- Update to r53061
[reactos.git] / lib / sdk / crt / math / ieee754 / jn_yn.c
1 /* @(#)e_jn.c 5.1 93/09/24 */
2 /*
3 * ====================================================
4 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5 *
6 * Developed at SunPro, a Sun Microsystems, Inc. business.
7 * Permission to use, copy, modify, and distribute this
8 * software is freely granted, provided that this notice
9 * is preserved.
10 * ====================================================
11 */
12
13 #if defined(LIBM_SCCS) && !defined(lint)
14 static char rcsid[] = "$NetBSD: e_jn.c,v 1.9 1995/05/10 20:45:34 jtc Exp $";
15 #endif
16
17 /*
18 * __ieee754_jn(n, x), __ieee754_yn(n, x)
19 * floating point Bessel's function of the 1st and 2nd kind
20 * of order n
21 *
22 * Special cases:
23 * y0(0)=y1(0)=yn(n,0) = -inf with overflow signal;
24 * y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
25 * Note 2. About jn(n,x), yn(n,x)
26 * For n=0, j0(x) is called,
27 * for n=1, j1(x) is called,
28 * for n<x, forward recursion us used starting
29 * from values of j0(x) and j1(x).
30 * for n>x, a continued fraction approximation to
31 * j(n,x)/j(n-1,x) is evaluated and then backward
32 * recursion is used starting from a supposed value
33 * for j(n,x). The resulting value of j(0,x) is
34 * compared with the actual value to correct the
35 * supposed value of j(n,x).
36 *
37 * yn(n,x) is similar in all respects, except
38 * that forward recursion is used for all
39 * values of n>1.
40 *
41 */
42
43 #include "math.h"
44 #include "ieee754.h"
45
46 #ifdef __STDC__
47 static const double
48 #else
49 static double
50 #endif
51 invsqrtpi= 5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */
52 two = 2.00000000000000000000e+00, /* 0x40000000, 0x00000000 */
53 one = 1.00000000000000000000e+00; /* 0x3FF00000, 0x00000000 */
54
55 #ifdef __STDC__
56 static const double zero = 0.00000000000000000000e+00;
57 #else
58 static double zero = 0.00000000000000000000e+00;
59 #endif
60
61 #ifdef __STDC__
62 double __ieee754_jn(int n, double x)
63 #else
64 double __ieee754_jn(n,x)
65 int n; double x;
66 #endif
67 {
68 int32_t i,hx,ix,lx, sgn;
69 double a, b, temp, di;
70 double z, w;
71
72 /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
73 * Thus, J(-n,x) = J(n,-x)
74 */
75 EXTRACT_WORDS(hx,lx,x);
76 ix = 0x7fffffff&hx;
77 /* if J(n,NaN) is NaN */
78 if((ix|((u_int32_t)(lx|-lx))>>31)>0x7ff00000) return x+x;
79 if(n<0){
80 n = -n;
81 x = -x;
82 hx ^= 0x80000000;
83 }
84 if(n==0) return(__ieee754_j0(x));
85 if(n==1) return(__ieee754_j1(x));
86 sgn = (n&1)&(hx>>31); /* even n -- 0, odd n -- sign(x) */
87 x = fabs(x);
88 if((ix|lx)==0||ix>=0x7ff00000) /* if x is 0 or inf */
89 b = zero;
90 else if((double)n<=x) {
91 /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
92 if(ix>=0x52D00000) { /* x > 2**302 */
93 /* (x >> n**2)
94 * Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
95 * Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
96 * Let s=sin(x), c=cos(x),
97 * xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
98 *
99 * n sin(xn)*sqt2 cos(xn)*sqt2
100 * ----------------------------------
101 * 0 s-c c+s
102 * 1 -s-c -c+s
103 * 2 -s+c -c-s
104 * 3 s+c c-s
105 */
106 double s;
107 double c;
108 __sincos (x, &s, &c);
109 switch(n&3) {
110 case 0: temp = c + s; break;
111 case 1: temp = -c + s; break;
112 case 2: temp = -c - s; break;
113 case 3: temp = c - s; break;
114 }
115 b = invsqrtpi*temp/__ieee754_sqrt(x);
116 } else {
117 a = __ieee754_j0(x);
118 b = __ieee754_j1(x);
119 for(i=1;i<n;i++){
120 temp = b;
121 b = b*((double)(i+i)/x) - a; /* avoid underflow */
122 a = temp;
123 }
124 }
125 } else {
126 if(ix<0x3e100000) { /* x < 2**-29 */
127 /* x is tiny, return the first Taylor expansion of J(n,x)
128 * J(n,x) = 1/n!*(x/2)^n - ...
129 */
130 if(n>33) /* underflow */
131 b = zero;
132 else {
133 temp = x*0.5; b = temp;
134 for (a=one,i=2;i<=n;i++) {
135 a *= (double)i; /* a = n! */
136 b *= temp; /* b = (x/2)^n */
137 }
138 b = b/a;
139 }
140 } else {
141 /* use backward recurrence */
142 /* x x^2 x^2
143 * J(n,x)/J(n-1,x) = ---- ------ ------ .....
144 * 2n - 2(n+1) - 2(n+2)
145 *
146 * 1 1 1
147 * (for large x) = ---- ------ ------ .....
148 * 2n 2(n+1) 2(n+2)
149 * -- - ------ - ------ -
150 * x x x
151 *
152 * Let w = 2n/x and h=2/x, then the above quotient
153 * is equal to the continued fraction:
154 * 1
155 * = -----------------------
156 * 1
157 * w - -----------------
158 * 1
159 * w+h - ---------
160 * w+2h - ...
161 *
162 * To determine how many terms needed, let
163 * Q(0) = w, Q(1) = w(w+h) - 1,
164 * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
165 * When Q(k) > 1e4 good for single
166 * When Q(k) > 1e9 good for double
167 * When Q(k) > 1e17 good for quadruple
168 */
169 /* determine k */
170 double t,v;
171 double q0,q1,h,tmp; int32_t k,m;
172 w = (n+n)/(double)x; h = 2.0/(double)x;
173 q0 = w; z = w+h; q1 = w*z - 1.0; k=1;
174 while(q1<1.0e9) {
175 k += 1; z += h;
176 tmp = z*q1 - q0;
177 q0 = q1;
178 q1 = tmp;
179 }
180 m = n+n;
181 for(t=zero, i = 2*(n+k); i>=m; i -= 2) t = one/(i/x-t);
182 a = t;
183 b = one;
184 /* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
185 * Hence, if n*(log(2n/x)) > ...
186 * single 8.8722839355e+01
187 * double 7.09782712893383973096e+02
188 * long double 1.1356523406294143949491931077970765006170e+04
189 * then recurrent value may overflow and the result is
190 * likely underflow to zero
191 */
192 tmp = n;
193 v = two/x;
194 tmp = tmp*__ieee754_log(fabs(v*tmp));
195 if(tmp<7.09782712893383973096e+02) {
196 for(i=n-1,di=(double)(i+i);i>0;i--){
197 temp = b;
198 b *= di;
199 b = b/x - a;
200 a = temp;
201 di -= two;
202 }
203 } else {
204 for(i=n-1,di=(double)(i+i);i>0;i--){
205 temp = b;
206 b *= di;
207 b = b/x - a;
208 a = temp;
209 di -= two;
210 /* scale b to avoid spurious overflow */
211 if(b>1e100) {
212 a /= b;
213 t /= b;
214 b = one;
215 }
216 }
217 }
218 b = (t*__ieee754_j0(x)/b);
219 }
220 }
221 if(sgn==1) return -b; else return b;
222 }
223
224 #ifdef __STDC__
225 double __ieee754_yn(int n, double x)
226 #else
227 double __ieee754_yn(n,x)
228 int n; double x;
229 #endif
230 {
231 int32_t i,hx,ix,lx;
232 int32_t sign;
233 double a, b, temp;
234
235 EXTRACT_WORDS(hx,lx,x);
236 ix = 0x7fffffff&hx;
237 /* if Y(n,NaN) is NaN */
238 if((ix|((u_int32_t)(lx|-lx))>>31)>0x7ff00000) return x+x;
239 if((ix|lx)==0) return -HUGE_VAL+x; /* -inf and overflow exception. */;
240 if(hx<0) return zero/(zero*x);
241 sign = 1;
242 if(n<0){
243 n = -n;
244 sign = 1 - ((n&1)<<1);
245 }
246 if(n==0) return(__ieee754_y0(x));
247 if(n==1) return(sign*__ieee754_y1(x));
248 if(ix==0x7ff00000) return zero;
249 if(ix>=0x52D00000) { /* x > 2**302 */
250 /* (x >> n**2)
251 * Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
252 * Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
253 * Let s=sin(x), c=cos(x),
254 * xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
255 *
256 * n sin(xn)*sqt2 cos(xn)*sqt2
257 * ----------------------------------
258 * 0 s-c c+s
259 * 1 -s-c -c+s
260 * 2 -s+c -c-s
261 * 3 s+c c-s
262 */
263 double c;
264 double s;
265 __sincos (x, &s, &c);
266 switch(n&3) {
267 case 0: temp = s - c; break;
268 case 1: temp = -s - c; break;
269 case 2: temp = -s + c; break;
270 case 3: temp = s + c; break;
271 }
272 b = invsqrtpi*temp/__ieee754_sqrt(x);
273 } else {
274 u_int32_t high;
275 a = __ieee754_y0(x);
276 b = __ieee754_y1(x);
277 /* quit if b is -inf */
278 GET_HIGH_WORD(high,b);
279 for(i=1;i<n&&high!=0xfff00000;i++){
280 temp = b;
281 b = ((double)(i+i)/x)*b - a;
282 GET_HIGH_WORD(high,b);
283 a = temp;
284 }
285 }
286 if(sign>0) return b; else return -b;
287 }