Merge to trunk head (r46631)
[reactos.git] / ntoskrnl / ke / krnlinit.c
1 /*
2 * PROJECT: ReactOS Kernel
3 * LICENSE: GPL - See COPYING in the top level directory
4 * FILE: ntoskrnl/ke/krnlinit.c
5 * PURPOSE: Portable part of kernel initialization
6 * PROGRAMMERS: Alex Ionescu (alex.ionescu@reactos.org)
7 */
8
9 /* INCLUDES ******************************************************************/
10
11 #include <ntoskrnl.h>
12 #define NDEBUG
13 #include <debug.h>
14 #include <internal/napi.h>
15
16 /* GLOBALS *******************************************************************/
17
18 /* System call count */
19 ULONG KiServiceLimit = NUMBER_OF_SYSCALLS;
20
21 /* ARC Loader Block */
22 PLOADER_PARAMETER_BLOCK KeLoaderBlock;
23
24 /* PRCB Array */
25 PKPRCB KiProcessorBlock[MAXIMUM_PROCESSORS];
26
27 /* NUMA Node Support */
28 KNODE KiNode0;
29 PKNODE KeNodeBlock[1];
30 UCHAR KeNumberNodes = 1;
31 UCHAR KeProcessNodeSeed;
32
33 /* Initial Process and Thread */
34 ETHREAD KiInitialThread;
35 EPROCESS KiInitialProcess;
36
37 /* System-defined Spinlocks */
38 KSPIN_LOCK KiDispatcherLock;
39 KSPIN_LOCK MmPfnLock;
40 KSPIN_LOCK MmSystemSpaceLock;
41 KSPIN_LOCK CcBcbSpinLock;
42 KSPIN_LOCK CcMasterSpinLock;
43 KSPIN_LOCK CcVacbSpinLock;
44 KSPIN_LOCK CcWorkQueueSpinLock;
45 KSPIN_LOCK NonPagedPoolLock;
46 KSPIN_LOCK MmNonPagedPoolLock;
47 KSPIN_LOCK IopCancelSpinLock;
48 KSPIN_LOCK IopVpbSpinLock;
49 KSPIN_LOCK IopDatabaseLock;
50 KSPIN_LOCK IopCompletionLock;
51 KSPIN_LOCK NtfsStructLock;
52 KSPIN_LOCK AfdWorkQueueSpinLock;
53 KSPIN_LOCK KiTimerTableLock[16];
54 KSPIN_LOCK KiReverseStallIpiLock;
55
56 /* FUNCTIONS *****************************************************************/
57
58 VOID
59 NTAPI
60 KiInitSystem(VOID)
61 {
62 ULONG i;
63
64 /* Initialize Bugcheck Callback data */
65 InitializeListHead(&KeBugcheckCallbackListHead);
66 InitializeListHead(&KeBugcheckReasonCallbackListHead);
67 KeInitializeSpinLock(&BugCheckCallbackLock);
68
69 /* Initialize the Timer Expiration DPC */
70 KeInitializeDpc(&KiTimerExpireDpc, KiTimerExpiration, NULL);
71 KeSetTargetProcessorDpc(&KiTimerExpireDpc, 0);
72
73 /* Initialize Profiling data */
74 KeInitializeSpinLock(&KiProfileLock);
75 InitializeListHead(&KiProfileListHead);
76 InitializeListHead(&KiProfileSourceListHead);
77
78 /* Loop the timer table */
79 for (i = 0; i < TIMER_TABLE_SIZE; i++)
80 {
81 /* Initialize the list and entries */
82 InitializeListHead(&KiTimerTableListHead[i].Entry);
83 KiTimerTableListHead[i].Time.HighPart = 0xFFFFFFFF;
84 KiTimerTableListHead[i].Time.LowPart = 0;
85 }
86
87 /* Initialize the Swap event and all swap lists */
88 KeInitializeEvent(&KiSwapEvent, SynchronizationEvent, FALSE);
89 InitializeListHead(&KiProcessInSwapListHead);
90 InitializeListHead(&KiProcessOutSwapListHead);
91 InitializeListHead(&KiStackInSwapListHead);
92
93 /* Initialize the mutex for generic DPC calls */
94 ExInitializeFastMutex(&KiGenericCallDpcMutex);
95
96 /* Initialize the syscall table */
97 KeServiceDescriptorTable[0].Base = MainSSDT;
98 KeServiceDescriptorTable[0].Count = NULL;
99 KeServiceDescriptorTable[0].Limit = KiServiceLimit;
100 KeServiceDescriptorTable[1].Limit = 0;
101 KeServiceDescriptorTable[0].Number = MainSSPT;
102
103 /* Copy the the current table into the shadow table for win32k */
104 RtlCopyMemory(KeServiceDescriptorTableShadow,
105 KeServiceDescriptorTable,
106 sizeof(KeServiceDescriptorTable));
107 }
108
109 LARGE_INTEGER
110 NTAPI
111 KiComputeReciprocal(IN LONG Divisor,
112 OUT PUCHAR Shift)
113 {
114 LARGE_INTEGER Reciprocal = {{0, 0}};
115 LONG BitCount = 0, Remainder = 1;
116
117 /* Start by calculating the remainder */
118 while (Reciprocal.HighPart >= 0)
119 {
120 /* Increase the loop (bit) count */
121 BitCount++;
122
123 /* Calculate the current fraction */
124 Reciprocal.HighPart = (Reciprocal.HighPart << 1) |
125 (Reciprocal.LowPart >> 31);
126 Reciprocal.LowPart <<= 1;
127
128 /* Double the remainder and see if we went past the divisor */
129 Remainder <<= 1;
130 if (Remainder >= Divisor)
131 {
132 /* Set the low-bit and calculate the new remainder */
133 Remainder -= Divisor;
134 Reciprocal.LowPart |= 1;
135 }
136 }
137
138 /* Check if we have a remainder */
139 if (Remainder)
140 {
141 /* Check if the current fraction value is too large */
142 if ((Reciprocal.LowPart == 0xFFFFFFFF) &&
143 (Reciprocal.HighPart == (LONG)0xFFFFFFFF))
144 {
145 /* Set the high bit and reduce the bit count */
146 Reciprocal.LowPart = 0;
147 Reciprocal.HighPart = 0x80000000;
148 BitCount--;
149 }
150 else
151 {
152 /* Check if only the lowest bits got too large */
153 if (Reciprocal.LowPart == 0xFFFFFFFF)
154 {
155 /* Reset them and increase the high bits instead */
156 Reciprocal.LowPart = 0;
157 Reciprocal.HighPart++;
158 }
159 else
160 {
161 /* All is well, increase the low bits */
162 Reciprocal.LowPart++;
163 }
164 }
165 }
166
167 /* Now calculate the actual shift and return the reciprocal */
168 *Shift = (UCHAR)BitCount - 64;
169 return Reciprocal;
170 }
171
172 VOID
173 NTAPI
174 KiInitSpinLocks(IN PKPRCB Prcb,
175 IN CCHAR Number)
176 {
177 ULONG i;
178
179 /* Initialize Dispatcher Fields */
180 Prcb->QueueIndex = 1;
181 Prcb->ReadySummary = 0;
182 Prcb->DeferredReadyListHead.Next = NULL;
183 for (i = 0; i < MAXIMUM_PRIORITY; i++)
184 {
185 /* Initialize the ready list */
186 InitializeListHead(&Prcb->DispatcherReadyListHead[i]);
187 }
188
189 /* Initialize DPC Fields */
190 InitializeListHead(&Prcb->DpcData[DPC_NORMAL].DpcListHead);
191 KeInitializeSpinLock(&Prcb->DpcData[DPC_NORMAL].DpcLock);
192 Prcb->DpcData[DPC_NORMAL].DpcQueueDepth = 0;
193 Prcb->DpcData[DPC_NORMAL].DpcCount = 0;
194 Prcb->DpcRoutineActive = FALSE;
195 Prcb->MaximumDpcQueueDepth = KiMaximumDpcQueueDepth;
196 Prcb->MinimumDpcRate = KiMinimumDpcRate;
197 Prcb->AdjustDpcThreshold = KiAdjustDpcThreshold;
198 KeInitializeDpc(&Prcb->CallDpc, NULL, NULL);
199 KeSetTargetProcessorDpc(&Prcb->CallDpc, Number);
200 KeSetImportanceDpc(&Prcb->CallDpc, HighImportance);
201
202 /* Initialize the Wait List Head */
203 InitializeListHead(&Prcb->WaitListHead);
204
205 /* Initialize Queued Spinlocks */
206 Prcb->LockQueue[LockQueueDispatcherLock].Next = NULL;
207 Prcb->LockQueue[LockQueueDispatcherLock].Lock = &KiDispatcherLock;
208 Prcb->LockQueue[LockQueueExpansionLock].Next = NULL;
209 Prcb->LockQueue[LockQueueExpansionLock].Lock = NULL;
210 Prcb->LockQueue[LockQueuePfnLock].Next = NULL;
211 Prcb->LockQueue[LockQueuePfnLock].Lock = &MmPfnLock;
212 Prcb->LockQueue[LockQueueSystemSpaceLock].Next = NULL;
213 Prcb->LockQueue[LockQueueSystemSpaceLock].Lock = &MmSystemSpaceLock;
214 Prcb->LockQueue[LockQueueBcbLock].Next = NULL;
215 Prcb->LockQueue[LockQueueBcbLock].Lock = &CcBcbSpinLock;
216 Prcb->LockQueue[LockQueueMasterLock].Next = NULL;
217 Prcb->LockQueue[LockQueueMasterLock].Lock = &CcMasterSpinLock;
218 Prcb->LockQueue[LockQueueVacbLock].Next = NULL;
219 Prcb->LockQueue[LockQueueVacbLock].Lock = &CcVacbSpinLock;
220 Prcb->LockQueue[LockQueueWorkQueueLock].Next = NULL;
221 Prcb->LockQueue[LockQueueWorkQueueLock].Lock = &CcWorkQueueSpinLock;
222 Prcb->LockQueue[LockQueueNonPagedPoolLock].Next = NULL;
223 Prcb->LockQueue[LockQueueNonPagedPoolLock].Lock = &NonPagedPoolLock;
224 Prcb->LockQueue[LockQueueMmNonPagedPoolLock].Next = NULL;
225 Prcb->LockQueue[LockQueueMmNonPagedPoolLock].Lock = &MmNonPagedPoolLock;
226 Prcb->LockQueue[LockQueueIoCancelLock].Next = NULL;
227 Prcb->LockQueue[LockQueueIoCancelLock].Lock = &IopCancelSpinLock;
228 Prcb->LockQueue[LockQueueIoVpbLock].Next = NULL;
229 Prcb->LockQueue[LockQueueIoVpbLock].Lock = &IopVpbSpinLock;
230 Prcb->LockQueue[LockQueueIoDatabaseLock].Next = NULL;
231 Prcb->LockQueue[LockQueueIoDatabaseLock].Lock = &IopDatabaseLock;
232 Prcb->LockQueue[LockQueueIoCompletionLock].Next = NULL;
233 Prcb->LockQueue[LockQueueIoCompletionLock].Lock = &IopCompletionLock;
234 Prcb->LockQueue[LockQueueNtfsStructLock].Next = NULL;
235 Prcb->LockQueue[LockQueueNtfsStructLock].Lock = &NtfsStructLock;
236 Prcb->LockQueue[LockQueueAfdWorkQueueLock].Next = NULL;
237 Prcb->LockQueue[LockQueueAfdWorkQueueLock].Lock = &AfdWorkQueueSpinLock;
238 Prcb->LockQueue[LockQueueUnusedSpare16].Next = NULL;
239 Prcb->LockQueue[LockQueueUnusedSpare16].Lock = NULL;
240
241 /* Loop timer locks */
242 for (i = 0; i < LOCK_QUEUE_TIMER_TABLE_LOCKS; i++)
243 {
244 /* Initialize the lock and setup the Queued Spinlock */
245 KeInitializeSpinLock(&KiTimerTableLock[i]);
246 Prcb->LockQueue[LockQueueTimerTableLock + i].Next = NULL;
247 Prcb->LockQueue[LockQueueTimerTableLock + i].Lock =
248 &KiTimerTableLock[i];
249 }
250
251 /* Initialize the PRCB lock */
252 KeInitializeSpinLock(&Prcb->PrcbLock);
253
254 /* Check if this is the boot CPU */
255 if (!Number)
256 {
257 /* Initialize the lock themselves */
258 KeInitializeSpinLock(&KiDispatcherLock);
259 KeInitializeSpinLock(&KiReverseStallIpiLock);
260 KeInitializeSpinLock(&MmPfnLock);
261 KeInitializeSpinLock(&MmSystemSpaceLock);
262 KeInitializeSpinLock(&CcBcbSpinLock);
263 KeInitializeSpinLock(&CcMasterSpinLock);
264 KeInitializeSpinLock(&CcVacbSpinLock);
265 KeInitializeSpinLock(&CcWorkQueueSpinLock);
266 KeInitializeSpinLock(&IopCancelSpinLock);
267 KeInitializeSpinLock(&IopCompletionLock);
268 KeInitializeSpinLock(&IopDatabaseLock);
269 KeInitializeSpinLock(&IopVpbSpinLock);
270 KeInitializeSpinLock(&NonPagedPoolLock);
271 KeInitializeSpinLock(&MmNonPagedPoolLock);
272 KeInitializeSpinLock(&NtfsStructLock);
273 KeInitializeSpinLock(&AfdWorkQueueSpinLock);
274 }
275 }
276
277 BOOLEAN
278 NTAPI
279 KeInitSystem(VOID)
280 {
281 /* Check if Threaded DPCs are enabled */
282 if (KeThreadDpcEnable)
283 {
284 /* FIXME: TODO */
285 DPRINT1("Threaded DPCs not yet supported\n");
286 }
287
288 /* Initialize non-portable parts of the kernel */
289 KiInitMachineDependent();
290 return TRUE;
291 }