Add leftover from sync, fixes build.
[reactos.git] / ntoskrnl / mm / ARM3 / mminit.c
1 /*
2 * PROJECT: ReactOS Kernel
3 * LICENSE: BSD - See COPYING.ARM in the top level directory
4 * FILE: ntoskrnl/mm/ARM3/mminit.c
5 * PURPOSE: ARM Memory Manager Initialization
6 * PROGRAMMERS: ReactOS Portable Systems Group
7 */
8
9 /* INCLUDES *******************************************************************/
10
11 #include <ntoskrnl.h>
12 #define NDEBUG
13 #include <debug.h>
14
15 #line 15 "ARM³::INIT"
16 #define MODULE_INVOLVED_IN_ARM3
17 #include "miarm.h"
18
19 /* GLOBALS ********************************************************************/
20
21 //
22 // These are all registry-configurable, but by default, the memory manager will
23 // figure out the most appropriate values.
24 //
25 ULONG MmMaximumNonPagedPoolPercent;
26 ULONG MmSizeOfNonPagedPoolInBytes;
27 ULONG MmMaximumNonPagedPoolInBytes;
28
29 /* Some of the same values, in pages */
30 PFN_NUMBER MmMaximumNonPagedPoolInPages;
31
32 //
33 // These numbers describe the discrete equation components of the nonpaged
34 // pool sizing algorithm.
35 //
36 // They are described on http://support.microsoft.com/default.aspx/kb/126402/ja
37 // along with the algorithm that uses them, which is implemented later below.
38 //
39 ULONG MmMinimumNonPagedPoolSize = 256 * 1024;
40 ULONG MmMinAdditionNonPagedPoolPerMb = 32 * 1024;
41 ULONG MmDefaultMaximumNonPagedPool = 1024 * 1024;
42 ULONG MmMaxAdditionNonPagedPoolPerMb = 400 * 1024;
43
44 //
45 // The memory layout (and especially variable names) of the NT kernel mode
46 // components can be a bit hard to twig, especially when it comes to the non
47 // paged area.
48 //
49 // There are really two components to the non-paged pool:
50 //
51 // - The initial nonpaged pool, sized dynamically up to a maximum.
52 // - The expansion nonpaged pool, sized dynamically up to a maximum.
53 //
54 // The initial nonpaged pool is physically continuous for performance, and
55 // immediately follows the PFN database, typically sharing the same PDE. It is
56 // a very small resource (32MB on a 1GB system), and capped at 128MB.
57 //
58 // Right now we call this the "ARM³ Nonpaged Pool" and it begins somewhere after
59 // the PFN database (which starts at 0xB0000000).
60 //
61 // The expansion nonpaged pool, on the other hand, can grow much bigger (400MB
62 // for a 1GB system). On ARM³ however, it is currently capped at 128MB.
63 //
64 // The address where the initial nonpaged pool starts is aptly named
65 // MmNonPagedPoolStart, and it describes a range of MmSizeOfNonPagedPoolInBytes
66 // bytes.
67 //
68 // Expansion nonpaged pool starts at an address described by the variable called
69 // MmNonPagedPoolExpansionStart, and it goes on for MmMaximumNonPagedPoolInBytes
70 // minus MmSizeOfNonPagedPoolInBytes bytes, always reaching MmNonPagedPoolEnd
71 // (because of the way it's calculated) at 0xFFBE0000.
72 //
73 // Initial nonpaged pool is allocated and mapped early-on during boot, but what
74 // about the expansion nonpaged pool? It is instead composed of special pages
75 // which belong to what are called System PTEs. These PTEs are the matter of a
76 // later discussion, but they are also considered part of the "nonpaged" OS, due
77 // to the fact that they are never paged out -- once an address is described by
78 // a System PTE, it is always valid, until the System PTE is torn down.
79 //
80 // System PTEs are actually composed of two "spaces", the system space proper,
81 // and the nonpaged pool expansion space. The latter, as we've already seen,
82 // begins at MmNonPagedPoolExpansionStart. Based on the number of System PTEs
83 // that the system will support, the remaining address space below this address
84 // is used to hold the system space PTEs. This address, in turn, is held in the
85 // variable named MmNonPagedSystemStart, which itself is never allowed to go
86 // below 0xEB000000 (thus creating an upper bound on the number of System PTEs).
87 //
88 // This means that 330MB are reserved for total nonpaged system VA, on top of
89 // whatever the initial nonpaged pool allocation is.
90 //
91 // The following URLs, valid as of April 23rd, 2008, support this evidence:
92 //
93 // http://www.cs.miami.edu/~burt/journal/NT/memory.html
94 // http://www.ditii.com/2007/09/28/windows-memory-management-x86-virtual-address-space/
95 //
96 PVOID MmNonPagedSystemStart;
97 PVOID MmNonPagedPoolStart;
98 PVOID MmNonPagedPoolExpansionStart;
99 PVOID MmNonPagedPoolEnd = MI_NONPAGED_POOL_END;
100
101 //
102 // This is where paged pool starts by default
103 //
104 PVOID MmPagedPoolStart = MI_PAGED_POOL_START;
105 PVOID MmPagedPoolEnd;
106
107 //
108 // And this is its default size
109 //
110 ULONG MmSizeOfPagedPoolInBytes = MI_MIN_INIT_PAGED_POOLSIZE;
111 PFN_NUMBER MmSizeOfPagedPoolInPages = MI_MIN_INIT_PAGED_POOLSIZE / PAGE_SIZE;
112
113 //
114 // Session space starts at 0xBFFFFFFF and grows downwards
115 // By default, it includes an 8MB image area where we map win32k and video card
116 // drivers, followed by a 4MB area containing the session's working set. This is
117 // then followed by a 20MB mapped view area and finally by the session's paged
118 // pool, by default 16MB.
119 //
120 // On a normal system, this results in session space occupying the region from
121 // 0xBD000000 to 0xC0000000
122 //
123 // See miarm.h for the defines that determine the sizing of this region. On an
124 // NT system, some of these can be configured through the registry, but we don't
125 // support that yet.
126 //
127 PVOID MiSessionSpaceEnd; // 0xC0000000
128 PVOID MiSessionImageEnd; // 0xC0000000
129 PVOID MiSessionImageStart; // 0xBF800000
130 PVOID MiSessionViewStart; // 0xBE000000
131 PVOID MiSessionPoolEnd; // 0xBE000000
132 PVOID MiSessionPoolStart; // 0xBD000000
133 PVOID MmSessionBase; // 0xBD000000
134 ULONG MmSessionSize;
135 ULONG MmSessionViewSize;
136 ULONG MmSessionPoolSize;
137 ULONG MmSessionImageSize;
138
139 /*
140 * These are the PTE addresses of the boundaries carved out above
141 */
142 PMMPTE MiSessionImagePteStart;
143 PMMPTE MiSessionImagePteEnd;
144 PMMPTE MiSessionBasePte;
145 PMMPTE MiSessionLastPte;
146
147 //
148 // The system view space, on the other hand, is where sections that are memory
149 // mapped into "system space" end up.
150 //
151 // By default, it is a 16MB region.
152 //
153 PVOID MiSystemViewStart;
154 ULONG MmSystemViewSize;
155
156 //
157 // A copy of the system page directory (the page directory associated with the
158 // System process) is kept (double-mapped) by the manager in order to lazily
159 // map paged pool PDEs into external processes when they fault on a paged pool
160 // address.
161 //
162 PFN_NUMBER MmSystemPageDirectory[PD_COUNT];
163 PMMPTE MmSystemPagePtes;
164
165 //
166 // The system cache starts right after hyperspace. The first few pages are for
167 // keeping track of the system working set list.
168 //
169 // This should be 0xC0C00000 -- the cache itself starts at 0xC1000000
170 //
171 PMMWSL MmSystemCacheWorkingSetList = MI_SYSTEM_CACHE_WS_START;
172
173 //
174 // Windows NT seems to choose between 7000, 11000 and 50000
175 // On systems with more than 32MB, this number is then doubled, and further
176 // aligned up to a PDE boundary (4MB).
177 //
178 ULONG MmNumberOfSystemPtes;
179
180 //
181 // This is how many pages the PFN database will take up
182 // In Windows, this includes the Quark Color Table, but not in ARM³
183 //
184 ULONG MxPfnAllocation;
185
186 //
187 // Unlike the old ReactOS Memory Manager, ARM³ (and Windows) does not keep track
188 // of pages that are not actually valid physical memory, such as ACPI reserved
189 // regions, BIOS address ranges, or holes in physical memory address space which
190 // could indicate device-mapped I/O memory.
191 //
192 // In fact, the lack of a PFN entry for a page usually indicates that this is
193 // I/O space instead.
194 //
195 // A bitmap, called the PFN bitmap, keeps track of all page frames by assigning
196 // a bit to each. If the bit is set, then the page is valid physical RAM.
197 //
198 RTL_BITMAP MiPfnBitMap;
199
200 //
201 // This structure describes the different pieces of RAM-backed address space
202 //
203 PPHYSICAL_MEMORY_DESCRIPTOR MmPhysicalMemoryBlock;
204
205 //
206 // This is where we keep track of the most basic physical layout markers
207 //
208 ULONG MmNumberOfPhysicalPages, MmHighestPhysicalPage, MmLowestPhysicalPage = -1;
209
210 //
211 // The total number of pages mapped by the boot loader, which include the kernel
212 // HAL, boot drivers, registry, NLS files and other loader data structures is
213 // kept track of here. This depends on "LoaderPagesSpanned" being correct when
214 // coming from the loader.
215 //
216 // This number is later aligned up to a PDE boundary.
217 //
218 ULONG MmBootImageSize;
219
220 //
221 // These three variables keep track of the core separation of address space that
222 // exists between kernel mode and user mode.
223 //
224 ULONG MmUserProbeAddress;
225 PVOID MmHighestUserAddress;
226 PVOID MmSystemRangeStart;
227
228 /* And these store the respective highest PTE/PDE address */
229 PMMPTE MiHighestUserPte;
230 PMMPDE MiHighestUserPde;
231
232 /* These variables define the system cache address space */
233 PVOID MmSystemCacheStart;
234 PVOID MmSystemCacheEnd;
235 MMSUPPORT MmSystemCacheWs;
236
237 //
238 // This is where hyperspace ends (followed by the system cache working set)
239 //
240 PVOID MmHyperSpaceEnd;
241
242 //
243 // Page coloring algorithm data
244 //
245 ULONG MmSecondaryColors;
246 ULONG MmSecondaryColorMask;
247
248 //
249 // Actual (registry-configurable) size of a GUI thread's stack
250 //
251 ULONG MmLargeStackSize = KERNEL_LARGE_STACK_SIZE;
252
253 //
254 // Before we have a PFN database, memory comes straight from our physical memory
255 // blocks, which is nice because it's guaranteed contiguous and also because once
256 // we take a page from here, the system doesn't see it anymore.
257 // However, once the fun is over, those pages must be re-integrated back into
258 // PFN society life, and that requires us keeping a copy of the original layout
259 // so that we can parse it later.
260 //
261 PMEMORY_ALLOCATION_DESCRIPTOR MxFreeDescriptor;
262 MEMORY_ALLOCATION_DESCRIPTOR MxOldFreeDescriptor;
263
264 /*
265 * For each page's worth bytes of L2 cache in a given set/way line, the zero and
266 * free lists are organized in what is called a "color".
267 *
268 * This array points to the two lists, so it can be thought of as a multi-dimensional
269 * array of MmFreePagesByColor[2][MmSecondaryColors]. Since the number is dynamic,
270 * we describe the array in pointer form instead.
271 *
272 * On a final note, the color tables themselves are right after the PFN database.
273 */
274 C_ASSERT(FreePageList == 1);
275 PMMCOLOR_TABLES MmFreePagesByColor[FreePageList + 1];
276
277 /* An event used in Phase 0 before the rest of the system is ready to go */
278 KEVENT MiTempEvent;
279
280 /* All the events used for memory threshold notifications */
281 PKEVENT MiLowMemoryEvent;
282 PKEVENT MiHighMemoryEvent;
283 PKEVENT MiLowPagedPoolEvent;
284 PKEVENT MiHighPagedPoolEvent;
285 PKEVENT MiLowNonPagedPoolEvent;
286 PKEVENT MiHighNonPagedPoolEvent;
287
288 /* The actual thresholds themselves, in page numbers */
289 PFN_NUMBER MmLowMemoryThreshold;
290 PFN_NUMBER MmHighMemoryThreshold;
291 PFN_NUMBER MiLowPagedPoolThreshold;
292 PFN_NUMBER MiHighPagedPoolThreshold;
293 PFN_NUMBER MiLowNonPagedPoolThreshold;
294 PFN_NUMBER MiHighNonPagedPoolThreshold;
295
296 /*
297 * This number determines how many free pages must exist, at minimum, until we
298 * start trimming working sets and flushing modified pages to obtain more free
299 * pages.
300 *
301 * This number changes if the system detects that this is a server product
302 */
303 PFN_NUMBER MmMinimumFreePages = 26;
304
305 /*
306 * This number indicates how many pages we consider to be a low limit of having
307 * "plenty" of free memory.
308 *
309 * It is doubled on systems that have more than 63MB of memory
310 */
311 PFN_NUMBER MmPlentyFreePages = 400;
312
313 /* These values store the type of system this is (small, med, large) and if server */
314 ULONG MmProductType;
315 MM_SYSTEMSIZE MmSystemSize;
316
317 /*
318 * These values store the cache working set minimums and maximums, in pages
319 *
320 * The minimum value is boosted on systems with more than 24MB of RAM, and cut
321 * down to only 32 pages on embedded (<24MB RAM) systems.
322 *
323 * An extra boost of 2MB is given on systems with more than 33MB of RAM.
324 */
325 PFN_NUMBER MmSystemCacheWsMinimum = 288;
326 PFN_NUMBER MmSystemCacheWsMaximum = 350;
327
328 /* FIXME: Move to cache/working set code later */
329 BOOLEAN MmLargeSystemCache;
330
331 /* PRIVATE FUNCTIONS **********************************************************/
332
333 //
334 // In Bavaria, this is probably a hate crime
335 //
336 VOID
337 FASTCALL
338 MiSyncARM3WithROS(IN PVOID AddressStart,
339 IN PVOID AddressEnd)
340 {
341 //
342 // Puerile piece of junk-grade carbonized horseshit puss sold to the lowest bidder
343 //
344 ULONG Pde = ADDR_TO_PDE_OFFSET(AddressStart);
345 while (Pde <= ADDR_TO_PDE_OFFSET(AddressEnd))
346 {
347 //
348 // This both odious and heinous
349 //
350 extern ULONG MmGlobalKernelPageDirectory[1024];
351 MmGlobalKernelPageDirectory[Pde] = ((PULONG)PDE_BASE)[Pde];
352 Pde++;
353 }
354 }
355
356 PFN_NUMBER
357 NTAPI
358 MxGetNextPage(IN PFN_NUMBER PageCount)
359 {
360 PFN_NUMBER Pfn;
361
362 /* Make sure we have enough pages */
363 if (PageCount > MxFreeDescriptor->PageCount)
364 {
365 /* Crash the system */
366 KeBugCheckEx(INSTALL_MORE_MEMORY,
367 MmNumberOfPhysicalPages,
368 MxFreeDescriptor->PageCount,
369 MxOldFreeDescriptor.PageCount,
370 PageCount);
371 }
372
373 /* Use our lowest usable free pages */
374 Pfn = MxFreeDescriptor->BasePage;
375 MxFreeDescriptor->BasePage += PageCount;
376 MxFreeDescriptor->PageCount -= PageCount;
377 return Pfn;
378 }
379
380 VOID
381 NTAPI
382 MiComputeColorInformation(VOID)
383 {
384 ULONG L2Associativity;
385
386 /* Check if no setting was provided already */
387 if (!MmSecondaryColors)
388 {
389 /* Get L2 cache information */
390 L2Associativity = KeGetPcr()->SecondLevelCacheAssociativity;
391
392 /* The number of colors is the number of cache bytes by set/way */
393 MmSecondaryColors = KeGetPcr()->SecondLevelCacheSize;
394 if (L2Associativity) MmSecondaryColors /= L2Associativity;
395 }
396
397 /* Now convert cache bytes into pages */
398 MmSecondaryColors >>= PAGE_SHIFT;
399 if (!MmSecondaryColors)
400 {
401 /* If there was no cache data from the KPCR, use the default colors */
402 MmSecondaryColors = MI_SECONDARY_COLORS;
403 }
404 else
405 {
406 /* Otherwise, make sure there aren't too many colors */
407 if (MmSecondaryColors > MI_MAX_SECONDARY_COLORS)
408 {
409 /* Set the maximum */
410 MmSecondaryColors = MI_MAX_SECONDARY_COLORS;
411 }
412
413 /* Make sure there aren't too little colors */
414 if (MmSecondaryColors < MI_MIN_SECONDARY_COLORS)
415 {
416 /* Set the default */
417 MmSecondaryColors = MI_SECONDARY_COLORS;
418 }
419
420 /* Finally make sure the colors are a power of two */
421 if (MmSecondaryColors & (MmSecondaryColors - 1))
422 {
423 /* Set the default */
424 MmSecondaryColors = MI_SECONDARY_COLORS;
425 }
426 }
427
428 /* Compute the mask and store it */
429 MmSecondaryColorMask = MmSecondaryColors - 1;
430 KeGetCurrentPrcb()->SecondaryColorMask = MmSecondaryColorMask;
431 }
432
433 VOID
434 NTAPI
435 MiInitializeColorTables(VOID)
436 {
437 ULONG i;
438 PMMPTE PointerPte, LastPte;
439 MMPTE TempPte = ValidKernelPte;
440
441 /* The color table starts after the ARM3 PFN database */
442 MmFreePagesByColor[0] = (PMMCOLOR_TABLES)&MmPfnDatabase[MmHighestPhysicalPage + 1];
443
444 /* Loop the PTEs. We have two color tables for each secondary color */
445 PointerPte = MiAddressToPte(&MmFreePagesByColor[0][0]);
446 LastPte = MiAddressToPte((ULONG_PTR)MmFreePagesByColor[0] +
447 (2 * MmSecondaryColors * sizeof(MMCOLOR_TABLES))
448 - 1);
449 while (PointerPte <= LastPte)
450 {
451 /* Check for valid PTE */
452 if (PointerPte->u.Hard.Valid == 0)
453 {
454 /* Get a page and map it */
455 TempPte.u.Hard.PageFrameNumber = MxGetNextPage(1);
456 MI_WRITE_VALID_PTE(PointerPte, TempPte);
457
458 /* Zero out the page */
459 RtlZeroMemory(MiPteToAddress(PointerPte), PAGE_SIZE);
460 }
461
462 /* Next */
463 PointerPte++;
464 }
465
466 /* Now set the address of the next list, right after this one */
467 MmFreePagesByColor[1] = &MmFreePagesByColor[0][MmSecondaryColors];
468
469 /* Now loop the lists to set them up */
470 for (i = 0; i < MmSecondaryColors; i++)
471 {
472 /* Set both free and zero lists for each color */
473 MmFreePagesByColor[ZeroedPageList][i].Flink = 0xFFFFFFFF;
474 MmFreePagesByColor[ZeroedPageList][i].Blink = (PVOID)0xFFFFFFFF;
475 MmFreePagesByColor[ZeroedPageList][i].Count = 0;
476 MmFreePagesByColor[FreePageList][i].Flink = 0xFFFFFFFF;
477 MmFreePagesByColor[FreePageList][i].Blink = (PVOID)0xFFFFFFFF;
478 MmFreePagesByColor[FreePageList][i].Count = 0;
479 }
480 }
481
482 BOOLEAN
483 NTAPI
484 MiIsRegularMemory(IN PLOADER_PARAMETER_BLOCK LoaderBlock,
485 IN PFN_NUMBER Pfn)
486 {
487 PLIST_ENTRY NextEntry;
488 PMEMORY_ALLOCATION_DESCRIPTOR MdBlock;
489
490 /* Loop the memory descriptors */
491 NextEntry = LoaderBlock->MemoryDescriptorListHead.Flink;
492 while (NextEntry != &LoaderBlock->MemoryDescriptorListHead)
493 {
494 /* Get the memory descriptor */
495 MdBlock = CONTAINING_RECORD(NextEntry,
496 MEMORY_ALLOCATION_DESCRIPTOR,
497 ListEntry);
498
499 /* Check if this PFN could be part of the block */
500 if (Pfn >= (MdBlock->BasePage))
501 {
502 /* Check if it really is part of the block */
503 if (Pfn < (MdBlock->BasePage + MdBlock->PageCount))
504 {
505 /* Check if the block is actually memory we don't map */
506 if ((MdBlock->MemoryType == LoaderFirmwarePermanent) ||
507 (MdBlock->MemoryType == LoaderBBTMemory) ||
508 (MdBlock->MemoryType == LoaderSpecialMemory))
509 {
510 /* We don't need PFN database entries for this memory */
511 break;
512 }
513
514 /* This is memory we want to map */
515 return TRUE;
516 }
517 }
518 else
519 {
520 /* Blocks are ordered, so if it's not here, it doesn't exist */
521 break;
522 }
523
524 /* Get to the next descriptor */
525 NextEntry = MdBlock->ListEntry.Flink;
526 }
527
528 /* Check if this PFN is actually from our free memory descriptor */
529 if ((Pfn >= MxOldFreeDescriptor.BasePage) &&
530 (Pfn < MxOldFreeDescriptor.BasePage + MxOldFreeDescriptor.PageCount))
531 {
532 /* We use these pages for initial mappings, so we do want to count them */
533 return TRUE;
534 }
535
536 /* Otherwise this isn't memory that we describe or care about */
537 return FALSE;
538 }
539
540 VOID
541 NTAPI
542 MiMapPfnDatabase(IN PLOADER_PARAMETER_BLOCK LoaderBlock)
543 {
544 ULONG FreePage, FreePageCount, PagesLeft, BasePage, PageCount;
545 PLIST_ENTRY NextEntry;
546 PMEMORY_ALLOCATION_DESCRIPTOR MdBlock;
547 PMMPTE PointerPte, LastPte;
548 MMPTE TempPte = ValidKernelPte;
549
550 /* Get current page data, since we won't be using MxGetNextPage as it would corrupt our state */
551 FreePage = MxFreeDescriptor->BasePage;
552 FreePageCount = MxFreeDescriptor->PageCount;
553 PagesLeft = 0;
554
555 /* Loop the memory descriptors */
556 NextEntry = LoaderBlock->MemoryDescriptorListHead.Flink;
557 while (NextEntry != &LoaderBlock->MemoryDescriptorListHead)
558 {
559 /* Get the descriptor */
560 MdBlock = CONTAINING_RECORD(NextEntry,
561 MEMORY_ALLOCATION_DESCRIPTOR,
562 ListEntry);
563 if ((MdBlock->MemoryType == LoaderFirmwarePermanent) ||
564 (MdBlock->MemoryType == LoaderBBTMemory) ||
565 (MdBlock->MemoryType == LoaderSpecialMemory))
566 {
567 /* These pages are not part of the PFN database */
568 NextEntry = MdBlock->ListEntry.Flink;
569 continue;
570 }
571
572 /* Next, check if this is our special free descriptor we've found */
573 if (MdBlock == MxFreeDescriptor)
574 {
575 /* Use the real numbers instead */
576 BasePage = MxOldFreeDescriptor.BasePage;
577 PageCount = MxOldFreeDescriptor.PageCount;
578 }
579 else
580 {
581 /* Use the descriptor's numbers */
582 BasePage = MdBlock->BasePage;
583 PageCount = MdBlock->PageCount;
584 }
585
586 /* Get the PTEs for this range */
587 PointerPte = MiAddressToPte(&MmPfnDatabase[BasePage]);
588 LastPte = MiAddressToPte(((ULONG_PTR)&MmPfnDatabase[BasePage + PageCount]) - 1);
589 DPRINT("MD Type: %lx Base: %lx Count: %lx\n", MdBlock->MemoryType, BasePage, PageCount);
590
591 /* Loop them */
592 while (PointerPte <= LastPte)
593 {
594 /* We'll only touch PTEs that aren't already valid */
595 if (PointerPte->u.Hard.Valid == 0)
596 {
597 /* Use the next free page */
598 TempPte.u.Hard.PageFrameNumber = FreePage;
599 ASSERT(FreePageCount != 0);
600
601 /* Consume free pages */
602 FreePage++;
603 FreePageCount--;
604 if (!FreePageCount)
605 {
606 /* Out of memory */
607 KeBugCheckEx(INSTALL_MORE_MEMORY,
608 MmNumberOfPhysicalPages,
609 FreePageCount,
610 MxOldFreeDescriptor.PageCount,
611 1);
612 }
613
614 /* Write out this PTE */
615 PagesLeft++;
616 MI_WRITE_VALID_PTE(PointerPte, TempPte);
617
618 /* Zero this page */
619 RtlZeroMemory(MiPteToAddress(PointerPte), PAGE_SIZE);
620 }
621
622 /* Next! */
623 PointerPte++;
624 }
625
626 /* Do the next address range */
627 NextEntry = MdBlock->ListEntry.Flink;
628 }
629
630 /* Now update the free descriptors to consume the pages we used up during the PFN allocation loop */
631 MxFreeDescriptor->BasePage = FreePage;
632 MxFreeDescriptor->PageCount = FreePageCount;
633 }
634
635 VOID
636 NTAPI
637 MiBuildPfnDatabaseFromPages(IN PLOADER_PARAMETER_BLOCK LoaderBlock)
638 {
639 PMMPDE PointerPde;
640 PMMPTE PointerPte;
641 ULONG i, Count, j;
642 PFN_NUMBER PageFrameIndex, StartupPdIndex, PtePageIndex;
643 PMMPFN Pfn1, Pfn2;
644 ULONG_PTR BaseAddress = 0;
645
646 /* PFN of the startup page directory */
647 StartupPdIndex = PFN_FROM_PTE(MiAddressToPde(PDE_BASE));
648
649 /* Start with the first PDE and scan them all */
650 PointerPde = MiAddressToPde(NULL);
651 Count = PD_COUNT * PDE_COUNT;
652 for (i = 0; i < Count; i++)
653 {
654 /* Check for valid PDE */
655 if (PointerPde->u.Hard.Valid == 1)
656 {
657 /* Get the PFN from it */
658 PageFrameIndex = PFN_FROM_PTE(PointerPde);
659
660 /* Do we want a PFN entry for this page? */
661 if (MiIsRegularMemory(LoaderBlock, PageFrameIndex))
662 {
663 /* Yes we do, set it up */
664 Pfn1 = MiGetPfnEntry(PageFrameIndex);
665 Pfn1->u4.PteFrame = StartupPdIndex;
666 Pfn1->PteAddress = PointerPde;
667 Pfn1->u2.ShareCount++;
668 Pfn1->u3.e2.ReferenceCount = 1;
669 Pfn1->u3.e1.PageLocation = ActiveAndValid;
670 Pfn1->u3.e1.CacheAttribute = MiNonCached;
671 }
672 else
673 {
674 /* No PFN entry */
675 Pfn1 = NULL;
676 }
677
678 /* Now get the PTE and scan the pages */
679 PointerPte = MiAddressToPte(BaseAddress);
680 for (j = 0; j < PTE_COUNT; j++)
681 {
682 /* Check for a valid PTE */
683 if (PointerPte->u.Hard.Valid == 1)
684 {
685 /* Increase the shared count of the PFN entry for the PDE */
686 ASSERT(Pfn1 != NULL);
687 Pfn1->u2.ShareCount++;
688
689 /* Now check if the PTE is valid memory too */
690 PtePageIndex = PFN_FROM_PTE(PointerPte);
691 if (MiIsRegularMemory(LoaderBlock, PtePageIndex))
692 {
693 /*
694 * Only add pages above the end of system code or pages
695 * that are part of nonpaged pool
696 */
697 if ((BaseAddress >= 0xA0000000) ||
698 ((BaseAddress >= (ULONG_PTR)MmNonPagedPoolStart) &&
699 (BaseAddress < (ULONG_PTR)MmNonPagedPoolStart +
700 MmSizeOfNonPagedPoolInBytes)))
701 {
702 /* Get the PFN entry and make sure it too is valid */
703 Pfn2 = MiGetPfnEntry(PtePageIndex);
704 if ((MmIsAddressValid(Pfn2)) &&
705 (MmIsAddressValid(Pfn2 + 1)))
706 {
707 /* Setup the PFN entry */
708 Pfn2->u4.PteFrame = PageFrameIndex;
709 Pfn2->PteAddress = PointerPte;
710 Pfn2->u2.ShareCount++;
711 Pfn2->u3.e2.ReferenceCount = 1;
712 Pfn2->u3.e1.PageLocation = ActiveAndValid;
713 Pfn2->u3.e1.CacheAttribute = MiNonCached;
714 }
715 }
716 }
717 }
718
719 /* Next PTE */
720 PointerPte++;
721 BaseAddress += PAGE_SIZE;
722 }
723 }
724 else
725 {
726 /* Next PDE mapped address */
727 BaseAddress += PDE_MAPPED_VA;
728 }
729
730 /* Next PTE */
731 PointerPde++;
732 }
733 }
734
735 VOID
736 NTAPI
737 MiBuildPfnDatabaseZeroPage(VOID)
738 {
739 PMMPFN Pfn1;
740 PMMPDE PointerPde;
741
742 /* Grab the lowest page and check if it has no real references */
743 Pfn1 = MiGetPfnEntry(MmLowestPhysicalPage);
744 if (!(MmLowestPhysicalPage) && !(Pfn1->u3.e2.ReferenceCount))
745 {
746 /* Make it a bogus page to catch errors */
747 PointerPde = MiAddressToPde(0xFFFFFFFF);
748 Pfn1->u4.PteFrame = PFN_FROM_PTE(PointerPde);
749 Pfn1->PteAddress = PointerPde;
750 Pfn1->u2.ShareCount++;
751 Pfn1->u3.e2.ReferenceCount = 0xFFF0;
752 Pfn1->u3.e1.PageLocation = ActiveAndValid;
753 Pfn1->u3.e1.CacheAttribute = MiNonCached;
754 }
755 }
756
757 VOID
758 NTAPI
759 MiBuildPfnDatabaseFromLoaderBlock(IN PLOADER_PARAMETER_BLOCK LoaderBlock)
760 {
761 PLIST_ENTRY NextEntry;
762 PFN_NUMBER PageCount = 0;
763 PMEMORY_ALLOCATION_DESCRIPTOR MdBlock;
764 PFN_NUMBER PageFrameIndex;
765 PMMPFN Pfn1;
766 PMMPTE PointerPte;
767 PMMPDE PointerPde;
768 KIRQL OldIrql;
769
770 /* Now loop through the descriptors */
771 NextEntry = LoaderBlock->MemoryDescriptorListHead.Flink;
772 while (NextEntry != &LoaderBlock->MemoryDescriptorListHead)
773 {
774 /* Get the current descriptor */
775 MdBlock = CONTAINING_RECORD(NextEntry,
776 MEMORY_ALLOCATION_DESCRIPTOR,
777 ListEntry);
778
779 /* Read its data */
780 PageCount = MdBlock->PageCount;
781 PageFrameIndex = MdBlock->BasePage;
782
783 /* Don't allow memory above what the PFN database is mapping */
784 if (PageFrameIndex > MmHighestPhysicalPage)
785 {
786 /* Since they are ordered, everything past here will be larger */
787 break;
788 }
789
790 /* On the other hand, the end page might be higher up... */
791 if ((PageFrameIndex + PageCount) > (MmHighestPhysicalPage + 1))
792 {
793 /* In which case we'll trim the descriptor to go as high as we can */
794 PageCount = MmHighestPhysicalPage + 1 - PageFrameIndex;
795 MdBlock->PageCount = PageCount;
796
797 /* But if there's nothing left to trim, we got too high, so quit */
798 if (!PageCount) break;
799 }
800
801 /* Now check the descriptor type */
802 switch (MdBlock->MemoryType)
803 {
804 /* Check for bad RAM */
805 case LoaderBad:
806
807 DPRINT1("You have damaged RAM modules. Stopping boot\n");
808 while (TRUE);
809 break;
810
811 /* Check for free RAM */
812 case LoaderFree:
813 case LoaderLoadedProgram:
814 case LoaderFirmwareTemporary:
815 case LoaderOsloaderStack:
816
817 /* Get the last page of this descriptor. Note we loop backwards */
818 PageFrameIndex += PageCount - 1;
819 Pfn1 = MiGetPfnEntry(PageFrameIndex);
820
821 /* Lock the PFN Database */
822 OldIrql = KeAcquireQueuedSpinLock(LockQueuePfnLock);
823 while (PageCount--)
824 {
825 /* If the page really has no references, mark it as free */
826 if (!Pfn1->u3.e2.ReferenceCount)
827 {
828 /* Add it to the free list */
829 Pfn1->u3.e1.CacheAttribute = MiNonCached;
830 MiInsertPageInFreeList(PageFrameIndex);
831 }
832
833 /* Go to the next page */
834 Pfn1--;
835 PageFrameIndex--;
836 }
837
838 /* Release PFN database */
839 KeReleaseQueuedSpinLock(LockQueuePfnLock, OldIrql);
840
841 /* Done with this block */
842 break;
843
844 /* Check for pages that are invisible to us */
845 case LoaderFirmwarePermanent:
846 case LoaderSpecialMemory:
847 case LoaderBBTMemory:
848
849 /* And skip them */
850 break;
851
852 default:
853
854 /* Map these pages with the KSEG0 mapping that adds 0x80000000 */
855 PointerPte = MiAddressToPte(KSEG0_BASE + (PageFrameIndex << PAGE_SHIFT));
856 Pfn1 = MiGetPfnEntry(PageFrameIndex);
857 while (PageCount--)
858 {
859 /* Check if the page is really unused */
860 PointerPde = MiAddressToPde(KSEG0_BASE + (PageFrameIndex << PAGE_SHIFT));
861 if (!Pfn1->u3.e2.ReferenceCount)
862 {
863 /* Mark it as being in-use */
864 Pfn1->u4.PteFrame = PFN_FROM_PTE(PointerPde);
865 Pfn1->PteAddress = PointerPte;
866 Pfn1->u2.ShareCount++;
867 Pfn1->u3.e2.ReferenceCount = 1;
868 Pfn1->u3.e1.PageLocation = ActiveAndValid;
869 Pfn1->u3.e1.CacheAttribute = MiNonCached;
870
871 /* Check for RAM disk page */
872 if (MdBlock->MemoryType == LoaderXIPRom)
873 {
874 /* Make it a pseudo-I/O ROM mapping */
875 Pfn1->u1.Flink = 0;
876 Pfn1->u2.ShareCount = 0;
877 Pfn1->u3.e2.ReferenceCount = 0;
878 Pfn1->u3.e1.PageLocation = 0;
879 Pfn1->u3.e1.Rom = 1;
880 Pfn1->u4.InPageError = 0;
881 Pfn1->u3.e1.PrototypePte = 1;
882 }
883 }
884
885 /* Advance page structures */
886 Pfn1++;
887 PageFrameIndex++;
888 PointerPte++;
889 }
890 break;
891 }
892
893 /* Next descriptor entry */
894 NextEntry = MdBlock->ListEntry.Flink;
895 }
896 }
897
898 VOID
899 NTAPI
900 MiBuildPfnDatabaseSelf(VOID)
901 {
902 PMMPTE PointerPte, LastPte;
903 PMMPFN Pfn1;
904
905 /* Loop the PFN database page */
906 PointerPte = MiAddressToPte(MiGetPfnEntry(MmLowestPhysicalPage));
907 LastPte = MiAddressToPte(MiGetPfnEntry(MmHighestPhysicalPage));
908 while (PointerPte <= LastPte)
909 {
910 /* Make sure the page is valid */
911 if (PointerPte->u.Hard.Valid == 1)
912 {
913 /* Get the PFN entry and just mark it referenced */
914 Pfn1 = MiGetPfnEntry(PointerPte->u.Hard.PageFrameNumber);
915 Pfn1->u2.ShareCount = 1;
916 Pfn1->u3.e2.ReferenceCount = 1;
917 }
918
919 /* Next */
920 PointerPte++;
921 }
922 }
923
924 VOID
925 NTAPI
926 MiInitializePfnDatabase(IN PLOADER_PARAMETER_BLOCK LoaderBlock)
927 {
928 /* Scan memory and start setting up PFN entries */
929 MiBuildPfnDatabaseFromPages(LoaderBlock);
930
931 /* Add the zero page */
932 MiBuildPfnDatabaseZeroPage();
933
934 /* Scan the loader block and build the rest of the PFN database */
935 MiBuildPfnDatabaseFromLoaderBlock(LoaderBlock);
936
937 /* Finally add the pages for the PFN database itself */
938 MiBuildPfnDatabaseSelf();
939 }
940
941 VOID
942 NTAPI
943 MiAdjustWorkingSetManagerParameters(IN BOOLEAN Client)
944 {
945 /* This function needs to do more work, for now, we tune page minimums */
946
947 /* Check for a system with around 64MB RAM or more */
948 if (MmNumberOfPhysicalPages >= (63 * _1MB) / PAGE_SIZE)
949 {
950 /* Double the minimum amount of pages we consider for a "plenty free" scenario */
951 MmPlentyFreePages *= 2;
952 }
953 }
954
955 VOID
956 NTAPI
957 MiNotifyMemoryEvents(VOID)
958 {
959 /* Are we in a low-memory situation? */
960 if (MmAvailablePages < MmLowMemoryThreshold)
961 {
962 /* Clear high, set low */
963 if (KeReadStateEvent(MiHighMemoryEvent)) KeClearEvent(MiHighMemoryEvent);
964 if (!KeReadStateEvent(MiLowMemoryEvent)) KeSetEvent(MiLowMemoryEvent, 0, FALSE);
965 }
966 else if (MmAvailablePages < MmHighMemoryThreshold)
967 {
968 /* We are in between, clear both */
969 if (KeReadStateEvent(MiHighMemoryEvent)) KeClearEvent(MiHighMemoryEvent);
970 if (KeReadStateEvent(MiLowMemoryEvent)) KeClearEvent(MiLowMemoryEvent);
971 }
972 else
973 {
974 /* Clear low, set high */
975 if (KeReadStateEvent(MiLowMemoryEvent)) KeClearEvent(MiLowMemoryEvent);
976 if (!KeReadStateEvent(MiHighMemoryEvent)) KeSetEvent(MiHighMemoryEvent, 0, FALSE);
977 }
978 }
979
980 NTSTATUS
981 NTAPI
982 MiCreateMemoryEvent(IN PUNICODE_STRING Name,
983 OUT PKEVENT *Event)
984 {
985 PACL Dacl;
986 HANDLE EventHandle;
987 ULONG DaclLength;
988 NTSTATUS Status;
989 OBJECT_ATTRIBUTES ObjectAttributes;
990 SECURITY_DESCRIPTOR SecurityDescriptor;
991
992 /* Create the SD */
993 Status = RtlCreateSecurityDescriptor(&SecurityDescriptor,
994 SECURITY_DESCRIPTOR_REVISION);
995 if (!NT_SUCCESS(Status)) return Status;
996
997 /* One ACL with 3 ACEs, containing each one SID */
998 DaclLength = sizeof(ACL) +
999 3 * sizeof(ACCESS_ALLOWED_ACE) +
1000 RtlLengthSid(SeLocalSystemSid) +
1001 RtlLengthSid(SeAliasAdminsSid) +
1002 RtlLengthSid(SeWorldSid);
1003
1004 /* Allocate space for the DACL */
1005 Dacl = ExAllocatePoolWithTag(PagedPool, DaclLength, 'lcaD');
1006 if (!Dacl) return STATUS_INSUFFICIENT_RESOURCES;
1007
1008 /* Setup the ACL inside it */
1009 Status = RtlCreateAcl(Dacl, DaclLength, ACL_REVISION);
1010 if (!NT_SUCCESS(Status)) goto CleanUp;
1011
1012 /* Add query rights for everyone */
1013 Status = RtlAddAccessAllowedAce(Dacl,
1014 ACL_REVISION,
1015 SYNCHRONIZE | EVENT_QUERY_STATE | READ_CONTROL,
1016 SeWorldSid);
1017 if (!NT_SUCCESS(Status)) goto CleanUp;
1018
1019 /* Full rights for the admin */
1020 Status = RtlAddAccessAllowedAce(Dacl,
1021 ACL_REVISION,
1022 EVENT_ALL_ACCESS,
1023 SeAliasAdminsSid);
1024 if (!NT_SUCCESS(Status)) goto CleanUp;
1025
1026 /* As well as full rights for the system */
1027 Status = RtlAddAccessAllowedAce(Dacl,
1028 ACL_REVISION,
1029 EVENT_ALL_ACCESS,
1030 SeLocalSystemSid);
1031 if (!NT_SUCCESS(Status)) goto CleanUp;
1032
1033 /* Set this DACL inside the SD */
1034 Status = RtlSetDaclSecurityDescriptor(&SecurityDescriptor,
1035 TRUE,
1036 Dacl,
1037 FALSE);
1038 if (!NT_SUCCESS(Status)) goto CleanUp;
1039
1040 /* Setup the event attributes, making sure it's a permanent one */
1041 InitializeObjectAttributes(&ObjectAttributes,
1042 Name,
1043 OBJ_KERNEL_HANDLE | OBJ_PERMANENT,
1044 NULL,
1045 &SecurityDescriptor);
1046
1047 /* Create the event */
1048 Status = ZwCreateEvent(&EventHandle,
1049 EVENT_ALL_ACCESS,
1050 &ObjectAttributes,
1051 NotificationEvent,
1052 FALSE);
1053 CleanUp:
1054 /* Free the DACL */
1055 ExFreePool(Dacl);
1056
1057 /* Check if this is the success path */
1058 if (NT_SUCCESS(Status))
1059 {
1060 /* Add a reference to the object, then close the handle we had */
1061 Status = ObReferenceObjectByHandle(EventHandle,
1062 EVENT_MODIFY_STATE,
1063 ExEventObjectType,
1064 KernelMode,
1065 (PVOID*)Event,
1066 NULL);
1067 ZwClose (EventHandle);
1068 }
1069
1070 /* Return status */
1071 return Status;
1072 }
1073
1074 BOOLEAN
1075 NTAPI
1076 MiInitializeMemoryEvents(VOID)
1077 {
1078 UNICODE_STRING LowString = RTL_CONSTANT_STRING(L"\\KernelObjects\\LowMemoryCondition");
1079 UNICODE_STRING HighString = RTL_CONSTANT_STRING(L"\\KernelObjects\\HighMemoryCondition");
1080 UNICODE_STRING LowPagedPoolString = RTL_CONSTANT_STRING(L"\\KernelObjects\\LowPagedPoolCondition");
1081 UNICODE_STRING HighPagedPoolString = RTL_CONSTANT_STRING(L"\\KernelObjects\\HighPagedPoolCondition");
1082 UNICODE_STRING LowNonPagedPoolString = RTL_CONSTANT_STRING(L"\\KernelObjects\\LowNonPagedPoolCondition");
1083 UNICODE_STRING HighNonPagedPoolString = RTL_CONSTANT_STRING(L"\\KernelObjects\\HighNonPagedPoolCondition");
1084 NTSTATUS Status;
1085
1086 /* Check if we have a registry setting */
1087 if (MmLowMemoryThreshold)
1088 {
1089 /* Convert it to pages */
1090 MmLowMemoryThreshold *= (_1MB / PAGE_SIZE);
1091 }
1092 else
1093 {
1094 /* The low memory threshold is hit when we don't consider that we have "plenty" of free pages anymore */
1095 MmLowMemoryThreshold = MmPlentyFreePages;
1096
1097 /* More than one GB of memory? */
1098 if (MmNumberOfPhysicalPages > 0x40000)
1099 {
1100 /* Start at 32MB, and add another 16MB for each GB */
1101 MmLowMemoryThreshold = (32 * _1MB) / PAGE_SIZE;
1102 MmLowMemoryThreshold += ((MmNumberOfPhysicalPages - 0x40000) >> 7);
1103 }
1104 else if (MmNumberOfPhysicalPages > 0x8000)
1105 {
1106 /* For systems with > 128MB RAM, add another 4MB for each 128MB */
1107 MmLowMemoryThreshold += ((MmNumberOfPhysicalPages - 0x8000) >> 5);
1108 }
1109
1110 /* Don't let the minimum threshold go past 64MB */
1111 MmLowMemoryThreshold = min(MmLowMemoryThreshold, (64 * _1MB) / PAGE_SIZE);
1112 }
1113
1114 /* Check if we have a registry setting */
1115 if (MmHighMemoryThreshold)
1116 {
1117 /* Convert it into pages */
1118 MmHighMemoryThreshold *= (_1MB / PAGE_SIZE);
1119 }
1120 else
1121 {
1122 /* Otherwise, the default is three times the low memory threshold */
1123 MmHighMemoryThreshold = 3 * MmLowMemoryThreshold;
1124 ASSERT(MmHighMemoryThreshold > MmLowMemoryThreshold);
1125 }
1126
1127 /* Make sure high threshold is actually higher than the low */
1128 MmHighMemoryThreshold = max(MmHighMemoryThreshold, MmLowMemoryThreshold);
1129
1130 /* Create the memory events for all the thresholds */
1131 Status = MiCreateMemoryEvent(&LowString, &MiLowMemoryEvent);
1132 if (!NT_SUCCESS(Status)) return FALSE;
1133 Status = MiCreateMemoryEvent(&HighString, &MiHighMemoryEvent);
1134 if (!NT_SUCCESS(Status)) return FALSE;
1135 Status = MiCreateMemoryEvent(&LowPagedPoolString, &MiLowPagedPoolEvent);
1136 if (!NT_SUCCESS(Status)) return FALSE;
1137 Status = MiCreateMemoryEvent(&HighPagedPoolString, &MiHighPagedPoolEvent);
1138 if (!NT_SUCCESS(Status)) return FALSE;
1139 Status = MiCreateMemoryEvent(&LowNonPagedPoolString, &MiLowNonPagedPoolEvent);
1140 if (!NT_SUCCESS(Status)) return FALSE;
1141 Status = MiCreateMemoryEvent(&HighNonPagedPoolString, &MiHighNonPagedPoolEvent);
1142 if (!NT_SUCCESS(Status)) return FALSE;
1143
1144 /* Now setup the pool events */
1145 MiInitializePoolEvents();
1146
1147 /* Set the initial event state */
1148 MiNotifyMemoryEvents();
1149 return TRUE;
1150 }
1151
1152 VOID
1153 NTAPI
1154 MiAddHalIoMappings(VOID)
1155 {
1156 PVOID BaseAddress;
1157 PMMPTE PointerPde;
1158 PMMPTE PointerPte;
1159 ULONG i, j, PdeCount;
1160 PFN_NUMBER PageFrameIndex;
1161
1162 /* HAL Heap address -- should be on a PDE boundary */
1163 BaseAddress = (PVOID)0xFFC00000;
1164 ASSERT(MiAddressToPteOffset(BaseAddress) == 0);
1165
1166 /* Check how many PDEs the heap has */
1167 PointerPde = MiAddressToPde(BaseAddress);
1168 PdeCount = PDE_COUNT - ADDR_TO_PDE_OFFSET(BaseAddress);
1169 for (i = 0; i < PdeCount; i++)
1170 {
1171 /* Does the HAL own this mapping? */
1172 if ((PointerPde->u.Hard.Valid == 1) &&
1173 (PointerPde->u.Hard.LargePage == 0))
1174 {
1175 /* Get the PTE for it and scan each page */
1176 PointerPte = MiAddressToPte(BaseAddress);
1177 for (j = 0 ; j < PTE_COUNT; j++)
1178 {
1179 /* Does the HAL own this page? */
1180 if (PointerPte->u.Hard.Valid == 1)
1181 {
1182 /* Is the HAL using it for device or I/O mapped memory? */
1183 PageFrameIndex = PFN_FROM_PTE(PointerPte);
1184 if (!MiGetPfnEntry(PageFrameIndex))
1185 {
1186 /* FIXME: For PAT, we need to track I/O cache attributes for coherency */
1187 DPRINT1("HAL I/O Mapping at %p is unsafe\n", BaseAddress);
1188 }
1189 }
1190
1191 /* Move to the next page */
1192 BaseAddress = (PVOID)((ULONG_PTR)BaseAddress + PAGE_SIZE);
1193 PointerPte++;
1194 }
1195 }
1196 else
1197 {
1198 /* Move to the next address */
1199 BaseAddress = (PVOID)((ULONG_PTR)BaseAddress + PDE_MAPPED_VA);
1200 }
1201
1202 /* Move to the next PDE */
1203 PointerPde++;
1204 }
1205 }
1206
1207 VOID
1208 NTAPI
1209 MmDumpArmPfnDatabase(VOID)
1210 {
1211 ULONG i;
1212 PMMPFN Pfn1;
1213 PCHAR Consumer = "Unknown";
1214 KIRQL OldIrql;
1215 ULONG ActivePages = 0, FreePages = 0, OtherPages = 0;
1216
1217 KeRaiseIrql(HIGH_LEVEL, &OldIrql);
1218
1219 //
1220 // Loop the PFN database
1221 //
1222 for (i = 0; i <= MmHighestPhysicalPage; i++)
1223 {
1224 Pfn1 = MiGetPfnEntry(i);
1225 if (!Pfn1) continue;
1226
1227 //
1228 // Get the page location
1229 //
1230 switch (Pfn1->u3.e1.PageLocation)
1231 {
1232 case ActiveAndValid:
1233
1234 Consumer = "Active and Valid";
1235 ActivePages++;
1236 break;
1237
1238 case FreePageList:
1239
1240 Consumer = "Free Page List";
1241 FreePages++;
1242 break;
1243
1244 default:
1245
1246 Consumer = "Other (ASSERT!)";
1247 OtherPages++;
1248 break;
1249 }
1250
1251 //
1252 // Pretty-print the page
1253 //
1254 DbgPrint("0x%08p:\t%20s\t(%02d.%02d) [%08p-%08p])\n",
1255 i << PAGE_SHIFT,
1256 Consumer,
1257 Pfn1->u3.e2.ReferenceCount,
1258 Pfn1->u2.ShareCount,
1259 Pfn1->PteAddress,
1260 Pfn1->u4.PteFrame);
1261 }
1262
1263 DbgPrint("Active: %d pages\t[%d KB]\n", ActivePages, (ActivePages << PAGE_SHIFT) / 1024);
1264 DbgPrint("Free: %d pages\t[%d KB]\n", FreePages, (FreePages << PAGE_SHIFT) / 1024);
1265 DbgPrint("Other: %d pages\t[%d KB]\n", OtherPages, (OtherPages << PAGE_SHIFT) / 1024);
1266
1267 KeLowerIrql(OldIrql);
1268 }
1269
1270 PFN_NUMBER
1271 NTAPI
1272 MiPagesInLoaderBlock(IN PLOADER_PARAMETER_BLOCK LoaderBlock,
1273 IN PBOOLEAN IncludeType)
1274 {
1275 PLIST_ENTRY NextEntry;
1276 PFN_NUMBER PageCount = 0;
1277 PMEMORY_ALLOCATION_DESCRIPTOR MdBlock;
1278
1279 //
1280 // Now loop through the descriptors
1281 //
1282 NextEntry = LoaderBlock->MemoryDescriptorListHead.Flink;
1283 while (NextEntry != &LoaderBlock->MemoryDescriptorListHead)
1284 {
1285 //
1286 // Grab each one, and check if it's one we should include
1287 //
1288 MdBlock = CONTAINING_RECORD(NextEntry,
1289 MEMORY_ALLOCATION_DESCRIPTOR,
1290 ListEntry);
1291 if ((MdBlock->MemoryType < LoaderMaximum) &&
1292 (IncludeType[MdBlock->MemoryType]))
1293 {
1294 //
1295 // Add this to our running total
1296 //
1297 PageCount += MdBlock->PageCount;
1298 }
1299
1300 //
1301 // Try the next descriptor
1302 //
1303 NextEntry = MdBlock->ListEntry.Flink;
1304 }
1305
1306 //
1307 // Return the total
1308 //
1309 return PageCount;
1310 }
1311
1312 PPHYSICAL_MEMORY_DESCRIPTOR
1313 NTAPI
1314 MmInitializeMemoryLimits(IN PLOADER_PARAMETER_BLOCK LoaderBlock,
1315 IN PBOOLEAN IncludeType)
1316 {
1317 PLIST_ENTRY NextEntry;
1318 ULONG Run = 0, InitialRuns = 0;
1319 PFN_NUMBER NextPage = -1, PageCount = 0;
1320 PPHYSICAL_MEMORY_DESCRIPTOR Buffer, NewBuffer;
1321 PMEMORY_ALLOCATION_DESCRIPTOR MdBlock;
1322
1323 //
1324 // Scan the memory descriptors
1325 //
1326 NextEntry = LoaderBlock->MemoryDescriptorListHead.Flink;
1327 while (NextEntry != &LoaderBlock->MemoryDescriptorListHead)
1328 {
1329 //
1330 // For each one, increase the memory allocation estimate
1331 //
1332 InitialRuns++;
1333 NextEntry = NextEntry->Flink;
1334 }
1335
1336 //
1337 // Allocate the maximum we'll ever need
1338 //
1339 Buffer = ExAllocatePoolWithTag(NonPagedPool,
1340 sizeof(PHYSICAL_MEMORY_DESCRIPTOR) +
1341 sizeof(PHYSICAL_MEMORY_RUN) *
1342 (InitialRuns - 1),
1343 'lMmM');
1344 if (!Buffer) return NULL;
1345
1346 //
1347 // For now that's how many runs we have
1348 //
1349 Buffer->NumberOfRuns = InitialRuns;
1350
1351 //
1352 // Now loop through the descriptors again
1353 //
1354 NextEntry = LoaderBlock->MemoryDescriptorListHead.Flink;
1355 while (NextEntry != &LoaderBlock->MemoryDescriptorListHead)
1356 {
1357 //
1358 // Grab each one, and check if it's one we should include
1359 //
1360 MdBlock = CONTAINING_RECORD(NextEntry,
1361 MEMORY_ALLOCATION_DESCRIPTOR,
1362 ListEntry);
1363 if ((MdBlock->MemoryType < LoaderMaximum) &&
1364 (IncludeType[MdBlock->MemoryType]))
1365 {
1366 //
1367 // Add this to our running total
1368 //
1369 PageCount += MdBlock->PageCount;
1370
1371 //
1372 // Check if the next page is described by the next descriptor
1373 //
1374 if (MdBlock->BasePage == NextPage)
1375 {
1376 //
1377 // Combine it into the same physical run
1378 //
1379 ASSERT(MdBlock->PageCount != 0);
1380 Buffer->Run[Run - 1].PageCount += MdBlock->PageCount;
1381 NextPage += MdBlock->PageCount;
1382 }
1383 else
1384 {
1385 //
1386 // Otherwise just duplicate the descriptor's contents
1387 //
1388 Buffer->Run[Run].BasePage = MdBlock->BasePage;
1389 Buffer->Run[Run].PageCount = MdBlock->PageCount;
1390 NextPage = Buffer->Run[Run].BasePage + Buffer->Run[Run].PageCount;
1391
1392 //
1393 // And in this case, increase the number of runs
1394 //
1395 Run++;
1396 }
1397 }
1398
1399 //
1400 // Try the next descriptor
1401 //
1402 NextEntry = MdBlock->ListEntry.Flink;
1403 }
1404
1405 //
1406 // We should not have been able to go past our initial estimate
1407 //
1408 ASSERT(Run <= Buffer->NumberOfRuns);
1409
1410 //
1411 // Our guess was probably exaggerated...
1412 //
1413 if (InitialRuns > Run)
1414 {
1415 //
1416 // Allocate a more accurately sized buffer
1417 //
1418 NewBuffer = ExAllocatePoolWithTag(NonPagedPool,
1419 sizeof(PHYSICAL_MEMORY_DESCRIPTOR) +
1420 sizeof(PHYSICAL_MEMORY_RUN) *
1421 (Run - 1),
1422 'lMmM');
1423 if (NewBuffer)
1424 {
1425 //
1426 // Copy the old buffer into the new, then free it
1427 //
1428 RtlCopyMemory(NewBuffer->Run,
1429 Buffer->Run,
1430 sizeof(PHYSICAL_MEMORY_RUN) * Run);
1431 ExFreePool(Buffer);
1432
1433 //
1434 // Now use the new buffer
1435 //
1436 Buffer = NewBuffer;
1437 }
1438 }
1439
1440 //
1441 // Write the final numbers, and return it
1442 //
1443 Buffer->NumberOfRuns = Run;
1444 Buffer->NumberOfPages = PageCount;
1445 return Buffer;
1446 }
1447
1448 VOID
1449 NTAPI
1450 MiBuildPagedPool(VOID)
1451 {
1452 PMMPTE PointerPte, PointerPde;
1453 MMPTE TempPte = ValidKernelPte;
1454 PFN_NUMBER PageFrameIndex;
1455 KIRQL OldIrql;
1456 ULONG Size, BitMapSize;
1457
1458 //
1459 // Get the page frame number for the system page directory
1460 //
1461 PointerPte = MiAddressToPte(PDE_BASE);
1462 ASSERT(PD_COUNT == 1);
1463 MmSystemPageDirectory[0] = PFN_FROM_PTE(PointerPte);
1464
1465 //
1466 // Allocate a system PTE which will hold a copy of the page directory
1467 //
1468 PointerPte = MiReserveSystemPtes(1, SystemPteSpace);
1469 ASSERT(PointerPte);
1470 MmSystemPagePtes = MiPteToAddress(PointerPte);
1471
1472 //
1473 // Make this system PTE point to the system page directory.
1474 // It is now essentially double-mapped. This will be used later for lazy
1475 // evaluation of PDEs accross process switches, similarly to how the Global
1476 // page directory array in the old ReactOS Mm is used (but in a less hacky
1477 // way).
1478 //
1479 TempPte = ValidKernelPte;
1480 ASSERT(PD_COUNT == 1);
1481 TempPte.u.Hard.PageFrameNumber = MmSystemPageDirectory[0];
1482 MI_WRITE_VALID_PTE(PointerPte, TempPte);
1483
1484 //
1485 // Let's get back to paged pool work: size it up.
1486 // By default, it should be twice as big as nonpaged pool.
1487 //
1488 MmSizeOfPagedPoolInBytes = 2 * MmMaximumNonPagedPoolInBytes;
1489 if (MmSizeOfPagedPoolInBytes > ((ULONG_PTR)MmNonPagedSystemStart -
1490 (ULONG_PTR)MmPagedPoolStart))
1491 {
1492 //
1493 // On the other hand, we have limited VA space, so make sure that the VA
1494 // for paged pool doesn't overflow into nonpaged pool VA. Otherwise, set
1495 // whatever maximum is possible.
1496 //
1497 MmSizeOfPagedPoolInBytes = (ULONG_PTR)MmNonPagedSystemStart -
1498 (ULONG_PTR)MmPagedPoolStart;
1499 }
1500
1501 //
1502 // Get the size in pages and make sure paged pool is at least 32MB.
1503 //
1504 Size = MmSizeOfPagedPoolInBytes;
1505 if (Size < MI_MIN_INIT_PAGED_POOLSIZE) Size = MI_MIN_INIT_PAGED_POOLSIZE;
1506 Size = BYTES_TO_PAGES(Size);
1507
1508 //
1509 // Now check how many PTEs will be required for these many pages.
1510 //
1511 Size = (Size + (1024 - 1)) / 1024;
1512
1513 //
1514 // Recompute the page-aligned size of the paged pool, in bytes and pages.
1515 //
1516 MmSizeOfPagedPoolInBytes = Size * PAGE_SIZE * 1024;
1517 MmSizeOfPagedPoolInPages = MmSizeOfPagedPoolInBytes >> PAGE_SHIFT;
1518
1519 //
1520 // Let's be really sure this doesn't overflow into nonpaged system VA
1521 //
1522 ASSERT((MmSizeOfPagedPoolInBytes + (ULONG_PTR)MmPagedPoolStart) <=
1523 (ULONG_PTR)MmNonPagedSystemStart);
1524
1525 //
1526 // This is where paged pool ends
1527 //
1528 MmPagedPoolEnd = (PVOID)(((ULONG_PTR)MmPagedPoolStart +
1529 MmSizeOfPagedPoolInBytes) - 1);
1530
1531 //
1532 // So now get the PDE for paged pool and zero it out
1533 //
1534 PointerPde = MiAddressToPde(MmPagedPoolStart);
1535 RtlZeroMemory(PointerPde,
1536 (1 + MiAddressToPde(MmPagedPoolEnd) - PointerPde) * sizeof(MMPTE));
1537
1538 //
1539 // Next, get the first and last PTE
1540 //
1541 PointerPte = MiAddressToPte(MmPagedPoolStart);
1542 MmPagedPoolInfo.FirstPteForPagedPool = PointerPte;
1543 MmPagedPoolInfo.LastPteForPagedPool = MiAddressToPte(MmPagedPoolEnd);
1544
1545 //
1546 // Lock the PFN database
1547 //
1548 OldIrql = KeAcquireQueuedSpinLock(LockQueuePfnLock);
1549
1550 /* Allocate a page and map the first paged pool PDE */
1551 PageFrameIndex = MiRemoveZeroPage(0);
1552 TempPte.u.Hard.PageFrameNumber = PageFrameIndex;
1553 MI_WRITE_VALID_PTE(PointerPde, TempPte);
1554
1555 /* Initialize the PFN entry for it */
1556 MiInitializePfnForOtherProcess(PageFrameIndex,
1557 PointerPde,
1558 MmSystemPageDirectory[(PointerPde - (PMMPTE)PDE_BASE) / PDE_COUNT]);
1559
1560 //
1561 // Release the PFN database lock
1562 //
1563 KeReleaseQueuedSpinLock(LockQueuePfnLock, OldIrql);
1564
1565 //
1566 // We only have one PDE mapped for now... at fault time, additional PDEs
1567 // will be allocated to handle paged pool growth. This is where they'll have
1568 // to start.
1569 //
1570 MmPagedPoolInfo.NextPdeForPagedPoolExpansion = PointerPde + 1;
1571
1572 //
1573 // We keep track of each page via a bit, so check how big the bitmap will
1574 // have to be (make sure to align our page count such that it fits nicely
1575 // into a 4-byte aligned bitmap.
1576 //
1577 // We'll also allocate the bitmap header itself part of the same buffer.
1578 //
1579 Size = Size * 1024;
1580 ASSERT(Size == MmSizeOfPagedPoolInPages);
1581 BitMapSize = Size;
1582 Size = sizeof(RTL_BITMAP) + (((Size + 31) / 32) * sizeof(ULONG));
1583
1584 //
1585 // Allocate the allocation bitmap, which tells us which regions have not yet
1586 // been mapped into memory
1587 //
1588 MmPagedPoolInfo.PagedPoolAllocationMap = ExAllocatePoolWithTag(NonPagedPool,
1589 Size,
1590 ' mM');
1591 ASSERT(MmPagedPoolInfo.PagedPoolAllocationMap);
1592
1593 //
1594 // Initialize it such that at first, only the first page's worth of PTEs is
1595 // marked as allocated (incidentially, the first PDE we allocated earlier).
1596 //
1597 RtlInitializeBitMap(MmPagedPoolInfo.PagedPoolAllocationMap,
1598 (PULONG)(MmPagedPoolInfo.PagedPoolAllocationMap + 1),
1599 BitMapSize);
1600 RtlSetAllBits(MmPagedPoolInfo.PagedPoolAllocationMap);
1601 RtlClearBits(MmPagedPoolInfo.PagedPoolAllocationMap, 0, 1024);
1602
1603 //
1604 // We have a second bitmap, which keeps track of where allocations end.
1605 // Given the allocation bitmap and a base address, we can therefore figure
1606 // out which page is the last page of that allocation, and thus how big the
1607 // entire allocation is.
1608 //
1609 MmPagedPoolInfo.EndOfPagedPoolBitmap = ExAllocatePoolWithTag(NonPagedPool,
1610 Size,
1611 ' mM');
1612 ASSERT(MmPagedPoolInfo.EndOfPagedPoolBitmap);
1613 RtlInitializeBitMap(MmPagedPoolInfo.EndOfPagedPoolBitmap,
1614 (PULONG)(MmPagedPoolInfo.EndOfPagedPoolBitmap + 1),
1615 BitMapSize);
1616
1617 //
1618 // Since no allocations have been made yet, there are no bits set as the end
1619 //
1620 RtlClearAllBits(MmPagedPoolInfo.EndOfPagedPoolBitmap);
1621
1622 //
1623 // Initialize paged pool.
1624 //
1625 InitializePool(PagedPool, 0);
1626
1627 /* Default low threshold of 30MB or one fifth of paged pool */
1628 MiLowPagedPoolThreshold = (30 * _1MB) >> PAGE_SHIFT;
1629 MiLowPagedPoolThreshold = min(MiLowPagedPoolThreshold, Size / 5);
1630
1631 /* Default high threshold of 60MB or 25% */
1632 MiHighPagedPoolThreshold = (60 * _1MB) >> PAGE_SHIFT;
1633 MiHighPagedPoolThreshold = min(MiHighPagedPoolThreshold, (Size * 2) / 5);
1634 ASSERT(MiLowPagedPoolThreshold < MiHighPagedPoolThreshold);
1635 }
1636
1637 NTSTATUS
1638 NTAPI
1639 MmArmInitSystem(IN ULONG Phase,
1640 IN PLOADER_PARAMETER_BLOCK LoaderBlock)
1641 {
1642 ULONG i;
1643 BOOLEAN IncludeType[LoaderMaximum];
1644 PVOID Bitmap;
1645 PPHYSICAL_MEMORY_RUN Run;
1646 PFN_NUMBER PageCount;
1647
1648 //
1649 // Instantiate memory that we don't consider RAM/usable
1650 // We use the same exclusions that Windows does, in order to try to be
1651 // compatible with WinLDR-style booting
1652 //
1653 for (i = 0; i < LoaderMaximum; i++) IncludeType[i] = TRUE;
1654 IncludeType[LoaderBad] = FALSE;
1655 IncludeType[LoaderFirmwarePermanent] = FALSE;
1656 IncludeType[LoaderSpecialMemory] = FALSE;
1657 IncludeType[LoaderBBTMemory] = FALSE;
1658 if (Phase == 0)
1659 {
1660 /* Initialize the phase 0 temporary event */
1661 KeInitializeEvent(&MiTempEvent, NotificationEvent, FALSE);
1662
1663 /* Set all the events to use the temporary event for now */
1664 MiLowMemoryEvent = &MiTempEvent;
1665 MiHighMemoryEvent = &MiTempEvent;
1666 MiLowPagedPoolEvent = &MiTempEvent;
1667 MiHighPagedPoolEvent = &MiTempEvent;
1668 MiLowNonPagedPoolEvent = &MiTempEvent;
1669 MiHighNonPagedPoolEvent = &MiTempEvent;
1670
1671 //
1672 // Define the basic user vs. kernel address space separation
1673 //
1674 MmSystemRangeStart = (PVOID)KSEG0_BASE;
1675 MmUserProbeAddress = (ULONG_PTR)MmSystemRangeStart - 0x10000;
1676 MmHighestUserAddress = (PVOID)(MmUserProbeAddress - 1);
1677
1678 /* Highest PTE and PDE based on the addresses above */
1679 MiHighestUserPte = MiAddressToPte(MmHighestUserAddress);
1680 MiHighestUserPde = MiAddressToPde(MmHighestUserAddress);
1681
1682 //
1683 // Get the size of the boot loader's image allocations and then round
1684 // that region up to a PDE size, so that any PDEs we might create for
1685 // whatever follows are separate from the PDEs that boot loader might've
1686 // already created (and later, we can blow all that away if we want to).
1687 //
1688 MmBootImageSize = KeLoaderBlock->Extension->LoaderPagesSpanned;
1689 MmBootImageSize *= PAGE_SIZE;
1690 MmBootImageSize = (MmBootImageSize + PDE_MAPPED_VA - 1) & ~(PDE_MAPPED_VA - 1);
1691 ASSERT((MmBootImageSize % PDE_MAPPED_VA) == 0);
1692
1693 //
1694 // Set the size of session view, pool, and image
1695 //
1696 MmSessionSize = MI_SESSION_SIZE;
1697 MmSessionViewSize = MI_SESSION_VIEW_SIZE;
1698 MmSessionPoolSize = MI_SESSION_POOL_SIZE;
1699 MmSessionImageSize = MI_SESSION_IMAGE_SIZE;
1700
1701 //
1702 // Set the size of system view
1703 //
1704 MmSystemViewSize = MI_SYSTEM_VIEW_SIZE;
1705
1706 //
1707 // This is where it all ends
1708 //
1709 MiSessionImageEnd = (PVOID)PTE_BASE;
1710
1711 //
1712 // This is where we will load Win32k.sys and the video driver
1713 //
1714 MiSessionImageStart = (PVOID)((ULONG_PTR)MiSessionImageEnd -
1715 MmSessionImageSize);
1716
1717 //
1718 // So the view starts right below the session working set (itself below
1719 // the image area)
1720 //
1721 MiSessionViewStart = (PVOID)((ULONG_PTR)MiSessionImageEnd -
1722 MmSessionImageSize -
1723 MI_SESSION_WORKING_SET_SIZE -
1724 MmSessionViewSize);
1725
1726 //
1727 // Session pool follows
1728 //
1729 MiSessionPoolEnd = MiSessionViewStart;
1730 MiSessionPoolStart = (PVOID)((ULONG_PTR)MiSessionPoolEnd -
1731 MmSessionPoolSize);
1732
1733 //
1734 // And it all begins here
1735 //
1736 MmSessionBase = MiSessionPoolStart;
1737
1738 //
1739 // Sanity check that our math is correct
1740 //
1741 ASSERT((ULONG_PTR)MmSessionBase + MmSessionSize == PTE_BASE);
1742
1743 //
1744 // Session space ends wherever image session space ends
1745 //
1746 MiSessionSpaceEnd = MiSessionImageEnd;
1747
1748 //
1749 // System view space ends at session space, so now that we know where
1750 // this is, we can compute the base address of system view space itself.
1751 //
1752 MiSystemViewStart = (PVOID)((ULONG_PTR)MmSessionBase -
1753 MmSystemViewSize);
1754
1755 /* Compute the PTE addresses for all the addresses we carved out */
1756 MiSessionImagePteStart = MiAddressToPte(MiSessionImageStart);
1757 MiSessionImagePteEnd = MiAddressToPte(MiSessionImageEnd);
1758 MiSessionBasePte = MiAddressToPte(MmSessionBase);
1759 MiSessionLastPte = MiAddressToPte(MiSessionSpaceEnd);
1760
1761 /* Initialize the user mode image list */
1762 InitializeListHead(&MmLoadedUserImageList);
1763
1764 /* Initialize the paged pool mutex */
1765 KeInitializeGuardedMutex(&MmPagedPoolMutex);
1766
1767 /* Initialize the Loader Lock */
1768 KeInitializeMutant(&MmSystemLoadLock, FALSE);
1769
1770 //
1771 // Count physical pages on the system
1772 //
1773 PageCount = MiPagesInLoaderBlock(LoaderBlock, IncludeType);
1774
1775 //
1776 // Check if this is a machine with less than 19MB of RAM
1777 //
1778 if (PageCount < MI_MIN_PAGES_FOR_SYSPTE_TUNING)
1779 {
1780 //
1781 // Use the very minimum of system PTEs
1782 //
1783 MmNumberOfSystemPtes = 7000;
1784 }
1785 else
1786 {
1787 //
1788 // Use the default, but check if we have more than 32MB of RAM
1789 //
1790 MmNumberOfSystemPtes = 11000;
1791 if (PageCount > MI_MIN_PAGES_FOR_SYSPTE_BOOST)
1792 {
1793 //
1794 // Double the amount of system PTEs
1795 //
1796 MmNumberOfSystemPtes <<= 1;
1797 }
1798 }
1799
1800 DPRINT("System PTE count has been tuned to %d (%d bytes)\n",
1801 MmNumberOfSystemPtes, MmNumberOfSystemPtes * PAGE_SIZE);
1802
1803 /* Initialize the platform-specific parts */
1804 MiInitMachineDependent(LoaderBlock);
1805
1806 //
1807 // Sync us up with ReactOS Mm
1808 //
1809 MiSyncARM3WithROS(MmNonPagedSystemStart, (PVOID)((ULONG_PTR)MmNonPagedPoolEnd - 1));
1810 MiSyncARM3WithROS(MmPfnDatabase, (PVOID)((ULONG_PTR)MmNonPagedPoolStart + MmSizeOfNonPagedPoolInBytes - 1));
1811 MiSyncARM3WithROS((PVOID)HYPER_SPACE, (PVOID)(HYPER_SPACE + PAGE_SIZE - 1));
1812
1813 //
1814 // Build the physical memory block
1815 //
1816 MmPhysicalMemoryBlock = MmInitializeMemoryLimits(LoaderBlock,
1817 IncludeType);
1818
1819 //
1820 // Allocate enough buffer for the PFN bitmap
1821 // Align it up to a 32-bit boundary
1822 //
1823 Bitmap = ExAllocatePoolWithTag(NonPagedPool,
1824 (((MmHighestPhysicalPage + 1) + 31) / 32) * 4,
1825 ' mM');
1826 if (!Bitmap)
1827 {
1828 //
1829 // This is critical
1830 //
1831 KeBugCheckEx(INSTALL_MORE_MEMORY,
1832 MmNumberOfPhysicalPages,
1833 MmLowestPhysicalPage,
1834 MmHighestPhysicalPage,
1835 0x101);
1836 }
1837
1838 //
1839 // Initialize it and clear all the bits to begin with
1840 //
1841 RtlInitializeBitMap(&MiPfnBitMap,
1842 Bitmap,
1843 MmHighestPhysicalPage + 1);
1844 RtlClearAllBits(&MiPfnBitMap);
1845
1846 //
1847 // Loop physical memory runs
1848 //
1849 for (i = 0; i < MmPhysicalMemoryBlock->NumberOfRuns; i++)
1850 {
1851 //
1852 // Get the run
1853 //
1854 Run = &MmPhysicalMemoryBlock->Run[i];
1855 DPRINT("PHYSICAL RAM [0x%08p to 0x%08p]\n",
1856 Run->BasePage << PAGE_SHIFT,
1857 (Run->BasePage + Run->PageCount) << PAGE_SHIFT);
1858
1859 //
1860 // Make sure it has pages inside it
1861 //
1862 if (Run->PageCount)
1863 {
1864 //
1865 // Set the bits in the PFN bitmap
1866 //
1867 RtlSetBits(&MiPfnBitMap, Run->BasePage, Run->PageCount);
1868 }
1869 }
1870
1871 /* Look for large page cache entries that need caching */
1872 MiSyncCachedRanges();
1873
1874 /* Loop for HAL Heap I/O device mappings that need coherency tracking */
1875 MiAddHalIoMappings();
1876
1877 /* Set the initial resident page count */
1878 MmResidentAvailablePages = MmAvailablePages - 32;
1879
1880 /* Initialize large page structures on PAE/x64, and MmProcessList on x86 */
1881 MiInitializeLargePageSupport();
1882
1883 /* Check if the registry says any drivers should be loaded with large pages */
1884 MiInitializeDriverLargePageList();
1885
1886 /* Relocate the boot drivers into system PTE space and fixup their PFNs */
1887 MiReloadBootLoadedDrivers(LoaderBlock);
1888
1889 /* FIXME: Call out into Driver Verifier for initialization */
1890
1891 /* Check how many pages the system has */
1892 if (MmNumberOfPhysicalPages <= (13 * _1MB))
1893 {
1894 /* Set small system */
1895 MmSystemSize = MmSmallSystem;
1896 }
1897 else if (MmNumberOfPhysicalPages <= (19 * _1MB))
1898 {
1899 /* Set small system and add 100 pages for the cache */
1900 MmSystemSize = MmSmallSystem;
1901 MmSystemCacheWsMinimum += 100;
1902 }
1903 else
1904 {
1905 /* Set medium system and add 400 pages for the cache */
1906 MmSystemSize = MmMediumSystem;
1907 MmSystemCacheWsMinimum += 400;
1908 }
1909
1910 /* Check for less than 24MB */
1911 if (MmNumberOfPhysicalPages < ((24 * _1MB) / PAGE_SIZE))
1912 {
1913 /* No more than 32 pages */
1914 MmSystemCacheWsMinimum = 32;
1915 }
1916
1917 /* Check for more than 32MB */
1918 if (MmNumberOfPhysicalPages >= ((32 * _1MB) / PAGE_SIZE))
1919 {
1920 /* Check for product type being "Wi" for WinNT */
1921 if (MmProductType == '\0i\0W')
1922 {
1923 /* Then this is a large system */
1924 MmSystemSize = MmLargeSystem;
1925 }
1926 else
1927 {
1928 /* For servers, we need 64MB to consider this as being large */
1929 if (MmNumberOfPhysicalPages >= ((64 * _1MB) / PAGE_SIZE))
1930 {
1931 /* Set it as large */
1932 MmSystemSize = MmLargeSystem;
1933 }
1934 }
1935 }
1936
1937 /* Check for more than 33 MB */
1938 if (MmNumberOfPhysicalPages > ((33 * _1MB) / PAGE_SIZE))
1939 {
1940 /* Add another 500 pages to the cache */
1941 MmSystemCacheWsMinimum += 500;
1942 }
1943
1944 /* Now setup the shared user data fields */
1945 ASSERT(SharedUserData->NumberOfPhysicalPages == 0);
1946 SharedUserData->NumberOfPhysicalPages = MmNumberOfPhysicalPages;
1947 SharedUserData->LargePageMinimum = 0;
1948
1949 /* Check for workstation (Wi for WinNT) */
1950 if (MmProductType == '\0i\0W')
1951 {
1952 /* Set Windows NT Workstation product type */
1953 SharedUserData->NtProductType = NtProductWinNt;
1954 MmProductType = 0;
1955 }
1956 else
1957 {
1958 /* Check for LanMan server */
1959 if (MmProductType == '\0a\0L')
1960 {
1961 /* This is a domain controller */
1962 SharedUserData->NtProductType = NtProductLanManNt;
1963 }
1964 else
1965 {
1966 /* Otherwise it must be a normal server */
1967 SharedUserData->NtProductType = NtProductServer;
1968 }
1969
1970 /* Set the product type, and make the system more aggressive with low memory */
1971 MmProductType = 1;
1972 MmMinimumFreePages = 81;
1973 }
1974
1975 /* Update working set tuning parameters */
1976 MiAdjustWorkingSetManagerParameters(!MmProductType);
1977
1978 /* Finetune the page count by removing working set and NP expansion */
1979 MmResidentAvailablePages -= MiExpansionPoolPagesInitialCharge;
1980 MmResidentAvailablePages -= MmSystemCacheWsMinimum;
1981 MmResidentAvailableAtInit = MmResidentAvailablePages;
1982 if (MmResidentAvailablePages <= 0)
1983 {
1984 /* This should not happen */
1985 DPRINT1("System cache working set too big\n");
1986 return FALSE;
1987 }
1988
1989 /* Size up paged pool and build the shadow system page directory */
1990 MiBuildPagedPool();
1991
1992 /* Debugger physical memory support is now ready to be used */
1993 MiDbgReadyForPhysical = TRUE;
1994
1995 /* Initialize the loaded module list */
1996 MiInitializeLoadedModuleList(LoaderBlock);
1997 }
1998
1999 //
2000 // Always return success for now
2001 //
2002 return STATUS_SUCCESS;
2003 }
2004
2005 /* EOF */