetLastError(ERROR_INVALID_PARAMETER);
2018 return FALSE;
2019 }
2020
2021 *phHash = new_object(&handle_table, sizeof(CRYPTHASH), RSAENH_MAGIC_HASH,
2022 destroy_hash, (OBJECTHDR**)&pDestHash);
2023 if (*phHash != (HCRYPTHASH)INVALID_HANDLE_VALUE)
2024 {
2025 *pDestHash = *pSrcHash;
2026 duplicate_hash_impl(pSrcHash->aiAlgid, &pSrcHash->context, &pDestHash->context);
2027 copy_hmac_info(&pDestHash->pHMACInfo, pSrcHash->pHMACInfo);
2028 copy_data_blob(&pDestHash->tpPRFParams.blobLabel, &pSrcHash->tpPRFParams.blobLabel);
2029 copy_data_blob(&pDestHash->tpPRFParams.blobSeed, &pSrcHash->tpPRFParams.blobSeed);
2030 }
2031
2032 return *phHash != (HCRYPTHASH)INVALID_HANDLE_VALUE;
2033 }
2034
2035 /******************************************************************************
2036 * CPDuplicateKey (RSAENH.@)
2037 *
2038 * Clones a key object including it's current state.
2039 *
2040 * PARAMS
2041 * hUID [I] Handle to the key container the hash belongs to.
2042 * hKey [I] Handle to the key object to be cloned.
2043 * pdwReserved [I] Reserved. Must be NULL.
2044 * dwFlags [I] No flags are currently defined. Must be 0.
2045 * phHash [O] Handle to the cloned key object.
2046 *
2047 * RETURNS
2048 * Success: TRUE.
2049 * Failure: FALSE.
2050 */
2051 BOOL WINAPI RSAENH_CPDuplicateKey(HCRYPTPROV hUID, HCRYPTKEY hKey, DWORD *pdwReserved,
2052 DWORD dwFlags, HCRYPTKEY *phKey)
2053 {
2054 CRYPTKEY *pSrcKey, *pDestKey;
2055
2056 TRACE("(hUID=%08lx, hKey=%08lx, pdwReserved=%p, dwFlags=%08x, phKey=%p)\n", hUID, hKey,
2057 pdwReserved, dwFlags, phKey);
2058
2059 if (!is_valid_handle(&handle_table, hUID, RSAENH_MAGIC_CONTAINER))
2060 {
2061 SetLastError(NTE_BAD_UID);
2062 return FALSE;
2063 }
2064
2065 if (!lookup_handle(&handle_table, hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pSrcKey))
2066 {
2067 SetLastError(NTE_BAD_KEY);
2068 return FALSE;
2069 }
2070
2071 if (!phKey || pdwReserved || dwFlags)
2072 {
2073 SetLastError(ERROR_INVALID_PARAMETER);
2074 return FALSE;
2075 }
2076
2077 *phKey = new_object(&handle_table, sizeof(CRYPTKEY), RSAENH_MAGIC_KEY, destroy_key,
2078 (OBJECTHDR**)&pDestKey);
2079 if (*phKey != (HCRYPTKEY)INVALID_HANDLE_VALUE)
2080 {
2081 *pDestKey = *pSrcKey;
2082 copy_data_blob(&pDestKey->siSChannelInfo.blobServerRandom,
2083 &pSrcKey->siSChannelInfo.blobServerRandom);
2084 copy_data_blob(&pDestKey->siSChannelInfo.blobClientRandom,
2085 &pSrcKey->siSChannelInfo.blobClientRandom);
2086 duplicate_key_impl(pSrcKey->aiAlgid, &pSrcKey->context, &pDestKey->context);
2087 return TRUE;
2088 }
2089 else
2090 {
2091 return FALSE;
2092 }
2093 }
2094
2095 /******************************************************************************
2096 * CPEncrypt (RSAENH.@)
2097 *
2098 * Encrypt data.
2099 *
2100 * PARAMS
2101 * hProv [I] The key container hKey and hHash belong to.
2102 * hKey [I] The key used to encrypt the data.
2103 * hHash [I] An optional hash object for parallel hashing. See notes.
2104 * Final [I] Indicates if this is the last block of data to encrypt.
2105 * dwFlags [I] Currently no flags defined. Must be zero.
2106 * pbData [I/O] Pointer to the data to encrypt. Encrypted data will also be stored there.
2107 * pdwDataLen [I/O] I: Length of data to encrypt, O: Length of encrypted data.
2108 * dwBufLen [I] Size of the buffer at pbData.
2109 *
2110 * RETURNS
2111 * Success: TRUE.
2112 * Failure: FALSE.
2113 *
2114 * NOTES
2115 * If a hash object handle is provided in hHash, it will be updated with the plaintext.
2116 * This is useful for message signatures.
2117 *
2118 * This function uses the standard WINAPI protocol for querying data of dynamic length.
2119 */
2120 BOOL WINAPI RSAENH_CPEncrypt(HCRYPTPROV hProv, HCRYPTKEY hKey, HCRYPTHASH hHash, BOOL Final,
2121 DWORD dwFlags, BYTE *pbData, DWORD *pdwDataLen, DWORD dwBufLen)
2122 {
2123 CRYPTKEY *pCryptKey;
2124 BYTE *in, out[RSAENH_MAX_BLOCK_SIZE], o[RSAENH_MAX_BLOCK_SIZE];
2125 DWORD dwEncryptedLen, i, j, k;
2126
2127 TRACE("(hProv=%08lx, hKey=%08lx, hHash=%08lx, Final=%d, dwFlags=%08x, pbData=%p, "
2128 "pdwDataLen=%p, dwBufLen=%d)\n", hProv, hKey, hHash, Final, dwFlags, pbData, pdwDataLen,
2129 dwBufLen);
2130
2131 if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
2132 {
2133 SetLastError(NTE_BAD_UID);
2134 return FALSE;
2135 }
2136
2137 if (dwFlags)
2138 {
2139 SetLastError(NTE_BAD_FLAGS);
2140 return FALSE;
2141 }
2142
2143 if (!lookup_handle(&handle_table, hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pCryptKey))
2144 {
2145 SetLastError(NTE_BAD_KEY);
2146 return FALSE;
2147 }
2148
2149 if (pCryptKey->dwState == RSAENH_KEYSTATE_IDLE)
2150 pCryptKey->dwState = RSAENH_KEYSTATE_ENCRYPTING;
2151
2152 if (pCryptKey->dwState != RSAENH_KEYSTATE_ENCRYPTING)
2153 {
2154 SetLastError(NTE_BAD_DATA);
2155 return FALSE;
2156 }
2157
2158 if (is_valid_handle(&handle_table, hHash, RSAENH_MAGIC_HASH)) {
2159 if (!RSAENH_CPHashData(hProv, hHash, pbData, *pdwDataLen, 0)) return FALSE;
2160 }
2161
2162 if (GET_ALG_TYPE(pCryptKey->aiAlgid) == ALG_TYPE_BLOCK) {
2163 if (!Final && (*pdwDataLen % pCryptKey->dwBlockLen)) {
2164 SetLastError(NTE_BAD_DATA);
2165 return FALSE;
2166 }
2167
2168 dwEncryptedLen = (*pdwDataLen/pCryptKey->dwBlockLen+(Final?1:0))*pCryptKey->dwBlockLen;
2169
2170 if (pbData == NULL) {
2171 *pdwDataLen = dwEncryptedLen;
2172 return TRUE;
2173 }
2174 else if (dwEncryptedLen > dwBufLen) {
2175 *pdwDataLen = dwEncryptedLen;
2176 SetLastError(ERROR_MORE_DATA);
2177 return FALSE;
2178 }
2179
2180 /* Pad final block with length bytes */
2181 for (i=*pdwDataLen; i<dwEncryptedLen; i++) pbData[i] = dwEncryptedLen - *pdwDataLen;
2182 *pdwDataLen = dwEncryptedLen;
2183
2184 for (i=0, in=pbData; i<*pdwDataLen; i+=pCryptKey->dwBlockLen, in+=pCryptKey->dwBlockLen) {
2185 switch (pCryptKey->dwMode) {
2186 case CRYPT_MODE_ECB:
2187 encrypt_block_impl(pCryptKey->aiAlgid, 0, &pCryptKey->context, in, out,
2188 RSAENH_ENCRYPT);
2189 break;
2190
2191 case CRYPT_MODE_CBC:
2192 for (j=0; j<pCryptKey->dwBlockLen; j++) in[j] ^= pCryptKey->abChainVector[j];
2193 encrypt_block_impl(pCryptKey->aiAlgid, 0, &pCryptKey->context, in, out,
2194 RSAENH_ENCRYPT);
2195 memcpy(pCryptKey->abChainVector, out, pCryptKey->dwBlockLen);
2196 break;
2197
2198 case CRYPT_MODE_CFB:
2199 for (j=0; j<pCryptKey->dwBlockLen; j++) {
2200 encrypt_block_impl(pCryptKey->aiAlgid, 0, &pCryptKey->context,
2201 pCryptKey->abChainVector, o, RSAENH_ENCRYPT);
2202 out[j] = in[j] ^ o[0];
2203 for (k=0; k<pCryptKey->dwBlockLen-1; k++)
2204 pCryptKey->abChainVector[k] = pCryptKey->abChainVector[k+1];
2205 pCryptKey->abChainVector[k] = out[j];
2206 }
2207 break;
2208
2209 default:
2210 SetLastError(NTE_BAD_ALGID);
2211 return FALSE;
2212 }
2213 memcpy(in, out, pCryptKey->dwBlockLen);
2214 }
2215 } else if (GET_ALG_TYPE(pCryptKey->aiAlgid) == ALG_TYPE_STREAM) {
2216 if (pbData == NULL) {
2217 *pdwDataLen = dwBufLen;
2218 return TRUE;
2219 }
2220 encrypt_stream_impl(pCryptKey->aiAlgid, &pCryptKey->context, pbData, *pdwDataLen);
2221 } else if (GET_ALG_TYPE(pCryptKey->aiAlgid) == ALG_TYPE_RSA) {
2222 if (pCryptKey->aiAlgid == CALG_RSA_SIGN) {
2223 SetLastError(NTE_BAD_KEY);
2224 return FALSE;
2225 }
2226 if (!pbData) {
2227 *pdwDataLen = pCryptKey->dwBlockLen;
2228 return TRUE;
2229 }
2230 if (dwBufLen < pCryptKey->dwBlockLen) {
2231 SetLastError(ERROR_MORE_DATA);
2232 return FALSE;
2233 }
2234 if (!pad_data(pbData, *pdwDataLen, pbData, pCryptKey->dwBlockLen, dwFlags)) return FALSE;
2235 encrypt_block_impl(pCryptKey->aiAlgid, PK_PUBLIC, &pCryptKey->context, pbData, pbData, RSAENH_ENCRYPT);
2236 *pdwDataLen = pCryptKey->dwBlockLen;
2237 Final = TRUE;
2238 } else {
2239 SetLastError(NTE_BAD_TYPE);
2240 return FALSE;
2241 }
2242
2243 if (Final) setup_key(pCryptKey);
2244
2245 return TRUE;
2246 }
2247
2248 /******************************************************************************
2249 * CPDecrypt (RSAENH.@)
2250 *
2251 * Decrypt data.
2252 *
2253 * PARAMS
2254 * hProv [I] The key container hKey and hHash belong to.
2255 * hKey [I] The key used to decrypt the data.
2256 * hHash [I] An optional hash object for parallel hashing. See notes.
2257 * Final [I] Indicates if this is the last block of data to decrypt.
2258 * dwFlags [I] Currently no flags defined. Must be zero.
2259 * pbData [I/O] Pointer to the data to decrypt. Plaintext will also be stored there.
2260 * pdwDataLen [I/O] I: Length of ciphertext, O: Length of plaintext.
2261 *
2262 * RETURNS
2263 * Success: TRUE.
2264 * Failure: FALSE.
2265 *
2266 * NOTES
2267 * If a hash object handle is provided in hHash, it will be updated with the plaintext.
2268 * This is useful for message signatures.
2269 *
2270 * This function uses the standard WINAPI protocol for querying data of dynamic length.
2271 */
2272 BOOL WINAPI RSAENH_CPDecrypt(HCRYPTPROV hProv, HCRYPTKEY hKey, HCRYPTHASH hHash, BOOL Final,
2273 DWORD dwFlags, BYTE *pbData, DWORD *pdwDataLen)
2274 {
2275 CRYPTKEY *pCryptKey;
2276 BYTE *in, out[RSAENH_MAX_BLOCK_SIZE], o[RSAENH_MAX_BLOCK_SIZE];
2277 DWORD i, j, k;
2278 DWORD dwMax;
2279
2280 TRACE("(hProv=%08lx, hKey=%08lx, hHash=%08lx, Final=%d, dwFlags=%08x, pbData=%p, "
2281 "pdwDataLen=%p)\n", hProv, hKey, hHash, Final, dwFlags, pbData, pdwDataLen);
2282
2283 if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
2284 {
2285 SetLastError(NTE_BAD_UID);
2286 return FALSE;
2287 }
2288
2289 if (dwFlags)
2290 {
2291 SetLastError(NTE_BAD_FLAGS);
2292 return FALSE;
2293 }
2294
2295 if (!lookup_handle(&handle_table, hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pCryptKey))
2296 {
2297 SetLastError(NTE_BAD_KEY);
2298 return FALSE;
2299 }
2300
2301 if (pCryptKey->dwState == RSAENH_KEYSTATE_IDLE)
2302 pCryptKey->dwState = RSAENH_KEYSTATE_ENCRYPTING;
2303
2304 if (pCryptKey->dwState != RSAENH_KEYSTATE_ENCRYPTING)
2305 {
2306 SetLastError(NTE_BAD_DATA);
2307 return FALSE;
2308 }
2309
2310 dwMax=*pdwDataLen;
2311
2312 if (GET_ALG_TYPE(pCryptKey->aiAlgid) == ALG_TYPE_BLOCK) {
2313 for (i=0, in=pbData; i<*pdwDataLen; i+=pCryptKey->dwBlockLen, in+=pCryptKey->dwBlockLen) {
2314 switch (pCryptKey->dwMode) {
2315 case CRYPT_MODE_ECB:
2316 encrypt_block_impl(pCryptKey->aiAlgid, 0, &pCryptKey->context, in, out,
2317 RSAENH_DECRYPT);
2318 break;
2319
2320 case CRYPT_MODE_CBC:
2321 encrypt_block_impl(pCryptKey->aiAlgid, 0, &pCryptKey->context, in, out,
2322 RSAENH_DECRYPT);
2323 for (j=0; j<pCryptKey->dwBlockLen; j++) out[j] ^= pCryptKey->abChainVector[j];
2324 memcpy(pCryptKey->abChainVector, in, pCryptKey->dwBlockLen);
2325 break;
2326
2327 case CRYPT_MODE_CFB:
2328 for (j=0; j<pCryptKey->dwBlockLen; j++) {
2329 encrypt_block_impl(pCryptKey->aiAlgid, 0, &pCryptKey->context,
2330 pCryptKey->abChainVector, o, RSAENH_ENCRYPT);
2331 out[j] = in[j] ^ o[0];
2332 for (k=0; k<pCryptKey->dwBlockLen-1; k++)
2333 pCryptKey->abChainVector[k] = pCryptKey->abChainVector[k+1];
2334 pCryptKey->abChainVector[k] = in[j];
2335 }
2336 break;
2337
2338 default:
2339 SetLastError(NTE_BAD_ALGID);
2340 return FALSE;
2341 }
2342 memcpy(in, out, pCryptKey->dwBlockLen);
2343 }
2344 if (Final) {
2345 if (pbData[*pdwDataLen-1] &&
2346 pbData[*pdwDataLen-1] <= pCryptKey->dwBlockLen &&
2347 pbData[*pdwDataLen-1] <= *pdwDataLen) {
2348 BOOL padOkay = TRUE;
2349
2350 /* check that every bad byte has the same value */
2351 for (i = 1; padOkay && i < pbData[*pdwDataLen-1]; i++)
2352 if (pbData[*pdwDataLen - i - 1] != pbData[*pdwDataLen - 1])
2353 padOkay = FALSE;
2354 if (padOkay)
2355 *pdwDataLen -= pbData[*pdwDataLen-1];
2356 else {
2357 SetLastError(NTE_BAD_DATA);
2358 return FALSE;
2359 }
2360 }
2361 else {
2362 SetLastError(NTE_BAD_DATA);
2363 return FALSE;
2364 }
2365 }
2366
2367 } else if (GET_ALG_TYPE(pCryptKey->aiAlgid) == ALG_TYPE_STREAM) {
2368 encrypt_stream_impl(pCryptKey->aiAlgid, &pCryptKey->context, pbData, *pdwDataLen);
2369 } else if (GET_ALG_TYPE(pCryptKey->aiAlgid) == ALG_TYPE_RSA) {
2370 if (pCryptKey->aiAlgid == CALG_RSA_SIGN) {
2371 SetLastError(NTE_BAD_KEY);
2372 return FALSE;
2373 }
2374 encrypt_block_impl(pCryptKey->aiAlgid, PK_PRIVATE, &pCryptKey->context, pbData, pbData, RSAENH_DECRYPT);
2375 if (!unpad_data(pbData, pCryptKey->dwBlockLen, pbData, pdwDataLen, dwFlags)) return FALSE;
2376 Final = TRUE;
2377 } else {
2378 SetLastError(NTE_BAD_TYPE);
2379 return FALSE;
2380 }
2381
2382 if (Final) setup_key(pCryptKey);
2383
2384 if (is_valid_handle(&handle_table, hHash, RSAENH_MAGIC_HASH)) {
2385 if (*pdwDataLen>dwMax ||
2386 !RSAENH_CPHashData(hProv, hHash, pbData, *pdwDataLen, 0)) return FALSE;
2387 }
2388
2389 return TRUE;
2390 }
2391
2392 static BOOL crypt_export_simple(CRYPTKEY *pCryptKey, CRYPTKEY *pPubKey,
2393 DWORD dwFlags, BYTE *pbData, DWORD *pdwDataLen)
2394 {
2395 BLOBHEADER *pBlobHeader = (BLOBHEADER*)pbData;
2396 ALG_ID *pAlgid = (ALG_ID*)(pBlobHeader+1);
2397 DWORD dwDataLen;
2398
2399 if (!(GET_ALG_CLASS(pCryptKey->aiAlgid)&(ALG_CLASS_DATA_ENCRYPT|ALG_CLASS_MSG_ENCRYPT))) {
2400 SetLastError(NTE_BAD_KEY); /* FIXME: error code? */
2401 return FALSE;
2402 }
2403
2404 dwDataLen = sizeof(BLOBHEADER) + sizeof(ALG_ID) + pPubKey->dwBlockLen;
2405 if (pbData) {
2406 if (*pdwDataLen < dwDataLen) {
2407 SetLastError(ERROR_MORE_DATA);
2408 *pdwDataLen = dwDataLen;
2409 return FALSE;
2410 }
2411
2412 pBlobHeader->bType = SIMPLEBLOB;
2413 pBlobHeader->bVersion = CUR_BLOB_VERSION;
2414 pBlobHeader->reserved = 0;
2415 pBlobHeader->aiKeyAlg = pCryptKey->aiAlgid;
2416
2417 *pAlgid = pPubKey->aiAlgid;
2418
2419 if (!pad_data(pCryptKey->abKeyValue, pCryptKey->dwKeyLen, (BYTE*)(pAlgid+1),
2420 pPubKey->dwBlockLen, dwFlags))
2421 {
2422 return FALSE;
2423 }
2424
2425 encrypt_block_impl(pPubKey->aiAlgid, PK_PUBLIC, &pPubKey->context, (BYTE*)(pAlgid+1),
2426 (BYTE*)(pAlgid+1), RSAENH_ENCRYPT);
2427 }
2428 *pdwDataLen = dwDataLen;
2429 return TRUE;
2430 }
2431
2432 static BOOL crypt_export_public_key(CRYPTKEY *pCryptKey, BYTE *pbData,
2433 DWORD *pdwDataLen)
2434 {
2435 BLOBHEADER *pBlobHeader = (BLOBHEADER*)pbData;
2436 RSAPUBKEY *pRSAPubKey = (RSAPUBKEY*)(pBlobHeader+1);
2437 DWORD dwDataLen;
2438
2439 if ((pCryptKey->aiAlgid != CALG_RSA_KEYX) && (pCryptKey->aiAlgid != CALG_RSA_SIGN)) {
2440 SetLastError(NTE_BAD_KEY);
2441 return FALSE;
2442 }
2443
2444 dwDataLen = sizeof(BLOBHEADER) + sizeof(RSAPUBKEY) + pCryptKey->dwKeyLen;
2445 if (pbData) {
2446 if (*pdwDataLen < dwDataLen) {
2447 SetLastError(ERROR_MORE_DATA);
2448 *pdwDataLen = dwDataLen;
2449 return FALSE;
2450 }
2451
2452 pBlobHeader->bType = PUBLICKEYBLOB;
2453 pBlobHeader->bVersion = CUR_BLOB_VERSION;
2454 pBlobHeader->reserved = 0;
2455 pBlobHeader->aiKeyAlg = pCryptKey->aiAlgid;
2456
2457 pRSAPubKey->magic = RSAENH_MAGIC_RSA1;
2458 pRSAPubKey->bitlen = pCryptKey->dwKeyLen << 3;
2459
2460 export_public_key_impl((BYTE*)(pRSAPubKey+1), &pCryptKey->context,
2461 pCryptKey->dwKeyLen, &pRSAPubKey->pubexp);
2462 }
2463 *pdwDataLen = dwDataLen;
2464 return TRUE;
2465 }
2466
2467 static BOOL crypt_export_private_key(CRYPTKEY *pCryptKey, BOOL force,
2468 BYTE *pbData, DWORD *pdwDataLen)
2469 {
2470 BLOBHEADER *pBlobHeader = (BLOBHEADER*)pbData;
2471 RSAPUBKEY *pRSAPubKey = (RSAPUBKEY*)(pBlobHeader+1);
2472 DWORD dwDataLen;
2473
2474 if ((pCryptKey->aiAlgid != CALG_RSA_KEYX) && (pCryptKey->aiAlgid != CALG_RSA_SIGN)) {
2475 SetLastError(NTE_BAD_KEY);
2476 return FALSE;
2477 }
2478 if (!force && !(pCryptKey->dwPermissions & CRYPT_EXPORT))
2479 {
2480 SetLastError(NTE_BAD_KEY_STATE);
2481 return FALSE;
2482 }
2483
2484 dwDataLen = sizeof(BLOBHEADER) + sizeof(RSAPUBKEY) +
2485 2 * pCryptKey->dwKeyLen + 5 * ((pCryptKey->dwKeyLen + 1) >> 1);
2486 if (pbData) {
2487 if (*pdwDataLen < dwDataLen) {
2488 SetLastError(ERROR_MORE_DATA);
2489 *pdwDataLen = dwDataLen;
2490 return FALSE;
2491 }
2492
2493 pBlobHeader->bType = PRIVATEKEYBLOB;
2494 pBlobHeader->bVersion = CUR_BLOB_VERSION;
2495 pBlobHeader->reserved = 0;
2496 pBlobHeader->aiKeyAlg = pCryptKey->aiAlgid;
2497
2498 pRSAPubKey->magic = RSAENH_MAGIC_RSA2;
2499 pRSAPubKey->bitlen = pCryptKey->dwKeyLen << 3;
2500
2501 export_private_key_impl((BYTE*)(pRSAPubKey+1), &pCryptKey->context,
2502 pCryptKey->dwKeyLen, &pRSAPubKey->pubexp);
2503 }
2504 *pdwDataLen = dwDataLen;
2505 return TRUE;
2506 }
2507
2508 static BOOL crypt_export_plaintext_key(CRYPTKEY *pCryptKey, BYTE *pbData,
2509 DWORD *pdwDataLen)
2510 {
2511 BLOBHEADER *pBlobHeader = (BLOBHEADER*)pbData;
2512 DWORD *pKeyLen = (DWORD*)(pBlobHeader+1);
2513 BYTE *pbKey = (BYTE*)(pKeyLen+1);
2514 DWORD dwDataLen;
2515
2516 dwDataLen = sizeof(BLOBHEADER) + sizeof(DWORD) + pCryptKey->dwKeyLen;
2517 if (pbData) {
2518 if (*pdwDataLen < dwDataLen) {
2519 SetLastError(ERROR_MORE_DATA);
2520 *pdwDataLen = dwDataLen;
2521 return FALSE;
2522 }
2523
2524 pBlobHeader->bType = PLAINTEXTKEYBLOB;
2525 pBlobHeader->bVersion = CUR_BLOB_VERSION;
2526 pBlobHeader->reserved = 0;
2527 pBlobHeader->aiKeyAlg = pCryptKey->aiAlgid;
2528
2529 *pKeyLen = pCryptKey->dwKeyLen;
2530 memcpy(pbKey, &pCryptKey->abKeyValue, pCryptKey->dwKeyLen);
2531 }
2532 *pdwDataLen = dwDataLen;
2533 return TRUE;
2534 }
2535 /******************************************************************************
2536 * crypt_export_key [Internal]
2537 *
2538 * Export a key into a binary large object (BLOB). Called by CPExportKey and
2539 * by store_key_pair.
2540 *
2541 * PARAMS
2542 * pCryptKey [I] Key to be exported.
2543 * hPubKey [I] Key used to encrypt sensitive BLOB data.
2544 * dwBlobType [I] SIMPLEBLOB, PUBLICKEYBLOB or PRIVATEKEYBLOB.
2545 * dwFlags [I] Currently none defined.
2546 * force [I] If TRUE, the key is written no matter what the key's
2547 * permissions are. Otherwise the key's permissions are
2548 * checked before exporting.
2549 * pbData [O] Pointer to a buffer where the BLOB will be written to.
2550 * pdwDataLen [I/O] I: Size of buffer at pbData, O: Size of BLOB
2551 *
2552 * RETURNS
2553 * Success: TRUE.
2554 * Failure: FALSE.
2555 */
2556 static BOOL crypt_export_key(CRYPTKEY *pCryptKey, HCRYPTKEY hPubKey,
2557 DWORD dwBlobType, DWORD dwFlags, BOOL force,
2558 BYTE *pbData, DWORD *pdwDataLen)
2559 {
2560 CRYPTKEY *pPubKey;
2561
2562 if (dwFlags & CRYPT_SSL2_FALLBACK) {
2563 if (pCryptKey->aiAlgid != CALG_SSL2_MASTER) {
2564 SetLastError(NTE_BAD_KEY);
2565 return FALSE;
2566 }
2567 }
2568
2569 switch ((BYTE)dwBlobType)
2570 {
2571 case SIMPLEBLOB:
2572 if (!lookup_handle(&handle_table, hPubKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pPubKey)){
2573 SetLastError(NTE_BAD_PUBLIC_KEY); /* FIXME: error_code? */
2574 return FALSE;
2575 }
2576 return crypt_export_simple(pCryptKey, pPubKey, dwFlags, pbData,
2577 pdwDataLen);
2578
2579 case PUBLICKEYBLOB:
2580 if (is_valid_handle(&handle_table, hPubKey, RSAENH_MAGIC_KEY)) {
2581 SetLastError(NTE_BAD_KEY); /* FIXME: error code? */
2582 return FALSE;
2583 }
2584
2585 return crypt_export_public_key(pCryptKey, pbData, pdwDataLen);
2586
2587 case PRIVATEKEYBLOB:
2588 return crypt_export_private_key(pCryptKey, force, pbData, pdwDataLen);
2589
2590 case PLAINTEXTKEYBLOB:
2591 return crypt_export_plaintext_key(pCryptKey, pbData, pdwDataLen);
2592
2593 default:
2594 SetLastError(NTE_BAD_TYPE); /* FIXME: error code? */
2595 return FALSE;
2596 }
2597 }
2598
2599 /******************************************************************************
2600 * CPExportKey (RSAENH.@)
2601 *
2602 * Export a key into a binary large object (BLOB).
2603 *
2604 * PARAMS
2605 * hProv [I] Key container from which a key is to be exported.
2606 * hKey [I] Key to be exported.
2607 * hPubKey [I] Key used to encrypt sensitive BLOB data.
2608 * dwBlobType [I] SIMPLEBLOB, PUBLICKEYBLOB or PRIVATEKEYBLOB.
2609 * dwFlags [I] Currently none defined.
2610 * pbData [O] Pointer to a buffer where the BLOB will be written to.
2611 * pdwDataLen [I/O] I: Size of buffer at pbData, O: Size of BLOB
2612 *
2613 * RETURNS
2614 * Success: TRUE.
2615 * Failure: FALSE.
2616 */
2617 BOOL WINAPI RSAENH_CPExportKey(HCRYPTPROV hProv, HCRYPTKEY hKey, HCRYPTKEY hPubKey,
2618 DWORD dwBlobType, DWORD dwFlags, BYTE *pbData, DWORD *pdwDataLen)
2619 {
2620 CRYPTKEY *pCryptKey;
2621
2622 TRACE("(hProv=%08lx, hKey=%08lx, hPubKey=%08lx, dwBlobType=%08x, dwFlags=%08x, pbData=%p,"
2623 "pdwDataLen=%p)\n", hProv, hKey, hPubKey, dwBlobType, dwFlags, pbData, pdwDataLen);
2624
2625 if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
2626 {
2627 SetLastError(NTE_BAD_UID);
2628 return FALSE;
2629 }
2630
2631 if (!lookup_handle(&handle_table, hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pCryptKey))
2632 {
2633 SetLastError(NTE_BAD_KEY);
2634 return FALSE;
2635 }
2636
2637 return crypt_export_key(pCryptKey, hPubKey, dwBlobType, dwFlags, FALSE,
2638 pbData, pdwDataLen);
2639 }
2640
2641 /******************************************************************************
2642 * release_and_install_key [Internal]
2643 *
2644 * Release an existing key, if present, and replaces it with a new one.
2645 *
2646 * PARAMS
2647 * hProv [I] Key container into which the key is to be imported.
2648 * src [I] Key which will replace *dest
2649 * dest [I] Points to key to be released and replaced with src
2650 * fStoreKey [I] If TRUE, the newly installed key is stored to the registry.
2651 */
2652 static void release_and_install_key(HCRYPTPROV hProv, HCRYPTKEY src,
2653 HCRYPTKEY *dest, DWORD fStoreKey)
2654 {
2655 RSAENH_CPDestroyKey(hProv, *dest);
2656 copy_handle(&handle_table, src, RSAENH_MAGIC_KEY, dest);
2657 if (fStoreKey)
2658 {
2659 KEYCONTAINER *pKeyContainer;
2660
2661 if (lookup_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER,
2662 (OBJECTHDR**)&pKeyContainer))
2663 {
2664 store_key_container_keys(pKeyContainer);
2665 store_key_container_permissions(pKeyContainer);
2666 }
2667 }
2668 }
2669
2670 /******************************************************************************
2671 * import_private_key [Internal]
2672 *
2673 * Import a BLOB'ed private key into a key container.
2674 *
2675 * PARAMS
2676 * hProv [I] Key container into which the private key is to be imported.
2677 * pbData [I] Pointer to a buffer which holds the private key BLOB.
2678 * dwDataLen [I] Length of data in buffer at pbData.
2679 * dwFlags [I] One of:
2680 * CRYPT_EXPORTABLE: the imported key is marked exportable
2681 * fStoreKey [I] If TRUE, the imported key is stored to the registry.
2682 * phKey [O] Handle to the imported key.
2683 *
2684 *
2685 * NOTES
2686 * Assumes the caller has already checked the BLOBHEADER at pbData to ensure
2687 * it's a PRIVATEKEYBLOB.
2688 *
2689 * RETURNS
2690 * Success: TRUE.
2691 * Failure: FALSE.
2692 */
2693 static BOOL import_private_key(HCRYPTPROV hProv, CONST BYTE *pbData, DWORD dwDataLen,
2694 DWORD dwFlags, BOOL fStoreKey, HCRYPTKEY *phKey)
2695 {
2696 KEYCONTAINER *pKeyContainer;
2697 CRYPTKEY *pCryptKey;
2698 CONST BLOBHEADER *pBlobHeader = (CONST BLOBHEADER*)pbData;
2699 CONST RSAPUBKEY *pRSAPubKey = (CONST RSAPUBKEY*)(pBlobHeader+1);
2700 BOOL ret;
2701
2702 if (!lookup_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER,
2703 (OBJECTHDR**)&pKeyContainer))
2704 {
2705 SetLastError(NTE_BAD_UID);
2706 return FALSE;
2707 }
2708
2709 if ((dwDataLen < sizeof(BLOBHEADER) + sizeof(RSAPUBKEY)) ||
2710 (pRSAPubKey->magic != RSAENH_MAGIC_RSA2) ||
2711 (dwDataLen < sizeof(BLOBHEADER) + sizeof(RSAPUBKEY) +
2712 (2 * pRSAPubKey->bitlen >> 3) + (5 * ((pRSAPubKey->bitlen+8)>>4))))
2713 {
2714 SetLastError(NTE_BAD_DATA);
2715 return FALSE;
2716 }
2717
2718 *phKey = new_key(hProv, pBlobHeader->aiKeyAlg, MAKELONG(0,pRSAPubKey->bitlen), &pCryptKey);
2719 if (*phKey == (HCRYPTKEY)INVALID_HANDLE_VALUE) return FALSE;
2720 setup_key(pCryptKey);
2721 ret = import_private_key_impl((CONST BYTE*)(pRSAPubKey+1), &pCryptKey->context,
2722 pRSAPubKey->bitlen/8, pRSAPubKey->pubexp);
2723 if (ret) {
2724 if (dwFlags & CRYPT_EXPORTABLE)
2725 pCryptKey->dwPermissions |= CRYPT_EXPORT;
2726 switch (pBlobHeader->aiKeyAlg)
2727 {
2728 case AT_SIGNATURE:
2729 case CALG_RSA_SIGN:
2730 TRACE("installing signing key\n");
2731 release_and_install_key(hProv, *phKey, &pKeyContainer->hSignatureKeyPair,
2732 fStoreKey);
2733 break;
2734 case AT_KEYEXCHANGE:
2735 case CALG_RSA_KEYX:
2736 TRACE("installing key exchange key\n");
2737 release_and_install_key(hProv, *phKey, &pKeyContainer->hKeyExchangeKeyPair,
2738 fStoreKey);
2739 break;
2740 }
2741 }
2742 return ret;
2743 }
2744
2745 /******************************************************************************
2746 * import_public_key [Internal]
2747 *
2748 * Import a BLOB'ed public key into a key container.
2749 *
2750 * PARAMS
2751 * hProv [I] Key container into which the public key is to be imported.
2752 * pbData [I] Pointer to a buffer which holds the public key BLOB.
2753 * dwDataLen [I] Length of data in buffer at pbData.
2754 * dwFlags [I] One of:
2755 * CRYPT_EXPORTABLE: the imported key is marked exportable
2756 * fStoreKey [I] If TRUE, the imported key is stored to the registry.
2757 * phKey [O] Handle to the imported key.
2758 *
2759 *
2760 * NOTES
2761 * Assumes the caller has already checked the BLOBHEADER at pbData to ensure
2762 * it's a PUBLICKEYBLOB.
2763 *
2764 * RETURNS
2765 * Success: TRUE.
2766 * Failure: FALSE.
2767 */
2768 static BOOL import_public_key(HCRYPTPROV hProv, CONST BYTE *pbData, DWORD dwDataLen,
2769 DWORD dwFlags, BOOL fStoreKey, HCRYPTKEY *phKey)
2770 {
2771 KEYCONTAINER *pKeyContainer;
2772 CRYPTKEY *pCryptKey;
2773 CONST BLOBHEADER *pBlobHeader = (CONST BLOBHEADER*)pbData;
2774 CONST RSAPUBKEY *pRSAPubKey = (CONST RSAPUBKEY*)(pBlobHeader+1);
2775 ALG_ID algID;
2776 BOOL ret;
2777
2778 if (!lookup_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER,
2779 (OBJECTHDR**)&pKeyContainer))
2780 {
2781 SetLastError(NTE_BAD_UID);
2782 return FALSE;
2783 }
2784
2785 if ((dwDataLen < sizeof(BLOBHEADER) + sizeof(RSAPUBKEY)) ||
2786 (pRSAPubKey->magic != RSAENH_MAGIC_RSA1) ||
2787 (dwDataLen < sizeof(BLOBHEADER) + sizeof(RSAPUBKEY) + (pRSAPubKey->bitlen >> 3)))
2788 {
2789 SetLastError(NTE_BAD_DATA);
2790 return FALSE;
2791 }
2792
2793 /* Since this is a public key blob, only the public key is
2794 * available, so only signature verification is possible.
2795 */
2796 algID = pBlobHeader->aiKeyAlg;
2797 *phKey = new_key(hProv, algID, MAKELONG(0,pRSAPubKey->bitlen), &pCryptKey);
2798 if (*phKey == (HCRYPTKEY)INVALID_HANDLE_VALUE) return FALSE;
2799 setup_key(pCryptKey);
2800 ret = import_public_key_impl((CONST BYTE*)(pRSAPubKey+1), &pCryptKey->context,
2801 pRSAPubKey->bitlen >> 3, pRSAPubKey->pubexp);
2802 if (ret) {
2803 if (dwFlags & CRYPT_EXPORTABLE)
2804 pCryptKey->dwPermissions |= CRYPT_EXPORT;
2805 switch (pBlobHeader->aiKeyAlg)
2806 {
2807 case AT_KEYEXCHANGE:
2808 case CALG_RSA_KEYX:
2809 TRACE("installing public key\n");
2810 release_and_install_key(hProv, *phKey, &pKeyContainer->hKeyExchangeKeyPair,
2811 fStoreKey);
2812 break;
2813 }
2814 }
2815 return ret;
2816 }
2817
2818 /******************************************************************************
2819 * import_symmetric_key [Internal]
2820 *
2821 * Import a BLOB'ed symmetric key into a key container.
2822 *
2823 * PARAMS
2824 * hProv [I] Key container into which the symmetric key is to be imported.
2825 * pbData [I] Pointer to a buffer which holds the symmetric key BLOB.
2826 * dwDataLen [I] Length of data in buffer at pbData.
2827 * hPubKey [I] Key used to decrypt sensitive BLOB data.
2828 * dwFlags [I] One of:
2829 * CRYPT_EXPORTABLE: the imported key is marked exportable
2830 * phKey [O] Handle to the imported key.
2831 *
2832 *
2833 * NOTES
2834 * Assumes the caller has already checked the BLOBHEADER at pbData to ensure
2835 * it's a SIMPLEBLOB.
2836 *
2837 * RETURNS
2838 * Success: TRUE.
2839 * Failure: FALSE.
2840 */
2841 static BOOL import_symmetric_key(HCRYPTPROV hProv, CONST BYTE *pbData,
2842 DWORD dwDataLen, HCRYPTKEY hPubKey,
2843 DWORD dwFlags, HCRYPTKEY *phKey)
2844 {
2845 CRYPTKEY *pCryptKey, *pPubKey;
2846 CONST BLOBHEADER *pBlobHeader = (CONST BLOBHEADER*)pbData;
2847 CONST ALG_ID *pAlgid = (CONST ALG_ID*)(pBlobHeader+1);
2848 CONST BYTE *pbKeyStream = (CONST BYTE*)(pAlgid + 1);
2849 BYTE *pbDecrypted;
2850 DWORD dwKeyLen;
2851
2852 if (!lookup_handle(&handle_table, hPubKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pPubKey) ||
2853 pPubKey->aiAlgid != CALG_RSA_KEYX)
2854 {
2855 SetLastError(NTE_BAD_PUBLIC_KEY); /* FIXME: error code? */
2856 return FALSE;
2857 }
2858
2859 if (dwDataLen < sizeof(BLOBHEADER)+sizeof(ALG_ID)+pPubKey->dwBlockLen)
2860 {
2861 SetLastError(NTE_BAD_DATA); /* FIXME: error code */
2862 return FALSE;
2863 }
2864
2865 pbDecrypted = HeapAlloc(GetProcessHeap(), 0, pPubKey->dwBlockLen);
2866 if (!pbDecrypted) return FALSE;
2867 encrypt_block_impl(pPubKey->aiAlgid, PK_PRIVATE, &pPubKey->context, pbKeyStream, pbDecrypted,
2868 RSAENH_DECRYPT);
2869
2870 dwKeyLen = RSAENH_MAX_KEY_SIZE;
2871 if (!unpad_data(pbDecrypted, pPubKey->dwBlockLen, pbDecrypted, &dwKeyLen, dwFlags)) {
2872 HeapFree(GetProcessHeap(), 0, pbDecrypted);
2873 return FALSE;
2874 }
2875
2876 *phKey = new_key(hProv, pBlobHeader->aiKeyAlg, dwKeyLen<<19, &pCryptKey);
2877 if (*phKey == (HCRYPTKEY)INVALID_HANDLE_VALUE)
2878 {
2879 HeapFree(GetProcessHeap(), 0, pbDecrypted);
2880 return FALSE;
2881 }
2882 memcpy(pCryptKey->abKeyValue, pbDecrypted, dwKeyLen);
2883 HeapFree(GetProcessHeap(), 0, pbDecrypted);
2884 setup_key(pCryptKey);
2885 if (dwFlags & CRYPT_EXPORTABLE)
2886 pCryptKey->dwPermissions |= CRYPT_EXPORT;
2887 return TRUE;
2888 }
2889
2890 /******************************************************************************
2891 * import_plaintext_key [Internal]
2892 *
2893 * Import a plaintext key into a key container.
2894 *
2895 * PARAMS
2896 * hProv [I] Key container into which the symmetric key is to be imported.
2897 * pbData [I] Pointer to a buffer which holds the plaintext key BLOB.
2898 * dwDataLen [I] Length of data in buffer at pbData.
2899 * dwFlags [I] One of:
2900 * CRYPT_EXPORTABLE: the imported key is marked exportable
2901 * phKey [O] Handle to the imported key.
2902 *
2903 *
2904 * NOTES
2905 * Assumes the caller has already checked the BLOBHEADER at pbData to ensure
2906 * it's a PLAINTEXTKEYBLOB.
2907 *
2908 * RETURNS
2909 * Success: TRUE.
2910 * Failure: FALSE.
2911 */
2912 static BOOL import_plaintext_key(HCRYPTPROV hProv, CONST BYTE *pbData,
2913 DWORD dwDataLen, DWORD dwFlags,
2914 HCRYPTKEY *phKey)
2915 {
2916 CRYPTKEY *pCryptKey;
2917 CONST BLOBHEADER *pBlobHeader = (CONST BLOBHEADER*)pbData;
2918 CONST DWORD *pKeyLen = (CONST DWORD *)(pBlobHeader + 1);
2919 CONST BYTE *pbKeyStream = (CONST BYTE*)(pKeyLen + 1);
2920
2921 if (dwDataLen < sizeof(BLOBHEADER)+sizeof(DWORD)+*pKeyLen)
2922 {
2923 SetLastError(NTE_BAD_DATA); /* FIXME: error code */
2924 return FALSE;
2925 }
2926
2927 *phKey = new_key(hProv, pBlobHeader->aiKeyAlg, *pKeyLen<<19, &pCryptKey);
2928 if (*phKey == (HCRYPTKEY)INVALID_HANDLE_VALUE)
2929 return FALSE;
2930 memcpy(pCryptKey->abKeyValue, pbKeyStream, *pKeyLen);
2931 setup_key(pCryptKey);
2932 if (dwFlags & CRYPT_EXPORTABLE)
2933 pCryptKey->dwPermissions |= CRYPT_EXPORT;
2934 return TRUE;
2935 }
2936
2937 /******************************************************************************
2938 * import_key [Internal]
2939 *
2940 * Import a BLOB'ed key into a key container, optionally storing the key's
2941 * value to the registry.
2942 *
2943 * PARAMS
2944 * hProv [I] Key container into which the key is to be imported.
2945 * pbData [I] Pointer to a buffer which holds the BLOB.
2946 * dwDataLen [I] Length of data in buffer at pbData.
2947 * hPubKey [I] Key used to decrypt sensitive BLOB data.
2948 * dwFlags [I] One of:
2949 * CRYPT_EXPORTABLE: the imported key is marked exportable
2950 * fStoreKey [I] If TRUE, the imported key is stored to the registry.
2951 * phKey [O] Handle to the imported key.
2952 *
2953 * RETURNS
2954 * Success: TRUE.
2955 * Failure: FALSE.
2956 */
2957 static BOOL import_key(HCRYPTPROV hProv, CONST BYTE *pbData, DWORD dwDataLen,
2958 HCRYPTKEY hPubKey, DWORD dwFlags, BOOL fStoreKey,
2959 HCRYPTKEY *phKey)
2960 {
2961 KEYCONTAINER *pKeyContainer;
2962 CONST BLOBHEADER *pBlobHeader = (CONST BLOBHEADER*)pbData;
2963
2964 if (!lookup_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER,
2965 (OBJECTHDR**)&pKeyContainer))
2966 {
2967 SetLastError(NTE_BAD_UID);
2968 return FALSE;
2969 }
2970
2971 if (dwDataLen < sizeof(BLOBHEADER) ||
2972 pBlobHeader->bVersion != CUR_BLOB_VERSION ||
2973 pBlobHeader->reserved != 0)
2974 {
2975 TRACE("bVersion = %d, reserved = %d\n", pBlobHeader->bVersion,
2976 pBlobHeader->reserved);
2977 SetLastError(NTE_BAD_DATA);
2978 return FALSE;
2979 }
2980
2981 /* If this is a verify-only context, the key is not persisted regardless of
2982 * fStoreKey's original value.
2983 */
2984 fStoreKey = fStoreKey && !(dwFlags & CRYPT_VERIFYCONTEXT);
2985 TRACE("blob type: %x\n", pBlobHeader->bType);
2986 switch (pBlobHeader->bType)
2987 {
2988 case PRIVATEKEYBLOB:
2989 return import_private_key(hProv, pbData, dwDataLen, dwFlags,
2990 fStoreKey, phKey);
2991
2992 case PUBLICKEYBLOB:
2993 return import_public_key(hProv, pbData, dwDataLen, dwFlags,
2994 fStoreKey, phKey);
2995
2996 case SIMPLEBLOB:
2997 return import_symmetric_key(hProv, pbData, dwDataLen, hPubKey,
2998 dwFlags, phKey);
2999
3000 case PLAINTEXTKEYBLOB:
3001 return import_plaintext_key(hProv, pbData, dwDataLen, dwFlags,
3002 phKey);
3003
3004 default:
3005 SetLastError(NTE_BAD_TYPE); /* FIXME: error code? */
3006 return FALSE;
3007 }
3008 }
3009
3010 /******************************************************************************
3011 * CPImportKey (RSAENH.@)
3012 *
3013 * Import a BLOB'ed key into a key container.
3014 *
3015 * PARAMS
3016 * hProv [I] Key container into which the key is to be imported.
3017 * pbData [I] Pointer to a buffer which holds the BLOB.
3018 * dwDataLen [I] Length of data in buffer at pbData.
3019 * hPubKey [I] Key used to decrypt sensitive BLOB data.
3020 * dwFlags [I] One of:
3021 * CRYPT_EXPORTABLE: the imported key is marked exportable
3022 * phKey [O] Handle to the imported key.
3023 *
3024 * RETURNS
3025 * Success: TRUE.
3026 * Failure: FALSE.
3027 */
3028 BOOL WINAPI RSAENH_CPImportKey(HCRYPTPROV hProv, CONST BYTE *pbData, DWORD dwDataLen,
3029 HCRYPTKEY hPubKey, DWORD dwFlags, HCRYPTKEY *phKey)
3030 {
3031 TRACE("(hProv=%08lx, pbData=%p, dwDataLen=%d, hPubKey=%08lx, dwFlags=%08x, phKey=%p)\n",
3032 hProv, pbData, dwDataLen, hPubKey, dwFlags, phKey);
3033
3034 if (dwFlags & CRYPT_IPSEC_HMAC_KEY)
3035 {
3036 FIXME("unimplemented for CRYPT_IPSEC_HMAC_KEY\n");
3037 SetLastError(NTE_BAD_FLAGS);
3038 return FALSE;
3039 }
3040 return import_key(hProv, pbData, dwDataLen, hPubKey, dwFlags, TRUE, phKey);
3041 }
3042
3043 /******************************************************************************
3044 * CPGenKey (RSAENH.@)
3045 *
3046 * Generate a key in the key container
3047 *
3048 * PARAMS
3049 * hProv [I] Key container for which a key is to be generated.
3050 * Algid [I] Crypto algorithm identifier for the key to be generated.
3051 * dwFlags [I] Upper 16 bits: Binary length of key. Lower 16 bits: Flags. See Notes
3052 * phKey [O] Handle to the generated key.
3053 *
3054 * RETURNS
3055 * Success: TRUE.
3056 * Failure: FALSE.
3057 *
3058 * FIXME
3059 * Flags currently not considered.
3060 *
3061 * NOTES
3062 * Private key-exchange- and signature-keys can be generated with Algid AT_KEYEXCHANGE
3063 * and AT_SIGNATURE values.
3064 */
3065 BOOL WINAPI RSAENH_CPGenKey(HCRYPTPROV hProv, ALG_ID Algid, DWORD dwFlags, HCRYPTKEY *phKey)
3066 {
3067 KEYCONTAINER *pKeyContainer;
3068 CRYPTKEY *pCryptKey;
3069
3070 TRACE("(hProv=%08lx, aiAlgid=%d, dwFlags=%08x, phKey=%p)\n", hProv, Algid, dwFlags, phKey);
3071
3072 if (!lookup_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER,
3073 (OBJECTHDR**)&pKeyContainer))
3074 {
3075 /* MSDN: hProv not containing valid context handle */
3076 SetLastError(NTE_BAD_UID);
3077 return FALSE;
3078 }
3079
3080 switch (Algid)
3081 {
3082 case AT_SIGNATURE:
3083 case CALG_RSA_SIGN:
3084 *phKey = new_key(hProv, CALG_RSA_SIGN, dwFlags, &pCryptKey);
3085 if (pCryptKey) {
3086 new_key_impl(pCryptKey->aiAlgid, &pCryptKey->context, pCryptKey->dwKeyLen);
3087 setup_key(pCryptKey);
3088 release_and_install_key(hProv, *phKey,
3089 &pKeyContainer->hSignatureKeyPair,
3090 FALSE);
3091 }
3092 break;
3093
3094 case AT_KEYEXCHANGE:
3095 case CALG_RSA_KEYX:
3096 *phKey = new_key(hProv, CALG_RSA_KEYX, dwFlags, &pCryptKey);
3097 if (pCryptKey) {
3098 new_key_impl(pCryptKey->aiAlgid, &pCryptKey->context, pCryptKey->dwKeyLen);
3099 setup_key(pCryptKey);
3100 release_and_install_key(hProv, *phKey,
3101 &pKeyContainer->hKeyExchangeKeyPair,
3102 FALSE);
3103 }
3104 break;
3105
3106 case CALG_RC2:
3107 case CALG_RC4:
3108 case CALG_DES:
3109 case CALG_3DES_112:
3110 case CALG_3DES:
3111 case CALG_AES:
3112 case CALG_AES_128:
3113 case CALG_AES_192:
3114 case CALG_AES_256:
3115 case CALG_PCT1_MASTER:
3116 case CALG_SSL2_MASTER:
3117 case CALG_SSL3_MASTER:
3118 case CALG_TLS1_MASTER:
3119 *phKey = new_key(hProv, Algid, dwFlags, &pCryptKey);
3120 if (pCryptKey) {
3121 gen_rand_impl(pCryptKey->abKeyValue, RSAENH_MAX_KEY_SIZE);
3122 switch (Algid) {
3123 case CALG_SSL3_MASTER:
3124 pCryptKey->abKeyValue[0] = RSAENH_SSL3_VERSION_MAJOR;
3125 pCryptKey->abKeyValue[1] = RSAENH_SSL3_VERSION_MINOR;
3126 break;
3127
3128 case CALG_TLS1_MASTER:
3129 pCryptKey->abKeyValue[0] = RSAENH_TLS1_VERSION_MAJOR;
3130 pCryptKey->abKeyValue[1] = RSAENH_TLS1_VERSION_MINOR;
3131 break;
3132 }
3133 setup_key(pCryptKey);
3134 }
3135 break;
3136
3137 default:
3138 /* MSDN: Algorithm not supported specified by Algid */
3139 SetLastError(NTE_BAD_ALGID);
3140 return FALSE;
3141 }
3142
3143 return *phKey != (HCRYPTKEY)INVALID_HANDLE_VALUE;
3144 }
3145
3146 /******************************************************************************
3147 * CPGenRandom (RSAENH.@)
3148 *
3149 * Generate a random byte stream.
3150 *
3151 * PARAMS
3152 * hProv [I] Key container that is used to generate random bytes.
3153 * dwLen [I] Specifies the number of requested random data bytes.
3154 * pbBuffer [O] Random bytes will be stored here.
3155 *
3156 * RETURNS
3157 * Success: TRUE
3158 * Failure: FALSE
3159 */
3160 BOOL WINAPI RSAENH_CPGenRandom(HCRYPTPROV hProv, DWORD dwLen, BYTE *pbBuffer)
3161 {
3162 TRACE("(hProv=%08lx, dwLen=%d, pbBuffer=%p)\n", hProv, dwLen, pbBuffer);
3163
3164 if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
3165 {
3166 /* MSDN: hProv not containing valid context handle */
3167 SetLastError(NTE_BAD_UID);
3168 return FALSE;
3169 }
3170
3171 return gen_rand_impl(pbBuffer, dwLen);
3172 }
3173
3174 /*****************************************************