[CMAKE]
[reactos.git] / lib / sdk / crt / math / i386 / pow_asm.s
1 /* ix87 specific implementation of pow function.
2 Copyright (C) 1996, 1997, 1998, 1999, 2001, 2004, 2005, 2007
3 Free Software Foundation, Inc.
4 This file is part of the GNU C Library.
5 Contributed by Ulrich Drepper <drepper@cygnus.com>, 1996.
6
7 The GNU C Library is free software; you can redistribute it and/or
8 modify it under the terms of the GNU Lesser General Public
9 License as published by the Free Software Foundation; either
10 version 2.1 of the License, or (at your option) any later version.
11
12 The GNU C Library is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 Lesser General Public License for more details.
16
17 You should have received a copy of the GNU Lesser General Public
18 License along with the GNU C Library; if not, write to the Free
19 Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
20 02111-1307 USA. */
21
22 /* Reactos modifications */
23 #include <asm.inc>
24
25 #define ALIGNARG(log2) log2
26 #define ASM_TYPE_DIRECTIVE(name,typearg)
27 #define ASM_SIZE_DIRECTIVE(name)
28 #define cfi_adjust_cfa_offset(x)
29
30 PUBLIC _pow
31
32 .data
33 ASSUME nothing
34
35 .align ALIGNARG(4)
36 ASM_TYPE_DIRECTIVE(infinity,@object)
37
38 inf_zero:
39 infinity:
40 .byte 0, 0, 0, 0, 0, 0, HEX(f0), HEX(7f)
41 ASM_SIZE_DIRECTIVE(infinity)
42 ASM_TYPE_DIRECTIVE(zero,@object)
43 zero:
44 .double 0.0
45 ASM_SIZE_DIRECTIVE(zero)
46 ASM_TYPE_DIRECTIVE(minf_mzero,@object)
47
48 minf_mzero:
49 minfinity:
50 .byte 0, 0, 0, 0, 0, 0, HEX(f0), HEX(ff)
51
52 mzero:
53 .byte 0, 0, 0, 0, 0, 0, 0, HEX(80)
54 ASM_SIZE_DIRECTIVE(minf_mzero)
55 ASM_TYPE_DIRECTIVE(one,@object)
56
57 one:
58 .double 1.0
59 ASM_SIZE_DIRECTIVE(one)
60 ASM_TYPE_DIRECTIVE(limit,@object)
61
62 limit:
63 .double 0.29
64 ASM_SIZE_DIRECTIVE(limit)
65 ASM_TYPE_DIRECTIVE(p63,@object)
66
67 p63:
68 .byte 0, 0, 0, 0, 0, 0, HEX(e0), HEX(43)
69 ASM_SIZE_DIRECTIVE(p63)
70
71 #ifdef PIC
72 #define MO(op) op##@GOTOFF(%ecx)
73 #define MOX(op,x,f) op##@GOTOFF(%ecx,x,f)
74 #else
75 #define MO(op) op
76 #define MOX(op,x,f) op[x*f]
77 #endif
78
79 .code
80 _pow:
81 fld qword ptr [esp + 12] // y
82 fxam
83
84 #ifdef PIC
85 LOAD_PIC_REG (cx)
86 #endif
87
88 fnstsw ax
89 mov dl, ah
90 and ah, HEX(045)
91 cmp ah, HEX(040) // is y == 0 ?
92 je L11
93
94 cmp ah, 5 // is y == ±inf ?
95 je L12
96
97 cmp ah, 1 // is y == NaN ?
98 je L30
99
100 fld qword ptr [esp + 4] // x : y
101
102 sub esp, 8
103 cfi_adjust_cfa_offset (8)
104
105 fxam
106 fnstsw ax
107 mov dh, ah
108 and ah, HEX(45)
109 cmp ah, HEX(040)
110 je L20 // x is ±0
111
112 cmp ah, 5
113 je L15 // x is ±inf
114
115 fxch st(1) // y : x
116
117 /* fistpll raises invalid exception for |y| >= 1L<<63. */
118 fld st // y : y : x
119 fabs // |y| : y : x
120 fcomp qword ptr ds:MO(p63) // y : x
121 fnstsw ax
122 sahf
123 jnc L2
124
125 /* First see whether `y' is a natural number. In this case we
126 can use a more precise algorithm. */
127 fld st // y : y : x
128 fistp qword ptr [esp] // y : x
129 fild qword ptr [esp] // int(y) : y : x
130 fucomp st(1) // y : x
131 fnstsw ax
132 sahf
133 jne L2
134
135 /* OK, we have an integer value for y. */
136 pop eax
137 cfi_adjust_cfa_offset (-4)
138 pop edx
139 cfi_adjust_cfa_offset (-4)
140 or edx, 0
141 fstp st // x
142 jns L4 // y >= 0, jump
143 fdivr qword ptr MO(one) // 1/x (now referred to as x)
144 neg eax
145 adc edx, 0
146 neg edx
147 L4: fld qword ptr MO(one) // 1 : x
148 fxch st(1)
149
150 L6: shrd eax, edx, 1
151 jnc L5
152 fxch st(1)
153 fmul st, st(1) // x : ST*x
154 fxch st(1)
155 L5: fmul st, st // x*x : ST*x
156 shr edx, 1
157 mov ecx, eax
158 or ecx, edx
159 jnz L6
160 fstp st // ST*x
161 ret
162
163 /* y is ±NAN */
164 L30:
165 fld qword ptr [esp + 4] // x : y
166 fld qword ptr MO(one) // 1.0 : x : y
167 fucomp st(1) // x : y
168 fnstsw ax
169 sahf
170 je L31
171 fxch st(1) // y : x
172 L31:fstp st(1)
173 ret
174
175 cfi_adjust_cfa_offset (8)
176 .align ALIGNARG(4)
177 L2: /* y is a real number. */
178 fxch st(1) // x : y
179 fld qword ptr MO(one) // 1.0 : x : y
180 fld qword ptr MO(limit) // 0.29 : 1.0 : x : y
181 fld st(2) // x : 0.29 : 1.0 : x : y
182 fsub st, st(2) // x-1 : 0.29 : 1.0 : x : y
183 fabs // |x-1| : 0.29 : 1.0 : x : y
184 fucompp // 1.0 : x : y
185 fnstsw ax
186 fxch st(1) // x : 1.0 : y
187 sahf
188 ja L7
189 fsub st, st(1) // x-1 : 1.0 : y
190 fyl2xp1 // log2(x) : y
191 jmp L8
192
193 L7: fyl2x // log2(x) : y
194 L8: fmul st, st(1) // y*log2(x) : y
195 fst st(1) // y*log2(x) : y*log2(x)
196 frndint // int(y*log2(x)) : y*log2(x)
197 fsub st(1), st // int(y*log2(x)) : fract(y*log2(x))
198 fxch // fract(y*log2(x)) : int(y*log2(x))
199 f2xm1 // 2^fract(y*log2(x))-1 : int(y*log2(x))
200 fadd qword ptr MO(one) // 2^fract(y*log2(x)) : int(y*log2(x))
201 fscale // 2^fract(y*log2(x))*2^int(y*log2(x)) : int(y*log2(x))
202 add esp, 8
203 cfi_adjust_cfa_offset (-8)
204 fstp st(1) // 2^fract(y*log2(x))*2^int(y*log2(x))
205 ret
206
207
208 // pow(x,±0) = 1
209 .align ALIGNARG(4)
210 L11:fstp st(0) // pop y
211 fld qword ptr MO(one)
212 ret
213
214 // y == ±inf
215 .align ALIGNARG(4)
216 L12: fstp st(0) // pop y
217 fld qword ptr MO(one) // 1
218 fld qword ptr [esp + 4] // x : 1
219 fabs // abs(x) : 1
220 fucompp // < 1, == 1, or > 1
221 fnstsw ax
222 and ah, HEX(45)
223 cmp ah, HEX(45)
224 je L13 // jump if x is NaN
225
226 cmp ah, HEX(40)
227 je L14 // jump if |x| == 1
228
229 shl ah, 1
230 xor dl, ah
231 and edx, 2
232 fld qword ptr MOX(inf_zero, edx, 4)
233 ret
234
235 .align ALIGNARG(4)
236 L14:fld qword ptr MO(one)
237 ret
238
239 .align ALIGNARG(4)
240 L13:fld qword ptr [esp + 4] // load x == NaN
241 ret
242
243 cfi_adjust_cfa_offset (8)
244 .align ALIGNARG(4)
245 // x is ±inf
246 L15: fstp st(0) // y
247 test dh, 2
248 jz L16 // jump if x == +inf
249
250 // We must find out whether y is an odd integer.
251 fld st // y : y
252 fistp qword ptr [esp] // y
253 fild qword ptr [esp] // int(y) : y
254 fucompp // <empty>
255 fnstsw ax
256 sahf
257 jne L17
258
259 // OK, the value is an integer, but is the number of bits small
260 // enough so that all are coming from the mantissa?
261 pop eax
262 cfi_adjust_cfa_offset (-4)
263 pop edx
264 cfi_adjust_cfa_offset (-4)
265 and al, 1
266 jz L18 // jump if not odd
267 mov eax, edx
268 or edx, edx
269 jns L155
270 neg eax
271 L155:
272 cmp eax, HEX(000200000)
273 ja L18 // does not fit in mantissa bits
274 // It's an odd integer.
275 shr edx, 31
276 fld qword ptr MOX(minf_mzero, edx, 8)
277 ret
278
279 cfi_adjust_cfa_offset (8)
280 .align ALIGNARG(4)
281 L16:fcomp qword ptr ds:MO(zero)
282 add esp, 8
283 cfi_adjust_cfa_offset (-8)
284 fnstsw ax
285 shr eax, 5
286 and eax, 8
287 fld qword ptr MOX(inf_zero, eax, 1)
288 ret
289
290 cfi_adjust_cfa_offset (8)
291 .align ALIGNARG(4)
292 L17: shl edx, 30 // sign bit for y in right position
293 add esp, 8
294 cfi_adjust_cfa_offset (-8)
295 L18: shr edx, 31
296 fld qword ptr MOX(inf_zero, edx, 8)
297 ret
298
299 cfi_adjust_cfa_offset (8)
300 .align ALIGNARG(4)
301 // x is ±0
302 L20: fstp st(0) // y
303 test dl, 2
304 jz L21 // y > 0
305
306 // x is ±0 and y is < 0. We must find out whether y is an odd integer.
307 test dh, 2
308 jz L25
309
310 fld st // y : y
311 fistp qword ptr [esp] // y
312 fild qword ptr [esp] // int(y) : y
313 fucompp // <empty>
314 fnstsw ax
315 sahf
316 jne L26
317
318 // OK, the value is an integer, but is the number of bits small
319 // enough so that all are coming from the mantissa?
320 pop eax
321 cfi_adjust_cfa_offset (-4)
322 pop edx
323 cfi_adjust_cfa_offset (-4)
324 and al, 1
325 jz L27 // jump if not odd
326 cmp edx, HEX(0ffe00000)
327 jbe L27 // does not fit in mantissa bits
328 // It's an odd integer.
329 // Raise divide-by-zero exception and get minus infinity value.
330 fld qword ptr MO(one)
331 fdiv qword ptr MO(zero)
332 fchs
333 ret
334
335 cfi_adjust_cfa_offset (8)
336 L25: fstp st(0)
337 L26: add esp, 8
338 cfi_adjust_cfa_offset (-8)
339 L27: // Raise divide-by-zero exception and get infinity value.
340 fld qword ptr MO(one)
341 fdiv qword ptr MO(zero)
342 ret
343
344 cfi_adjust_cfa_offset (8)
345 .align ALIGNARG(4)
346 // x is ±0 and y is > 0. We must find out whether y is an odd integer.
347 L21:test dh, 2
348 jz L22
349
350 fld st // y : y
351 fistp qword ptr [esp] // y
352 fild qword ptr [esp] // int(y) : y
353 fucompp // <empty>
354 fnstsw ax
355 sahf
356 jne L23
357
358 // OK, the value is an integer, but is the number of bits small
359 // enough so that all are coming from the mantissa?
360 pop eax
361 cfi_adjust_cfa_offset (-4)
362 pop edx
363 cfi_adjust_cfa_offset (-4)
364 and al, 1
365 jz L24 // jump if not odd
366 cmp edx, HEX(0ffe00000)
367 jae L24 // does not fit in mantissa bits
368 // It's an odd integer.
369 fld qword ptr MO(mzero)
370 ret
371
372 cfi_adjust_cfa_offset (8)
373 L22: fstp st(0)
374 L23: add esp, 8 // Don't use 2 x pop
375 cfi_adjust_cfa_offset (-8)
376 L24: fld qword ptr MO(zero)
377 ret
378
379 END
380
381