[NTOS:MM] Use inline functions to acquire/release the PFN lock.
[reactos.git] / ntoskrnl / mm / ARM3 / pool.c
1 /*
2 * PROJECT: ReactOS Kernel
3 * LICENSE: BSD - See COPYING.ARM in the top level directory
4 * FILE: ntoskrnl/mm/ARM3/pool.c
5 * PURPOSE: ARM Memory Manager Pool Allocator
6 * PROGRAMMERS: ReactOS Portable Systems Group
7 */
8
9 /* INCLUDES *******************************************************************/
10
11 #include <ntoskrnl.h>
12 #define NDEBUG
13 #include <debug.h>
14
15 #define MODULE_INVOLVED_IN_ARM3
16 #include <mm/ARM3/miarm.h>
17
18 /* GLOBALS ********************************************************************/
19
20 LIST_ENTRY MmNonPagedPoolFreeListHead[MI_MAX_FREE_PAGE_LISTS];
21 PFN_COUNT MmNumberOfFreeNonPagedPool, MiExpansionPoolPagesInitialCharge;
22 PVOID MmNonPagedPoolEnd0;
23 PFN_NUMBER MiStartOfInitialPoolFrame, MiEndOfInitialPoolFrame;
24 KGUARDED_MUTEX MmPagedPoolMutex;
25 MM_PAGED_POOL_INFO MmPagedPoolInfo;
26 SIZE_T MmAllocatedNonPagedPool;
27 ULONG MmSpecialPoolTag;
28 ULONG MmConsumedPoolPercentage;
29 BOOLEAN MmProtectFreedNonPagedPool;
30 SLIST_HEADER MiNonPagedPoolSListHead;
31 ULONG MiNonPagedPoolSListMaximum = 4;
32 SLIST_HEADER MiPagedPoolSListHead;
33 ULONG MiPagedPoolSListMaximum = 8;
34
35 /* PRIVATE FUNCTIONS **********************************************************/
36
37 VOID
38 NTAPI
39 MiProtectFreeNonPagedPool(IN PVOID VirtualAddress,
40 IN ULONG PageCount)
41 {
42 PMMPTE PointerPte, LastPte;
43 MMPTE TempPte;
44
45 /* If pool is physical, can't protect PTEs */
46 if (MI_IS_PHYSICAL_ADDRESS(VirtualAddress)) return;
47
48 /* Get PTE pointers and loop */
49 PointerPte = MiAddressToPte(VirtualAddress);
50 LastPte = PointerPte + PageCount;
51 do
52 {
53 /* Capture the PTE for safety */
54 TempPte = *PointerPte;
55
56 /* Mark it as an invalid PTE, set proto bit to recognize it as pool */
57 TempPte.u.Hard.Valid = 0;
58 TempPte.u.Soft.Prototype = 1;
59 MI_WRITE_INVALID_PTE(PointerPte, TempPte);
60 } while (++PointerPte < LastPte);
61
62 /* Flush the TLB */
63 KeFlushEntireTb(TRUE, TRUE);
64 }
65
66 BOOLEAN
67 NTAPI
68 MiUnProtectFreeNonPagedPool(IN PVOID VirtualAddress,
69 IN ULONG PageCount)
70 {
71 PMMPTE PointerPte;
72 MMPTE TempPte;
73 PFN_NUMBER UnprotectedPages = 0;
74
75 /* If pool is physical, can't protect PTEs */
76 if (MI_IS_PHYSICAL_ADDRESS(VirtualAddress)) return FALSE;
77
78 /* Get, and capture the PTE */
79 PointerPte = MiAddressToPte(VirtualAddress);
80 TempPte = *PointerPte;
81
82 /* Loop protected PTEs */
83 while ((TempPte.u.Hard.Valid == 0) && (TempPte.u.Soft.Prototype == 1))
84 {
85 /* Unprotect the PTE */
86 TempPte.u.Hard.Valid = 1;
87 TempPte.u.Soft.Prototype = 0;
88 MI_WRITE_VALID_PTE(PointerPte, TempPte);
89
90 /* One more page */
91 if (++UnprotectedPages == PageCount) break;
92
93 /* Capture next PTE */
94 TempPte = *(++PointerPte);
95 }
96
97 /* Return if any pages were unprotected */
98 return UnprotectedPages ? TRUE : FALSE;
99 }
100
101 FORCEINLINE
102 VOID
103 MiProtectedPoolUnProtectLinks(IN PLIST_ENTRY Links,
104 OUT PVOID* PoolFlink,
105 OUT PVOID* PoolBlink)
106 {
107 BOOLEAN Safe;
108 PVOID PoolVa;
109
110 /* Initialize variables */
111 *PoolFlink = *PoolBlink = NULL;
112
113 /* Check if the list has entries */
114 if (IsListEmpty(Links) == FALSE)
115 {
116 /* We are going to need to forward link to do an insert */
117 PoolVa = Links->Flink;
118
119 /* So make it safe to access */
120 Safe = MiUnProtectFreeNonPagedPool(PoolVa, 1);
121 if (Safe) *PoolFlink = PoolVa;
122 }
123
124 /* Are we going to need a backward link too? */
125 if (Links != Links->Blink)
126 {
127 /* Get the head's backward link for the insert */
128 PoolVa = Links->Blink;
129
130 /* Make it safe to access */
131 Safe = MiUnProtectFreeNonPagedPool(PoolVa, 1);
132 if (Safe) *PoolBlink = PoolVa;
133 }
134 }
135
136 FORCEINLINE
137 VOID
138 MiProtectedPoolProtectLinks(IN PVOID PoolFlink,
139 IN PVOID PoolBlink)
140 {
141 /* Reprotect the pages, if they got unprotected earlier */
142 if (PoolFlink) MiProtectFreeNonPagedPool(PoolFlink, 1);
143 if (PoolBlink) MiProtectFreeNonPagedPool(PoolBlink, 1);
144 }
145
146 VOID
147 NTAPI
148 MiProtectedPoolInsertList(IN PLIST_ENTRY ListHead,
149 IN PLIST_ENTRY Entry,
150 IN BOOLEAN Critical)
151 {
152 PVOID PoolFlink, PoolBlink;
153
154 /* Make the list accessible */
155 MiProtectedPoolUnProtectLinks(ListHead, &PoolFlink, &PoolBlink);
156
157 /* Now insert in the right position */
158 Critical ? InsertHeadList(ListHead, Entry) : InsertTailList(ListHead, Entry);
159
160 /* And reprotect the pages containing the free links */
161 MiProtectedPoolProtectLinks(PoolFlink, PoolBlink);
162 }
163
164 VOID
165 NTAPI
166 MiProtectedPoolRemoveEntryList(IN PLIST_ENTRY Entry)
167 {
168 PVOID PoolFlink, PoolBlink;
169
170 /* Make the list accessible */
171 MiProtectedPoolUnProtectLinks(Entry, &PoolFlink, &PoolBlink);
172
173 /* Now remove */
174 RemoveEntryList(Entry);
175
176 /* And reprotect the pages containing the free links */
177 if (PoolFlink) MiProtectFreeNonPagedPool(PoolFlink, 1);
178 if (PoolBlink) MiProtectFreeNonPagedPool(PoolBlink, 1);
179 }
180
181 VOID
182 NTAPI
183 INIT_FUNCTION
184 MiInitializeNonPagedPoolThresholds(VOID)
185 {
186 PFN_NUMBER Size = MmMaximumNonPagedPoolInPages;
187
188 /* Default low threshold of 8MB or one third of nonpaged pool */
189 MiLowNonPagedPoolThreshold = (8 * _1MB) >> PAGE_SHIFT;
190 MiLowNonPagedPoolThreshold = min(MiLowNonPagedPoolThreshold, Size / 3);
191
192 /* Default high threshold of 20MB or 50% */
193 MiHighNonPagedPoolThreshold = (20 * _1MB) >> PAGE_SHIFT;
194 MiHighNonPagedPoolThreshold = min(MiHighNonPagedPoolThreshold, Size / 2);
195 ASSERT(MiLowNonPagedPoolThreshold < MiHighNonPagedPoolThreshold);
196 }
197
198 VOID
199 NTAPI
200 INIT_FUNCTION
201 MiInitializePoolEvents(VOID)
202 {
203 KIRQL OldIrql;
204 PFN_NUMBER FreePoolInPages;
205
206 /* Lock paged pool */
207 KeAcquireGuardedMutex(&MmPagedPoolMutex);
208
209 /* Total size of the paged pool minus the allocated size, is free */
210 FreePoolInPages = MmSizeOfPagedPoolInPages - MmPagedPoolInfo.AllocatedPagedPool;
211
212 /* Check the initial state high state */
213 if (FreePoolInPages >= MiHighPagedPoolThreshold)
214 {
215 /* We have plenty of pool */
216 KeSetEvent(MiHighPagedPoolEvent, 0, FALSE);
217 }
218 else
219 {
220 /* We don't */
221 KeClearEvent(MiHighPagedPoolEvent);
222 }
223
224 /* Check the initial low state */
225 if (FreePoolInPages <= MiLowPagedPoolThreshold)
226 {
227 /* We're very low in free pool memory */
228 KeSetEvent(MiLowPagedPoolEvent, 0, FALSE);
229 }
230 else
231 {
232 /* We're not */
233 KeClearEvent(MiLowPagedPoolEvent);
234 }
235
236 /* Release the paged pool lock */
237 KeReleaseGuardedMutex(&MmPagedPoolMutex);
238
239 /* Now it's time for the nonpaged pool lock */
240 OldIrql = KeAcquireQueuedSpinLock(LockQueueMmNonPagedPoolLock);
241
242 /* Free pages are the maximum minus what's been allocated */
243 FreePoolInPages = MmMaximumNonPagedPoolInPages - MmAllocatedNonPagedPool;
244
245 /* Check if we have plenty */
246 if (FreePoolInPages >= MiHighNonPagedPoolThreshold)
247 {
248 /* We do, set the event */
249 KeSetEvent(MiHighNonPagedPoolEvent, 0, FALSE);
250 }
251 else
252 {
253 /* We don't, clear the event */
254 KeClearEvent(MiHighNonPagedPoolEvent);
255 }
256
257 /* Check if we have very little */
258 if (FreePoolInPages <= MiLowNonPagedPoolThreshold)
259 {
260 /* We do, set the event */
261 KeSetEvent(MiLowNonPagedPoolEvent, 0, FALSE);
262 }
263 else
264 {
265 /* We don't, clear it */
266 KeClearEvent(MiLowNonPagedPoolEvent);
267 }
268
269 /* We're done, release the nonpaged pool lock */
270 KeReleaseQueuedSpinLock(LockQueueMmNonPagedPoolLock, OldIrql);
271 }
272
273 VOID
274 NTAPI
275 INIT_FUNCTION
276 MiInitializeNonPagedPool(VOID)
277 {
278 ULONG i;
279 PFN_COUNT PoolPages;
280 PMMFREE_POOL_ENTRY FreeEntry, FirstEntry;
281 PMMPTE PointerPte;
282 PAGED_CODE();
283
284 //
285 // Initialize the pool S-LISTs as well as their maximum count. In general,
286 // we'll allow 8 times the default on a 2GB system, and two times the default
287 // on a 1GB system.
288 //
289 InitializeSListHead(&MiPagedPoolSListHead);
290 InitializeSListHead(&MiNonPagedPoolSListHead);
291 if (MmNumberOfPhysicalPages >= ((2 * _1GB) /PAGE_SIZE))
292 {
293 MiNonPagedPoolSListMaximum *= 8;
294 MiPagedPoolSListMaximum *= 8;
295 }
296 else if (MmNumberOfPhysicalPages >= (_1GB /PAGE_SIZE))
297 {
298 MiNonPagedPoolSListMaximum *= 2;
299 MiPagedPoolSListMaximum *= 2;
300 }
301
302 //
303 // However if debugging options for the pool are enabled, turn off the S-LIST
304 // to reduce the risk of messing things up even more
305 //
306 if (MmProtectFreedNonPagedPool)
307 {
308 MiNonPagedPoolSListMaximum = 0;
309 MiPagedPoolSListMaximum = 0;
310 }
311
312 //
313 // We keep 4 lists of free pages (4 lists help avoid contention)
314 //
315 for (i = 0; i < MI_MAX_FREE_PAGE_LISTS; i++)
316 {
317 //
318 // Initialize each of them
319 //
320 InitializeListHead(&MmNonPagedPoolFreeListHead[i]);
321 }
322
323 //
324 // Calculate how many pages the initial nonpaged pool has
325 //
326 PoolPages = (PFN_COUNT)BYTES_TO_PAGES(MmSizeOfNonPagedPoolInBytes);
327 MmNumberOfFreeNonPagedPool = PoolPages;
328
329 //
330 // Initialize the first free entry
331 //
332 FreeEntry = MmNonPagedPoolStart;
333 FirstEntry = FreeEntry;
334 FreeEntry->Size = PoolPages;
335 FreeEntry->Signature = MM_FREE_POOL_SIGNATURE;
336 FreeEntry->Owner = FirstEntry;
337
338 //
339 // Insert it into the last list
340 //
341 InsertHeadList(&MmNonPagedPoolFreeListHead[MI_MAX_FREE_PAGE_LISTS - 1],
342 &FreeEntry->List);
343
344 //
345 // Now create free entries for every single other page
346 //
347 while (PoolPages-- > 1)
348 {
349 //
350 // Link them all back to the original entry
351 //
352 FreeEntry = (PMMFREE_POOL_ENTRY)((ULONG_PTR)FreeEntry + PAGE_SIZE);
353 FreeEntry->Owner = FirstEntry;
354 FreeEntry->Signature = MM_FREE_POOL_SIGNATURE;
355 }
356
357 //
358 // Validate and remember first allocated pool page
359 //
360 PointerPte = MiAddressToPte(MmNonPagedPoolStart);
361 ASSERT(PointerPte->u.Hard.Valid == 1);
362 MiStartOfInitialPoolFrame = PFN_FROM_PTE(PointerPte);
363
364 //
365 // Keep track of where initial nonpaged pool ends
366 //
367 MmNonPagedPoolEnd0 = (PVOID)((ULONG_PTR)MmNonPagedPoolStart +
368 MmSizeOfNonPagedPoolInBytes);
369
370 //
371 // Validate and remember last allocated pool page
372 //
373 PointerPte = MiAddressToPte((PVOID)((ULONG_PTR)MmNonPagedPoolEnd0 - 1));
374 ASSERT(PointerPte->u.Hard.Valid == 1);
375 MiEndOfInitialPoolFrame = PFN_FROM_PTE(PointerPte);
376
377 //
378 // Validate the first nonpaged pool expansion page (which is a guard page)
379 //
380 PointerPte = MiAddressToPte(MmNonPagedPoolExpansionStart);
381 ASSERT(PointerPte->u.Hard.Valid == 0);
382
383 //
384 // Calculate the size of the expansion region alone
385 //
386 MiExpansionPoolPagesInitialCharge = (PFN_COUNT)
387 BYTES_TO_PAGES(MmMaximumNonPagedPoolInBytes - MmSizeOfNonPagedPoolInBytes);
388
389 //
390 // Remove 2 pages, since there's a guard page on top and on the bottom
391 //
392 MiExpansionPoolPagesInitialCharge -= 2;
393
394 //
395 // Now initialize the nonpaged pool expansion PTE space. Remember there's a
396 // guard page on top so make sure to skip it. The bottom guard page will be
397 // guaranteed by the fact our size is off by one.
398 //
399 MiInitializeSystemPtes(PointerPte + 1,
400 MiExpansionPoolPagesInitialCharge,
401 NonPagedPoolExpansion);
402 }
403
404 POOL_TYPE
405 NTAPI
406 MmDeterminePoolType(IN PVOID PoolAddress)
407 {
408 //
409 // Use a simple bounds check
410 //
411 if (PoolAddress >= MmPagedPoolStart && PoolAddress <= MmPagedPoolEnd)
412 return PagedPool;
413 else if (PoolAddress >= MmNonPagedPoolStart && PoolAddress <= MmNonPagedPoolEnd)
414 return NonPagedPool;
415 KeBugCheckEx(BAD_POOL_CALLER, 0x42, (ULONG_PTR)PoolAddress, 0, 0);
416 }
417
418 PVOID
419 NTAPI
420 MiAllocatePoolPages(IN POOL_TYPE PoolType,
421 IN SIZE_T SizeInBytes)
422 {
423 PFN_NUMBER PageFrameNumber;
424 PFN_COUNT SizeInPages, PageTableCount;
425 ULONG i;
426 KIRQL OldIrql;
427 PLIST_ENTRY NextEntry, NextHead, LastHead;
428 PMMPTE PointerPte, StartPte;
429 PMMPDE PointerPde;
430 ULONG EndAllocation;
431 MMPTE TempPte;
432 MMPDE TempPde;
433 PMMPFN Pfn1;
434 PVOID BaseVa, BaseVaStart;
435 PMMFREE_POOL_ENTRY FreeEntry;
436 PKSPIN_LOCK_QUEUE LockQueue;
437
438 //
439 // Figure out how big the allocation is in pages
440 //
441 SizeInPages = (PFN_COUNT)BYTES_TO_PAGES(SizeInBytes);
442
443 //
444 // Check for overflow
445 //
446 if (SizeInPages == 0)
447 {
448 //
449 // Fail
450 //
451 return NULL;
452 }
453
454 //
455 // Handle paged pool
456 //
457 if ((PoolType & BASE_POOL_TYPE_MASK) == PagedPool)
458 {
459 //
460 // If only one page is being requested, try to grab it from the S-LIST
461 //
462 if ((SizeInPages == 1) && (ExQueryDepthSList(&MiPagedPoolSListHead)))
463 {
464 BaseVa = InterlockedPopEntrySList(&MiPagedPoolSListHead);
465 if (BaseVa) return BaseVa;
466 }
467
468 //
469 // Lock the paged pool mutex
470 //
471 KeAcquireGuardedMutex(&MmPagedPoolMutex);
472
473 //
474 // Find some empty allocation space
475 //
476 i = RtlFindClearBitsAndSet(MmPagedPoolInfo.PagedPoolAllocationMap,
477 SizeInPages,
478 MmPagedPoolInfo.PagedPoolHint);
479 if (i == 0xFFFFFFFF)
480 {
481 //
482 // Get the page bit count
483 //
484 i = ((SizeInPages - 1) / PTE_COUNT) + 1;
485 DPRINT("Paged pool expansion: %lu %x\n", i, SizeInPages);
486
487 //
488 // Check if there is enougn paged pool expansion space left
489 //
490 if (MmPagedPoolInfo.NextPdeForPagedPoolExpansion >
491 (PMMPDE)MiAddressToPte(MmPagedPoolInfo.LastPteForPagedPool))
492 {
493 //
494 // Out of memory!
495 //
496 DPRINT1("FAILED to allocate %Iu bytes from paged pool\n", SizeInBytes);
497 KeReleaseGuardedMutex(&MmPagedPoolMutex);
498 return NULL;
499 }
500
501 //
502 // Check if we'll have to expand past the last PTE we have available
503 //
504 if (((i - 1) + MmPagedPoolInfo.NextPdeForPagedPoolExpansion) >
505 (PMMPDE)MiAddressToPte(MmPagedPoolInfo.LastPteForPagedPool))
506 {
507 //
508 // We can only support this much then
509 //
510 PointerPde = MiPteToPde(MmPagedPoolInfo.LastPteForPagedPool);
511 PageTableCount = (PFN_COUNT)(PointerPde + 1 -
512 MmPagedPoolInfo.NextPdeForPagedPoolExpansion);
513 ASSERT(PageTableCount < i);
514 i = PageTableCount;
515 }
516 else
517 {
518 //
519 // Otherwise, there is plenty of space left for this expansion
520 //
521 PageTableCount = i;
522 }
523
524 //
525 // Get the template PDE we'll use to expand
526 //
527 TempPde = ValidKernelPde;
528
529 //
530 // Get the first PTE in expansion space
531 //
532 PointerPde = MmPagedPoolInfo.NextPdeForPagedPoolExpansion;
533 BaseVa = MiPdeToPte(PointerPde);
534 BaseVaStart = BaseVa;
535
536 //
537 // Lock the PFN database and loop pages
538 //
539 OldIrql = MiAcquirePfnLock();
540 do
541 {
542 //
543 // It should not already be valid
544 //
545 ASSERT(PointerPde->u.Hard.Valid == 0);
546
547 /* Request a page */
548 MI_SET_USAGE(MI_USAGE_PAGED_POOL);
549 MI_SET_PROCESS2("Kernel");
550 PageFrameNumber = MiRemoveAnyPage(MI_GET_NEXT_COLOR());
551 TempPde.u.Hard.PageFrameNumber = PageFrameNumber;
552 #if (_MI_PAGING_LEVELS >= 3)
553 /* On PAE/x64 systems, there's no double-buffering */
554 ASSERT(FALSE);
555 #else
556 //
557 // Save it into our double-buffered system page directory
558 //
559 MmSystemPagePtes[((ULONG_PTR)PointerPde & (SYSTEM_PD_SIZE - 1)) / sizeof(MMPTE)] = TempPde;
560
561 /* Initialize the PFN */
562 MiInitializePfnForOtherProcess(PageFrameNumber,
563 (PMMPTE)PointerPde,
564 MmSystemPageDirectory[(PointerPde - MiAddressToPde(NULL)) / PDE_COUNT]);
565
566 /* Write the actual PDE now */
567 // MI_WRITE_VALID_PDE(PointerPde, TempPde);
568 #endif
569 //
570 // Move on to the next expansion address
571 //
572 PointerPde++;
573 BaseVa = (PVOID)((ULONG_PTR)BaseVa + PAGE_SIZE);
574 i--;
575 } while (i > 0);
576
577 //
578 // Release the PFN database lock
579 //
580 MiReleasePfnLock(OldIrql);
581
582 //
583 // These pages are now available, clear their availablity bits
584 //
585 EndAllocation = (ULONG)(MmPagedPoolInfo.NextPdeForPagedPoolExpansion -
586 (PMMPDE)MiAddressToPte(MmPagedPoolInfo.FirstPteForPagedPool)) *
587 PTE_COUNT;
588 RtlClearBits(MmPagedPoolInfo.PagedPoolAllocationMap,
589 EndAllocation,
590 PageTableCount * PTE_COUNT);
591
592 //
593 // Update the next expansion location
594 //
595 MmPagedPoolInfo.NextPdeForPagedPoolExpansion += PageTableCount;
596
597 //
598 // Zero out the newly available memory
599 //
600 RtlZeroMemory(BaseVaStart, PageTableCount * PAGE_SIZE);
601
602 //
603 // Now try consuming the pages again
604 //
605 i = RtlFindClearBitsAndSet(MmPagedPoolInfo.PagedPoolAllocationMap,
606 SizeInPages,
607 0);
608 if (i == 0xFFFFFFFF)
609 {
610 //
611 // Out of memory!
612 //
613 DPRINT1("FAILED to allocate %Iu bytes from paged pool\n", SizeInBytes);
614 KeReleaseGuardedMutex(&MmPagedPoolMutex);
615 return NULL;
616 }
617 }
618
619 //
620 // Update the pool hint if the request was just one page
621 //
622 if (SizeInPages == 1) MmPagedPoolInfo.PagedPoolHint = i + 1;
623
624 //
625 // Update the end bitmap so we know the bounds of this allocation when
626 // the time comes to free it
627 //
628 EndAllocation = i + SizeInPages - 1;
629 RtlSetBit(MmPagedPoolInfo.EndOfPagedPoolBitmap, EndAllocation);
630
631 //
632 // Now we can release the lock (it mainly protects the bitmap)
633 //
634 KeReleaseGuardedMutex(&MmPagedPoolMutex);
635
636 //
637 // Now figure out where this allocation starts
638 //
639 BaseVa = (PVOID)((ULONG_PTR)MmPagedPoolStart + (i << PAGE_SHIFT));
640
641 //
642 // Flush the TLB
643 //
644 KeFlushEntireTb(TRUE, TRUE);
645
646 /* Setup a demand-zero writable PTE */
647 MI_MAKE_SOFTWARE_PTE(&TempPte, MM_READWRITE);
648
649 //
650 // Find the first and last PTE, then loop them all
651 //
652 PointerPte = MiAddressToPte(BaseVa);
653 StartPte = PointerPte + SizeInPages;
654 do
655 {
656 //
657 // Write the demand zero PTE and keep going
658 //
659 MI_WRITE_INVALID_PTE(PointerPte, TempPte);
660 } while (++PointerPte < StartPte);
661
662 //
663 // Return the allocation address to the caller
664 //
665 return BaseVa;
666 }
667
668 //
669 // If only one page is being requested, try to grab it from the S-LIST
670 //
671 if ((SizeInPages == 1) && (ExQueryDepthSList(&MiNonPagedPoolSListHead)))
672 {
673 BaseVa = InterlockedPopEntrySList(&MiNonPagedPoolSListHead);
674 if (BaseVa) return BaseVa;
675 }
676
677 //
678 // Allocations of less than 4 pages go into their individual buckets
679 //
680 i = SizeInPages - 1;
681 if (i >= MI_MAX_FREE_PAGE_LISTS) i = MI_MAX_FREE_PAGE_LISTS - 1;
682
683 //
684 // Loop through all the free page lists based on the page index
685 //
686 NextHead = &MmNonPagedPoolFreeListHead[i];
687 LastHead = &MmNonPagedPoolFreeListHead[MI_MAX_FREE_PAGE_LISTS];
688
689 //
690 // Acquire the nonpaged pool lock
691 //
692 OldIrql = KeAcquireQueuedSpinLock(LockQueueMmNonPagedPoolLock);
693 do
694 {
695 //
696 // Now loop through all the free page entries in this given list
697 //
698 NextEntry = NextHead->Flink;
699 while (NextEntry != NextHead)
700 {
701 /* Is freed non paged pool enabled */
702 if (MmProtectFreedNonPagedPool)
703 {
704 /* We need to be able to touch this page, unprotect it */
705 MiUnProtectFreeNonPagedPool(NextEntry, 0);
706 }
707
708 //
709 // Grab the entry and see if it can handle our allocation
710 //
711 FreeEntry = CONTAINING_RECORD(NextEntry, MMFREE_POOL_ENTRY, List);
712 ASSERT(FreeEntry->Signature == MM_FREE_POOL_SIGNATURE);
713 if (FreeEntry->Size >= SizeInPages)
714 {
715 //
716 // It does, so consume the pages from here
717 //
718 FreeEntry->Size -= SizeInPages;
719
720 //
721 // The allocation will begin in this free page area
722 //
723 BaseVa = (PVOID)((ULONG_PTR)FreeEntry +
724 (FreeEntry->Size << PAGE_SHIFT));
725
726 /* Remove the item from the list, depending if pool is protected */
727 if (MmProtectFreedNonPagedPool)
728 MiProtectedPoolRemoveEntryList(&FreeEntry->List);
729 else
730 RemoveEntryList(&FreeEntry->List);
731
732 //
733 // However, check if its' still got space left
734 //
735 if (FreeEntry->Size != 0)
736 {
737 /* Check which list to insert this entry into */
738 i = FreeEntry->Size - 1;
739 if (i >= MI_MAX_FREE_PAGE_LISTS) i = MI_MAX_FREE_PAGE_LISTS - 1;
740
741 /* Insert the entry into the free list head, check for prot. pool */
742 if (MmProtectFreedNonPagedPool)
743 MiProtectedPoolInsertList(&MmNonPagedPoolFreeListHead[i], &FreeEntry->List, TRUE);
744 else
745 InsertTailList(&MmNonPagedPoolFreeListHead[i], &FreeEntry->List);
746
747 /* Is freed non paged pool protected? */
748 if (MmProtectFreedNonPagedPool)
749 {
750 /* Protect the freed pool! */
751 MiProtectFreeNonPagedPool(FreeEntry, FreeEntry->Size);
752 }
753 }
754
755 //
756 // Grab the PTE for this allocation
757 //
758 PointerPte = MiAddressToPte(BaseVa);
759 ASSERT(PointerPte->u.Hard.Valid == 1);
760
761 //
762 // Grab the PFN NextEntry and index
763 //
764 Pfn1 = MiGetPfnEntry(PFN_FROM_PTE(PointerPte));
765
766 //
767 // Now mark it as the beginning of an allocation
768 //
769 ASSERT(Pfn1->u3.e1.StartOfAllocation == 0);
770 Pfn1->u3.e1.StartOfAllocation = 1;
771
772 /* Mark it as special pool if needed */
773 ASSERT(Pfn1->u4.VerifierAllocation == 0);
774 if (PoolType & VERIFIER_POOL_MASK)
775 {
776 Pfn1->u4.VerifierAllocation = 1;
777 }
778
779 //
780 // Check if the allocation is larger than one page
781 //
782 if (SizeInPages != 1)
783 {
784 //
785 // Navigate to the last PFN entry and PTE
786 //
787 PointerPte += SizeInPages - 1;
788 ASSERT(PointerPte->u.Hard.Valid == 1);
789 Pfn1 = MiGetPfnEntry(PointerPte->u.Hard.PageFrameNumber);
790 }
791
792 //
793 // Mark this PFN as the last (might be the same as the first)
794 //
795 ASSERT(Pfn1->u3.e1.EndOfAllocation == 0);
796 Pfn1->u3.e1.EndOfAllocation = 1;
797
798 //
799 // Release the nonpaged pool lock, and return the allocation
800 //
801 KeReleaseQueuedSpinLock(LockQueueMmNonPagedPoolLock, OldIrql);
802 return BaseVa;
803 }
804
805 //
806 // Try the next free page entry
807 //
808 NextEntry = FreeEntry->List.Flink;
809
810 /* Is freed non paged pool protected? */
811 if (MmProtectFreedNonPagedPool)
812 {
813 /* Protect the freed pool! */
814 MiProtectFreeNonPagedPool(FreeEntry, FreeEntry->Size);
815 }
816 }
817 } while (++NextHead < LastHead);
818
819 //
820 // If we got here, we're out of space.
821 // Start by releasing the lock
822 //
823 KeReleaseQueuedSpinLock(LockQueueMmNonPagedPoolLock, OldIrql);
824
825 //
826 // Allocate some system PTEs
827 //
828 StartPte = MiReserveSystemPtes(SizeInPages, NonPagedPoolExpansion);
829 PointerPte = StartPte;
830 if (StartPte == NULL)
831 {
832 //
833 // Ran out of memory
834 //
835 DPRINT1("Out of NP Expansion Pool\n");
836 return NULL;
837 }
838
839 //
840 // Acquire the pool lock now
841 //
842 OldIrql = KeAcquireQueuedSpinLock(LockQueueMmNonPagedPoolLock);
843
844 //
845 // Lock the PFN database too
846 //
847 LockQueue = &KeGetCurrentPrcb()->LockQueue[LockQueuePfnLock];
848 KeAcquireQueuedSpinLockAtDpcLevel(LockQueue);
849
850 //
851 // Loop the pages
852 //
853 TempPte = ValidKernelPte;
854 do
855 {
856 /* Allocate a page */
857 MI_SET_USAGE(MI_USAGE_PAGED_POOL);
858 MI_SET_PROCESS2("Kernel");
859 PageFrameNumber = MiRemoveAnyPage(MI_GET_NEXT_COLOR());
860
861 /* Get the PFN entry for it and fill it out */
862 Pfn1 = MiGetPfnEntry(PageFrameNumber);
863 Pfn1->u3.e2.ReferenceCount = 1;
864 Pfn1->u2.ShareCount = 1;
865 Pfn1->PteAddress = PointerPte;
866 Pfn1->u3.e1.PageLocation = ActiveAndValid;
867 Pfn1->u4.VerifierAllocation = 0;
868
869 /* Write the PTE for it */
870 TempPte.u.Hard.PageFrameNumber = PageFrameNumber;
871 MI_WRITE_VALID_PTE(PointerPte++, TempPte);
872 } while (--SizeInPages > 0);
873
874 //
875 // This is the last page
876 //
877 Pfn1->u3.e1.EndOfAllocation = 1;
878
879 //
880 // Get the first page and mark it as such
881 //
882 Pfn1 = MiGetPfnEntry(StartPte->u.Hard.PageFrameNumber);
883 Pfn1->u3.e1.StartOfAllocation = 1;
884
885 /* Mark it as a verifier allocation if needed */
886 ASSERT(Pfn1->u4.VerifierAllocation == 0);
887 if (PoolType & VERIFIER_POOL_MASK) Pfn1->u4.VerifierAllocation = 1;
888
889 //
890 // Release the PFN and nonpaged pool lock
891 //
892 KeReleaseQueuedSpinLockFromDpcLevel(LockQueue);
893 KeReleaseQueuedSpinLock(LockQueueMmNonPagedPoolLock, OldIrql);
894
895 //
896 // Return the address
897 //
898 return MiPteToAddress(StartPte);
899 }
900
901 ULONG
902 NTAPI
903 MiFreePoolPages(IN PVOID StartingVa)
904 {
905 PMMPTE PointerPte, StartPte;
906 PMMPFN Pfn1, StartPfn;
907 PFN_COUNT FreePages, NumberOfPages;
908 KIRQL OldIrql;
909 PMMFREE_POOL_ENTRY FreeEntry, NextEntry, LastEntry;
910 ULONG i, End;
911 ULONG_PTR Offset;
912
913 //
914 // Handle paged pool
915 //
916 if ((StartingVa >= MmPagedPoolStart) && (StartingVa <= MmPagedPoolEnd))
917 {
918 //
919 // Calculate the offset from the beginning of paged pool, and convert it
920 // into pages
921 //
922 Offset = (ULONG_PTR)StartingVa - (ULONG_PTR)MmPagedPoolStart;
923 i = (ULONG)(Offset >> PAGE_SHIFT);
924 End = i;
925
926 //
927 // Now use the end bitmap to scan until we find a set bit, meaning that
928 // this allocation finishes here
929 //
930 while (!RtlTestBit(MmPagedPoolInfo.EndOfPagedPoolBitmap, End)) End++;
931
932 //
933 // Now calculate the total number of pages this allocation spans. If it's
934 // only one page, add it to the S-LIST instead of freeing it
935 //
936 NumberOfPages = End - i + 1;
937 if ((NumberOfPages == 1) &&
938 (ExQueryDepthSList(&MiPagedPoolSListHead) < MiPagedPoolSListMaximum))
939 {
940 InterlockedPushEntrySList(&MiPagedPoolSListHead, StartingVa);
941 return 1;
942 }
943
944 /* Delete the actual pages */
945 PointerPte = MmPagedPoolInfo.FirstPteForPagedPool + i;
946 FreePages = MiDeleteSystemPageableVm(PointerPte, NumberOfPages, 0, NULL);
947 ASSERT(FreePages == NumberOfPages);
948
949 //
950 // Acquire the paged pool lock
951 //
952 KeAcquireGuardedMutex(&MmPagedPoolMutex);
953
954 //
955 // Clear the allocation and free bits
956 //
957 RtlClearBit(MmPagedPoolInfo.EndOfPagedPoolBitmap, End);
958 RtlClearBits(MmPagedPoolInfo.PagedPoolAllocationMap, i, NumberOfPages);
959
960 //
961 // Update the hint if we need to
962 //
963 if (i < MmPagedPoolInfo.PagedPoolHint) MmPagedPoolInfo.PagedPoolHint = i;
964
965 //
966 // Release the lock protecting the bitmaps
967 //
968 KeReleaseGuardedMutex(&MmPagedPoolMutex);
969
970 //
971 // And finally return the number of pages freed
972 //
973 return NumberOfPages;
974 }
975
976 //
977 // Get the first PTE and its corresponding PFN entry. If this is also the
978 // last PTE, meaning that this allocation was only for one page, push it into
979 // the S-LIST instead of freeing it
980 //
981 StartPte = PointerPte = MiAddressToPte(StartingVa);
982 StartPfn = Pfn1 = MiGetPfnEntry(PointerPte->u.Hard.PageFrameNumber);
983 if ((Pfn1->u3.e1.EndOfAllocation == 1) &&
984 (ExQueryDepthSList(&MiNonPagedPoolSListHead) < MiNonPagedPoolSListMaximum))
985 {
986 InterlockedPushEntrySList(&MiNonPagedPoolSListHead, StartingVa);
987 return 1;
988 }
989
990 //
991 // Loop until we find the last PTE
992 //
993 while (Pfn1->u3.e1.EndOfAllocation == 0)
994 {
995 //
996 // Keep going
997 //
998 PointerPte++;
999 Pfn1 = MiGetPfnEntry(PointerPte->u.Hard.PageFrameNumber);
1000 }
1001
1002 //
1003 // Now we know how many pages we have
1004 //
1005 NumberOfPages = (PFN_COUNT)(PointerPte - StartPte + 1);
1006
1007 //
1008 // Acquire the nonpaged pool lock
1009 //
1010 OldIrql = KeAcquireQueuedSpinLock(LockQueueMmNonPagedPoolLock);
1011
1012 //
1013 // Mark the first and last PTEs as not part of an allocation anymore
1014 //
1015 StartPfn->u3.e1.StartOfAllocation = 0;
1016 Pfn1->u3.e1.EndOfAllocation = 0;
1017
1018 //
1019 // Assume we will free as many pages as the allocation was
1020 //
1021 FreePages = NumberOfPages;
1022
1023 //
1024 // Peek one page past the end of the allocation
1025 //
1026 PointerPte++;
1027
1028 //
1029 // Guard against going past initial nonpaged pool
1030 //
1031 if (MiGetPfnEntryIndex(Pfn1) == MiEndOfInitialPoolFrame)
1032 {
1033 //
1034 // This page is on the outskirts of initial nonpaged pool, so ignore it
1035 //
1036 Pfn1 = NULL;
1037 }
1038 else
1039 {
1040 /* Sanity check */
1041 ASSERT((ULONG_PTR)StartingVa + NumberOfPages <= (ULONG_PTR)MmNonPagedPoolEnd);
1042
1043 /* Check if protected pool is enabled */
1044 if (MmProtectFreedNonPagedPool)
1045 {
1046 /* The freed block will be merged, it must be made accessible */
1047 MiUnProtectFreeNonPagedPool(MiPteToAddress(PointerPte), 0);
1048 }
1049
1050 //
1051 // Otherwise, our entire allocation must've fit within the initial non
1052 // paged pool, or the expansion nonpaged pool, so get the PFN entry of
1053 // the next allocation
1054 //
1055 if (PointerPte->u.Hard.Valid == 1)
1056 {
1057 //
1058 // It's either expansion or initial: get the PFN entry
1059 //
1060 Pfn1 = MiGetPfnEntry(PointerPte->u.Hard.PageFrameNumber);
1061 }
1062 else
1063 {
1064 //
1065 // This means we've reached the guard page that protects the end of
1066 // the expansion nonpaged pool
1067 //
1068 Pfn1 = NULL;
1069 }
1070
1071 }
1072
1073 //
1074 // Check if this allocation actually exists
1075 //
1076 if ((Pfn1) && (Pfn1->u3.e1.StartOfAllocation == 0))
1077 {
1078 //
1079 // It doesn't, so we should actually locate a free entry descriptor
1080 //
1081 FreeEntry = (PMMFREE_POOL_ENTRY)((ULONG_PTR)StartingVa +
1082 (NumberOfPages << PAGE_SHIFT));
1083 ASSERT(FreeEntry->Signature == MM_FREE_POOL_SIGNATURE);
1084 ASSERT(FreeEntry->Owner == FreeEntry);
1085
1086 /* Consume this entry's pages */
1087 FreePages += FreeEntry->Size;
1088
1089 /* Remove the item from the list, depending if pool is protected */
1090 if (MmProtectFreedNonPagedPool)
1091 MiProtectedPoolRemoveEntryList(&FreeEntry->List);
1092 else
1093 RemoveEntryList(&FreeEntry->List);
1094 }
1095
1096 //
1097 // Now get the official free entry we'll create for the caller's allocation
1098 //
1099 FreeEntry = StartingVa;
1100
1101 //
1102 // Check if the our allocation is the very first page
1103 //
1104 if (MiGetPfnEntryIndex(StartPfn) == MiStartOfInitialPoolFrame)
1105 {
1106 //
1107 // Then we can't do anything or we'll risk underflowing
1108 //
1109 Pfn1 = NULL;
1110 }
1111 else
1112 {
1113 //
1114 // Otherwise, get the PTE for the page right before our allocation
1115 //
1116 PointerPte -= NumberOfPages + 1;
1117
1118 /* Check if protected pool is enabled */
1119 if (MmProtectFreedNonPagedPool)
1120 {
1121 /* The freed block will be merged, it must be made accessible */
1122 MiUnProtectFreeNonPagedPool(MiPteToAddress(PointerPte), 0);
1123 }
1124
1125 /* Check if this is valid pool, or a guard page */
1126 if (PointerPte->u.Hard.Valid == 1)
1127 {
1128 //
1129 // It's either expansion or initial nonpaged pool, get the PFN entry
1130 //
1131 Pfn1 = MiGetPfnEntry(PointerPte->u.Hard.PageFrameNumber);
1132 }
1133 else
1134 {
1135 //
1136 // We must've reached the guard page, so don't risk touching it
1137 //
1138 Pfn1 = NULL;
1139 }
1140 }
1141
1142 //
1143 // Check if there is a valid PFN entry for the page before the allocation
1144 // and then check if this page was actually the end of an allocation.
1145 // If it wasn't, then we know for sure it's a free page
1146 //
1147 if ((Pfn1) && (Pfn1->u3.e1.EndOfAllocation == 0))
1148 {
1149 //
1150 // Get the free entry descriptor for that given page range
1151 //
1152 FreeEntry = (PMMFREE_POOL_ENTRY)((ULONG_PTR)StartingVa - PAGE_SIZE);
1153 ASSERT(FreeEntry->Signature == MM_FREE_POOL_SIGNATURE);
1154 FreeEntry = FreeEntry->Owner;
1155
1156 /* Check if protected pool is enabled */
1157 if (MmProtectFreedNonPagedPool)
1158 {
1159 /* The freed block will be merged, it must be made accessible */
1160 MiUnProtectFreeNonPagedPool(FreeEntry, 0);
1161 }
1162
1163 //
1164 // Check if the entry is small enough to be indexed on a free list
1165 // If it is, we'll want to re-insert it, since we're about to
1166 // collapse our pages on top of it, which will change its count
1167 //
1168 if (FreeEntry->Size < (MI_MAX_FREE_PAGE_LISTS - 1))
1169 {
1170 /* Remove the item from the list, depending if pool is protected */
1171 if (MmProtectFreedNonPagedPool)
1172 MiProtectedPoolRemoveEntryList(&FreeEntry->List);
1173 else
1174 RemoveEntryList(&FreeEntry->List);
1175
1176 //
1177 // Update its size
1178 //
1179 FreeEntry->Size += FreePages;
1180
1181 //
1182 // And now find the new appropriate list to place it in
1183 //
1184 i = (ULONG)(FreeEntry->Size - 1);
1185 if (i >= MI_MAX_FREE_PAGE_LISTS) i = MI_MAX_FREE_PAGE_LISTS - 1;
1186
1187 /* Insert the entry into the free list head, check for prot. pool */
1188 if (MmProtectFreedNonPagedPool)
1189 MiProtectedPoolInsertList(&MmNonPagedPoolFreeListHead[i], &FreeEntry->List, TRUE);
1190 else
1191 InsertTailList(&MmNonPagedPoolFreeListHead[i], &FreeEntry->List);
1192 }
1193 else
1194 {
1195 //
1196 // Otherwise, just combine our free pages into this entry
1197 //
1198 FreeEntry->Size += FreePages;
1199 }
1200 }
1201
1202 //
1203 // Check if we were unable to do any compaction, and we'll stick with this
1204 //
1205 if (FreeEntry == StartingVa)
1206 {
1207 //
1208 // Well, now we are a free entry. At worse we just have our newly freed
1209 // pages, at best we have our pages plus whatever entry came after us
1210 //
1211 FreeEntry->Size = FreePages;
1212
1213 //
1214 // Find the appropriate list we should be on
1215 //
1216 i = FreeEntry->Size - 1;
1217 if (i >= MI_MAX_FREE_PAGE_LISTS) i = MI_MAX_FREE_PAGE_LISTS - 1;
1218
1219 /* Insert the entry into the free list head, check for prot. pool */
1220 if (MmProtectFreedNonPagedPool)
1221 MiProtectedPoolInsertList(&MmNonPagedPoolFreeListHead[i], &FreeEntry->List, TRUE);
1222 else
1223 InsertTailList(&MmNonPagedPoolFreeListHead[i], &FreeEntry->List);
1224 }
1225
1226 //
1227 // Just a sanity check
1228 //
1229 ASSERT(FreePages != 0);
1230
1231 //
1232 // Get all the pages between our allocation and its end. These will all now
1233 // become free page chunks.
1234 //
1235 NextEntry = StartingVa;
1236 LastEntry = (PMMFREE_POOL_ENTRY)((ULONG_PTR)NextEntry + (FreePages << PAGE_SHIFT));
1237 do
1238 {
1239 //
1240 // Link back to the parent free entry, and keep going
1241 //
1242 NextEntry->Owner = FreeEntry;
1243 NextEntry->Signature = MM_FREE_POOL_SIGNATURE;
1244 NextEntry = (PMMFREE_POOL_ENTRY)((ULONG_PTR)NextEntry + PAGE_SIZE);
1245 } while (NextEntry != LastEntry);
1246
1247 /* Is freed non paged pool protected? */
1248 if (MmProtectFreedNonPagedPool)
1249 {
1250 /* Protect the freed pool! */
1251 MiProtectFreeNonPagedPool(FreeEntry, FreeEntry->Size);
1252 }
1253
1254 //
1255 // We're done, release the lock and let the caller know how much we freed
1256 //
1257 KeReleaseQueuedSpinLock(LockQueueMmNonPagedPoolLock, OldIrql);
1258 return NumberOfPages;
1259 }
1260
1261
1262 BOOLEAN
1263 NTAPI
1264 MiRaisePoolQuota(IN POOL_TYPE PoolType,
1265 IN ULONG CurrentMaxQuota,
1266 OUT PULONG NewMaxQuota)
1267 {
1268 //
1269 // Not implemented
1270 //
1271 UNIMPLEMENTED;
1272 *NewMaxQuota = CurrentMaxQuota + 65536;
1273 return TRUE;
1274 }
1275
1276 NTSTATUS
1277 NTAPI
1278 MiInitializeSessionPool(VOID)
1279 {
1280 PMMPTE PointerPte, LastPte;
1281 PMMPDE PointerPde, LastPde;
1282 PFN_NUMBER PageFrameIndex, PdeCount;
1283 PPOOL_DESCRIPTOR PoolDescriptor;
1284 PMM_SESSION_SPACE SessionGlobal;
1285 PMM_PAGED_POOL_INFO PagedPoolInfo;
1286 NTSTATUS Status;
1287 ULONG Index, PoolSize, BitmapSize;
1288 PAGED_CODE();
1289
1290 /* Lock session pool */
1291 SessionGlobal = MmSessionSpace->GlobalVirtualAddress;
1292 KeInitializeGuardedMutex(&SessionGlobal->PagedPoolMutex);
1293
1294 /* Setup a valid pool descriptor */
1295 PoolDescriptor = &MmSessionSpace->PagedPool;
1296 ExInitializePoolDescriptor(PoolDescriptor,
1297 PagedPoolSession,
1298 0,
1299 0,
1300 &SessionGlobal->PagedPoolMutex);
1301
1302 /* Setup the pool addresses */
1303 MmSessionSpace->PagedPoolStart = (PVOID)MiSessionPoolStart;
1304 MmSessionSpace->PagedPoolEnd = (PVOID)((ULONG_PTR)MiSessionPoolEnd - 1);
1305 DPRINT1("Session Pool Start: 0x%p End: 0x%p\n",
1306 MmSessionSpace->PagedPoolStart, MmSessionSpace->PagedPoolEnd);
1307
1308 /* Reset all the counters */
1309 PagedPoolInfo = &MmSessionSpace->PagedPoolInfo;
1310 PagedPoolInfo->PagedPoolCommit = 0;
1311 PagedPoolInfo->PagedPoolHint = 0;
1312 PagedPoolInfo->AllocatedPagedPool = 0;
1313
1314 /* Compute PDE and PTE addresses */
1315 PointerPde = MiAddressToPde(MmSessionSpace->PagedPoolStart);
1316 PointerPte = MiAddressToPte(MmSessionSpace->PagedPoolStart);
1317 LastPde = MiAddressToPde(MmSessionSpace->PagedPoolEnd);
1318 LastPte = MiAddressToPte(MmSessionSpace->PagedPoolEnd);
1319
1320 /* Write them down */
1321 MmSessionSpace->PagedPoolBasePde = PointerPde;
1322 PagedPoolInfo->FirstPteForPagedPool = PointerPte;
1323 PagedPoolInfo->LastPteForPagedPool = LastPte;
1324 PagedPoolInfo->NextPdeForPagedPoolExpansion = PointerPde + 1;
1325
1326 /* Zero the PDEs */
1327 PdeCount = LastPde - PointerPde;
1328 RtlZeroMemory(PointerPde, (PdeCount + 1) * sizeof(MMPTE));
1329
1330 /* Initialize the PFN for the PDE */
1331 Status = MiInitializeAndChargePfn(&PageFrameIndex,
1332 PointerPde,
1333 MmSessionSpace->SessionPageDirectoryIndex,
1334 TRUE);
1335 ASSERT(NT_SUCCESS(Status) == TRUE);
1336
1337 /* Initialize the first page table */
1338 Index = (ULONG_PTR)MmSessionSpace->PagedPoolStart - (ULONG_PTR)MmSessionBase;
1339 Index >>= 22;
1340 #ifndef _M_AMD64 // FIXME
1341 ASSERT(MmSessionSpace->PageTables[Index].u.Long == 0);
1342 MmSessionSpace->PageTables[Index] = *PointerPde;
1343 #endif
1344
1345 /* Bump up counters */
1346 InterlockedIncrementSizeT(&MmSessionSpace->NonPageablePages);
1347 InterlockedIncrementSizeT(&MmSessionSpace->CommittedPages);
1348
1349 /* Compute the size of the pool in pages, and of the bitmap for it */
1350 PoolSize = MmSessionPoolSize >> PAGE_SHIFT;
1351 BitmapSize = sizeof(RTL_BITMAP) + ((PoolSize + 31) / 32) * sizeof(ULONG);
1352
1353 /* Allocate and initialize the bitmap to track allocations */
1354 PagedPoolInfo->PagedPoolAllocationMap = ExAllocatePoolWithTag(NonPagedPool,
1355 BitmapSize,
1356 TAG_MM);
1357 ASSERT(PagedPoolInfo->PagedPoolAllocationMap != NULL);
1358 RtlInitializeBitMap(PagedPoolInfo->PagedPoolAllocationMap,
1359 (PULONG)(PagedPoolInfo->PagedPoolAllocationMap + 1),
1360 PoolSize);
1361
1362 /* Set all bits, but clear the first page table's worth */
1363 RtlSetAllBits(PagedPoolInfo->PagedPoolAllocationMap);
1364 RtlClearBits(PagedPoolInfo->PagedPoolAllocationMap, 0, PTE_PER_PAGE);
1365
1366 /* Allocate and initialize the bitmap to track free space */
1367 PagedPoolInfo->EndOfPagedPoolBitmap = ExAllocatePoolWithTag(NonPagedPool,
1368 BitmapSize,
1369 TAG_MM);
1370 ASSERT(PagedPoolInfo->EndOfPagedPoolBitmap != NULL);
1371 RtlInitializeBitMap(PagedPoolInfo->EndOfPagedPoolBitmap,
1372 (PULONG)(PagedPoolInfo->EndOfPagedPoolBitmap + 1),
1373 PoolSize);
1374
1375 /* Clear all the bits and return success */
1376 RtlClearAllBits(PagedPoolInfo->EndOfPagedPoolBitmap);
1377 return STATUS_SUCCESS;
1378 }
1379
1380 /* PUBLIC FUNCTIONS ***********************************************************/
1381
1382 /*
1383 * @unimplemented
1384 */
1385 PVOID
1386 NTAPI
1387 MmAllocateMappingAddress(IN SIZE_T NumberOfBytes,
1388 IN ULONG PoolTag)
1389 {
1390 UNIMPLEMENTED;
1391 return NULL;
1392 }
1393
1394 /*
1395 * @unimplemented
1396 */
1397 VOID
1398 NTAPI
1399 MmFreeMappingAddress(IN PVOID BaseAddress,
1400 IN ULONG PoolTag)
1401 {
1402 UNIMPLEMENTED;
1403 }
1404
1405 /* EOF */