[NTOS:MM] Fix paged pool expansion
[reactos.git] / ntoskrnl / mm / ARM3 / pool.c
1 /*
2 * PROJECT: ReactOS Kernel
3 * LICENSE: BSD - See COPYING.ARM in the top level directory
4 * FILE: ntoskrnl/mm/ARM3/pool.c
5 * PURPOSE: ARM Memory Manager Pool Allocator
6 * PROGRAMMERS: ReactOS Portable Systems Group
7 */
8
9 /* INCLUDES *******************************************************************/
10
11 #include <ntoskrnl.h>
12 #define NDEBUG
13 #include <debug.h>
14
15 #define MODULE_INVOLVED_IN_ARM3
16 #include <mm/ARM3/miarm.h>
17
18 /* GLOBALS ********************************************************************/
19
20 LIST_ENTRY MmNonPagedPoolFreeListHead[MI_MAX_FREE_PAGE_LISTS];
21 PFN_COUNT MmNumberOfFreeNonPagedPool, MiExpansionPoolPagesInitialCharge;
22 PVOID MmNonPagedPoolEnd0;
23 PFN_NUMBER MiStartOfInitialPoolFrame, MiEndOfInitialPoolFrame;
24 KGUARDED_MUTEX MmPagedPoolMutex;
25 MM_PAGED_POOL_INFO MmPagedPoolInfo;
26 SIZE_T MmAllocatedNonPagedPool;
27 ULONG MmSpecialPoolTag;
28 ULONG MmConsumedPoolPercentage;
29 BOOLEAN MmProtectFreedNonPagedPool;
30 SLIST_HEADER MiNonPagedPoolSListHead;
31 ULONG MiNonPagedPoolSListMaximum = 4;
32 SLIST_HEADER MiPagedPoolSListHead;
33 ULONG MiPagedPoolSListMaximum = 8;
34
35 /* PRIVATE FUNCTIONS **********************************************************/
36
37 VOID
38 NTAPI
39 MiProtectFreeNonPagedPool(IN PVOID VirtualAddress,
40 IN ULONG PageCount)
41 {
42 PMMPTE PointerPte, LastPte;
43 MMPTE TempPte;
44
45 /* If pool is physical, can't protect PTEs */
46 if (MI_IS_PHYSICAL_ADDRESS(VirtualAddress)) return;
47
48 /* Get PTE pointers and loop */
49 PointerPte = MiAddressToPte(VirtualAddress);
50 LastPte = PointerPte + PageCount;
51 do
52 {
53 /* Capture the PTE for safety */
54 TempPte = *PointerPte;
55
56 /* Mark it as an invalid PTE, set proto bit to recognize it as pool */
57 TempPte.u.Hard.Valid = 0;
58 TempPte.u.Soft.Prototype = 1;
59 MI_WRITE_INVALID_PTE(PointerPte, TempPte);
60 } while (++PointerPte < LastPte);
61
62 /* Flush the TLB */
63 KeFlushEntireTb(TRUE, TRUE);
64 }
65
66 BOOLEAN
67 NTAPI
68 MiUnProtectFreeNonPagedPool(IN PVOID VirtualAddress,
69 IN ULONG PageCount)
70 {
71 PMMPTE PointerPte;
72 MMPTE TempPte;
73 PFN_NUMBER UnprotectedPages = 0;
74
75 /* If pool is physical, can't protect PTEs */
76 if (MI_IS_PHYSICAL_ADDRESS(VirtualAddress)) return FALSE;
77
78 /* Get, and capture the PTE */
79 PointerPte = MiAddressToPte(VirtualAddress);
80 TempPte = *PointerPte;
81
82 /* Loop protected PTEs */
83 while ((TempPte.u.Hard.Valid == 0) && (TempPte.u.Soft.Prototype == 1))
84 {
85 /* Unprotect the PTE */
86 TempPte.u.Hard.Valid = 1;
87 TempPte.u.Soft.Prototype = 0;
88 MI_WRITE_VALID_PTE(PointerPte, TempPte);
89
90 /* One more page */
91 if (++UnprotectedPages == PageCount) break;
92
93 /* Capture next PTE */
94 TempPte = *(++PointerPte);
95 }
96
97 /* Return if any pages were unprotected */
98 return UnprotectedPages ? TRUE : FALSE;
99 }
100
101 FORCEINLINE
102 VOID
103 MiProtectedPoolUnProtectLinks(IN PLIST_ENTRY Links,
104 OUT PVOID* PoolFlink,
105 OUT PVOID* PoolBlink)
106 {
107 BOOLEAN Safe;
108 PVOID PoolVa;
109
110 /* Initialize variables */
111 *PoolFlink = *PoolBlink = NULL;
112
113 /* Check if the list has entries */
114 if (IsListEmpty(Links) == FALSE)
115 {
116 /* We are going to need to forward link to do an insert */
117 PoolVa = Links->Flink;
118
119 /* So make it safe to access */
120 Safe = MiUnProtectFreeNonPagedPool(PoolVa, 1);
121 if (Safe) *PoolFlink = PoolVa;
122 }
123
124 /* Are we going to need a backward link too? */
125 if (Links != Links->Blink)
126 {
127 /* Get the head's backward link for the insert */
128 PoolVa = Links->Blink;
129
130 /* Make it safe to access */
131 Safe = MiUnProtectFreeNonPagedPool(PoolVa, 1);
132 if (Safe) *PoolBlink = PoolVa;
133 }
134 }
135
136 FORCEINLINE
137 VOID
138 MiProtectedPoolProtectLinks(IN PVOID PoolFlink,
139 IN PVOID PoolBlink)
140 {
141 /* Reprotect the pages, if they got unprotected earlier */
142 if (PoolFlink) MiProtectFreeNonPagedPool(PoolFlink, 1);
143 if (PoolBlink) MiProtectFreeNonPagedPool(PoolBlink, 1);
144 }
145
146 VOID
147 NTAPI
148 MiProtectedPoolInsertList(IN PLIST_ENTRY ListHead,
149 IN PLIST_ENTRY Entry,
150 IN BOOLEAN Critical)
151 {
152 PVOID PoolFlink, PoolBlink;
153
154 /* Make the list accessible */
155 MiProtectedPoolUnProtectLinks(ListHead, &PoolFlink, &PoolBlink);
156
157 /* Now insert in the right position */
158 Critical ? InsertHeadList(ListHead, Entry) : InsertTailList(ListHead, Entry);
159
160 /* And reprotect the pages containing the free links */
161 MiProtectedPoolProtectLinks(PoolFlink, PoolBlink);
162 }
163
164 VOID
165 NTAPI
166 MiProtectedPoolRemoveEntryList(IN PLIST_ENTRY Entry)
167 {
168 PVOID PoolFlink, PoolBlink;
169
170 /* Make the list accessible */
171 MiProtectedPoolUnProtectLinks(Entry, &PoolFlink, &PoolBlink);
172
173 /* Now remove */
174 RemoveEntryList(Entry);
175
176 /* And reprotect the pages containing the free links */
177 if (PoolFlink) MiProtectFreeNonPagedPool(PoolFlink, 1);
178 if (PoolBlink) MiProtectFreeNonPagedPool(PoolBlink, 1);
179 }
180
181 VOID
182 NTAPI
183 INIT_FUNCTION
184 MiInitializeNonPagedPoolThresholds(VOID)
185 {
186 PFN_NUMBER Size = MmMaximumNonPagedPoolInPages;
187
188 /* Default low threshold of 8MB or one third of nonpaged pool */
189 MiLowNonPagedPoolThreshold = (8 * _1MB) >> PAGE_SHIFT;
190 MiLowNonPagedPoolThreshold = min(MiLowNonPagedPoolThreshold, Size / 3);
191
192 /* Default high threshold of 20MB or 50% */
193 MiHighNonPagedPoolThreshold = (20 * _1MB) >> PAGE_SHIFT;
194 MiHighNonPagedPoolThreshold = min(MiHighNonPagedPoolThreshold, Size / 2);
195 ASSERT(MiLowNonPagedPoolThreshold < MiHighNonPagedPoolThreshold);
196 }
197
198 VOID
199 NTAPI
200 INIT_FUNCTION
201 MiInitializePoolEvents(VOID)
202 {
203 KIRQL OldIrql;
204 PFN_NUMBER FreePoolInPages;
205
206 /* Lock paged pool */
207 KeAcquireGuardedMutex(&MmPagedPoolMutex);
208
209 /* Total size of the paged pool minus the allocated size, is free */
210 FreePoolInPages = MmSizeOfPagedPoolInPages - MmPagedPoolInfo.AllocatedPagedPool;
211
212 /* Check the initial state high state */
213 if (FreePoolInPages >= MiHighPagedPoolThreshold)
214 {
215 /* We have plenty of pool */
216 KeSetEvent(MiHighPagedPoolEvent, 0, FALSE);
217 }
218 else
219 {
220 /* We don't */
221 KeClearEvent(MiHighPagedPoolEvent);
222 }
223
224 /* Check the initial low state */
225 if (FreePoolInPages <= MiLowPagedPoolThreshold)
226 {
227 /* We're very low in free pool memory */
228 KeSetEvent(MiLowPagedPoolEvent, 0, FALSE);
229 }
230 else
231 {
232 /* We're not */
233 KeClearEvent(MiLowPagedPoolEvent);
234 }
235
236 /* Release the paged pool lock */
237 KeReleaseGuardedMutex(&MmPagedPoolMutex);
238
239 /* Now it's time for the nonpaged pool lock */
240 OldIrql = KeAcquireQueuedSpinLock(LockQueueMmNonPagedPoolLock);
241
242 /* Free pages are the maximum minus what's been allocated */
243 FreePoolInPages = MmMaximumNonPagedPoolInPages - MmAllocatedNonPagedPool;
244
245 /* Check if we have plenty */
246 if (FreePoolInPages >= MiHighNonPagedPoolThreshold)
247 {
248 /* We do, set the event */
249 KeSetEvent(MiHighNonPagedPoolEvent, 0, FALSE);
250 }
251 else
252 {
253 /* We don't, clear the event */
254 KeClearEvent(MiHighNonPagedPoolEvent);
255 }
256
257 /* Check if we have very little */
258 if (FreePoolInPages <= MiLowNonPagedPoolThreshold)
259 {
260 /* We do, set the event */
261 KeSetEvent(MiLowNonPagedPoolEvent, 0, FALSE);
262 }
263 else
264 {
265 /* We don't, clear it */
266 KeClearEvent(MiLowNonPagedPoolEvent);
267 }
268
269 /* We're done, release the nonpaged pool lock */
270 KeReleaseQueuedSpinLock(LockQueueMmNonPagedPoolLock, OldIrql);
271 }
272
273 VOID
274 NTAPI
275 INIT_FUNCTION
276 MiInitializeNonPagedPool(VOID)
277 {
278 ULONG i;
279 PFN_COUNT PoolPages;
280 PMMFREE_POOL_ENTRY FreeEntry, FirstEntry;
281 PMMPTE PointerPte;
282 PAGED_CODE();
283
284 //
285 // Initialize the pool S-LISTs as well as their maximum count. In general,
286 // we'll allow 8 times the default on a 2GB system, and two times the default
287 // on a 1GB system.
288 //
289 InitializeSListHead(&MiPagedPoolSListHead);
290 InitializeSListHead(&MiNonPagedPoolSListHead);
291 if (MmNumberOfPhysicalPages >= ((2 * _1GB) /PAGE_SIZE))
292 {
293 MiNonPagedPoolSListMaximum *= 8;
294 MiPagedPoolSListMaximum *= 8;
295 }
296 else if (MmNumberOfPhysicalPages >= (_1GB /PAGE_SIZE))
297 {
298 MiNonPagedPoolSListMaximum *= 2;
299 MiPagedPoolSListMaximum *= 2;
300 }
301
302 //
303 // However if debugging options for the pool are enabled, turn off the S-LIST
304 // to reduce the risk of messing things up even more
305 //
306 if (MmProtectFreedNonPagedPool)
307 {
308 MiNonPagedPoolSListMaximum = 0;
309 MiPagedPoolSListMaximum = 0;
310 }
311
312 //
313 // We keep 4 lists of free pages (4 lists help avoid contention)
314 //
315 for (i = 0; i < MI_MAX_FREE_PAGE_LISTS; i++)
316 {
317 //
318 // Initialize each of them
319 //
320 InitializeListHead(&MmNonPagedPoolFreeListHead[i]);
321 }
322
323 //
324 // Calculate how many pages the initial nonpaged pool has
325 //
326 PoolPages = (PFN_COUNT)BYTES_TO_PAGES(MmSizeOfNonPagedPoolInBytes);
327 MmNumberOfFreeNonPagedPool = PoolPages;
328
329 //
330 // Initialize the first free entry
331 //
332 FreeEntry = MmNonPagedPoolStart;
333 FirstEntry = FreeEntry;
334 FreeEntry->Size = PoolPages;
335 FreeEntry->Signature = MM_FREE_POOL_SIGNATURE;
336 FreeEntry->Owner = FirstEntry;
337
338 //
339 // Insert it into the last list
340 //
341 InsertHeadList(&MmNonPagedPoolFreeListHead[MI_MAX_FREE_PAGE_LISTS - 1],
342 &FreeEntry->List);
343
344 //
345 // Now create free entries for every single other page
346 //
347 while (PoolPages-- > 1)
348 {
349 //
350 // Link them all back to the original entry
351 //
352 FreeEntry = (PMMFREE_POOL_ENTRY)((ULONG_PTR)FreeEntry + PAGE_SIZE);
353 FreeEntry->Owner = FirstEntry;
354 FreeEntry->Signature = MM_FREE_POOL_SIGNATURE;
355 }
356
357 //
358 // Validate and remember first allocated pool page
359 //
360 PointerPte = MiAddressToPte(MmNonPagedPoolStart);
361 ASSERT(PointerPte->u.Hard.Valid == 1);
362 MiStartOfInitialPoolFrame = PFN_FROM_PTE(PointerPte);
363
364 //
365 // Keep track of where initial nonpaged pool ends
366 //
367 MmNonPagedPoolEnd0 = (PVOID)((ULONG_PTR)MmNonPagedPoolStart +
368 MmSizeOfNonPagedPoolInBytes);
369
370 //
371 // Validate and remember last allocated pool page
372 //
373 PointerPte = MiAddressToPte((PVOID)((ULONG_PTR)MmNonPagedPoolEnd0 - 1));
374 ASSERT(PointerPte->u.Hard.Valid == 1);
375 MiEndOfInitialPoolFrame = PFN_FROM_PTE(PointerPte);
376
377 //
378 // Validate the first nonpaged pool expansion page (which is a guard page)
379 //
380 PointerPte = MiAddressToPte(MmNonPagedPoolExpansionStart);
381 ASSERT(PointerPte->u.Hard.Valid == 0);
382
383 //
384 // Calculate the size of the expansion region alone
385 //
386 MiExpansionPoolPagesInitialCharge = (PFN_COUNT)
387 BYTES_TO_PAGES(MmMaximumNonPagedPoolInBytes - MmSizeOfNonPagedPoolInBytes);
388
389 //
390 // Remove 2 pages, since there's a guard page on top and on the bottom
391 //
392 MiExpansionPoolPagesInitialCharge -= 2;
393
394 //
395 // Now initialize the nonpaged pool expansion PTE space. Remember there's a
396 // guard page on top so make sure to skip it. The bottom guard page will be
397 // guaranteed by the fact our size is off by one.
398 //
399 MiInitializeSystemPtes(PointerPte + 1,
400 MiExpansionPoolPagesInitialCharge,
401 NonPagedPoolExpansion);
402 }
403
404 POOL_TYPE
405 NTAPI
406 MmDeterminePoolType(IN PVOID PoolAddress)
407 {
408 //
409 // Use a simple bounds check
410 //
411 if (PoolAddress >= MmPagedPoolStart && PoolAddress <= MmPagedPoolEnd)
412 return PagedPool;
413 else if (PoolAddress >= MmNonPagedPoolStart && PoolAddress <= MmNonPagedPoolEnd)
414 return NonPagedPool;
415 KeBugCheckEx(BAD_POOL_CALLER, 0x42, (ULONG_PTR)PoolAddress, 0, 0);
416 }
417
418 PVOID
419 NTAPI
420 MiAllocatePoolPages(IN POOL_TYPE PoolType,
421 IN SIZE_T SizeInBytes)
422 {
423 PFN_NUMBER PageFrameNumber;
424 PFN_COUNT SizeInPages, PageTableCount;
425 ULONG i;
426 KIRQL OldIrql;
427 PLIST_ENTRY NextEntry, NextHead, LastHead;
428 PMMPTE PointerPte, StartPte;
429 PMMPDE PointerPde;
430 ULONG EndAllocation;
431 MMPTE TempPte;
432 MMPDE TempPde;
433 PMMPFN Pfn1;
434 PVOID BaseVa, BaseVaStart;
435 PMMFREE_POOL_ENTRY FreeEntry;
436
437 //
438 // Figure out how big the allocation is in pages
439 //
440 SizeInPages = (PFN_COUNT)BYTES_TO_PAGES(SizeInBytes);
441
442 //
443 // Check for overflow
444 //
445 if (SizeInPages == 0)
446 {
447 //
448 // Fail
449 //
450 return NULL;
451 }
452
453 //
454 // Handle paged pool
455 //
456 if ((PoolType & BASE_POOL_TYPE_MASK) == PagedPool)
457 {
458 //
459 // If only one page is being requested, try to grab it from the S-LIST
460 //
461 if ((SizeInPages == 1) && (ExQueryDepthSList(&MiPagedPoolSListHead)))
462 {
463 BaseVa = InterlockedPopEntrySList(&MiPagedPoolSListHead);
464 if (BaseVa) return BaseVa;
465 }
466
467 //
468 // Lock the paged pool mutex
469 //
470 KeAcquireGuardedMutex(&MmPagedPoolMutex);
471
472 //
473 // Find some empty allocation space
474 //
475 i = RtlFindClearBitsAndSet(MmPagedPoolInfo.PagedPoolAllocationMap,
476 SizeInPages,
477 MmPagedPoolInfo.PagedPoolHint);
478 if (i == 0xFFFFFFFF)
479 {
480 //
481 // Get the page bit count
482 //
483 i = ((SizeInPages - 1) / PTE_COUNT) + 1;
484 DPRINT("Paged pool expansion: %lu %x\n", i, SizeInPages);
485
486 //
487 // Check if there is enougn paged pool expansion space left
488 //
489 if (MmPagedPoolInfo.NextPdeForPagedPoolExpansion >
490 (PMMPDE)MiAddressToPte(MmPagedPoolInfo.LastPteForPagedPool))
491 {
492 //
493 // Out of memory!
494 //
495 DPRINT1("FAILED to allocate %Iu bytes from paged pool\n", SizeInBytes);
496 KeReleaseGuardedMutex(&MmPagedPoolMutex);
497 return NULL;
498 }
499
500 //
501 // Check if we'll have to expand past the last PTE we have available
502 //
503 if (((i - 1) + MmPagedPoolInfo.NextPdeForPagedPoolExpansion) >
504 (PMMPDE)MiAddressToPte(MmPagedPoolInfo.LastPteForPagedPool))
505 {
506 //
507 // We can only support this much then
508 //
509 PointerPde = MiPteToPde(MmPagedPoolInfo.LastPteForPagedPool);
510 PageTableCount = (PFN_COUNT)(PointerPde + 1 -
511 MmPagedPoolInfo.NextPdeForPagedPoolExpansion);
512 ASSERT(PageTableCount < i);
513 i = PageTableCount;
514 }
515 else
516 {
517 //
518 // Otherwise, there is plenty of space left for this expansion
519 //
520 PageTableCount = i;
521 }
522
523 //
524 // Get the template PDE we'll use to expand
525 //
526 TempPde = ValidKernelPde;
527
528 //
529 // Get the first PTE in expansion space
530 //
531 PointerPde = MmPagedPoolInfo.NextPdeForPagedPoolExpansion;
532 BaseVa = MiPdeToPte(PointerPde);
533 BaseVaStart = BaseVa;
534
535 //
536 // Lock the PFN database and loop pages
537 //
538 OldIrql = MiAcquirePfnLock();
539 do
540 {
541 //
542 // It should not already be valid
543 //
544 ASSERT(PointerPde->u.Hard.Valid == 0);
545
546 /* Request a page */
547 MI_SET_USAGE(MI_USAGE_PAGED_POOL);
548 MI_SET_PROCESS2("Kernel");
549 PageFrameNumber = MiRemoveAnyPage(MI_GET_NEXT_COLOR());
550 TempPde.u.Hard.PageFrameNumber = PageFrameNumber;
551 #if (_MI_PAGING_LEVELS >= 3)
552 /* On PAE/x64 systems, there's no double-buffering */
553 /* Initialize the PFN entry for it */
554 MiInitializePfnForOtherProcess(PageFrameNumber,
555 (PMMPTE)PointerPde,
556 PFN_FROM_PTE(MiAddressToPte(PointerPde)));
557
558 #else
559 //
560 // Save it into our double-buffered system page directory
561 //
562 MmSystemPagePtes[((ULONG_PTR)PointerPde & (SYSTEM_PD_SIZE - 1)) / sizeof(MMPTE)] = TempPde;
563
564 /* Initialize the PFN */
565 MiInitializePfnForOtherProcess(PageFrameNumber,
566 (PMMPTE)PointerPde,
567 MmSystemPageDirectory[(PointerPde - MiAddressToPde(NULL)) / PDE_COUNT]);
568 #endif
569
570 /* Write the actual PDE now */
571 MI_WRITE_VALID_PDE(PointerPde, TempPde);
572
573 //
574 // Move on to the next expansion address
575 //
576 PointerPde++;
577 BaseVa = (PVOID)((ULONG_PTR)BaseVa + PAGE_SIZE);
578 i--;
579 } while (i > 0);
580
581 //
582 // Release the PFN database lock
583 //
584 MiReleasePfnLock(OldIrql);
585
586 //
587 // These pages are now available, clear their availablity bits
588 //
589 EndAllocation = (ULONG)(MmPagedPoolInfo.NextPdeForPagedPoolExpansion -
590 (PMMPDE)MiAddressToPte(MmPagedPoolInfo.FirstPteForPagedPool)) *
591 PTE_COUNT;
592 RtlClearBits(MmPagedPoolInfo.PagedPoolAllocationMap,
593 EndAllocation,
594 PageTableCount * PTE_COUNT);
595
596 //
597 // Update the next expansion location
598 //
599 MmPagedPoolInfo.NextPdeForPagedPoolExpansion += PageTableCount;
600
601 //
602 // Zero out the newly available memory
603 //
604 RtlZeroMemory(BaseVaStart, PageTableCount * PAGE_SIZE);
605
606 //
607 // Now try consuming the pages again
608 //
609 i = RtlFindClearBitsAndSet(MmPagedPoolInfo.PagedPoolAllocationMap,
610 SizeInPages,
611 0);
612 if (i == 0xFFFFFFFF)
613 {
614 //
615 // Out of memory!
616 //
617 DPRINT1("FAILED to allocate %Iu bytes from paged pool\n", SizeInBytes);
618 KeReleaseGuardedMutex(&MmPagedPoolMutex);
619 return NULL;
620 }
621 }
622
623 //
624 // Update the pool hint if the request was just one page
625 //
626 if (SizeInPages == 1) MmPagedPoolInfo.PagedPoolHint = i + 1;
627
628 //
629 // Update the end bitmap so we know the bounds of this allocation when
630 // the time comes to free it
631 //
632 EndAllocation = i + SizeInPages - 1;
633 RtlSetBit(MmPagedPoolInfo.EndOfPagedPoolBitmap, EndAllocation);
634
635 //
636 // Now we can release the lock (it mainly protects the bitmap)
637 //
638 KeReleaseGuardedMutex(&MmPagedPoolMutex);
639
640 //
641 // Now figure out where this allocation starts
642 //
643 BaseVa = (PVOID)((ULONG_PTR)MmPagedPoolStart + (i << PAGE_SHIFT));
644
645 //
646 // Flush the TLB
647 //
648 KeFlushEntireTb(TRUE, TRUE);
649
650 /* Setup a demand-zero writable PTE */
651 MI_MAKE_SOFTWARE_PTE(&TempPte, MM_READWRITE);
652
653 //
654 // Find the first and last PTE, then loop them all
655 //
656 PointerPte = MiAddressToPte(BaseVa);
657 StartPte = PointerPte + SizeInPages;
658 do
659 {
660 //
661 // Write the demand zero PTE and keep going
662 //
663 MI_WRITE_INVALID_PTE(PointerPte, TempPte);
664 } while (++PointerPte < StartPte);
665
666 //
667 // Return the allocation address to the caller
668 //
669 return BaseVa;
670 }
671
672 //
673 // If only one page is being requested, try to grab it from the S-LIST
674 //
675 if ((SizeInPages == 1) && (ExQueryDepthSList(&MiNonPagedPoolSListHead)))
676 {
677 BaseVa = InterlockedPopEntrySList(&MiNonPagedPoolSListHead);
678 if (BaseVa) return BaseVa;
679 }
680
681 //
682 // Allocations of less than 4 pages go into their individual buckets
683 //
684 i = SizeInPages - 1;
685 if (i >= MI_MAX_FREE_PAGE_LISTS) i = MI_MAX_FREE_PAGE_LISTS - 1;
686
687 //
688 // Loop through all the free page lists based on the page index
689 //
690 NextHead = &MmNonPagedPoolFreeListHead[i];
691 LastHead = &MmNonPagedPoolFreeListHead[MI_MAX_FREE_PAGE_LISTS];
692
693 //
694 // Acquire the nonpaged pool lock
695 //
696 OldIrql = KeAcquireQueuedSpinLock(LockQueueMmNonPagedPoolLock);
697 do
698 {
699 //
700 // Now loop through all the free page entries in this given list
701 //
702 NextEntry = NextHead->Flink;
703 while (NextEntry != NextHead)
704 {
705 /* Is freed non paged pool enabled */
706 if (MmProtectFreedNonPagedPool)
707 {
708 /* We need to be able to touch this page, unprotect it */
709 MiUnProtectFreeNonPagedPool(NextEntry, 0);
710 }
711
712 //
713 // Grab the entry and see if it can handle our allocation
714 //
715 FreeEntry = CONTAINING_RECORD(NextEntry, MMFREE_POOL_ENTRY, List);
716 ASSERT(FreeEntry->Signature == MM_FREE_POOL_SIGNATURE);
717 if (FreeEntry->Size >= SizeInPages)
718 {
719 //
720 // It does, so consume the pages from here
721 //
722 FreeEntry->Size -= SizeInPages;
723
724 //
725 // The allocation will begin in this free page area
726 //
727 BaseVa = (PVOID)((ULONG_PTR)FreeEntry +
728 (FreeEntry->Size << PAGE_SHIFT));
729
730 /* Remove the item from the list, depending if pool is protected */
731 if (MmProtectFreedNonPagedPool)
732 MiProtectedPoolRemoveEntryList(&FreeEntry->List);
733 else
734 RemoveEntryList(&FreeEntry->List);
735
736 //
737 // However, check if its' still got space left
738 //
739 if (FreeEntry->Size != 0)
740 {
741 /* Check which list to insert this entry into */
742 i = FreeEntry->Size - 1;
743 if (i >= MI_MAX_FREE_PAGE_LISTS) i = MI_MAX_FREE_PAGE_LISTS - 1;
744
745 /* Insert the entry into the free list head, check for prot. pool */
746 if (MmProtectFreedNonPagedPool)
747 MiProtectedPoolInsertList(&MmNonPagedPoolFreeListHead[i], &FreeEntry->List, TRUE);
748 else
749 InsertTailList(&MmNonPagedPoolFreeListHead[i], &FreeEntry->List);
750
751 /* Is freed non paged pool protected? */
752 if (MmProtectFreedNonPagedPool)
753 {
754 /* Protect the freed pool! */
755 MiProtectFreeNonPagedPool(FreeEntry, FreeEntry->Size);
756 }
757 }
758
759 //
760 // Grab the PTE for this allocation
761 //
762 PointerPte = MiAddressToPte(BaseVa);
763 ASSERT(PointerPte->u.Hard.Valid == 1);
764
765 //
766 // Grab the PFN NextEntry and index
767 //
768 Pfn1 = MiGetPfnEntry(PFN_FROM_PTE(PointerPte));
769
770 //
771 // Now mark it as the beginning of an allocation
772 //
773 ASSERT(Pfn1->u3.e1.StartOfAllocation == 0);
774 Pfn1->u3.e1.StartOfAllocation = 1;
775
776 /* Mark it as special pool if needed */
777 ASSERT(Pfn1->u4.VerifierAllocation == 0);
778 if (PoolType & VERIFIER_POOL_MASK)
779 {
780 Pfn1->u4.VerifierAllocation = 1;
781 }
782
783 //
784 // Check if the allocation is larger than one page
785 //
786 if (SizeInPages != 1)
787 {
788 //
789 // Navigate to the last PFN entry and PTE
790 //
791 PointerPte += SizeInPages - 1;
792 ASSERT(PointerPte->u.Hard.Valid == 1);
793 Pfn1 = MiGetPfnEntry(PointerPte->u.Hard.PageFrameNumber);
794 }
795
796 //
797 // Mark this PFN as the last (might be the same as the first)
798 //
799 ASSERT(Pfn1->u3.e1.EndOfAllocation == 0);
800 Pfn1->u3.e1.EndOfAllocation = 1;
801
802 //
803 // Release the nonpaged pool lock, and return the allocation
804 //
805 KeReleaseQueuedSpinLock(LockQueueMmNonPagedPoolLock, OldIrql);
806 return BaseVa;
807 }
808
809 //
810 // Try the next free page entry
811 //
812 NextEntry = FreeEntry->List.Flink;
813
814 /* Is freed non paged pool protected? */
815 if (MmProtectFreedNonPagedPool)
816 {
817 /* Protect the freed pool! */
818 MiProtectFreeNonPagedPool(FreeEntry, FreeEntry->Size);
819 }
820 }
821 } while (++NextHead < LastHead);
822
823 //
824 // If we got here, we're out of space.
825 // Start by releasing the lock
826 //
827 KeReleaseQueuedSpinLock(LockQueueMmNonPagedPoolLock, OldIrql);
828
829 //
830 // Allocate some system PTEs
831 //
832 StartPte = MiReserveSystemPtes(SizeInPages, NonPagedPoolExpansion);
833 PointerPte = StartPte;
834 if (StartPte == NULL)
835 {
836 //
837 // Ran out of memory
838 //
839 DPRINT1("Out of NP Expansion Pool\n");
840 return NULL;
841 }
842
843 //
844 // Acquire the pool lock now
845 //
846 OldIrql = KeAcquireQueuedSpinLock(LockQueueMmNonPagedPoolLock);
847
848 //
849 // Lock the PFN database too
850 //
851 MiAcquirePfnLockAtDpcLevel();
852
853 //
854 // Loop the pages
855 //
856 TempPte = ValidKernelPte;
857 do
858 {
859 /* Allocate a page */
860 MI_SET_USAGE(MI_USAGE_PAGED_POOL);
861 MI_SET_PROCESS2("Kernel");
862 PageFrameNumber = MiRemoveAnyPage(MI_GET_NEXT_COLOR());
863
864 /* Get the PFN entry for it and fill it out */
865 Pfn1 = MiGetPfnEntry(PageFrameNumber);
866 Pfn1->u3.e2.ReferenceCount = 1;
867 Pfn1->u2.ShareCount = 1;
868 Pfn1->PteAddress = PointerPte;
869 Pfn1->u3.e1.PageLocation = ActiveAndValid;
870 Pfn1->u4.VerifierAllocation = 0;
871
872 /* Write the PTE for it */
873 TempPte.u.Hard.PageFrameNumber = PageFrameNumber;
874 MI_WRITE_VALID_PTE(PointerPte++, TempPte);
875 } while (--SizeInPages > 0);
876
877 //
878 // This is the last page
879 //
880 Pfn1->u3.e1.EndOfAllocation = 1;
881
882 //
883 // Get the first page and mark it as such
884 //
885 Pfn1 = MiGetPfnEntry(StartPte->u.Hard.PageFrameNumber);
886 Pfn1->u3.e1.StartOfAllocation = 1;
887
888 /* Mark it as a verifier allocation if needed */
889 ASSERT(Pfn1->u4.VerifierAllocation == 0);
890 if (PoolType & VERIFIER_POOL_MASK) Pfn1->u4.VerifierAllocation = 1;
891
892 //
893 // Release the PFN and nonpaged pool lock
894 //
895 MiReleasePfnLockFromDpcLevel();
896 KeReleaseQueuedSpinLock(LockQueueMmNonPagedPoolLock, OldIrql);
897
898 //
899 // Return the address
900 //
901 return MiPteToAddress(StartPte);
902 }
903
904 ULONG
905 NTAPI
906 MiFreePoolPages(IN PVOID StartingVa)
907 {
908 PMMPTE PointerPte, StartPte;
909 PMMPFN Pfn1, StartPfn;
910 PFN_COUNT FreePages, NumberOfPages;
911 KIRQL OldIrql;
912 PMMFREE_POOL_ENTRY FreeEntry, NextEntry, LastEntry;
913 ULONG i, End;
914 ULONG_PTR Offset;
915
916 //
917 // Handle paged pool
918 //
919 if ((StartingVa >= MmPagedPoolStart) && (StartingVa <= MmPagedPoolEnd))
920 {
921 //
922 // Calculate the offset from the beginning of paged pool, and convert it
923 // into pages
924 //
925 Offset = (ULONG_PTR)StartingVa - (ULONG_PTR)MmPagedPoolStart;
926 i = (ULONG)(Offset >> PAGE_SHIFT);
927 End = i;
928
929 //
930 // Now use the end bitmap to scan until we find a set bit, meaning that
931 // this allocation finishes here
932 //
933 while (!RtlTestBit(MmPagedPoolInfo.EndOfPagedPoolBitmap, End)) End++;
934
935 //
936 // Now calculate the total number of pages this allocation spans. If it's
937 // only one page, add it to the S-LIST instead of freeing it
938 //
939 NumberOfPages = End - i + 1;
940 if ((NumberOfPages == 1) &&
941 (ExQueryDepthSList(&MiPagedPoolSListHead) < MiPagedPoolSListMaximum))
942 {
943 InterlockedPushEntrySList(&MiPagedPoolSListHead, StartingVa);
944 return 1;
945 }
946
947 /* Delete the actual pages */
948 PointerPte = MmPagedPoolInfo.FirstPteForPagedPool + i;
949 FreePages = MiDeleteSystemPageableVm(PointerPte, NumberOfPages, 0, NULL);
950 ASSERT(FreePages == NumberOfPages);
951
952 //
953 // Acquire the paged pool lock
954 //
955 KeAcquireGuardedMutex(&MmPagedPoolMutex);
956
957 //
958 // Clear the allocation and free bits
959 //
960 RtlClearBit(MmPagedPoolInfo.EndOfPagedPoolBitmap, End);
961 RtlClearBits(MmPagedPoolInfo.PagedPoolAllocationMap, i, NumberOfPages);
962
963 //
964 // Update the hint if we need to
965 //
966 if (i < MmPagedPoolInfo.PagedPoolHint) MmPagedPoolInfo.PagedPoolHint = i;
967
968 //
969 // Release the lock protecting the bitmaps
970 //
971 KeReleaseGuardedMutex(&MmPagedPoolMutex);
972
973 //
974 // And finally return the number of pages freed
975 //
976 return NumberOfPages;
977 }
978
979 //
980 // Get the first PTE and its corresponding PFN entry. If this is also the
981 // last PTE, meaning that this allocation was only for one page, push it into
982 // the S-LIST instead of freeing it
983 //
984 StartPte = PointerPte = MiAddressToPte(StartingVa);
985 StartPfn = Pfn1 = MiGetPfnEntry(PointerPte->u.Hard.PageFrameNumber);
986 if ((Pfn1->u3.e1.EndOfAllocation == 1) &&
987 (ExQueryDepthSList(&MiNonPagedPoolSListHead) < MiNonPagedPoolSListMaximum))
988 {
989 InterlockedPushEntrySList(&MiNonPagedPoolSListHead, StartingVa);
990 return 1;
991 }
992
993 //
994 // Loop until we find the last PTE
995 //
996 while (Pfn1->u3.e1.EndOfAllocation == 0)
997 {
998 //
999 // Keep going
1000 //
1001 PointerPte++;
1002 Pfn1 = MiGetPfnEntry(PointerPte->u.Hard.PageFrameNumber);
1003 }
1004
1005 //
1006 // Now we know how many pages we have
1007 //
1008 NumberOfPages = (PFN_COUNT)(PointerPte - StartPte + 1);
1009
1010 //
1011 // Acquire the nonpaged pool lock
1012 //
1013 OldIrql = KeAcquireQueuedSpinLock(LockQueueMmNonPagedPoolLock);
1014
1015 //
1016 // Mark the first and last PTEs as not part of an allocation anymore
1017 //
1018 StartPfn->u3.e1.StartOfAllocation = 0;
1019 Pfn1->u3.e1.EndOfAllocation = 0;
1020
1021 //
1022 // Assume we will free as many pages as the allocation was
1023 //
1024 FreePages = NumberOfPages;
1025
1026 //
1027 // Peek one page past the end of the allocation
1028 //
1029 PointerPte++;
1030
1031 //
1032 // Guard against going past initial nonpaged pool
1033 //
1034 if (MiGetPfnEntryIndex(Pfn1) == MiEndOfInitialPoolFrame)
1035 {
1036 //
1037 // This page is on the outskirts of initial nonpaged pool, so ignore it
1038 //
1039 Pfn1 = NULL;
1040 }
1041 else
1042 {
1043 /* Sanity check */
1044 ASSERT((ULONG_PTR)StartingVa + NumberOfPages <= (ULONG_PTR)MmNonPagedPoolEnd);
1045
1046 /* Check if protected pool is enabled */
1047 if (MmProtectFreedNonPagedPool)
1048 {
1049 /* The freed block will be merged, it must be made accessible */
1050 MiUnProtectFreeNonPagedPool(MiPteToAddress(PointerPte), 0);
1051 }
1052
1053 //
1054 // Otherwise, our entire allocation must've fit within the initial non
1055 // paged pool, or the expansion nonpaged pool, so get the PFN entry of
1056 // the next allocation
1057 //
1058 if (PointerPte->u.Hard.Valid == 1)
1059 {
1060 //
1061 // It's either expansion or initial: get the PFN entry
1062 //
1063 Pfn1 = MiGetPfnEntry(PointerPte->u.Hard.PageFrameNumber);
1064 }
1065 else
1066 {
1067 //
1068 // This means we've reached the guard page that protects the end of
1069 // the expansion nonpaged pool
1070 //
1071 Pfn1 = NULL;
1072 }
1073
1074 }
1075
1076 //
1077 // Check if this allocation actually exists
1078 //
1079 if ((Pfn1) && (Pfn1->u3.e1.StartOfAllocation == 0))
1080 {
1081 //
1082 // It doesn't, so we should actually locate a free entry descriptor
1083 //
1084 FreeEntry = (PMMFREE_POOL_ENTRY)((ULONG_PTR)StartingVa +
1085 (NumberOfPages << PAGE_SHIFT));
1086 ASSERT(FreeEntry->Signature == MM_FREE_POOL_SIGNATURE);
1087 ASSERT(FreeEntry->Owner == FreeEntry);
1088
1089 /* Consume this entry's pages */
1090 FreePages += FreeEntry->Size;
1091
1092 /* Remove the item from the list, depending if pool is protected */
1093 if (MmProtectFreedNonPagedPool)
1094 MiProtectedPoolRemoveEntryList(&FreeEntry->List);
1095 else
1096 RemoveEntryList(&FreeEntry->List);
1097 }
1098
1099 //
1100 // Now get the official free entry we'll create for the caller's allocation
1101 //
1102 FreeEntry = StartingVa;
1103
1104 //
1105 // Check if the our allocation is the very first page
1106 //
1107 if (MiGetPfnEntryIndex(StartPfn) == MiStartOfInitialPoolFrame)
1108 {
1109 //
1110 // Then we can't do anything or we'll risk underflowing
1111 //
1112 Pfn1 = NULL;
1113 }
1114 else
1115 {
1116 //
1117 // Otherwise, get the PTE for the page right before our allocation
1118 //
1119 PointerPte -= NumberOfPages + 1;
1120
1121 /* Check if protected pool is enabled */
1122 if (MmProtectFreedNonPagedPool)
1123 {
1124 /* The freed block will be merged, it must be made accessible */
1125 MiUnProtectFreeNonPagedPool(MiPteToAddress(PointerPte), 0);
1126 }
1127
1128 /* Check if this is valid pool, or a guard page */
1129 if (PointerPte->u.Hard.Valid == 1)
1130 {
1131 //
1132 // It's either expansion or initial nonpaged pool, get the PFN entry
1133 //
1134 Pfn1 = MiGetPfnEntry(PointerPte->u.Hard.PageFrameNumber);
1135 }
1136 else
1137 {
1138 //
1139 // We must've reached the guard page, so don't risk touching it
1140 //
1141 Pfn1 = NULL;
1142 }
1143 }
1144
1145 //
1146 // Check if there is a valid PFN entry for the page before the allocation
1147 // and then check if this page was actually the end of an allocation.
1148 // If it wasn't, then we know for sure it's a free page
1149 //
1150 if ((Pfn1) && (Pfn1->u3.e1.EndOfAllocation == 0))
1151 {
1152 //
1153 // Get the free entry descriptor for that given page range
1154 //
1155 FreeEntry = (PMMFREE_POOL_ENTRY)((ULONG_PTR)StartingVa - PAGE_SIZE);
1156 ASSERT(FreeEntry->Signature == MM_FREE_POOL_SIGNATURE);
1157 FreeEntry = FreeEntry->Owner;
1158
1159 /* Check if protected pool is enabled */
1160 if (MmProtectFreedNonPagedPool)
1161 {
1162 /* The freed block will be merged, it must be made accessible */
1163 MiUnProtectFreeNonPagedPool(FreeEntry, 0);
1164 }
1165
1166 //
1167 // Check if the entry is small enough to be indexed on a free list
1168 // If it is, we'll want to re-insert it, since we're about to
1169 // collapse our pages on top of it, which will change its count
1170 //
1171 if (FreeEntry->Size < (MI_MAX_FREE_PAGE_LISTS - 1))
1172 {
1173 /* Remove the item from the list, depending if pool is protected */
1174 if (MmProtectFreedNonPagedPool)
1175 MiProtectedPoolRemoveEntryList(&FreeEntry->List);
1176 else
1177 RemoveEntryList(&FreeEntry->List);
1178
1179 //
1180 // Update its size
1181 //
1182 FreeEntry->Size += FreePages;
1183
1184 //
1185 // And now find the new appropriate list to place it in
1186 //
1187 i = (ULONG)(FreeEntry->Size - 1);
1188 if (i >= MI_MAX_FREE_PAGE_LISTS) i = MI_MAX_FREE_PAGE_LISTS - 1;
1189
1190 /* Insert the entry into the free list head, check for prot. pool */
1191 if (MmProtectFreedNonPagedPool)
1192 MiProtectedPoolInsertList(&MmNonPagedPoolFreeListHead[i], &FreeEntry->List, TRUE);
1193 else
1194 InsertTailList(&MmNonPagedPoolFreeListHead[i], &FreeEntry->List);
1195 }
1196 else
1197 {
1198 //
1199 // Otherwise, just combine our free pages into this entry
1200 //
1201 FreeEntry->Size += FreePages;
1202 }
1203 }
1204
1205 //
1206 // Check if we were unable to do any compaction, and we'll stick with this
1207 //
1208 if (FreeEntry == StartingVa)
1209 {
1210 //
1211 // Well, now we are a free entry. At worse we just have our newly freed
1212 // pages, at best we have our pages plus whatever entry came after us
1213 //
1214 FreeEntry->Size = FreePages;
1215
1216 //
1217 // Find the appropriate list we should be on
1218 //
1219 i = FreeEntry->Size - 1;
1220 if (i >= MI_MAX_FREE_PAGE_LISTS) i = MI_MAX_FREE_PAGE_LISTS - 1;
1221
1222 /* Insert the entry into the free list head, check for prot. pool */
1223 if (MmProtectFreedNonPagedPool)
1224 MiProtectedPoolInsertList(&MmNonPagedPoolFreeListHead[i], &FreeEntry->List, TRUE);
1225 else
1226 InsertTailList(&MmNonPagedPoolFreeListHead[i], &FreeEntry->List);
1227 }
1228
1229 //
1230 // Just a sanity check
1231 //
1232 ASSERT(FreePages != 0);
1233
1234 //
1235 // Get all the pages between our allocation and its end. These will all now
1236 // become free page chunks.
1237 //
1238 NextEntry = StartingVa;
1239 LastEntry = (PMMFREE_POOL_ENTRY)((ULONG_PTR)NextEntry + (FreePages << PAGE_SHIFT));
1240 do
1241 {
1242 //
1243 // Link back to the parent free entry, and keep going
1244 //
1245 NextEntry->Owner = FreeEntry;
1246 NextEntry->Signature = MM_FREE_POOL_SIGNATURE;
1247 NextEntry = (PMMFREE_POOL_ENTRY)((ULONG_PTR)NextEntry + PAGE_SIZE);
1248 } while (NextEntry != LastEntry);
1249
1250 /* Is freed non paged pool protected? */
1251 if (MmProtectFreedNonPagedPool)
1252 {
1253 /* Protect the freed pool! */
1254 MiProtectFreeNonPagedPool(FreeEntry, FreeEntry->Size);
1255 }
1256
1257 //
1258 // We're done, release the lock and let the caller know how much we freed
1259 //
1260 KeReleaseQueuedSpinLock(LockQueueMmNonPagedPoolLock, OldIrql);
1261 return NumberOfPages;
1262 }
1263
1264
1265 BOOLEAN
1266 NTAPI
1267 MiRaisePoolQuota(IN POOL_TYPE PoolType,
1268 IN ULONG CurrentMaxQuota,
1269 OUT PULONG NewMaxQuota)
1270 {
1271 //
1272 // Not implemented
1273 //
1274 UNIMPLEMENTED;
1275 *NewMaxQuota = CurrentMaxQuota + 65536;
1276 return TRUE;
1277 }
1278
1279 NTSTATUS
1280 NTAPI
1281 MiInitializeSessionPool(VOID)
1282 {
1283 PMMPTE PointerPte, LastPte;
1284 PMMPDE PointerPde, LastPde;
1285 PFN_NUMBER PageFrameIndex, PdeCount;
1286 PPOOL_DESCRIPTOR PoolDescriptor;
1287 PMM_SESSION_SPACE SessionGlobal;
1288 PMM_PAGED_POOL_INFO PagedPoolInfo;
1289 NTSTATUS Status;
1290 ULONG Index, PoolSize, BitmapSize;
1291 PAGED_CODE();
1292
1293 /* Lock session pool */
1294 SessionGlobal = MmSessionSpace->GlobalVirtualAddress;
1295 KeInitializeGuardedMutex(&SessionGlobal->PagedPoolMutex);
1296
1297 /* Setup a valid pool descriptor */
1298 PoolDescriptor = &MmSessionSpace->PagedPool;
1299 ExInitializePoolDescriptor(PoolDescriptor,
1300 PagedPoolSession,
1301 0,
1302 0,
1303 &SessionGlobal->PagedPoolMutex);
1304
1305 /* Setup the pool addresses */
1306 MmSessionSpace->PagedPoolStart = (PVOID)MiSessionPoolStart;
1307 MmSessionSpace->PagedPoolEnd = (PVOID)((ULONG_PTR)MiSessionPoolEnd - 1);
1308 DPRINT1("Session Pool Start: 0x%p End: 0x%p\n",
1309 MmSessionSpace->PagedPoolStart, MmSessionSpace->PagedPoolEnd);
1310
1311 /* Reset all the counters */
1312 PagedPoolInfo = &MmSessionSpace->PagedPoolInfo;
1313 PagedPoolInfo->PagedPoolCommit = 0;
1314 PagedPoolInfo->PagedPoolHint = 0;
1315 PagedPoolInfo->AllocatedPagedPool = 0;
1316
1317 /* Compute PDE and PTE addresses */
1318 PointerPde = MiAddressToPde(MmSessionSpace->PagedPoolStart);
1319 PointerPte = MiAddressToPte(MmSessionSpace->PagedPoolStart);
1320 LastPde = MiAddressToPde(MmSessionSpace->PagedPoolEnd);
1321 LastPte = MiAddressToPte(MmSessionSpace->PagedPoolEnd);
1322
1323 /* Write them down */
1324 MmSessionSpace->PagedPoolBasePde = PointerPde;
1325 PagedPoolInfo->FirstPteForPagedPool = PointerPte;
1326 PagedPoolInfo->LastPteForPagedPool = LastPte;
1327 PagedPoolInfo->NextPdeForPagedPoolExpansion = PointerPde + 1;
1328
1329 /* Zero the PDEs */
1330 PdeCount = LastPde - PointerPde;
1331 RtlZeroMemory(PointerPde, (PdeCount + 1) * sizeof(MMPTE));
1332
1333 /* Initialize the PFN for the PDE */
1334 Status = MiInitializeAndChargePfn(&PageFrameIndex,
1335 PointerPde,
1336 MmSessionSpace->SessionPageDirectoryIndex,
1337 TRUE);
1338 ASSERT(NT_SUCCESS(Status) == TRUE);
1339
1340 /* Initialize the first page table */
1341 Index = (ULONG_PTR)MmSessionSpace->PagedPoolStart - (ULONG_PTR)MmSessionBase;
1342 Index >>= 22;
1343 #ifndef _M_AMD64 // FIXME
1344 ASSERT(MmSessionSpace->PageTables[Index].u.Long == 0);
1345 MmSessionSpace->PageTables[Index] = *PointerPde;
1346 #endif
1347
1348 /* Bump up counters */
1349 InterlockedIncrementSizeT(&MmSessionSpace->NonPageablePages);
1350 InterlockedIncrementSizeT(&MmSessionSpace->CommittedPages);
1351
1352 /* Compute the size of the pool in pages, and of the bitmap for it */
1353 PoolSize = MmSessionPoolSize >> PAGE_SHIFT;
1354 BitmapSize = sizeof(RTL_BITMAP) + ((PoolSize + 31) / 32) * sizeof(ULONG);
1355
1356 /* Allocate and initialize the bitmap to track allocations */
1357 PagedPoolInfo->PagedPoolAllocationMap = ExAllocatePoolWithTag(NonPagedPool,
1358 BitmapSize,
1359 TAG_MM);
1360 ASSERT(PagedPoolInfo->PagedPoolAllocationMap != NULL);
1361 RtlInitializeBitMap(PagedPoolInfo->PagedPoolAllocationMap,
1362 (PULONG)(PagedPoolInfo->PagedPoolAllocationMap + 1),
1363 PoolSize);
1364
1365 /* Set all bits, but clear the first page table's worth */
1366 RtlSetAllBits(PagedPoolInfo->PagedPoolAllocationMap);
1367 RtlClearBits(PagedPoolInfo->PagedPoolAllocationMap, 0, PTE_PER_PAGE);
1368
1369 /* Allocate and initialize the bitmap to track free space */
1370 PagedPoolInfo->EndOfPagedPoolBitmap = ExAllocatePoolWithTag(NonPagedPool,
1371 BitmapSize,
1372 TAG_MM);
1373 ASSERT(PagedPoolInfo->EndOfPagedPoolBitmap != NULL);
1374 RtlInitializeBitMap(PagedPoolInfo->EndOfPagedPoolBitmap,
1375 (PULONG)(PagedPoolInfo->EndOfPagedPoolBitmap + 1),
1376 PoolSize);
1377
1378 /* Clear all the bits and return success */
1379 RtlClearAllBits(PagedPoolInfo->EndOfPagedPoolBitmap);
1380 return STATUS_SUCCESS;
1381 }
1382
1383 /* PUBLIC FUNCTIONS ***********************************************************/
1384
1385 /*
1386 * @unimplemented
1387 */
1388 PVOID
1389 NTAPI
1390 MmAllocateMappingAddress(IN SIZE_T NumberOfBytes,
1391 IN ULONG PoolTag)
1392 {
1393 UNIMPLEMENTED;
1394 return NULL;
1395 }
1396
1397 /*
1398 * @unimplemented
1399 */
1400 VOID
1401 NTAPI
1402 MmFreeMappingAddress(IN PVOID BaseAddress,
1403 IN ULONG PoolTag)
1404 {
1405 UNIMPLEMENTED;
1406 }
1407
1408 /* EOF */