-revert janderwalds change until because it breaks the gcc 4.x build
[reactos.git] / reactos / boot / freeldr / freeldr / math / powerpc.h
1 /* Definitions of target machine for GNU compiler for IA-32.
2 Copyright (C) 1988, 1992, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001, 2002 Free Software Foundation, Inc.
4
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 /* The purpose of this file is to define the characteristics of the i386,
23 independent of assembler syntax or operating system.
24
25 Three other files build on this one to describe a specific assembler syntax:
26 bsd386.h, att386.h, and sun386.h.
27
28 The actual tm.h file for a particular system should include
29 this file, and then the file for the appropriate assembler syntax.
30
31 Many macros that specify assembler syntax are omitted entirely from
32 this file because they really belong in the files for particular
33 assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
34 ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
35 that start with ASM_ or end in ASM_OP. */
36
37 /* Stubs for half-pic support if not OSF/1 reference platform. */
38
39 #ifndef HALF_PIC_P
40 #define HALF_PIC_P() 0
41 #define HALF_PIC_NUMBER_PTRS 0
42 #define HALF_PIC_NUMBER_REFS 0
43 #define HALF_PIC_ENCODE(DECL)
44 #define HALF_PIC_DECLARE(NAME)
45 #define HALF_PIC_INIT() error ("half-pic init called on systems that don't support it")
46 #define HALF_PIC_ADDRESS_P(X) 0
47 #define HALF_PIC_PTR(X) (X)
48 #define HALF_PIC_FINISH(STREAM)
49 #endif
50
51 /* Define the specific costs for a given cpu */
52
53 struct processor_costs {
54 const int add; /* cost of an add instruction */
55 const int lea; /* cost of a lea instruction */
56 const int shift_var; /* variable shift costs */
57 const int shift_const; /* constant shift costs */
58 const int mult_init; /* cost of starting a multiply */
59 const int mult_bit; /* cost of multiply per each bit set */
60 const int divide; /* cost of a divide/mod */
61 int movsx; /* The cost of movsx operation. */
62 int movzx; /* The cost of movzx operation. */
63 const int large_insn; /* insns larger than this cost more */
64 const int move_ratio; /* The threshold of number of scalar
65 memory-to-memory move insns. */
66 const int movzbl_load; /* cost of loading using movzbl */
67 const int int_load[3]; /* cost of loading integer registers
68 in QImode, HImode and SImode relative
69 to reg-reg move (2). */
70 const int int_store[3]; /* cost of storing integer register
71 in QImode, HImode and SImode */
72 const int fp_move; /* cost of reg,reg fld/fst */
73 const int fp_load[3]; /* cost of loading FP register
74 in SFmode, DFmode and XFmode */
75 const int fp_store[3]; /* cost of storing FP register
76 in SFmode, DFmode and XFmode */
77 const int mmx_move; /* cost of moving MMX register. */
78 const int mmx_load[2]; /* cost of loading MMX register
79 in SImode and DImode */
80 const int mmx_store[2]; /* cost of storing MMX register
81 in SImode and DImode */
82 const int sse_move; /* cost of moving SSE register. */
83 const int sse_load[3]; /* cost of loading SSE register
84 in SImode, DImode and TImode*/
85 const int sse_store[3]; /* cost of storing SSE register
86 in SImode, DImode and TImode*/
87 const int mmxsse_to_integer; /* cost of moving mmxsse register to
88 integer and vice versa. */
89 const int prefetch_block; /* bytes moved to cache for prefetch. */
90 const int simultaneous_prefetches; /* number of parallel prefetch
91 operations. */
92 };
93
94 extern const struct processor_costs *ix86_cost;
95
96 /* Run-time compilation parameters selecting different hardware subsets. */
97
98 extern int target_flags;
99
100 /* Macros used in the machine description to test the flags. */
101
102 /* configure can arrange to make this 2, to force a 486. */
103
104 #ifndef TARGET_CPU_DEFAULT
105 #define TARGET_CPU_DEFAULT 0
106 #endif
107
108 /* Masks for the -m switches */
109 #define MASK_80387 0x00000001 /* Hardware floating point */
110 #define MASK_RTD 0x00000002 /* Use ret that pops args */
111 #define MASK_ALIGN_DOUBLE 0x00000004 /* align doubles to 2 word boundary */
112 #define MASK_SVR3_SHLIB 0x00000008 /* Uninit locals into bss */
113 #define MASK_IEEE_FP 0x00000010 /* IEEE fp comparisons */
114 #define MASK_FLOAT_RETURNS 0x00000020 /* Return float in st(0) */
115 #define MASK_NO_FANCY_MATH_387 0x00000040 /* Disable sin, cos, sqrt */
116 #define MASK_OMIT_LEAF_FRAME_POINTER 0x080 /* omit leaf frame pointers */
117 #define MASK_STACK_PROBE 0x00000100 /* Enable stack probing */
118 #define MASK_NO_ALIGN_STROPS 0x00000200 /* Enable aligning of string ops. */
119 #define MASK_INLINE_ALL_STROPS 0x00000400 /* Inline stringops in all cases */
120 #define MASK_NO_PUSH_ARGS 0x00000800 /* Use push instructions */
121 #define MASK_ACCUMULATE_OUTGOING_ARGS 0x00001000/* Accumulate outgoing args */
122 #define MASK_ACCUMULATE_OUTGOING_ARGS_SET 0x00002000
123 #define MASK_MMX 0x00004000 /* Support MMX regs/builtins */
124 #define MASK_MMX_SET 0x00008000
125 #define MASK_SSE 0x00010000 /* Support SSE regs/builtins */
126 #define MASK_SSE_SET 0x00020000
127 #define MASK_SSE2 0x00040000 /* Support SSE2 regs/builtins */
128 #define MASK_SSE2_SET 0x00080000
129 #define MASK_3DNOW 0x00100000 /* Support 3Dnow builtins */
130 #define MASK_3DNOW_SET 0x00200000
131 #define MASK_3DNOW_A 0x00400000 /* Support Athlon 3Dnow builtins */
132 #define MASK_3DNOW_A_SET 0x00800000
133 #define MASK_128BIT_LONG_DOUBLE 0x01000000 /* long double size is 128bit */
134 #define MASK_64BIT 0x02000000 /* Produce 64bit code */
135 /* ... overlap with subtarget options starts by 0x04000000. */
136 #define MASK_NO_RED_ZONE 0x04000000 /* Do not use red zone */
137
138 /* Use the floating point instructions */
139 #define TARGET_80387 (target_flags & MASK_80387)
140
141 /* Compile using ret insn that pops args.
142 This will not work unless you use prototypes at least
143 for all functions that can take varying numbers of args. */
144 #define TARGET_RTD (target_flags & MASK_RTD)
145
146 /* Align doubles to a two word boundary. This breaks compatibility with
147 the published ABI's for structures containing doubles, but produces
148 faster code on the pentium. */
149 #define TARGET_ALIGN_DOUBLE (target_flags & MASK_ALIGN_DOUBLE)
150
151 /* Use push instructions to save outgoing args. */
152 #define TARGET_PUSH_ARGS (!(target_flags & MASK_NO_PUSH_ARGS))
153
154 /* Accumulate stack adjustments to prologue/epilogue. */
155 #define TARGET_ACCUMULATE_OUTGOING_ARGS \
156 (target_flags & MASK_ACCUMULATE_OUTGOING_ARGS)
157
158 /* Put uninitialized locals into bss, not data.
159 Meaningful only on svr3. */
160 #define TARGET_SVR3_SHLIB (target_flags & MASK_SVR3_SHLIB)
161
162 /* Use IEEE floating point comparisons. These handle correctly the cases
163 where the result of a comparison is unordered. Normally SIGFPE is
164 generated in such cases, in which case this isn't needed. */
165 #define TARGET_IEEE_FP (target_flags & MASK_IEEE_FP)
166
167 /* Functions that return a floating point value may return that value
168 in the 387 FPU or in 386 integer registers. If set, this flag causes
169 the 387 to be used, which is compatible with most calling conventions. */
170 #define TARGET_FLOAT_RETURNS_IN_80387 (target_flags & MASK_FLOAT_RETURNS)
171
172 /* Long double is 128bit instead of 96bit, even when only 80bits are used.
173 This mode wastes cache, but avoid misaligned data accesses and simplifies
174 address calculations. */
175 #define TARGET_128BIT_LONG_DOUBLE (target_flags & MASK_128BIT_LONG_DOUBLE)
176
177 /* Disable generation of FP sin, cos and sqrt operations for 387.
178 This is because FreeBSD lacks these in the math-emulator-code */
179 #define TARGET_NO_FANCY_MATH_387 (target_flags & MASK_NO_FANCY_MATH_387)
180
181 /* Don't create frame pointers for leaf functions */
182 #define TARGET_OMIT_LEAF_FRAME_POINTER \
183 (target_flags & MASK_OMIT_LEAF_FRAME_POINTER)
184
185 /* Debug GO_IF_LEGITIMATE_ADDRESS */
186 #define TARGET_DEBUG_ADDR (ix86_debug_addr_string != 0)
187
188 /* Debug FUNCTION_ARG macros */
189 #define TARGET_DEBUG_ARG (ix86_debug_arg_string != 0)
190
191 #if 0
192 /* 64bit Sledgehammer mode */
193 #ifdef TARGET_BI_ARCH
194 #define TARGET_64BIT (target_flags & MASK_64BIT)
195 #else
196 #ifdef TARGET_64BIT_DEFAULT
197 #define TARGET_64BIT 1
198 #else
199 #define TARGET_64BIT 0
200 #endif
201 #endif
202
203 #define TARGET_386 (ix86_cpu == PROCESSOR_I386)
204 #define TARGET_486 (ix86_cpu == PROCESSOR_I486)
205 #define TARGET_PENTIUM (ix86_cpu == PROCESSOR_PENTIUM)
206 #define TARGET_PENTIUMPRO (ix86_cpu == PROCESSOR_PENTIUMPRO)
207 #define TARGET_K6 (ix86_cpu == PROCESSOR_K6)
208 #define TARGET_ATHLON (ix86_cpu == PROCESSOR_ATHLON)
209 #define TARGET_PENTIUM4 (ix86_cpu == PROCESSOR_PENTIUM4)
210
211 #define CPUMASK (1 << ix86_cpu)
212 extern const int x86_use_leave, x86_push_memory, x86_zero_extend_with_and;
213 extern const int x86_use_bit_test, x86_cmove, x86_deep_branch;
214 extern const int x86_branch_hints, x86_unroll_strlen;
215 extern const int x86_double_with_add, x86_partial_reg_stall, x86_movx;
216 extern const int x86_use_loop, x86_use_fiop, x86_use_mov0;
217 extern const int x86_use_cltd, x86_read_modify_write;
218 extern const int x86_read_modify, x86_split_long_moves;
219 extern const int x86_promote_QImode, x86_single_stringop;
220 extern const int x86_himode_math, x86_qimode_math, x86_promote_qi_regs;
221 extern const int x86_promote_hi_regs, x86_integer_DFmode_moves;
222 extern const int x86_add_esp_4, x86_add_esp_8, x86_sub_esp_4, x86_sub_esp_8;
223 extern const int x86_partial_reg_dependency, x86_memory_mismatch_stall;
224 extern const int x86_accumulate_outgoing_args, x86_prologue_using_move;
225 extern const int x86_epilogue_using_move, x86_decompose_lea;
226 extern const int x86_arch_always_fancy_math_387;
227 extern int x86_prefetch_sse;
228
229 #define TARGET_USE_LEAVE (x86_use_leave & CPUMASK)
230 #define TARGET_PUSH_MEMORY (x86_push_memory & CPUMASK)
231 #define TARGET_ZERO_EXTEND_WITH_AND (x86_zero_extend_with_and & CPUMASK)
232 #define TARGET_USE_BIT_TEST (x86_use_bit_test & CPUMASK)
233 #define TARGET_UNROLL_STRLEN (x86_unroll_strlen & CPUMASK)
234 /* For sane SSE instruction set generation we need fcomi instruction. It is
235 safe to enable all CMOVE instructions. */
236 #define TARGET_CMOVE ((x86_cmove & (1 << ix86_arch)) || TARGET_SSE)
237 #define TARGET_DEEP_BRANCH_PREDICTION (x86_deep_branch & CPUMASK)
238 #define TARGET_BRANCH_PREDICTION_HINTS (x86_branch_hints & CPUMASK)
239 #define TARGET_DOUBLE_WITH_ADD (x86_double_with_add & CPUMASK)
240 #define TARGET_USE_SAHF ((x86_use_sahf & CPUMASK) && !TARGET_64BIT)
241 #define TARGET_MOVX (x86_movx & CPUMASK)
242 #define TARGET_PARTIAL_REG_STALL (x86_partial_reg_stall & CPUMASK)
243 #define TARGET_USE_LOOP (x86_use_loop & CPUMASK)
244 #define TARGET_USE_FIOP (x86_use_fiop & CPUMASK)
245 #define TARGET_USE_MOV0 (x86_use_mov0 & CPUMASK)
246 #define TARGET_USE_CLTD (x86_use_cltd & CPUMASK)
247 #define TARGET_SPLIT_LONG_MOVES (x86_split_long_moves & CPUMASK)
248 #define TARGET_READ_MODIFY_WRITE (x86_read_modify_write & CPUMASK)
249 #define TARGET_READ_MODIFY (x86_read_modify & CPUMASK)
250 #define TARGET_PROMOTE_QImode (x86_promote_QImode & CPUMASK)
251 #define TARGET_SINGLE_STRINGOP (x86_single_stringop & CPUMASK)
252 #define TARGET_QIMODE_MATH (x86_qimode_math & CPUMASK)
253 #define TARGET_HIMODE_MATH (x86_himode_math & CPUMASK)
254 #define TARGET_PROMOTE_QI_REGS (x86_promote_qi_regs & CPUMASK)
255 #define TARGET_PROMOTE_HI_REGS (x86_promote_hi_regs & CPUMASK)
256 #define TARGET_ADD_ESP_4 (x86_add_esp_4 & CPUMASK)
257 #define TARGET_ADD_ESP_8 (x86_add_esp_8 & CPUMASK)
258 #define TARGET_SUB_ESP_4 (x86_sub_esp_4 & CPUMASK)
259 #define TARGET_SUB_ESP_8 (x86_sub_esp_8 & CPUMASK)
260 #define TARGET_INTEGER_DFMODE_MOVES (x86_integer_DFmode_moves & CPUMASK)
261 #define TARGET_PARTIAL_REG_DEPENDENCY (x86_partial_reg_dependency & CPUMASK)
262 #define TARGET_MEMORY_MISMATCH_STALL (x86_memory_mismatch_stall & CPUMASK)
263 #define TARGET_PROLOGUE_USING_MOVE (x86_prologue_using_move & CPUMASK)
264 #define TARGET_EPILOGUE_USING_MOVE (x86_epilogue_using_move & CPUMASK)
265 #define TARGET_DECOMPOSE_LEA (x86_decompose_lea & CPUMASK)
266 #define TARGET_PREFETCH_SSE (x86_prefetch_sse)
267
268 #define TARGET_STACK_PROBE (target_flags & MASK_STACK_PROBE)
269
270 #define TARGET_ALIGN_STRINGOPS (!(target_flags & MASK_NO_ALIGN_STROPS))
271 #define TARGET_INLINE_ALL_STRINGOPS (target_flags & MASK_INLINE_ALL_STROPS)
272
273 #define ASSEMBLER_DIALECT (ix86_asm_dialect)
274
275 #define TARGET_SSE ((target_flags & (MASK_SSE | MASK_SSE2)) != 0)
276 #define TARGET_SSE2 ((target_flags & MASK_SSE2) != 0)
277 #define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
278 #define TARGET_MIX_SSE_I387 ((ix86_fpmath & FPMATH_SSE) \
279 && (ix86_fpmath & FPMATH_387))
280 #define TARGET_MMX ((target_flags & MASK_MMX) != 0)
281 #define TARGET_3DNOW ((target_flags & MASK_3DNOW) != 0)
282 #define TARGET_3DNOW_A ((target_flags & MASK_3DNOW_A) != 0)
283 #endif
284
285 #define TARGET_RED_ZONE (!(target_flags & MASK_NO_RED_ZONE))
286
287 /* WARNING: Do not mark empty strings for translation, as calling
288 gettext on an empty string does NOT return an empty
289 string. */
290
291 #if 0
292 #define TARGET_SWITCHES \
293 { { "80387", MASK_80387, N_("Use hardware fp") }, \
294 { "no-80387", -MASK_80387, N_("Do not use hardware fp") }, \
295 { "hard-float", MASK_80387, N_("Use hardware fp") }, \
296 { "soft-float", -MASK_80387, N_("Do not use hardware fp") }, \
297 { "no-soft-float", MASK_80387, N_("Use hardware fp") }, \
298 { "386", 0, "" /*Deprecated.*/}, \
299 { "486", 0, "" /*Deprecated.*/}, \
300 { "pentium", 0, "" /*Deprecated.*/}, \
301 { "pentiumpro", 0, "" /*Deprecated.*/}, \
302 { "intel-syntax", 0, "" /*Deprecated.*/}, \
303 { "no-intel-syntax", 0, "" /*Deprecated.*/}, \
304 { "rtd", MASK_RTD, \
305 N_("Alternate calling convention") }, \
306 { "no-rtd", -MASK_RTD, \
307 N_("Use normal calling convention") }, \
308 { "align-double", MASK_ALIGN_DOUBLE, \
309 N_("Align some doubles on dword boundary") }, \
310 { "no-align-double", -MASK_ALIGN_DOUBLE, \
311 N_("Align doubles on word boundary") }, \
312 { "svr3-shlib", MASK_SVR3_SHLIB, \
313 N_("Uninitialized locals in .bss") }, \
314 { "no-svr3-shlib", -MASK_SVR3_SHLIB, \
315 N_("Uninitialized locals in .data") }, \
316 { "ieee-fp", MASK_IEEE_FP, \
317 N_("Use IEEE math for fp comparisons") }, \
318 { "no-ieee-fp", -MASK_IEEE_FP, \
319 N_("Do not use IEEE math for fp comparisons") }, \
320 { "fp-ret-in-387", MASK_FLOAT_RETURNS, \
321 N_("Return values of functions in FPU registers") }, \
322 { "no-fp-ret-in-387", -MASK_FLOAT_RETURNS , \
323 N_("Do not return values of functions in FPU registers")}, \
324 { "no-fancy-math-387", MASK_NO_FANCY_MATH_387, \
325 N_("Do not generate sin, cos, sqrt for FPU") }, \
326 { "fancy-math-387", -MASK_NO_FANCY_MATH_387, \
327 N_("Generate sin, cos, sqrt for FPU")}, \
328 { "omit-leaf-frame-pointer", MASK_OMIT_LEAF_FRAME_POINTER, \
329 N_("Omit the frame pointer in leaf functions") }, \
330 { "no-omit-leaf-frame-pointer",-MASK_OMIT_LEAF_FRAME_POINTER, "" }, \
331 { "stack-arg-probe", MASK_STACK_PROBE, \
332 N_("Enable stack probing") }, \
333 { "no-stack-arg-probe", -MASK_STACK_PROBE, "" }, \
334 { "windows", 0, 0 /* undocumented */ }, \
335 { "dll", 0, 0 /* undocumented */ }, \
336 { "align-stringops", -MASK_NO_ALIGN_STROPS, \
337 N_("Align destination of the string operations") }, \
338 { "no-align-stringops", MASK_NO_ALIGN_STROPS, \
339 N_("Do not align destination of the string operations") }, \
340 { "inline-all-stringops", MASK_INLINE_ALL_STROPS, \
341 N_("Inline all known string operations") }, \
342 { "no-inline-all-stringops", -MASK_INLINE_ALL_STROPS, \
343 N_("Do not inline all known string operations") }, \
344 { "push-args", -MASK_NO_PUSH_ARGS, \
345 N_("Use push instructions to save outgoing arguments") }, \
346 { "no-push-args", MASK_NO_PUSH_ARGS, \
347 N_("Do not use push instructions to save outgoing arguments") }, \
348 { "accumulate-outgoing-args", (MASK_ACCUMULATE_OUTGOING_ARGS \
349 | MASK_ACCUMULATE_OUTGOING_ARGS_SET), \
350 N_("Use push instructions to save outgoing arguments") }, \
351 { "no-accumulate-outgoing-args",MASK_ACCUMULATE_OUTGOING_ARGS_SET, \
352 N_("Do not use push instructions to save outgoing arguments") }, \
353 { "mmx", MASK_MMX | MASK_MMX_SET, \
354 N_("Support MMX built-in functions") }, \
355 { "no-mmx", -MASK_MMX, \
356 N_("Do not support MMX built-in functions") }, \
357 { "no-mmx", MASK_MMX_SET, "" }, \
358 { "3dnow", MASK_3DNOW | MASK_3DNOW_SET, \
359 N_("Support 3DNow! built-in functions") }, \
360 { "no-3dnow", -MASK_3DNOW, "" }, \
361 { "no-3dnow", MASK_3DNOW_SET, \
362 N_("Do not support 3DNow! built-in functions") }, \
363 { "sse", MASK_SSE | MASK_SSE_SET, \
364 N_("Support MMX and SSE built-in functions and code generation") }, \
365 { "no-sse", -MASK_SSE, "" }, \
366 { "no-sse", MASK_SSE_SET, \
367 N_("Do not support MMX and SSE built-in functions and code generation") },\
368 { "sse2", MASK_SSE2 | MASK_SSE2_SET, \
369 N_("Support MMX, SSE and SSE2 built-in functions and code generation") }, \
370 { "no-sse2", -MASK_SSE2, "" }, \
371 { "no-sse2", MASK_SSE2_SET, \
372 N_("Do not support MMX, SSE and SSE2 built-in functions and code generation") }, \
373 { "128bit-long-double", MASK_128BIT_LONG_DOUBLE, \
374 N_("sizeof(long double) is 16") }, \
375 { "96bit-long-double", -MASK_128BIT_LONG_DOUBLE, \
376 N_("sizeof(long double) is 12") }, \
377 { "64", MASK_64BIT, \
378 N_("Generate 64bit x86-64 code") }, \
379 { "32", -MASK_64BIT, \
380 N_("Generate 32bit i386 code") }, \
381 { "red-zone", -MASK_NO_RED_ZONE, \
382 N_("Use red-zone in the x86-64 code") }, \
383 { "no-red-zone", MASK_NO_RED_ZONE, \
384 N_("Do not use red-zone in the x86-64 code") }, \
385 SUBTARGET_SWITCHES \
386 { "", TARGET_DEFAULT, 0 }}
387
388 #ifdef TARGET_64BIT_DEFAULT
389 #define TARGET_DEFAULT (MASK_64BIT | TARGET_SUBTARGET_DEFAULT)
390 #else
391 #define TARGET_DEFAULT TARGET_SUBTARGET_DEFAULT
392 #endif
393
394 /* Which processor to schedule for. The cpu attribute defines a list that
395 mirrors this list, so changes to i386.md must be made at the same time. */
396
397 enum processor_type
398 {
399 PROCESSOR_I386, /* 80386 */
400 PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
401 PROCESSOR_PENTIUM,
402 PROCESSOR_PENTIUMPRO,
403 PROCESSOR_K6,
404 PROCESSOR_ATHLON,
405 PROCESSOR_PENTIUM4,
406 PROCESSOR_max
407 };
408 enum fpmath_unit
409 {
410 FPMATH_387 = 1,
411 FPMATH_SSE = 2
412 };
413
414 extern enum processor_type ix86_cpu;
415 extern enum fpmath_unit ix86_fpmath;
416
417 extern int ix86_arch;
418
419 /* This macro is similar to `TARGET_SWITCHES' but defines names of
420 command options that have values. Its definition is an
421 initializer with a subgrouping for each command option.
422
423 Each subgrouping contains a string constant, that defines the
424 fixed part of the option name, and the address of a variable. The
425 variable, type `char *', is set to the variable part of the given
426 option if the fixed part matches. The actual option name is made
427 by appending `-m' to the specified name. */
428 #define TARGET_OPTIONS \
429 { { "cpu=", &ix86_cpu_string, \
430 N_("Schedule code for given CPU")}, \
431 { "fpmath=", &ix86_fpmath_string, \
432 N_("Generate floating point mathematics using given instruction set")},\
433 { "arch=", &ix86_arch_string, \
434 N_("Generate code for given CPU")}, \
435 { "regparm=", &ix86_regparm_string, \
436 N_("Number of registers used to pass integer arguments") }, \
437 { "align-loops=", &ix86_align_loops_string, \
438 N_("Loop code aligned to this power of 2") }, \
439 { "align-jumps=", &ix86_align_jumps_string, \
440 N_("Jump targets are aligned to this power of 2") }, \
441 { "align-functions=", &ix86_align_funcs_string, \
442 N_("Function starts are aligned to this power of 2") }, \
443 { "preferred-stack-boundary=", \
444 &ix86_preferred_stack_boundary_string, \
445 N_("Attempt to keep stack aligned to this power of 2") }, \
446 { "branch-cost=", &ix86_branch_cost_string, \
447 N_("Branches are this expensive (1-5, arbitrary units)") }, \
448 { "cmodel=", &ix86_cmodel_string, \
449 N_("Use given x86-64 code model") }, \
450 { "debug-arg", &ix86_debug_arg_string, \
451 "" /* Undocumented. */ }, \
452 { "debug-addr", &ix86_debug_addr_string, \
453 "" /* Undocumented. */ }, \
454 { "asm=", &ix86_asm_string, \
455 N_("Use given assembler dialect") }, \
456 SUBTARGET_OPTIONS \
457 }
458 #endif
459
460 /* Sometimes certain combinations of command options do not make
461 sense on a particular target machine. You can define a macro
462 `OVERRIDE_OPTIONS' to take account of this. This macro, if
463 defined, is executed once just after all the command options have
464 been parsed.
465
466 Don't use this macro to turn on various extra optimizations for
467 `-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
468
469 #define OVERRIDE_OPTIONS override_options ()
470
471 /* These are meant to be redefined in the host dependent files */
472 #define SUBTARGET_SWITCHES
473 #define SUBTARGET_OPTIONS
474
475 /* Define this to change the optimizations performed by default. */
476 #define OPTIMIZATION_OPTIONS(LEVEL, SIZE) \
477 optimization_options ((LEVEL), (SIZE))
478
479 /* Specs for the compiler proper */
480
481 #if 0
482 #ifndef CC1_CPU_SPEC
483 #define CC1_CPU_SPEC "\
484 %{!mcpu*: \
485 %{m386:-mcpu=i386 \
486 %n`-m386' is deprecated. Use `-march=i386' or `-mcpu=i386' instead.\n} \
487 %{m486:-mcpu=i486 \
488 %n`-m486' is deprecated. Use `-march=i486' or `-mcpu=i486' instead.\n} \
489 %{mpentium:-mcpu=pentium \
490 %n`-mpentium' is deprecated. Use `-march=pentium' or `-mcpu=pentium' instead.\n} \
491 %{mpentiumpro:-mcpu=pentiumpro \
492 %n`-mpentiumpro' is deprecated. Use `-march=pentiumpro' or `-mcpu=pentiumpro' instead.\n}} \
493 %{mintel-syntax:-masm=intel \
494 %n`-mintel-syntax' is deprecated. Use `-masm=intel' instead.\n} \
495 %{mno-intel-syntax:-masm=att \
496 %n`-mno-intel-syntax' is deprecated. Use `-masm=att' instead.\n}"
497 #endif
498 \f
499 #define TARGET_CPU_DEFAULT_i386 0
500 #define TARGET_CPU_DEFAULT_i486 1
501 #define TARGET_CPU_DEFAULT_pentium 2
502 #define TARGET_CPU_DEFAULT_pentium_mmx 3
503 #define TARGET_CPU_DEFAULT_pentiumpro 4
504 #define TARGET_CPU_DEFAULT_pentium2 5
505 #define TARGET_CPU_DEFAULT_pentium3 6
506 #define TARGET_CPU_DEFAULT_pentium4 7
507 #define TARGET_CPU_DEFAULT_k6 8
508 #define TARGET_CPU_DEFAULT_k6_2 9
509 #define TARGET_CPU_DEFAULT_k6_3 10
510 #define TARGET_CPU_DEFAULT_athlon 11
511 #define TARGET_CPU_DEFAULT_athlon_sse 12
512
513 #define TARGET_CPU_DEFAULT_NAMES {"i386", "i486", "pentium", "pentium-mmx",\
514 "pentiumpro", "pentium2", "pentium3", \
515 "pentium4", "k6", "k6-2", "k6-3",\
516 "athlon", "athlon-4"}
517 #ifndef CPP_CPU_DEFAULT_SPEC
518 #if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_i486
519 #define CPP_CPU_DEFAULT_SPEC "-D__tune_i486__"
520 #endif
521 #if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_pentium
522 #define CPP_CPU_DEFAULT_SPEC "-D__tune_i586__ -D__tune_pentium__"
523 #endif
524 #if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_pentium_mmx
525 #define CPP_CPU_DEFAULT_SPEC "-D__tune_i586__ -D__tune_pentium__ -D__tune_pentium_mmx__"
526 #endif
527 #if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_pentiumpro
528 #define CPP_CPU_DEFAULT_SPEC "-D__tune_i686__ -D__tune_pentiumpro__"
529 #endif
530 #if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_pentium2
531 #define CPP_CPU_DEFAULT_SPEC "-D__tune_i686__ -D__tune_pentiumpro__\
532 -D__tune_pentium2__"
533 #endif
534 #if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_pentium3
535 #define CPP_CPU_DEFAULT_SPEC "-D__tune_i686__ -D__tune_pentiumpro__\
536 -D__tune_pentium2__ -D__tune_pentium3__"
537 #endif
538 #if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_pentium4
539 #define CPP_CPU_DEFAULT_SPEC "-D__tune_pentium4__"
540 #endif
541 #if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_k6
542 #define CPP_CPU_DEFAULT_SPEC "-D__tune_k6__"
543 #endif
544 #if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_k6_2
545 #define CPP_CPU_DEFAULT_SPEC "-D__tune_k6__ -D__tune_k6_2__"
546 #endif
547 #if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_k6_3
548 #define CPP_CPU_DEFAULT_SPEC "-D__tune_k6__ -D__tune_k6_3__"
549 #endif
550 #if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_athlon
551 #define CPP_CPU_DEFAULT_SPEC "-D__tune_athlon__"
552 #endif
553 #if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_athlon_sse
554 #define CPP_CPU_DEFAULT_SPEC "-D__tune_athlon__ -D__tune_athlon_sse__"
555 #endif
556 #ifndef CPP_CPU_DEFAULT_SPEC
557 #define CPP_CPU_DEFAULT_SPEC "-D__tune_i386__"
558 #endif
559 #endif /* CPP_CPU_DEFAULT_SPEC */
560
561 #ifdef TARGET_BI_ARCH
562 #define NO_BUILTIN_SIZE_TYPE
563 #define NO_BUILTIN_PTRDIFF_TYPE
564 #endif
565
566 #ifdef NO_BUILTIN_SIZE_TYPE
567 #define CPP_CPU32_SIZE_TYPE_SPEC \
568 " -D__SIZE_TYPE__=unsigned\\ int -D__PTRDIFF_TYPE__=int"
569 #define CPP_CPU64_SIZE_TYPE_SPEC \
570 " -D__SIZE_TYPE__=unsigned\\ long\\ int -D__PTRDIFF_TYPE__=long\\ int"
571 #else
572 #define CPP_CPU32_SIZE_TYPE_SPEC ""
573 #define CPP_CPU64_SIZE_TYPE_SPEC ""
574 #endif
575
576 #define CPP_CPU32_SPEC \
577 "-Acpu=i386 -Amachine=i386 %{!ansi:%{!std=c*:%{!std=i*:-Di386}}} -D__i386 \
578 -D__i386__ %(cpp_cpu32sizet)"
579
580 #define CPP_CPU64_SPEC \
581 "-Acpu=x86_64 -Amachine=x86_64 -D__x86_64 -D__x86_64__ %(cpp_cpu64sizet)"
582
583 #define CPP_CPUCOMMON_SPEC "\
584 %{march=i386:%{!mcpu*:-D__tune_i386__ }}\
585 %{march=i486:-D__i486 -D__i486__ %{!mcpu*:-D__tune_i486__ }}\
586 %{march=pentium|march=i586:-D__i586 -D__i586__ -D__pentium -D__pentium__ \
587 %{!mcpu*:-D__tune_i586__ -D__tune_pentium__ }}\
588 %{march=pentium-mmx:-D__i586 -D__i586__ -D__pentium -D__pentium__ \
589 -D__pentium__mmx__ \
590 %{!mcpu*:-D__tune_i586__ -D__tune_pentium__ -D__tune_pentium_mmx__}}\
591 %{march=pentiumpro|march=i686:-D__i686 -D__i686__ \
592 -D__pentiumpro -D__pentiumpro__ \
593 %{!mcpu*:-D__tune_i686__ -D__tune_pentiumpro__ }}\
594 %{march=k6:-D__k6 -D__k6__ %{!mcpu*:-D__tune_k6__ }}\
595 %{march=k6-2:-D__k6 -D__k6__ -D__k6_2__ \
596 %{!mcpu*:-D__tune_k6__ -D__tune_k6_2__ }}\
597 %{march=k6-3:-D__k6 -D__k6__ -D__k6_3__ \
598 %{!mcpu*:-D__tune_k6__ -D__tune_k6_3__ }}\
599 %{march=athlon|march=athlon-tbird:-D__athlon -D__athlon__ \
600 %{!mcpu*:-D__tune_athlon__ }}\
601 %{march=athlon-4|march=athlon-xp|march=athlon-mp:-D__athlon -D__athlon__ \
602 -D__athlon_sse__ \
603 %{!mcpu*:-D__tune_athlon__ -D__tune_athlon_sse__ }}\
604 %{march=pentium4:-D__pentium4 -D__pentium4__ %{!mcpu*:-D__tune_pentium4__ }}\
605 %{m386|mcpu=i386:-D__tune_i386__ }\
606 %{m486|mcpu=i486:-D__tune_i486__ }\
607 %{mpentium|mcpu=pentium|mcpu=i586|mcpu=pentium-mmx:-D__tune_i586__ -D__tune_pentium__ }\
608 %{mpentiumpro|mcpu=pentiumpro|mcpu=i686|cpu=pentium2|cpu=pentium3:-D__tune_i686__ \
609 -D__tune_pentiumpro__ }\
610 %{mcpu=k6|mcpu=k6-2|mcpu=k6-3:-D__tune_k6__ }\
611 %{mcpu=athlon|mcpu=athlon-tbird|mcpu=athlon-4|mcpu=athlon-xp|mcpu=athlon-mp:\
612 -D__tune_athlon__ }\
613 %{mcpu=athlon-4|mcpu=athlon-xp|mcpu=athlon-mp:\
614 -D__tune_athlon_sse__ }\
615 %{mcpu=pentium4:-D__tune_pentium4__ }\
616 %{march=athlon-tbird|march=athlon-xp|march=athlon-mp|march=pentium3|march=pentium4:\
617 -D__SSE__ }\
618 %{march=pentium-mmx|march=k6|march=k6-2|march=k6-3\
619 |march=athlon|march=athlon-tbird|march=athlon-4|march=athlon-xp\
620 |march=athlon-mp|march=pentium2|march=pentium3|march=pentium4: -D__MMX__ }\
621 %{march=k6-2|march=k6-3\
622 |march=athlon|march=athlon-tbird|march=athlon-4|march=athlon-xp\
623 |march=athlon-mp: -D__3dNOW__ }\
624 %{march=athlon|march=athlon-tbird|march=athlon-4|march=athlon-xp\
625 |march=athlon-mp: -D__3dNOW_A__ }\
626 %{march=pentium4: -D__SSE2__ }\
627 %{!march*:%{!mcpu*:%{!m386:%{!m486:%{!mpentium*:%(cpp_cpu_default)}}}}}"
628
629 #ifndef CPP_CPU_SPEC
630 #ifdef TARGET_BI_ARCH
631 #ifdef TARGET_64BIT_DEFAULT
632 #define CPP_CPU_SPEC "%{m32:%(cpp_cpu32)}%{!m32:%(cpp_cpu64)} %(cpp_cpucommon)"
633 #else
634 #define CPP_CPU_SPEC "%{m64:%(cpp_cpu64)}%{!m64:%(cpp_cpu32)} %(cpp_cpucommon)"
635 #endif
636 #else
637 #ifdef TARGET_64BIT_DEFAULT
638 #define CPP_CPU_SPEC "%(cpp_cpu64) %(cpp_cpucommon)"
639 #else
640 #define CPP_CPU_SPEC "%(cpp_cpu32) %(cpp_cpucommon)"
641 #endif
642 #endif
643 #endif
644
645 #ifndef CC1_SPEC
646 #define CC1_SPEC "%(cc1_cpu) "
647 #endif
648
649 /* This macro defines names of additional specifications to put in the
650 specs that can be used in various specifications like CC1_SPEC. Its
651 definition is an initializer with a subgrouping for each command option.
652
653 Each subgrouping contains a string constant, that defines the
654 specification name, and a string constant that used by the GNU CC driver
655 program.
656
657 Do not define this macro if it does not need to do anything. */
658
659 #ifndef SUBTARGET_EXTRA_SPECS
660 #define SUBTARGET_EXTRA_SPECS
661 #endif
662
663 #define EXTRA_SPECS \
664 { "cpp_cpu_default", CPP_CPU_DEFAULT_SPEC }, \
665 { "cpp_cpu", CPP_CPU_SPEC }, \
666 { "cpp_cpu32", CPP_CPU32_SPEC }, \
667 { "cpp_cpu64", CPP_CPU64_SPEC }, \
668 { "cpp_cpu32sizet", CPP_CPU32_SIZE_TYPE_SPEC }, \
669 { "cpp_cpu64sizet", CPP_CPU64_SIZE_TYPE_SPEC }, \
670 { "cpp_cpucommon", CPP_CPUCOMMON_SPEC }, \
671 { "cc1_cpu", CC1_CPU_SPEC }, \
672 SUBTARGET_EXTRA_SPECS
673 #endif
674 \f
675 /* target machine storage layout */
676
677 /* Define for XFmode or TFmode extended real floating point support.
678 This will automatically cause REAL_ARITHMETIC to be defined.
679
680 The XFmode is specified by i386 ABI, while TFmode may be faster
681 due to alignment and simplifications in the address calculations.
682 */
683 #define LONG_DOUBLE_TYPE_SIZE (TARGET_128BIT_LONG_DOUBLE ? 128 : 96)
684 #define MAX_LONG_DOUBLE_TYPE_SIZE 64
685 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
686 /* Tell real.c that this is the 80-bit Intel extended float format
687 packaged in a 128-bit or 96bit entity. */
688 #define INTEL_EXTENDED_IEEE_FORMAT 1
689
690
691 #define SHORT_TYPE_SIZE 16
692 #define INT_TYPE_SIZE 32
693 #define FLOAT_TYPE_SIZE 32
694 #define LONG_TYPE_SIZE BITS_PER_WORD
695 #define MAX_WCHAR_TYPE_SIZE 32
696 #define DOUBLE_TYPE_SIZE 64
697 #define LONG_LONG_TYPE_SIZE 64
698
699 #if defined (TARGET_BI_ARCH) || defined (TARGET_64BIT_DEFAULT)
700 #define MAX_BITS_PER_WORD 64
701 #define MAX_LONG_TYPE_SIZE 64
702 #else
703 #define MAX_BITS_PER_WORD 32
704 #define MAX_LONG_TYPE_SIZE 32
705 #endif
706
707 /* Define if you don't want extended real, but do want to use the
708 software floating point emulator for REAL_ARITHMETIC and
709 decimal <-> binary conversion. */
710 /* #define REAL_ARITHMETIC */
711
712 /* Define this if most significant byte of a word is the lowest numbered. */
713 /* That is true on the 80386. */
714
715 #define BITS_BIG_ENDIAN 0
716
717 /* Define this if most significant byte of a word is the lowest numbered. */
718 /* That is not true on the 80386. */
719 #define BYTES_BIG_ENDIAN 0
720
721 /* Define this if most significant word of a multiword number is the lowest
722 numbered. */
723 /* Not true for 80386 */
724 #define WORDS_BIG_ENDIAN 0
725
726 /* number of bits in an addressable storage unit */
727 #define BITS_PER_UNIT 8
728
729 /* Width in bits of a "word", which is the contents of a machine register.
730 Note that this is not necessarily the width of data type `int';
731 if using 16-bit ints on a 80386, this would still be 32.
732 But on a machine with 16-bit registers, this would be 16. */
733 #define BITS_PER_WORD (TARGET_64BIT ? 64 : 32)
734
735 /* Width of a word, in units (bytes). */
736 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
737 #define MIN_UNITS_PER_WORD 4
738
739 /* Width in bits of a pointer.
740 See also the macro `Pmode' defined below. */
741 #define POINTER_SIZE BITS_PER_WORD
742
743 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
744 #define PARM_BOUNDARY BITS_PER_WORD
745
746 /* Boundary (in *bits*) on which stack pointer should be aligned. */
747 #define STACK_BOUNDARY BITS_PER_WORD
748
749 /* Boundary (in *bits*) on which the stack pointer preferrs to be
750 aligned; the compiler cannot rely on having this alignment. */
751 #define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
752
753 /* As of July 2001, many runtimes to not align the stack properly when
754 entering main. This causes expand_main_function to forcably align
755 the stack, which results in aligned frames for functions called from
756 main, though it does nothing for the alignment of main itself. */
757 #define FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN \
758 (ix86_preferred_stack_boundary > STACK_BOUNDARY && !TARGET_64BIT)
759
760 /* Allocation boundary for the code of a function. */
761 #define FUNCTION_BOUNDARY 16
762
763 /* Alignment of field after `int : 0' in a structure. */
764
765 #define EMPTY_FIELD_BOUNDARY BITS_PER_WORD
766
767 /* Minimum size in bits of the largest boundary to which any
768 and all fundamental data types supported by the hardware
769 might need to be aligned. No data type wants to be aligned
770 rounder than this.
771
772 Pentium+ preferrs DFmode values to be aligned to 64 bit boundary
773 and Pentium Pro XFmode values at 128 bit boundaries. */
774
775 #define BIGGEST_ALIGNMENT 128
776
777 /* Decide whether a variable of mode MODE must be 128 bit aligned. */
778 #define ALIGN_MODE_128(MODE) \
779 ((MODE) == XFmode || (MODE) == TFmode || ((MODE) == TImode) \
780 || (MODE) == V4SFmode || (MODE) == V4SImode)
781
782 /* The published ABIs say that doubles should be aligned on word
783 boundaries, so lower the aligment for structure fields unless
784 -malign-double is set. */
785 /* BIGGEST_FIELD_ALIGNMENT is also used in libobjc, where it must be
786 constant. Use the smaller value in that context. */
787 #ifndef IN_TARGET_LIBS
788 #define BIGGEST_FIELD_ALIGNMENT (TARGET_64BIT ? 128 : (TARGET_ALIGN_DOUBLE ? 64 : 32))
789 #else
790 #define BIGGEST_FIELD_ALIGNMENT 32
791 #endif
792
793 /* If defined, a C expression to compute the alignment given to a
794 constant that is being placed in memory. EXP is the constant
795 and ALIGN is the alignment that the object would ordinarily have.
796 The value of this macro is used instead of that alignment to align
797 the object.
798
799 If this macro is not defined, then ALIGN is used.
800
801 The typical use of this macro is to increase alignment for string
802 constants to be word aligned so that `strcpy' calls that copy
803 constants can be done inline. */
804
805 #define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN))
806
807 /* If defined, a C expression to compute the alignment for a static
808 variable. TYPE is the data type, and ALIGN is the alignment that
809 the object would ordinarily have. The value of this macro is used
810 instead of that alignment to align the object.
811
812 If this macro is not defined, then ALIGN is used.
813
814 One use of this macro is to increase alignment of medium-size
815 data to make it all fit in fewer cache lines. Another is to
816 cause character arrays to be word-aligned so that `strcpy' calls
817 that copy constants to character arrays can be done inline. */
818
819 #define DATA_ALIGNMENT(TYPE, ALIGN) ix86_data_alignment ((TYPE), (ALIGN))
820
821 /* If defined, a C expression to compute the alignment for a local
822 variable. TYPE is the data type, and ALIGN is the alignment that
823 the object would ordinarily have. The value of this macro is used
824 instead of that alignment to align the object.
825
826 If this macro is not defined, then ALIGN is used.
827
828 One use of this macro is to increase alignment of medium-size
829 data to make it all fit in fewer cache lines. */
830
831 #define LOCAL_ALIGNMENT(TYPE, ALIGN) ix86_local_alignment ((TYPE), (ALIGN))
832
833 /* If defined, a C expression that gives the alignment boundary, in
834 bits, of an argument with the specified mode and type. If it is
835 not defined, `PARM_BOUNDARY' is used for all arguments. */
836
837 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
838 ix86_function_arg_boundary ((MODE), (TYPE))
839
840 /* Set this non-zero if move instructions will actually fail to work
841 when given unaligned data. */
842 #define STRICT_ALIGNMENT 0
843
844 /* If bit field type is int, don't let it cross an int,
845 and give entire struct the alignment of an int. */
846 /* Required on the 386 since it doesn't have bitfield insns. */
847 #define PCC_BITFIELD_TYPE_MATTERS 1
848 \f
849 /* Standard register usage. */
850
851 /* This processor has special stack-like registers. See reg-stack.c
852 for details. */
853
854 #define STACK_REGS
855 #define IS_STACK_MODE(MODE) \
856 ((MODE) == DFmode || (MODE) == SFmode || (MODE) == XFmode \
857 || (MODE) == TFmode)
858
859 /* Number of actual hardware registers.
860 The hardware registers are assigned numbers for the compiler
861 from 0 to just below FIRST_PSEUDO_REGISTER.
862 All registers that the compiler knows about must be given numbers,
863 even those that are not normally considered general registers.
864
865 In the 80386 we give the 8 general purpose registers the numbers 0-7.
866 We number the floating point registers 8-15.
867 Note that registers 0-7 can be accessed as a short or int,
868 while only 0-3 may be used with byte `mov' instructions.
869
870 Reg 16 does not correspond to any hardware register, but instead
871 appears in the RTL as an argument pointer prior to reload, and is
872 eliminated during reloading in favor of either the stack or frame
873 pointer. */
874
875 #define FIRST_PSEUDO_REGISTER 53
876
877 /* Number of hardware registers that go into the DWARF-2 unwind info.
878 If not defined, equals FIRST_PSEUDO_REGISTER. */
879
880 #define DWARF_FRAME_REGISTERS 17
881
882 /* 1 for registers that have pervasive standard uses
883 and are not available for the register allocator.
884 On the 80386, the stack pointer is such, as is the arg pointer.
885
886 The value is an mask - bit 1 is set for fixed registers
887 for 32bit target, while 2 is set for fixed registers for 64bit.
888 Proper value is computed in the CONDITIONAL_REGISTER_USAGE.
889 */
890 #define FIXED_REGISTERS \
891 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
892 { 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, \
893 /*arg,flags,fpsr,dir,frame*/ \
894 3, 3, 3, 3, 3, \
895 /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
896 0, 0, 0, 0, 0, 0, 0, 0, \
897 /*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/ \
898 0, 0, 0, 0, 0, 0, 0, 0, \
899 /* r8, r9, r10, r11, r12, r13, r14, r15*/ \
900 1, 1, 1, 1, 1, 1, 1, 1, \
901 /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
902 1, 1, 1, 1, 1, 1, 1, 1}
903
904
905 /* 1 for registers not available across function calls.
906 These must include the FIXED_REGISTERS and also any
907 registers that can be used without being saved.
908 The latter must include the registers where values are returned
909 and the register where structure-value addresses are passed.
910 Aside from that, you can include as many other registers as you like.
911
912 The value is an mask - bit 1 is set for call used
913 for 32bit target, while 2 is set for call used for 64bit.
914 Proper value is computed in the CONDITIONAL_REGISTER_USAGE.
915 */
916 #define CALL_USED_REGISTERS \
917 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
918 { 3, 3, 3, 0, 2, 2, 0, 3, 3, 3, 3, 3, 3, 3, 3, 3, \
919 /*arg,flags,fpsr,dir,frame*/ \
920 3, 3, 3, 3, 3, \
921 /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
922 3, 3, 3, 3, 3, 3, 3, 3, \
923 /*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/ \
924 3, 3, 3, 3, 3, 3, 3, 3, \
925 /* r8, r9, r10, r11, r12, r13, r14, r15*/ \
926 3, 3, 3, 3, 1, 1, 1, 1, \
927 /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
928 3, 3, 3, 3, 3, 3, 3, 3} \
929
930 /* Order in which to allocate registers. Each register must be
931 listed once, even those in FIXED_REGISTERS. List frame pointer
932 late and fixed registers last. Note that, in general, we prefer
933 registers listed in CALL_USED_REGISTERS, keeping the others
934 available for storage of persistent values.
935
936 The ORDER_REGS_FOR_LOCAL_ALLOC actually overwrite the order,
937 so this is just empty initializer for array. */
938
939 #define REG_ALLOC_ORDER \
940 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
941 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, \
942 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
943 48, 49, 50, 51, 52 }
944
945 /* ORDER_REGS_FOR_LOCAL_ALLOC is a macro which permits reg_alloc_order
946 to be rearranged based on a particular function. When using sse math,
947 we want to allocase SSE before x87 registers and vice vera. */
948
949 #define ORDER_REGS_FOR_LOCAL_ALLOC x86_order_regs_for_local_alloc ()
950
951
952 /* Macro to conditionally modify fixed_regs/call_used_regs. */
953 #define CONDITIONAL_REGISTER_USAGE \
954 do { \
955 int i; \
956 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
957 { \
958 fixed_regs[i] = (fixed_regs[i] & (TARGET_64BIT ? 2 : 1)) != 0; \
959 call_used_regs[i] = (call_used_regs[i] \
960 & (TARGET_64BIT ? 2 : 1)) != 0; \
961 } \
962 if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM) \
963 { \
964 fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
965 call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
966 } \
967 if (! TARGET_MMX) \
968 { \
969 int i; \
970 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
971 if (TEST_HARD_REG_BIT (reg_class_contents[(int)MMX_REGS], i)) \
972 fixed_regs[i] = call_used_regs[i] = 1; \
973 } \
974 if (! TARGET_SSE) \
975 { \
976 int i; \
977 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
978 if (TEST_HARD_REG_BIT (reg_class_contents[(int)SSE_REGS], i)) \
979 fixed_regs[i] = call_used_regs[i] = 1; \
980 } \
981 if (! TARGET_80387 && ! TARGET_FLOAT_RETURNS_IN_80387) \
982 { \
983 int i; \
984 HARD_REG_SET x; \
985 COPY_HARD_REG_SET (x, reg_class_contents[(int)FLOAT_REGS]); \
986 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
987 if (TEST_HARD_REG_BIT (x, i)) \
988 fixed_regs[i] = call_used_regs[i] = 1; \
989 } \
990 } while (0)
991
992 /* Return number of consecutive hard regs needed starting at reg REGNO
993 to hold something of mode MODE.
994 This is ordinarily the length in words of a value of mode MODE
995 but can be less for certain modes in special long registers.
996
997 Actually there are no two word move instructions for consecutive
998 registers. And only registers 0-3 may have mov byte instructions
999 applied to them.
1000 */
1001
1002 #define HARD_REGNO_NREGS(REGNO, MODE) \
1003 (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
1004 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
1005 : ((MODE) == TFmode \
1006 ? (TARGET_64BIT ? 2 : 3) \
1007 : (MODE) == TCmode \
1008 ? (TARGET_64BIT ? 4 : 6) \
1009 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
1010
1011 #define VALID_SSE_REG_MODE(MODE) \
1012 ((MODE) == TImode || (MODE) == V4SFmode || (MODE) == V4SImode \
1013 || (MODE) == SFmode \
1014 || (TARGET_SSE2 && ((MODE) == DFmode || VALID_MMX_REG_MODE (MODE))))
1015
1016 #define VALID_MMX_REG_MODE_3DNOW(MODE) \
1017 ((MODE) == V2SFmode || (MODE) == SFmode)
1018
1019 #define VALID_MMX_REG_MODE(MODE) \
1020 ((MODE) == DImode || (MODE) == V8QImode || (MODE) == V4HImode \
1021 || (MODE) == V2SImode || (MODE) == SImode)
1022
1023 #define VECTOR_MODE_SUPPORTED_P(MODE) \
1024 (VALID_SSE_REG_MODE (MODE) && TARGET_SSE ? 1 \
1025 : VALID_MMX_REG_MODE (MODE) && TARGET_MMX ? 1 \
1026 : VALID_MMX_REG_MODE_3DNOW (MODE) && TARGET_3DNOW ? 1 : 0)
1027
1028 #define VALID_FP_MODE_P(MODE) \
1029 ((MODE) == SFmode || (MODE) == DFmode || (MODE) == TFmode \
1030 || (!TARGET_64BIT && (MODE) == XFmode) \
1031 || (MODE) == SCmode || (MODE) == DCmode || (MODE) == TCmode \
1032 || (!TARGET_64BIT && (MODE) == XCmode))
1033
1034 #define VALID_INT_MODE_P(MODE) \
1035 ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode \
1036 || (MODE) == DImode \
1037 || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode \
1038 || (MODE) == CDImode \
1039 || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode)))
1040
1041 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
1042
1043 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
1044 ix86_hard_regno_mode_ok ((REGNO), (MODE))
1045
1046 /* Value is 1 if it is a good idea to tie two pseudo registers
1047 when one has mode MODE1 and one has mode MODE2.
1048 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1049 for any hard reg, then this must be 0 for correct output. */
1050
1051 #define MODES_TIEABLE_P(MODE1, MODE2) \
1052 ((MODE1) == (MODE2) \
1053 || (((MODE1) == HImode || (MODE1) == SImode \
1054 || ((MODE1) == QImode \
1055 && (TARGET_64BIT || !TARGET_PARTIAL_REG_STALL)) \
1056 || ((MODE1) == DImode && TARGET_64BIT)) \
1057 && ((MODE2) == HImode || (MODE2) == SImode \
1058 || ((MODE1) == QImode \
1059 && (TARGET_64BIT || !TARGET_PARTIAL_REG_STALL)) \
1060 || ((MODE2) == DImode && TARGET_64BIT))))
1061
1062
1063 /* Specify the modes required to caller save a given hard regno.
1064 We do this on i386 to prevent flags from being saved at all.
1065
1066 Kill any attempts to combine saving of modes. */
1067
1068 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1069 (CC_REGNO_P (REGNO) ? VOIDmode \
1070 : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \
1071 : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS)) \
1072 : (MODE) == HImode && !TARGET_PARTIAL_REG_STALL ? SImode \
1073 : (MODE) == QImode && (REGNO) >= 4 && !TARGET_64BIT ? SImode \
1074 : (MODE))
1075 /* Specify the registers used for certain standard purposes.
1076 The values of these macros are register numbers. */
1077
1078 /* on the 386 the pc register is %eip, and is not usable as a general
1079 register. The ordinary mov instructions won't work */
1080 /* #define PC_REGNUM */
1081
1082 /* Register to use for pushing function arguments. */
1083 #define STACK_POINTER_REGNUM 7
1084
1085 /* Base register for access to local variables of the function. */
1086 #define HARD_FRAME_POINTER_REGNUM 6
1087
1088 /* Base register for access to local variables of the function. */
1089 #define FRAME_POINTER_REGNUM 20
1090
1091 /* First floating point reg */
1092 #define FIRST_FLOAT_REG 8
1093
1094 /* First & last stack-like regs */
1095 #define FIRST_STACK_REG FIRST_FLOAT_REG
1096 #define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
1097
1098 #define FLAGS_REG 17
1099 #define FPSR_REG 18
1100 #define DIRFLAG_REG 19
1101
1102 #define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1)
1103 #define LAST_SSE_REG (FIRST_SSE_REG + 7)
1104
1105 #define FIRST_MMX_REG (LAST_SSE_REG + 1)
1106 #define LAST_MMX_REG (FIRST_MMX_REG + 7)
1107
1108 #define FIRST_REX_INT_REG (LAST_MMX_REG + 1)
1109 #define LAST_REX_INT_REG (FIRST_REX_INT_REG + 7)
1110
1111 #define FIRST_REX_SSE_REG (LAST_REX_INT_REG + 1)
1112 #define LAST_REX_SSE_REG (FIRST_REX_SSE_REG + 7)
1113
1114 /* Value should be nonzero if functions must have frame pointers.
1115 Zero means the frame pointer need not be set up (and parms
1116 may be accessed via the stack pointer) in functions that seem suitable.
1117 This is computed in `reload', in reload1.c. */
1118 #define FRAME_POINTER_REQUIRED ix86_frame_pointer_required ()
1119
1120 /* Override this in other tm.h files to cope with various OS losage
1121 requiring a frame pointer. */
1122 #ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1123 #define SUBTARGET_FRAME_POINTER_REQUIRED 0
1124 #endif
1125
1126 /* Make sure we can access arbitrary call frames. */
1127 #define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses ()
1128
1129 /* Base register for access to arguments of the function. */
1130 #define ARG_POINTER_REGNUM 16
1131
1132 /* Register in which static-chain is passed to a function.
1133 We do use ECX as static chain register for 32 bit ABI. On the
1134 64bit ABI, ECX is an argument register, so we use R10 instead. */
1135 #define STATIC_CHAIN_REGNUM (TARGET_64BIT ? FIRST_REX_INT_REG + 10 - 8 : 2)
1136
1137 /* Register to hold the addressing base for position independent
1138 code access to data items. We don't use PIC pointer for 64bit
1139 mode. Define the regnum to dummy value to prevent gcc from
1140 pessimizing code dealing with EBX. */
1141 #define PIC_OFFSET_TABLE_REGNUM \
1142 (TARGET_64BIT || !flag_pic ? INVALID_REGNUM : 3)
1143
1144 /* Register in which address to store a structure value
1145 arrives in the function. On the 386, the prologue
1146 copies this from the stack to register %eax. */
1147 #define STRUCT_VALUE_INCOMING 0
1148
1149 /* Place in which caller passes the structure value address.
1150 0 means push the value on the stack like an argument. */
1151 #define STRUCT_VALUE 0
1152
1153 /* A C expression which can inhibit the returning of certain function
1154 values in registers, based on the type of value. A nonzero value
1155 says to return the function value in memory, just as large
1156 structures are always returned. Here TYPE will be a C expression
1157 of type `tree', representing the data type of the value.
1158
1159 Note that values of mode `BLKmode' must be explicitly handled by
1160 this macro. Also, the option `-fpcc-struct-return' takes effect
1161 regardless of this macro. On most systems, it is possible to
1162 leave the macro undefined; this causes a default definition to be
1163 used, whose value is the constant 1 for `BLKmode' values, and 0
1164 otherwise.
1165
1166 Do not use this macro to indicate that structures and unions
1167 should always be returned in memory. You should instead use
1168 `DEFAULT_PCC_STRUCT_RETURN' to indicate this. */
1169
1170 #define RETURN_IN_MEMORY(TYPE) \
1171 ix86_return_in_memory (TYPE)
1172
1173 \f
1174 /* Define the classes of registers for register constraints in the
1175 machine description. Also define ranges of constants.
1176
1177 One of the classes must always be named ALL_REGS and include all hard regs.
1178 If there is more than one class, another class must be named NO_REGS
1179 and contain no registers.
1180
1181 The name GENERAL_REGS must be the name of a class (or an alias for
1182 another name such as ALL_REGS). This is the class of registers
1183 that is allowed by "g" or "r" in a register constraint.
1184 Also, registers outside this class are allocated only when
1185 instructions express preferences for them.
1186
1187 The classes must be numbered in nondecreasing order; that is,
1188 a larger-numbered class must never be contained completely
1189 in a smaller-numbered class.
1190
1191 For any two classes, it is very desirable that there be another
1192 class that represents their union.
1193
1194 It might seem that class BREG is unnecessary, since no useful 386
1195 opcode needs reg %ebx. But some systems pass args to the OS in ebx,
1196 and the "b" register constraint is useful in asms for syscalls.
1197
1198 The flags and fpsr registers are in no class. */
1199
1200 enum reg_class
1201 {
1202 NO_REGS,
1203 AREG, DREG, CREG, BREG, SIREG, DIREG,
1204 AD_REGS, /* %eax/%edx for DImode */
1205 Q_REGS, /* %eax %ebx %ecx %edx */
1206 NON_Q_REGS, /* %esi %edi %ebp %esp */
1207 INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
1208 LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
1209 GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp %r8 - %r15*/
1210 FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
1211 FLOAT_REGS,
1212 SSE_REGS,
1213 MMX_REGS,
1214 FP_TOP_SSE_REGS,
1215 FP_SECOND_SSE_REGS,
1216 FLOAT_SSE_REGS,
1217 FLOAT_INT_REGS,
1218 INT_SSE_REGS,
1219 FLOAT_INT_SSE_REGS,
1220 ALL_REGS, LIM_REG_CLASSES
1221 };
1222
1223 #define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1224
1225 #define INTEGER_CLASS_P(CLASS) \
1226 reg_class_subset_p ((CLASS), GENERAL_REGS)
1227 #define FLOAT_CLASS_P(CLASS) \
1228 reg_class_subset_p ((CLASS), FLOAT_REGS)
1229 #define SSE_CLASS_P(CLASS) \
1230 reg_class_subset_p ((CLASS), SSE_REGS)
1231 #define MMX_CLASS_P(CLASS) \
1232 reg_class_subset_p ((CLASS), MMX_REGS)
1233 #define MAYBE_INTEGER_CLASS_P(CLASS) \
1234 reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1235 #define MAYBE_FLOAT_CLASS_P(CLASS) \
1236 reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1237 #define MAYBE_SSE_CLASS_P(CLASS) \
1238 reg_classes_intersect_p (SSE_REGS, (CLASS))
1239 #define MAYBE_MMX_CLASS_P(CLASS) \
1240 reg_classes_intersect_p (MMX_REGS, (CLASS))
1241
1242 #define Q_CLASS_P(CLASS) \
1243 reg_class_subset_p ((CLASS), Q_REGS)
1244
1245 /* Give names of register classes as strings for dump file. */
1246
1247 #define REG_CLASS_NAMES \
1248 { "NO_REGS", \
1249 "AREG", "DREG", "CREG", "BREG", \
1250 "SIREG", "DIREG", \
1251 "AD_REGS", \
1252 "Q_REGS", "NON_Q_REGS", \
1253 "INDEX_REGS", \
1254 "LEGACY_REGS", \
1255 "GENERAL_REGS", \
1256 "FP_TOP_REG", "FP_SECOND_REG", \
1257 "FLOAT_REGS", \
1258 "SSE_REGS", \
1259 "MMX_REGS", \
1260 "FP_TOP_SSE_REGS", \
1261 "FP_SECOND_SSE_REGS", \
1262 "FLOAT_SSE_REGS", \
1263 "FLOAT_INT_REGS", \
1264 "INT_SSE_REGS", \
1265 "FLOAT_INT_SSE_REGS", \
1266 "ALL_REGS" }
1267
1268 /* Define which registers fit in which classes.
1269 This is an initializer for a vector of HARD_REG_SET
1270 of length N_REG_CLASSES. */
1271
1272 #define REG_CLASS_CONTENTS \
1273 { { 0x00, 0x0 }, \
1274 { 0x01, 0x0 }, { 0x02, 0x0 }, /* AREG, DREG */ \
1275 { 0x04, 0x0 }, { 0x08, 0x0 }, /* CREG, BREG */ \
1276 { 0x10, 0x0 }, { 0x20, 0x0 }, /* SIREG, DIREG */ \
1277 { 0x03, 0x0 }, /* AD_REGS */ \
1278 { 0x0f, 0x0 }, /* Q_REGS */ \
1279 { 0x1100f0, 0x1fe0 }, /* NON_Q_REGS */ \
1280 { 0x7f, 0x1fe0 }, /* INDEX_REGS */ \
1281 { 0x1100ff, 0x0 }, /* LEGACY_REGS */ \
1282 { 0x1100ff, 0x1fe0 }, /* GENERAL_REGS */ \
1283 { 0x100, 0x0 }, { 0x0200, 0x0 },/* FP_TOP_REG, FP_SECOND_REG */\
1284 { 0xff00, 0x0 }, /* FLOAT_REGS */ \
1285 { 0x1fe00000,0x1fe000 }, /* SSE_REGS */ \
1286 { 0xe0000000, 0x1f }, /* MMX_REGS */ \
1287 { 0x1fe00100,0x1fe000 }, /* FP_TOP_SSE_REG */ \
1288 { 0x1fe00200,0x1fe000 }, /* FP_SECOND_SSE_REG */ \
1289 { 0x1fe0ff00,0x1fe000 }, /* FLOAT_SSE_REGS */ \
1290 { 0x1ffff, 0x1fe0 }, /* FLOAT_INT_REGS */ \
1291 { 0x1fe100ff,0x1fffe0 }, /* INT_SSE_REGS */ \
1292 { 0x1fe1ffff,0x1fffe0 }, /* FLOAT_INT_SSE_REGS */ \
1293 { 0xffffffff,0x1fffff } \
1294 }
1295
1296 /* The same information, inverted:
1297 Return the class number of the smallest class containing
1298 reg number REGNO. This could be a conditional expression
1299 or could index an array. */
1300
1301 #define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
1302
1303 /* When defined, the compiler allows registers explicitly used in the
1304 rtl to be used as spill registers but prevents the compiler from
1305 extending the lifetime of these registers. */
1306
1307 #define SMALL_REGISTER_CLASSES 1
1308
1309 #define QI_REG_P(X) \
1310 (REG_P (X) && REGNO (X) < 4)
1311
1312 #define GENERAL_REGNO_P(N) \
1313 ((N) < 8 || REX_INT_REGNO_P (N))
1314
1315 #define GENERAL_REG_P(X) \
1316 (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
1317
1318 #define ANY_QI_REG_P(X) (TARGET_64BIT ? GENERAL_REG_P(X) : QI_REG_P (X))
1319
1320 #define NON_QI_REG_P(X) \
1321 (REG_P (X) && REGNO (X) >= 4 && REGNO (X) < FIRST_PSEUDO_REGISTER)
1322
1323 #define REX_INT_REGNO_P(N) ((N) >= FIRST_REX_INT_REG && (N) <= LAST_REX_INT_REG)
1324 #define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
1325
1326 #define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
1327 #define FP_REGNO_P(N) ((N) >= FIRST_STACK_REG && (N) <= LAST_STACK_REG)
1328 #define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
1329 #define ANY_FP_REGNO_P(N) (FP_REGNO_P (N) || SSE_REGNO_P (N))
1330
1331 #define SSE_REGNO_P(N) \
1332 (((N) >= FIRST_SSE_REG && (N) <= LAST_SSE_REG) \
1333 || ((N) >= FIRST_REX_SSE_REG && (N) <= LAST_REX_SSE_REG))
1334
1335 #define SSE_REGNO(N) \
1336 ((N) < 8 ? FIRST_SSE_REG + (N) : FIRST_REX_SSE_REG + (N) - 8)
1337 #define SSE_REG_P(N) (REG_P (N) && SSE_REGNO_P (REGNO (N)))
1338
1339 #define SSE_FLOAT_MODE_P(MODE) \
1340 ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
1341
1342 #define MMX_REGNO_P(N) ((N) >= FIRST_MMX_REG && (N) <= LAST_MMX_REG)
1343 #define MMX_REG_P(XOP) (REG_P (XOP) && MMX_REGNO_P (REGNO (XOP)))
1344
1345 #define STACK_REG_P(XOP) \
1346 (REG_P (XOP) && \
1347 REGNO (XOP) >= FIRST_STACK_REG && \
1348 REGNO (XOP) <= LAST_STACK_REG)
1349
1350 #define NON_STACK_REG_P(XOP) (REG_P (XOP) && ! STACK_REG_P (XOP))
1351
1352 #define STACK_TOP_P(XOP) (REG_P (XOP) && REGNO (XOP) == FIRST_STACK_REG)
1353
1354 #define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1355 #define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1356
1357 /* Indicate whether hard register numbered REG_NO should be converted
1358 to SSA form. */
1359 #define CONVERT_HARD_REGISTER_TO_SSA_P(REG_NO) \
1360 ((REG_NO) == FLAGS_REG || (REG_NO) == ARG_POINTER_REGNUM)
1361
1362 /* The class value for index registers, and the one for base regs. */
1363
1364 #define INDEX_REG_CLASS INDEX_REGS
1365 #define BASE_REG_CLASS GENERAL_REGS
1366
1367 /* Get reg_class from a letter such as appears in the machine description. */
1368
1369 #define REG_CLASS_FROM_LETTER(C) \
1370 ((C) == 'r' ? GENERAL_REGS : \
1371 (C) == 'R' ? LEGACY_REGS : \
1372 (C) == 'q' ? TARGET_64BIT ? GENERAL_REGS : Q_REGS : \
1373 (C) == 'Q' ? Q_REGS : \
1374 (C) == 'f' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
1375 ? FLOAT_REGS \
1376 : NO_REGS) : \
1377 (C) == 't' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
1378 ? FP_TOP_REG \
1379 : NO_REGS) : \
1380 (C) == 'u' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
1381 ? FP_SECOND_REG \
1382 : NO_REGS) : \
1383 (C) == 'a' ? AREG : \
1384 (C) == 'b' ? BREG : \
1385 (C) == 'c' ? CREG : \
1386 (C) == 'd' ? DREG : \
1387 (C) == 'x' ? TARGET_SSE ? SSE_REGS : NO_REGS : \
1388 (C) == 'Y' ? TARGET_SSE2? SSE_REGS : NO_REGS : \
1389 (C) == 'y' ? TARGET_MMX ? MMX_REGS : NO_REGS : \
1390 (C) == 'A' ? AD_REGS : \
1391 (C) == 'D' ? DIREG : \
1392 (C) == 'S' ? SIREG : NO_REGS)
1393
1394 /* The letters I, J, K, L and M in a register constraint string
1395 can be used to stand for particular ranges of immediate operands.
1396 This macro defines what the ranges are.
1397 C is the letter, and VALUE is a constant value.
1398 Return 1 if VALUE is in the range specified by C.
1399
1400 I is for non-DImode shifts.
1401 J is for DImode shifts.
1402 K is for signed imm8 operands.
1403 L is for andsi as zero-extending move.
1404 M is for shifts that can be executed by the "lea" opcode.
1405 N is for immedaite operands for out/in instructions (0-255)
1406 */
1407
1408 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
1409 ((C) == 'I' ? (VALUE) >= 0 && (VALUE) <= 31 \
1410 : (C) == 'J' ? (VALUE) >= 0 && (VALUE) <= 63 \
1411 : (C) == 'K' ? (VALUE) >= -128 && (VALUE) <= 127 \
1412 : (C) == 'L' ? (VALUE) == 0xff || (VALUE) == 0xffff \
1413 : (C) == 'M' ? (VALUE) >= 0 && (VALUE) <= 3 \
1414 : (C) == 'N' ? (VALUE) >= 0 && (VALUE) <= 255 \
1415 : 0)
1416
1417 /* Similar, but for floating constants, and defining letters G and H.
1418 Here VALUE is the CONST_DOUBLE rtx itself. We allow constants even if
1419 TARGET_387 isn't set, because the stack register converter may need to
1420 load 0.0 into the function value register. */
1421
1422 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
1423 ((C) == 'G' ? standard_80387_constant_p (VALUE) \
1424 : ((C) == 'H' ? standard_sse_constant_p (VALUE) : 0))
1425
1426 /* A C expression that defines the optional machine-dependent
1427 constraint letters that can be used to segregate specific types of
1428 operands, usually memory references, for the target machine. Any
1429 letter that is not elsewhere defined and not matched by
1430 `REG_CLASS_FROM_LETTER' may be used. Normally this macro will not
1431 be defined.
1432
1433 If it is required for a particular target machine, it should
1434 return 1 if VALUE corresponds to the operand type represented by
1435 the constraint letter C. If C is not defined as an extra
1436 constraint, the value returned should be 0 regardless of VALUE. */
1437
1438 #define EXTRA_CONSTRAINT(VALUE, C) \
1439 ((C) == 'e' ? x86_64_sign_extended_value (VALUE) \
1440 : (C) == 'Z' ? x86_64_zero_extended_value (VALUE) \
1441 : 0)
1442
1443 /* Place additional restrictions on the register class to use when it
1444 is necessary to be able to hold a value of mode MODE in a reload
1445 register for which class CLASS would ordinarily be used. */
1446
1447 #define LIMIT_RELOAD_CLASS(MODE, CLASS) \
1448 ((MODE) == QImode && !TARGET_64BIT \
1449 && ((CLASS) == ALL_REGS || (CLASS) == GENERAL_REGS \
1450 || (CLASS) == LEGACY_REGS || (CLASS) == INDEX_REGS) \
1451 ? Q_REGS : (CLASS))
1452
1453 /* Given an rtx X being reloaded into a reg required to be
1454 in class CLASS, return the class of reg to actually use.
1455 In general this is just CLASS; but on some machines
1456 in some cases it is preferable to use a more restrictive class.
1457 On the 80386 series, we prevent floating constants from being
1458 reloaded into floating registers (since no move-insn can do that)
1459 and we ensure that QImodes aren't reloaded into the esi or edi reg. */
1460
1461 /* Put float CONST_DOUBLE in the constant pool instead of fp regs.
1462 QImode must go into class Q_REGS.
1463 Narrow ALL_REGS to GENERAL_REGS. This supports allowing movsf and
1464 movdf to do mem-to-mem moves through integer regs. */
1465
1466 #define PREFERRED_RELOAD_CLASS(X, CLASS) \
1467 ix86_preferred_reload_class ((X), (CLASS))
1468
1469 /* If we are copying between general and FP registers, we need a memory
1470 location. The same is true for SSE and MMX registers. */
1471 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1472 ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1)
1473
1474 /* QImode spills from non-QI registers need a scratch. This does not
1475 happen often -- the only example so far requires an uninitialized
1476 pseudo. */
1477
1478 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, OUT) \
1479 (((CLASS) == GENERAL_REGS || (CLASS) == LEGACY_REGS \
1480 || (CLASS) == INDEX_REGS) && !TARGET_64BIT && (MODE) == QImode \
1481 ? Q_REGS : NO_REGS)
1482
1483 /* Return the maximum number of consecutive registers
1484 needed to represent mode MODE in a register of class CLASS. */
1485 /* On the 80386, this is the size of MODE in words,
1486 except in the FP regs, where a single reg is always enough.
1487 The TFmodes are really just 80bit values, so we use only 3 registers
1488 to hold them, instead of 4, as the size would suggest.
1489 */
1490 #define CLASS_MAX_NREGS(CLASS, MODE) \
1491 (!MAYBE_INTEGER_CLASS_P (CLASS) \
1492 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
1493 : ((GET_MODE_SIZE ((MODE) == TFmode ? XFmode : (MODE)) \
1494 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
1495
1496 /* A C expression whose value is nonzero if pseudos that have been
1497 assigned to registers of class CLASS would likely be spilled
1498 because registers of CLASS are needed for spill registers.
1499
1500 The default value of this macro returns 1 if CLASS has exactly one
1501 register and zero otherwise. On most machines, this default
1502 should be used. Only define this macro to some other expression
1503 if pseudo allocated by `local-alloc.c' end up in memory because
1504 their hard registers were needed for spill registers. If this
1505 macro returns nonzero for those classes, those pseudos will only
1506 be allocated by `global.c', which knows how to reallocate the
1507 pseudo to another register. If there would not be another
1508 register available for reallocation, you should not change the
1509 definition of this macro since the only effect of such a
1510 definition would be to slow down register allocation. */
1511
1512 #define CLASS_LIKELY_SPILLED_P(CLASS) \
1513 (((CLASS) == AREG) \
1514 || ((CLASS) == DREG) \
1515 || ((CLASS) == CREG) \
1516 || ((CLASS) == BREG) \
1517 || ((CLASS) == AD_REGS) \
1518 || ((CLASS) == SIREG) \
1519 || ((CLASS) == DIREG))
1520
1521 /* A C statement that adds to CLOBBERS any hard regs the port wishes
1522 to automatically clobber for all asms.
1523
1524 We do this in the new i386 backend to maintain source compatibility
1525 with the old cc0-based compiler. */
1526
1527 #define MD_ASM_CLOBBERS(CLOBBERS) \
1528 do { \
1529 (CLOBBERS) = tree_cons (NULL_TREE, build_string (5, "flags"), \
1530 (CLOBBERS)); \
1531 (CLOBBERS) = tree_cons (NULL_TREE, build_string (4, "fpsr"), \
1532 (CLOBBERS)); \
1533 (CLOBBERS) = tree_cons (NULL_TREE, build_string (7, "dirflag"), \
1534 (CLOBBERS)); \
1535 } while (0)
1536 \f
1537 /* Stack layout; function entry, exit and calling. */
1538
1539 /* Define this if pushing a word on the stack
1540 makes the stack pointer a smaller address. */
1541 #define STACK_GROWS_DOWNWARD
1542
1543 /* Define this if the nominal address of the stack frame
1544 is at the high-address end of the local variables;
1545 that is, each additional local variable allocated
1546 goes at a more negative offset in the frame. */
1547 #define FRAME_GROWS_DOWNWARD
1548
1549 /* Offset within stack frame to start allocating local variables at.
1550 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1551 first local allocated. Otherwise, it is the offset to the BEGINNING
1552 of the first local allocated. */
1553 #define STARTING_FRAME_OFFSET 0
1554
1555 /* If we generate an insn to push BYTES bytes,
1556 this says how many the stack pointer really advances by.
1557 On 386 pushw decrements by exactly 2 no matter what the position was.
1558 On the 386 there is no pushb; we use pushw instead, and this
1559 has the effect of rounding up to 2.
1560
1561 For 64bit ABI we round up to 8 bytes.
1562 */
1563
1564 #define PUSH_ROUNDING(BYTES) \
1565 (TARGET_64BIT \
1566 ? (((BYTES) + 7) & (-8)) \
1567 : (((BYTES) + 1) & (-2)))
1568
1569 /* If defined, the maximum amount of space required for outgoing arguments will
1570 be computed and placed into the variable
1571 `current_function_outgoing_args_size'. No space will be pushed onto the
1572 stack for each call; instead, the function prologue should increase the stack
1573 frame size by this amount. */
1574
1575 #define ACCUMULATE_OUTGOING_ARGS TARGET_ACCUMULATE_OUTGOING_ARGS
1576
1577 /* If defined, a C expression whose value is nonzero when we want to use PUSH
1578 instructions to pass outgoing arguments. */
1579
1580 #define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1581
1582 /* Offset of first parameter from the argument pointer register value. */
1583 #define FIRST_PARM_OFFSET(FNDECL) 0
1584
1585 /* Define this macro if functions should assume that stack space has been
1586 allocated for arguments even when their values are passed in registers.
1587
1588 The value of this macro is the size, in bytes, of the area reserved for
1589 arguments passed in registers for the function represented by FNDECL.
1590
1591 This space can be allocated by the caller, or be a part of the
1592 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1593 which. */
1594 #define REG_PARM_STACK_SPACE(FNDECL) 0
1595
1596 /* Define as a C expression that evaluates to nonzero if we do not know how
1597 to pass TYPE solely in registers. The file expr.h defines a
1598 definition that is usually appropriate, refer to expr.h for additional
1599 documentation. If `REG_PARM_STACK_SPACE' is defined, the argument will be
1600 computed in the stack and then loaded into a register. */
1601 #define MUST_PASS_IN_STACK(MODE, TYPE) \
1602 ((TYPE) != 0 \
1603 && (TREE_CODE (TYPE_SIZE (TYPE)) != INTEGER_CST \
1604 || TREE_ADDRESSABLE (TYPE) \
1605 || ((MODE) == TImode) \
1606 || ((MODE) == BLKmode \
1607 && ! ((TYPE) != 0 \
1608 && TREE_CODE (TYPE_SIZE (TYPE)) == INTEGER_CST \
1609 && 0 == (int_size_in_bytes (TYPE) \
1610 % (PARM_BOUNDARY / BITS_PER_UNIT))) \
1611 && (FUNCTION_ARG_PADDING (MODE, TYPE) \
1612 == (BYTES_BIG_ENDIAN ? upward : downward)))))
1613
1614 /* Value is the number of bytes of arguments automatically
1615 popped when returning from a subroutine call.
1616 FUNDECL is the declaration node of the function (as a tree),
1617 FUNTYPE is the data type of the function (as a tree),
1618 or for a library call it is an identifier node for the subroutine name.
1619 SIZE is the number of bytes of arguments passed on the stack.
1620
1621 On the 80386, the RTD insn may be used to pop them if the number
1622 of args is fixed, but if the number is variable then the caller
1623 must pop them all. RTD can't be used for library calls now
1624 because the library is compiled with the Unix compiler.
1625 Use of RTD is a selectable option, since it is incompatible with
1626 standard Unix calling sequences. If the option is not selected,
1627 the caller must always pop the args.
1628
1629 The attribute NTAPI is equivalent to RTD on a per module basis. */
1630
1631 #define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, SIZE) \
1632 ix86_return_pops_args ((FUNDECL), (FUNTYPE), (SIZE))
1633
1634 /* Define how to find the value returned by a function.
1635 VALTYPE is the data type of the value (as a tree).
1636 If the precise function being called is known, FUNC is its FUNCTION_DECL;
1637 otherwise, FUNC is 0. */
1638 #define FUNCTION_VALUE(VALTYPE, FUNC) \
1639 ix86_function_value (VALTYPE)
1640
1641 #define FUNCTION_VALUE_REGNO_P(N) \
1642 ix86_function_value_regno_p (N)
1643
1644 /* Define how to find the value returned by a library function
1645 assuming the value has mode MODE. */
1646
1647 #define LIBCALL_VALUE(MODE) \
1648 ix86_libcall_value (MODE)
1649
1650 /* Define the size of the result block used for communication between
1651 untyped_call and untyped_return. The block contains a DImode value
1652 followed by the block used by fnsave and frstor. */
1653
1654 #define APPLY_RESULT_SIZE (8+108)
1655
1656 /* 1 if N is a possible register number for function argument passing. */
1657 #define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
1658
1659 /* Define a data type for recording info about an argument list
1660 during the scan of that argument list. This data type should
1661 hold all necessary information about the function itself
1662 and about the args processed so far, enough to enable macros
1663 such as FUNCTION_ARG to determine where the next arg should go. */
1664
1665 typedef struct ix86_args {
1666 int words; /* # words passed so far */
1667 int nregs; /* # registers available for passing */
1668 int regno; /* next available register number */
1669 int sse_words; /* # sse words passed so far */
1670 int sse_nregs; /* # sse registers available for passing */
1671 int sse_regno; /* next available sse register number */
1672 int maybe_vaarg; /* true for calls to possibly vardic fncts. */
1673 } CUMULATIVE_ARGS;
1674
1675 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1676 for a call to a function whose data type is FNTYPE.
1677 For a library call, FNTYPE is 0. */
1678
1679 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT) \
1680 init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME))
1681
1682 /* Update the data in CUM to advance over an argument
1683 of mode MODE and data type TYPE.
1684 (TYPE is null for libcalls where that information may not be available.) */
1685
1686 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1687 function_arg_advance (&(CUM), (MODE), (TYPE), (NAMED))
1688
1689 /* Define where to put the arguments to a function.
1690 Value is zero to push the argument on the stack,
1691 or a hard register in which to store the argument.
1692
1693 MODE is the argument's machine mode.
1694 TYPE is the data type of the argument (as a tree).
1695 This is null for libcalls where that information may
1696 not be available.
1697 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1698 the preceding args and about the function being called.
1699 NAMED is nonzero if this argument is a named parameter
1700 (otherwise it is an extra parameter matching an ellipsis). */
1701
1702 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1703 function_arg (&(CUM), (MODE), (TYPE), (NAMED))
1704
1705 /* For an arg passed partly in registers and partly in memory,
1706 this is the number of registers used.
1707 For args passed entirely in registers or entirely in memory, zero. */
1708
1709 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) 0
1710
1711 /* If PIC, we cannot make sibling calls to global functions
1712 because the PLT requires %ebx live.
1713 If we are returning floats on the register stack, we cannot make
1714 sibling calls to functions that return floats. (The stack adjust
1715 instruction will wind up after the sibcall jump, and not be executed.) */
1716 #define FUNCTION_OK_FOR_SIBCALL(DECL) \
1717 ((DECL) \
1718 && (! flag_pic || ! TREE_PUBLIC (DECL)) \
1719 && (! TARGET_FLOAT_RETURNS_IN_80387 \
1720 || ! FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (TREE_TYPE (DECL)))) \
1721 || FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (TREE_TYPE (cfun->decl))))))
1722
1723 /* Perform any needed actions needed for a function that is receiving a
1724 variable number of arguments.
1725
1726 CUM is as above.
1727
1728 MODE and TYPE are the mode and type of the current parameter.
1729
1730 PRETEND_SIZE is a variable that should be set to the amount of stack
1731 that must be pushed by the prolog to pretend that our caller pushed
1732 it.
1733
1734 Normally, this macro will push all remaining incoming registers on the
1735 stack and set PRETEND_SIZE to the length of the registers pushed. */
1736
1737 #define SETUP_INCOMING_VARARGS(CUM, MODE, TYPE, PRETEND_SIZE, NO_RTL) \
1738 ix86_setup_incoming_varargs (&(CUM), (MODE), (TYPE), &(PRETEND_SIZE), \
1739 (NO_RTL))
1740
1741 /* Define the `__builtin_va_list' type for the ABI. */
1742 #define BUILD_VA_LIST_TYPE(VALIST) \
1743 ((VALIST) = ix86_build_va_list ())
1744
1745 /* Implement `va_start' for varargs and stdarg. */
1746 #define EXPAND_BUILTIN_VA_START(STDARG, VALIST, NEXTARG) \
1747 ix86_va_start ((STDARG), (VALIST), (NEXTARG))
1748
1749 /* Implement `va_arg'. */
1750 #define EXPAND_BUILTIN_VA_ARG(VALIST, TYPE) \
1751 ix86_va_arg ((VALIST), (TYPE))
1752
1753 /* This macro is invoked at the end of compilation. It is used here to
1754 output code for -fpic that will load the return address into %ebx. */
1755
1756 #undef ASM_FILE_END
1757 #define ASM_FILE_END(FILE) ix86_asm_file_end (FILE)
1758
1759 /* Output assembler code to FILE to increment profiler label # LABELNO
1760 for profiling a function entry. */
1761
1762 #define FUNCTION_PROFILER(FILE, LABELNO) \
1763 do { \
1764 if (flag_pic) \
1765 { \
1766 fprintf ((FILE), "\tleal\t%sP%d@GOTOFF(%%ebx),%%edx\n", \
1767 LPREFIX, (LABELNO)); \
1768 fprintf ((FILE), "\tcall\t*_mcount@GOT(%%ebx)\n"); \
1769 } \
1770 else \
1771 { \
1772 fprintf ((FILE), "\tmovl\t$%sP%d,%%edx\n", LPREFIX, (LABELNO)); \
1773 fprintf ((FILE), "\tcall\t_mcount\n"); \
1774 } \
1775 } while (0)
1776
1777 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1778 the stack pointer does not matter. The value is tested only in
1779 functions that have frame pointers.
1780 No definition is equivalent to always zero. */
1781 /* Note on the 386 it might be more efficient not to define this since
1782 we have to restore it ourselves from the frame pointer, in order to
1783 use pop */
1784
1785 #define EXIT_IGNORE_STACK 1
1786
1787 /* Output assembler code for a block containing the constant parts
1788 of a trampoline, leaving space for the variable parts. */
1789
1790 /* On the 386, the trampoline contains two instructions:
1791 mov #STATIC,ecx
1792 jmp FUNCTION
1793 The trampoline is generated entirely at runtime. The operand of JMP
1794 is the address of FUNCTION relative to the instruction following the
1795 JMP (which is 5 bytes long). */
1796
1797 /* Length in units of the trampoline for entering a nested function. */
1798
1799 #define TRAMPOLINE_SIZE (TARGET_64BIT ? 23 : 10)
1800
1801 /* Emit RTL insns to initialize the variable parts of a trampoline.
1802 FNADDR is an RTX for the address of the function's pure code.
1803 CXT is an RTX for the static chain value for the function. */
1804
1805 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1806 x86_initialize_trampoline ((TRAMP), (FNADDR), (CXT))
1807 \f
1808 /* Definitions for register eliminations.
1809
1810 This is an array of structures. Each structure initializes one pair
1811 of eliminable registers. The "from" register number is given first,
1812 followed by "to". Eliminations of the same "from" register are listed
1813 in order of preference.
1814
1815 There are two registers that can always be eliminated on the i386.
1816 The frame pointer and the arg pointer can be replaced by either the
1817 hard frame pointer or to the stack pointer, depending upon the
1818 circumstances. The hard frame pointer is not used before reload and
1819 so it is not eligible for elimination. */
1820
1821 #define ELIMINABLE_REGS \
1822 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1823 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1824 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1825 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
1826
1827 /* Given FROM and TO register numbers, say whether this elimination is
1828 allowed. Frame pointer elimination is automatically handled.
1829
1830 All other eliminations are valid. */
1831
1832 #define CAN_ELIMINATE(FROM, TO) \
1833 ((TO) == STACK_POINTER_REGNUM ? ! frame_pointer_needed : 1)
1834
1835 /* Define the offset between two registers, one to be eliminated, and the other
1836 its replacement, at the start of a routine. */
1837
1838 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1839 ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
1840 \f
1841 /* Addressing modes, and classification of registers for them. */
1842
1843 /* #define HAVE_POST_INCREMENT 0 */
1844 /* #define HAVE_POST_DECREMENT 0 */
1845
1846 /* #define HAVE_PRE_DECREMENT 0 */
1847 /* #define HAVE_PRE_INCREMENT 0 */
1848
1849 /* Macros to check register numbers against specific register classes. */
1850
1851 /* These assume that REGNO is a hard or pseudo reg number.
1852 They give nonzero only if REGNO is a hard reg of the suitable class
1853 or a pseudo reg currently allocated to a suitable hard reg.
1854 Since they use reg_renumber, they are safe only once reg_renumber
1855 has been allocated, which happens in local-alloc.c. */
1856
1857 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1858 ((REGNO) < STACK_POINTER_REGNUM \
1859 || (REGNO >= FIRST_REX_INT_REG \
1860 && (REGNO) <= LAST_REX_INT_REG) \
1861 || ((unsigned) reg_renumber[(REGNO)] >= FIRST_REX_INT_REG \
1862 && (unsigned) reg_renumber[(REGNO)] <= LAST_REX_INT_REG) \
1863 || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM)
1864
1865 #define REGNO_OK_FOR_BASE_P(REGNO) \
1866 ((REGNO) <= STACK_POINTER_REGNUM \
1867 || (REGNO) == ARG_POINTER_REGNUM \
1868 || (REGNO) == FRAME_POINTER_REGNUM \
1869 || (REGNO >= FIRST_REX_INT_REG \
1870 && (REGNO) <= LAST_REX_INT_REG) \
1871 || ((unsigned) reg_renumber[(REGNO)] >= FIRST_REX_INT_REG \
1872 && (unsigned) reg_renumber[(REGNO)] <= LAST_REX_INT_REG) \
1873 || (unsigned) reg_renumber[(REGNO)] <= STACK_POINTER_REGNUM)
1874
1875 #define REGNO_OK_FOR_SIREG_P(REGNO) \
1876 ((REGNO) == 4 || reg_renumber[(REGNO)] == 4)
1877 #define REGNO_OK_FOR_DIREG_P(REGNO) \
1878 ((REGNO) == 5 || reg_renumber[(REGNO)] == 5)
1879
1880 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1881 and check its validity for a certain class.
1882 We have two alternate definitions for each of them.
1883 The usual definition accepts all pseudo regs; the other rejects
1884 them unless they have been allocated suitable hard regs.
1885 The symbol REG_OK_STRICT causes the latter definition to be used.
1886
1887 Most source files want to accept pseudo regs in the hope that
1888 they will get allocated to the class that the insn wants them to be in.
1889 Source files for reload pass need to be strict.
1890 After reload, it makes no difference, since pseudo regs have
1891 been eliminated by then. */
1892
1893
1894 /* Non strict versions, pseudos are ok */
1895 #define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
1896 (REGNO (X) < STACK_POINTER_REGNUM \
1897 || (REGNO (X) >= FIRST_REX_INT_REG \
1898 && REGNO (X) <= LAST_REX_INT_REG) \
1899 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1900
1901 #define REG_OK_FOR_BASE_NONSTRICT_P(X) \
1902 (REGNO (X) <= STACK_POINTER_REGNUM \
1903 || REGNO (X) == ARG_POINTER_REGNUM \
1904 || REGNO (X) == FRAME_POINTER_REGNUM \
1905 || (REGNO (X) >= FIRST_REX_INT_REG \
1906 && REGNO (X) <= LAST_REX_INT_REG) \
1907 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1908
1909 /* Strict versions, hard registers only */
1910 #define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1911 #define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1912
1913 #ifndef REG_OK_STRICT
1914 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
1915 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X)
1916
1917 #else
1918 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X)
1919 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X)
1920 #endif
1921
1922 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1923 that is a valid memory address for an instruction.
1924 The MODE argument is the machine mode for the MEM expression
1925 that wants to use this address.
1926
1927 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
1928 except for CONSTANT_ADDRESS_P which is usually machine-independent.
1929
1930 See legitimize_pic_address in i386.c for details as to what
1931 constitutes a legitimate address when -fpic is used. */
1932
1933 #define MAX_REGS_PER_ADDRESS 2
1934
1935 #define CONSTANT_ADDRESS_P(X) \
1936 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
1937 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
1938 || GET_CODE (X) == CONST_DOUBLE)
1939
1940 /* Nonzero if the constant value X is a legitimate general operand.
1941 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1942
1943 #define LEGITIMATE_CONSTANT_P(X) 1
1944
1945 #ifdef REG_OK_STRICT
1946 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1947 do { \
1948 if (legitimate_address_p ((MODE), (X), 1)) \
1949 goto ADDR; \
1950 } while (0)
1951
1952 #else
1953 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1954 do { \
1955 if (legitimate_address_p ((MODE), (X), 0)) \
1956 goto ADDR; \
1957 } while (0)
1958
1959 #endif
1960
1961 /* If defined, a C expression to determine the base term of address X.
1962 This macro is used in only one place: `find_base_term' in alias.c.
1963
1964 It is always safe for this macro to not be defined. It exists so
1965 that alias analysis can understand machine-dependent addresses.
1966
1967 The typical use of this macro is to handle addresses containing
1968 a label_ref or symbol_ref within an UNSPEC. */
1969
1970 #define FIND_BASE_TERM(X) ix86_find_base_term (X)
1971
1972 /* Try machine-dependent ways of modifying an illegitimate address
1973 to be legitimate. If we find one, return the new, valid address.
1974 This macro is used in only one place: `memory_address' in explow.c.
1975
1976 OLDX is the address as it was before break_out_memory_refs was called.
1977 In some cases it is useful to look at this to decide what needs to be done.
1978
1979 MODE and WIN are passed so that this macro can use
1980 GO_IF_LEGITIMATE_ADDRESS.
1981
1982 It is always safe for this macro to do nothing. It exists to recognize
1983 opportunities to optimize the output.
1984
1985 For the 80386, we handle X+REG by loading X into a register R and
1986 using R+REG. R will go in a general reg and indexing will be used.
1987 However, if REG is a broken-out memory address or multiplication,
1988 nothing needs to be done because REG can certainly go in a general reg.
1989
1990 When -fpic is used, special handling is needed for symbolic references.
1991 See comments by legitimize_pic_address in i386.c for details. */
1992
1993 #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
1994 do { \
1995 (X) = legitimize_address ((X), (OLDX), (MODE)); \
1996 if (memory_address_p ((MODE), (X))) \
1997 goto WIN; \
1998 } while (0)
1999
2000 #define REWRITE_ADDRESS(X) rewrite_address (X)
2001
2002 /* Nonzero if the constant value X is a legitimate general operand
2003 when generating PIC code. It is given that flag_pic is on and
2004 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
2005
2006 #define LEGITIMATE_PIC_OPERAND_P(X) \
2007 (! SYMBOLIC_CONST (X) \
2008 || legitimate_pic_address_disp_p (X))
2009
2010 #define SYMBOLIC_CONST(X) \
2011 (GET_CODE (X) == SYMBOL_REF \
2012 || GET_CODE (X) == LABEL_REF \
2013 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
2014
2015 /* Go to LABEL if ADDR (a legitimate address expression)
2016 has an effect that depends on the machine mode it is used for.
2017 On the 80386, only postdecrement and postincrement address depend thus
2018 (the amount of decrement or increment being the length of the operand). */
2019 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL) \
2020 do { \
2021 if (GET_CODE (ADDR) == POST_INC \
2022 || GET_CODE (ADDR) == POST_DEC) \
2023 goto LABEL; \
2024 } while (0)
2025 \f
2026 /* Codes for all the SSE/MMX builtins. */
2027 enum ix86_builtins
2028 {
2029 IX86_BUILTIN_ADDPS,
2030 IX86_BUILTIN_ADDSS,
2031 IX86_BUILTIN_DIVPS,
2032 IX86_BUILTIN_DIVSS,
2033 IX86_BUILTIN_MULPS,
2034 IX86_BUILTIN_MULSS,
2035 IX86_BUILTIN_SUBPS,
2036 IX86_BUILTIN_SUBSS,
2037
2038 IX86_BUILTIN_CMPEQPS,
2039 IX86_BUILTIN_CMPLTPS,
2040 IX86_BUILTIN_CMPLEPS,
2041 IX86_BUILTIN_CMPGTPS,
2042 IX86_BUILTIN_CMPGEPS,
2043 IX86_BUILTIN_CMPNEQPS,
2044 IX86_BUILTIN_CMPNLTPS,
2045 IX86_BUILTIN_CMPNLEPS,
2046 IX86_BUILTIN_CMPNGTPS,
2047 IX86_BUILTIN_CMPNGEPS,
2048 IX86_BUILTIN_CMPORDPS,
2049 IX86_BUILTIN_CMPUNORDPS,
2050 IX86_BUILTIN_CMPNEPS,
2051 IX86_BUILTIN_CMPEQSS,
2052 IX86_BUILTIN_CMPLTSS,
2053 IX86_BUILTIN_CMPLESS,
2054 IX86_BUILTIN_CMPGTSS,
2055 IX86_BUILTIN_CMPGESS,
2056 IX86_BUILTIN_CMPNEQSS,
2057 IX86_BUILTIN_CMPNLTSS,
2058 IX86_BUILTIN_CMPNLESS,
2059 IX86_BUILTIN_CMPNGTSS,
2060 IX86_BUILTIN_CMPNGESS,
2061 IX86_BUILTIN_CMPORDSS,
2062 IX86_BUILTIN_CMPUNORDSS,
2063 IX86_BUILTIN_CMPNESS,
2064
2065 IX86_BUILTIN_COMIEQSS,
2066 IX86_BUILTIN_COMILTSS,
2067 IX86_BUILTIN_COMILESS,
2068 IX86_BUILTIN_COMIGTSS,
2069 IX86_BUILTIN_COMIGESS,
2070 IX86_BUILTIN_COMINEQSS,
2071 IX86_BUILTIN_UCOMIEQSS,
2072 IX86_BUILTIN_UCOMILTSS,
2073 IX86_BUILTIN_UCOMILESS,
2074 IX86_BUILTIN_UCOMIGTSS,
2075 IX86_BUILTIN_UCOMIGESS,
2076 IX86_BUILTIN_UCOMINEQSS,
2077
2078 IX86_BUILTIN_CVTPI2PS,
2079 IX86_BUILTIN_CVTPS2PI,
2080 IX86_BUILTIN_CVTSI2SS,
2081 IX86_BUILTIN_CVTSS2SI,
2082 IX86_BUILTIN_CVTTPS2PI,
2083 IX86_BUILTIN_CVTTSS2SI,
2084
2085 IX86_BUILTIN_MAXPS,
2086 IX86_BUILTIN_MAXSS,
2087 IX86_BUILTIN_MINPS,
2088 IX86_BUILTIN_MINSS,
2089
2090 IX86_BUILTIN_LOADAPS,
2091 IX86_BUILTIN_LOADUPS,
2092 IX86_BUILTIN_STOREAPS,
2093 IX86_BUILTIN_STOREUPS,
2094 IX86_BUILTIN_LOADSS,
2095 IX86_BUILTIN_STORESS,
2096 IX86_BUILTIN_MOVSS,
2097
2098 IX86_BUILTIN_MOVHLPS,
2099 IX86_BUILTIN_MOVLHPS,
2100 IX86_BUILTIN_LOADHPS,
2101 IX86_BUILTIN_LOADLPS,
2102 IX86_BUILTIN_STOREHPS,
2103 IX86_BUILTIN_STORELPS,
2104
2105 IX86_BUILTIN_MASKMOVQ,
2106 IX86_BUILTIN_MOVMSKPS,
2107 IX86_BUILTIN_PMOVMSKB,
2108
2109 IX86_BUILTIN_MOVNTPS,
2110 IX86_BUILTIN_MOVNTQ,
2111
2112 IX86_BUILTIN_PACKSSWB,
2113 IX86_BUILTIN_PACKSSDW,
2114 IX86_BUILTIN_PACKUSWB,
2115
2116 IX86_BUILTIN_PADDB,
2117 IX86_BUILTIN_PADDW,
2118 IX86_BUILTIN_PADDD,
2119 IX86_BUILTIN_PADDSB,
2120 IX86_BUILTIN_PADDSW,
2121 IX86_BUILTIN_PADDUSB,
2122 IX86_BUILTIN_PADDUSW,
2123 IX86_BUILTIN_PSUBB,
2124 IX86_BUILTIN_PSUBW,
2125 IX86_BUILTIN_PSUBD,
2126 IX86_BUILTIN_PSUBSB,
2127 IX86_BUILTIN_PSUBSW,
2128 IX86_BUILTIN_PSUBUSB,
2129 IX86_BUILTIN_PSUBUSW,
2130
2131 IX86_BUILTIN_PAND,
2132 IX86_BUILTIN_PANDN,
2133 IX86_BUILTIN_POR,
2134 IX86_BUILTIN_PXOR,
2135
2136 IX86_BUILTIN_PAVGB,
2137 IX86_BUILTIN_PAVGW,
2138
2139 IX86_BUILTIN_PCMPEQB,
2140 IX86_BUILTIN_PCMPEQW,
2141 IX86_BUILTIN_PCMPEQD,
2142 IX86_BUILTIN_PCMPGTB,
2143 IX86_BUILTIN_PCMPGTW,
2144 IX86_BUILTIN_PCMPGTD,
2145
2146 IX86_BUILTIN_PEXTRW,
2147 IX86_BUILTIN_PINSRW,
2148
2149 IX86_BUILTIN_PMADDWD,
2150
2151 IX86_BUILTIN_PMAXSW,
2152 IX86_BUILTIN_PMAXUB,
2153 IX86_BUILTIN_PMINSW,
2154 IX86_BUILTIN_PMINUB,
2155
2156 IX86_BUILTIN_PMULHUW,
2157 IX86_BUILTIN_PMULHW,
2158 IX86_BUILTIN_PMULLW,
2159
2160 IX86_BUILTIN_PSADBW,
2161 IX86_BUILTIN_PSHUFW,
2162
2163 IX86_BUILTIN_PSLLW,
2164 IX86_BUILTIN_PSLLD,
2165 IX86_BUILTIN_PSLLQ,
2166 IX86_BUILTIN_PSRAW,
2167 IX86_BUILTIN_PSRAD,
2168 IX86_BUILTIN_PSRLW,
2169 IX86_BUILTIN_PSRLD,
2170 IX86_BUILTIN_PSRLQ,
2171 IX86_BUILTIN_PSLLWI,
2172 IX86_BUILTIN_PSLLDI,
2173 IX86_BUILTIN_PSLLQI,
2174 IX86_BUILTIN_PSRAWI,
2175 IX86_BUILTIN_PSRADI,
2176 IX86_BUILTIN_PSRLWI,
2177 IX86_BUILTIN_PSRLDI,
2178 IX86_BUILTIN_PSRLQI,
2179
2180 IX86_BUILTIN_PUNPCKHBW,
2181 IX86_BUILTIN_PUNPCKHWD,
2182 IX86_BUILTIN_PUNPCKHDQ,
2183 IX86_BUILTIN_PUNPCKLBW,
2184 IX86_BUILTIN_PUNPCKLWD,
2185 IX86_BUILTIN_PUNPCKLDQ,
2186
2187 IX86_BUILTIN_SHUFPS,
2188
2189 IX86_BUILTIN_RCPPS,
2190 IX86_BUILTIN_RCPSS,
2191 IX86_BUILTIN_RSQRTPS,
2192 IX86_BUILTIN_RSQRTSS,
2193 IX86_BUILTIN_SQRTPS,
2194 IX86_BUILTIN_SQRTSS,
2195
2196 IX86_BUILTIN_UNPCKHPS,
2197 IX86_BUILTIN_UNPCKLPS,
2198
2199 IX86_BUILTIN_ANDPS,
2200 IX86_BUILTIN_ANDNPS,
2201 IX86_BUILTIN_ORPS,
2202 IX86_BUILTIN_XORPS,
2203
2204 IX86_BUILTIN_EMMS,
2205 IX86_BUILTIN_LDMXCSR,
2206 IX86_BUILTIN_STMXCSR,
2207 IX86_BUILTIN_SFENCE,
2208
2209 /* 3DNow! Original */
2210 IX86_BUILTIN_FEMMS,
2211 IX86_BUILTIN_PAVGUSB,
2212 IX86_BUILTIN_PF2ID,
2213 IX86_BUILTIN_PFACC,
2214 IX86_BUILTIN_PFADD,
2215 IX86_BUILTIN_PFCMPEQ,
2216 IX86_BUILTIN_PFCMPGE,
2217 IX86_BUILTIN_PFCMPGT,
2218 IX86_BUILTIN_PFMAX,
2219 IX86_BUILTIN_PFMIN,
2220 IX86_BUILTIN_PFMUL,
2221 IX86_BUILTIN_PFRCP,
2222 IX86_BUILTIN_PFRCPIT1,
2223 IX86_BUILTIN_PFRCPIT2,
2224 IX86_BUILTIN_PFRSQIT1,
2225 IX86_BUILTIN_PFRSQRT,
2226 IX86_BUILTIN_PFSUB,
2227 IX86_BUILTIN_PFSUBR,
2228 IX86_BUILTIN_PI2FD,
2229 IX86_BUILTIN_PMULHRW,
2230
2231 /* 3DNow! Athlon Extensions */
2232 IX86_BUILTIN_PF2IW,
2233 IX86_BUILTIN_PFNACC,
2234 IX86_BUILTIN_PFPNACC,
2235 IX86_BUILTIN_PI2FW,
2236 IX86_BUILTIN_PSWAPDSI,
2237 IX86_BUILTIN_PSWAPDSF,
2238
2239 IX86_BUILTIN_SSE_ZERO,
2240 IX86_BUILTIN_MMX_ZERO,
2241
2242 IX86_BUILTIN_MAX
2243 };
2244 \f
2245 /* Define this macro if references to a symbol must be treated
2246 differently depending on something about the variable or
2247 function named by the symbol (such as what section it is in).
2248
2249 On i386, if using PIC, mark a SYMBOL_REF for a non-global symbol
2250 so that we may access it directly in the GOT. */
2251
2252 #define ENCODE_SECTION_INFO(DECL) \
2253 do { \
2254 if (flag_pic) \
2255 { \
2256 rtx rtl = (TREE_CODE_CLASS (TREE_CODE (DECL)) != 'd' \
2257 ? TREE_CST_RTL (DECL) : DECL_RTL (DECL)); \
2258 \
2259 if (GET_CODE (rtl) == MEM) \
2260 { \
2261 if (TARGET_DEBUG_ADDR \
2262 && TREE_CODE_CLASS (TREE_CODE (DECL)) == 'd') \
2263 { \
2264 fprintf (stderr, "Encode %s, public = %d\n", \
2265 IDENTIFIER_POINTER (DECL_NAME (DECL)), \
2266 TREE_PUBLIC (DECL)); \
2267 } \
2268 \
2269 SYMBOL_REF_FLAG (XEXP (rtl, 0)) \
2270 = (TREE_CODE_CLASS (TREE_CODE (DECL)) != 'd' \
2271 || ! TREE_PUBLIC (DECL)); \
2272 } \
2273 } \
2274 } while (0)
2275
2276 /* The `FINALIZE_PIC' macro serves as a hook to emit these special
2277 codes once the function is being compiled into assembly code, but
2278 not before. (It is not done before, because in the case of
2279 compiling an inline function, it would lead to multiple PIC
2280 prologues being included in functions which used inline functions
2281 and were compiled to assembly language.) */
2282
2283 #define FINALIZE_PIC \
2284 (current_function_uses_pic_offset_table |= current_function_profile)
2285
2286 \f
2287 /* Max number of args passed in registers. If this is more than 3, we will
2288 have problems with ebx (register #4), since it is a caller save register and
2289 is also used as the pic register in ELF. So for now, don't allow more than
2290 3 registers to be passed in registers. */
2291
2292 #define REGPARM_MAX (TARGET_64BIT ? 6 : 3)
2293
2294 #define SSE_REGPARM_MAX (TARGET_64BIT ? 8 : 0)
2295
2296 \f
2297 /* Specify the machine mode that this machine uses
2298 for the index in the tablejump instruction. */
2299 #define CASE_VECTOR_MODE (!TARGET_64BIT || flag_pic ? SImode : DImode)
2300
2301 /* Define as C expression which evaluates to nonzero if the tablejump
2302 instruction expects the table to contain offsets from the address of the
2303 table.
2304 Do not define this if the table should contain absolute addresses. */
2305 /* #define CASE_VECTOR_PC_RELATIVE 1 */
2306
2307 /* Define this as 1 if `char' should by default be signed; else as 0. */
2308 #define DEFAULT_SIGNED_CHAR 1
2309
2310 /* Number of bytes moved into a data cache for a single prefetch operation. */
2311 #define PREFETCH_BLOCK ix86_cost->prefetch_block
2312
2313 /* Number of prefetch operations that can be done in parallel. */
2314 #define SIMULTANEOUS_PREFETCHES ix86_cost->simultaneous_prefetches
2315
2316 /* Max number of bytes we can move from memory to memory
2317 in one reasonably fast instruction. */
2318 #define MOVE_MAX 16
2319
2320 /* MOVE_MAX_PIECES is the number of bytes at a time which we can
2321 move efficiently, as opposed to MOVE_MAX which is the maximum
2322 number of bytes we can move with a single instruction. */
2323 #define MOVE_MAX_PIECES (TARGET_64BIT ? 8 : 4)
2324
2325 /* If a memory-to-memory move would take MOVE_RATIO or more simple
2326 move-instruction pairs, we will do a movstr or libcall instead.
2327 Increasing the value will always make code faster, but eventually
2328 incurs high cost in increased code size.
2329
2330 If you don't define this, a reasonable default is used. */
2331
2332 #define MOVE_RATIO (optimize_size ? 3 : ix86_cost->move_ratio)
2333
2334 /* Define if shifts truncate the shift count
2335 which implies one can omit a sign-extension or zero-extension
2336 of a shift count. */
2337 /* On i386, shifts do truncate the count. But bit opcodes don't. */
2338
2339 /* #define SHIFT_COUNT_TRUNCATED */
2340
2341 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2342 is done just by pretending it is already truncated. */
2343 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2344
2345 /* We assume that the store-condition-codes instructions store 0 for false
2346 and some other value for true. This is the value stored for true. */
2347
2348 #define STORE_FLAG_VALUE 1
2349
2350 /* When a prototype says `char' or `short', really pass an `int'.
2351 (The 386 can't easily push less than an int.) */
2352
2353 #define PROMOTE_PROTOTYPES (!TARGET_64BIT)
2354
2355 /* A macro to update M and UNSIGNEDP when an object whose type is
2356 TYPE and which has the specified mode and signedness is to be
2357 stored in a register. This macro is only called when TYPE is a
2358 scalar type.
2359
2360 On i386 it is sometimes useful to promote HImode and QImode
2361 quantities to SImode. The choice depends on target type. */
2362
2363 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
2364 do { \
2365 if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \
2366 || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \
2367 (MODE) = SImode; \
2368 } while (0)
2369
2370 /* Specify the machine mode that pointers have.
2371 After generation of rtl, the compiler makes no further distinction
2372 between pointers and any other objects of this machine mode. */
2373 #define Pmode (TARGET_64BIT ? DImode : SImode)
2374
2375 /* A function address in a call instruction
2376 is a byte address (for indexing purposes)
2377 so give the MEM rtx a byte's mode. */
2378 #define FUNCTION_MODE QImode
2379 \f
2380 /* A part of a C `switch' statement that describes the relative costs
2381 of constant RTL expressions. It must contain `case' labels for
2382 expression codes `const_int', `const', `symbol_ref', `label_ref'
2383 and `const_double'. Each case must ultimately reach a `return'
2384 statement to return the relative cost of the use of that kind of
2385 constant value in an expression. The cost may depend on the
2386 precise value of the constant, which is available for examination
2387 in X, and the rtx code of the expression in which it is contained,
2388 found in OUTER_CODE.
2389
2390 CODE is the expression code--redundant, since it can be obtained
2391 with `GET_CODE (X)'. */
2392
2393 #define CONST_COSTS(RTX, CODE, OUTER_CODE) \
2394 case CONST_INT: \
2395 case CONST: \
2396 case LABEL_REF: \
2397 case SYMBOL_REF: \
2398 if (TARGET_64BIT && !x86_64_sign_extended_value (RTX)) \
2399 return 3; \
2400 if (TARGET_64BIT && !x86_64_zero_extended_value (RTX)) \
2401 return 2; \
2402 return flag_pic && SYMBOLIC_CONST (RTX) ? 1 : 0; \
2403 \
2404 case CONST_DOUBLE: \
2405 { \
2406 int code; \
2407 if (GET_MODE (RTX) == VOIDmode) \
2408 return 0; \
2409 \
2410 code = standard_80387_constant_p (RTX); \
2411 return code == 1 ? 1 : \
2412 code == 2 ? 2 : \
2413 3; \
2414 }
2415
2416 /* Delete the definition here when TOPLEVEL_COSTS_N_INSNS gets added to cse.c */
2417 #define TOPLEVEL_COSTS_N_INSNS(N) \
2418 do { total = COSTS_N_INSNS (N); goto egress_rtx_costs; } while (0)
2419
2420 /* Like `CONST_COSTS' but applies to nonconstant RTL expressions.
2421 This can be used, for example, to indicate how costly a multiply
2422 instruction is. In writing this macro, you can use the construct
2423 `COSTS_N_INSNS (N)' to specify a cost equal to N fast
2424 instructions. OUTER_CODE is the code of the expression in which X
2425 is contained.
2426
2427 This macro is optional; do not define it if the default cost
2428 assumptions are adequate for the target machine. */
2429
2430 #define RTX_COSTS(X, CODE, OUTER_CODE) \
2431 case ZERO_EXTEND: \
2432 /* The zero extensions is often completely free on x86_64, so make \
2433 it as cheap as possible. */ \
2434 if (TARGET_64BIT && GET_MODE (X) == DImode \
2435 && GET_MODE (XEXP (X, 0)) == SImode) \
2436 { \
2437 total = 1; goto egress_rtx_costs; \
2438 } \
2439 else \
2440 TOPLEVEL_COSTS_N_INSNS (TARGET_ZERO_EXTEND_WITH_AND ? \
2441 ix86_cost->add : ix86_cost->movzx); \
2442 break; \
2443 case SIGN_EXTEND: \
2444 TOPLEVEL_COSTS_N_INSNS (ix86_cost->movsx); \
2445 break; \
2446 case ASHIFT: \
2447 if (GET_CODE (XEXP (X, 1)) == CONST_INT \
2448 && (GET_MODE (XEXP (X, 0)) != DImode || TARGET_64BIT)) \
2449 { \
2450 HOST_WIDE_INT value = INTVAL (XEXP (X, 1)); \
2451 if (value == 1) \
2452 TOPLEVEL_COSTS_N_INSNS (ix86_cost->add); \
2453 if ((value == 2 || value == 3) \
2454 && !TARGET_DECOMPOSE_LEA \
2455 && ix86_cost->lea <= ix86_cost->shift_const) \
2456 TOPLEVEL_COSTS_N_INSNS (ix86_cost->lea); \
2457 } \
2458 /* fall through */ \
2459 \
2460 case ROTATE: \
2461 case ASHIFTRT: \
2462 case LSHIFTRT: \
2463 case ROTATERT: \
2464 if (!TARGET_64BIT && GET_MODE (XEXP (X, 0)) == DImode) \
2465 { \
2466 if (GET_CODE (XEXP (X, 1)) == CONST_INT) \
2467 { \
2468 if (INTVAL (XEXP (X, 1)) > 32) \
2469 TOPLEVEL_COSTS_N_INSNS(ix86_cost->shift_const + 2); \
2470 else \
2471 TOPLEVEL_COSTS_N_INSNS(ix86_cost->shift_const * 2); \
2472 } \
2473 else \
2474 { \
2475 if (GET_CODE (XEXP (X, 1)) == AND) \
2476 TOPLEVEL_COSTS_N_INSNS(ix86_cost->shift_var * 2); \
2477 else \
2478 TOPLEVEL_COSTS_N_INSNS(ix86_cost->shift_var * 6 + 2); \
2479 } \
2480 } \
2481 else \
2482 { \
2483 if (GET_CODE (XEXP (X, 1)) == CONST_INT) \
2484 TOPLEVEL_COSTS_N_INSNS (ix86_cost->shift_const); \
2485 else \
2486 TOPLEVEL_COSTS_N_INSNS (ix86_cost->shift_var); \
2487 } \
2488 break; \
2489 \
2490 case MULT: \
2491 if (GET_CODE (XEXP (X, 1)) == CONST_INT) \
2492 { \
2493 unsigned HOST_WIDE_INT value = INTVAL (XEXP (X, 1)); \
2494 int nbits = 0; \
2495 \
2496 while (value != 0) \
2497 { \
2498 nbits++; \
2499 value >>= 1; \
2500 } \
2501 \
2502 TOPLEVEL_COSTS_N_INSNS (ix86_cost->mult_init \
2503 + nbits * ix86_cost->mult_bit); \
2504 } \
2505 else /* This is arbitrary */ \
2506 TOPLEVEL_COSTS_N_INSNS (ix86_cost->mult_init \
2507 + 7 * ix86_cost->mult_bit); \
2508 \
2509 case DIV: \
2510 case UDIV: \
2511 case MOD: \
2512 case UMOD: \
2513 TOPLEVEL_COSTS_N_INSNS (ix86_cost->divide); \
2514 \
2515 case PLUS: \
2516 if (!TARGET_DECOMPOSE_LEA \
2517 && INTEGRAL_MODE_P (GET_MODE (X)) \
2518 && GET_MODE_BITSIZE (GET_MODE (X)) <= GET_MODE_BITSIZE (Pmode)) \
2519 { \
2520 if (GET_CODE (XEXP (X, 0)) == PLUS \
2521 && GET_CODE (XEXP (XEXP (X, 0), 0)) == MULT \
2522 && GET_CODE (XEXP (XEXP (XEXP (X, 0), 0), 1)) == CONST_INT \
2523 && CONSTANT_P (XEXP (X, 1))) \
2524 { \
2525 HOST_WIDE_INT val = INTVAL (XEXP (XEXP (XEXP (X, 0), 0), 1));\
2526 if (val == 2 || val == 4 || val == 8) \
2527 { \
2528 return (COSTS_N_INSNS (ix86_cost->lea) \
2529 + rtx_cost (XEXP (XEXP (X, 0), 1), \
2530 (OUTER_CODE)) \
2531 + rtx_cost (XEXP (XEXP (XEXP (X, 0), 0), 0), \
2532 (OUTER_CODE)) \
2533 + rtx_cost (XEXP (X, 1), (OUTER_CODE))); \
2534 } \
2535 } \
2536 else if (GET_CODE (XEXP (X, 0)) == MULT \
2537 && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT) \
2538 { \
2539 HOST_WIDE_INT val = INTVAL (XEXP (XEXP (X, 0), 1)); \
2540 if (val == 2 || val == 4 || val == 8) \
2541 { \
2542 return (COSTS_N_INSNS (ix86_cost->lea) \
2543 + rtx_cost (XEXP (XEXP (X, 0), 0), \
2544 (OUTER_CODE)) \
2545 + rtx_cost (XEXP (X, 1), (OUTER_CODE))); \
2546 } \
2547 } \
2548 else if (GET_CODE (XEXP (X, 0)) == PLUS) \
2549 { \
2550 return (COSTS_N_INSNS (ix86_cost->lea) \
2551 + rtx_cost (XEXP (XEXP (X, 0), 0), (OUTER_CODE)) \
2552 + rtx_cost (XEXP (XEXP (X, 0), 1), (OUTER_CODE)) \
2553 + rtx_cost (XEXP (X, 1), (OUTER_CODE))); \
2554 } \
2555 } \
2556 \
2557 /* fall through */ \
2558 case AND: \
2559 case IOR: \
2560 case XOR: \
2561 case MINUS: \
2562 if (!TARGET_64BIT && GET_MODE (X) == DImode) \
2563 return (COSTS_N_INSNS (ix86_cost->add) * 2 \
2564 + (rtx_cost (XEXP (X, 0), (OUTER_CODE)) \
2565 << (GET_MODE (XEXP (X, 0)) != DImode)) \
2566 + (rtx_cost (XEXP (X, 1), (OUTER_CODE)) \
2567 << (GET_MODE (XEXP (X, 1)) != DImode))); \
2568 \
2569 /* fall through */ \
2570 case NEG: \
2571 case NOT: \
2572 if (!TARGET_64BIT && GET_MODE (X) == DImode) \
2573 TOPLEVEL_COSTS_N_INSNS (ix86_cost->add * 2); \
2574 TOPLEVEL_COSTS_N_INSNS (ix86_cost->add); \
2575 \
2576 egress_rtx_costs: \
2577 break;
2578
2579
2580 /* An expression giving the cost of an addressing mode that contains
2581 ADDRESS. If not defined, the cost is computed from the ADDRESS
2582 expression and the `CONST_COSTS' values.
2583
2584 For most CISC machines, the default cost is a good approximation
2585 of the true cost of the addressing mode. However, on RISC
2586 machines, all instructions normally have the same length and
2587 execution time. Hence all addresses will have equal costs.
2588
2589 In cases where more than one form of an address is known, the form
2590 with the lowest cost will be used. If multiple forms have the
2591 same, lowest, cost, the one that is the most complex will be used.
2592
2593 For example, suppose an address that is equal to the sum of a
2594 register and a constant is used twice in the same basic block.
2595 When this macro is not defined, the address will be computed in a
2596 register and memory references will be indirect through that
2597 register. On machines where the cost of the addressing mode
2598 containing the sum is no higher than that of a simple indirect
2599 reference, this will produce an additional instruction and
2600 possibly require an additional register. Proper specification of
2601 this macro eliminates this overhead for such machines.
2602
2603 Similar use of this macro is made in strength reduction of loops.
2604
2605 ADDRESS need not be valid as an address. In such a case, the cost
2606 is not relevant and can be any value; invalid addresses need not be
2607 assigned a different cost.
2608
2609 On machines where an address involving more than one register is as
2610 cheap as an address computation involving only one register,
2611 defining `ADDRESS_COST' to reflect this can cause two registers to
2612 be live over a region of code where only one would have been if
2613 `ADDRESS_COST' were not defined in that manner. This effect should
2614 be considered in the definition of this macro. Equivalent costs
2615 should probably only be given to addresses with different numbers
2616 of registers on machines with lots of registers.
2617
2618 This macro will normally either not be defined or be defined as a
2619 constant.
2620
2621 For i386, it is better to use a complex address than let gcc copy
2622 the address into a reg and make a new pseudo. But not if the address
2623 requires to two regs - that would mean more pseudos with longer
2624 lifetimes. */
2625
2626 #define ADDRESS_COST(RTX) \
2627 ix86_address_cost (RTX)
2628
2629 /* A C expression for the cost of moving data from a register in class FROM to
2630 one in class TO. The classes are expressed using the enumeration values
2631 such as `GENERAL_REGS'. A value of 2 is the default; other values are
2632 interpreted relative to that.
2633
2634 It is not required that the cost always equal 2 when FROM is the same as TO;
2635 on some machines it is expensive to move between registers if they are not
2636 general registers. */
2637
2638 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
2639 ix86_register_move_cost ((MODE), (CLASS1), (CLASS2))
2640
2641 /* A C expression for the cost of moving data of mode M between a
2642 register and memory. A value of 2 is the default; this cost is
2643 relative to those in `REGISTER_MOVE_COST'.
2644
2645 If moving between registers and memory is more expensive than
2646 between two registers, you should define this macro to express the
2647 relative cost. */
2648
2649 #define MEMORY_MOVE_COST(MODE, CLASS, IN) \
2650 ix86_memory_move_cost ((MODE), (CLASS), (IN))
2651
2652 /* A C expression for the cost of a branch instruction. A value of 1
2653 is the default; other values are interpreted relative to that. */
2654
2655 #define BRANCH_COST ix86_branch_cost
2656
2657 /* Define this macro as a C expression which is nonzero if accessing
2658 less than a word of memory (i.e. a `char' or a `short') is no
2659 faster than accessing a word of memory, i.e., if such access
2660 require more than one instruction or if there is no difference in
2661 cost between byte and (aligned) word loads.
2662
2663 When this macro is not defined, the compiler will access a field by
2664 finding the smallest containing object; when it is defined, a
2665 fullword load will be used if alignment permits. Unless bytes
2666 accesses are faster than word accesses, using word accesses is
2667 preferable since it may eliminate subsequent memory access if
2668 subsequent accesses occur to other fields in the same word of the
2669 structure, but to different bytes. */
2670
2671 #define SLOW_BYTE_ACCESS 0
2672
2673 /* Nonzero if access to memory by shorts is slow and undesirable. */
2674 #define SLOW_SHORT_ACCESS 0
2675
2676 /* Define this macro to be the value 1 if unaligned accesses have a
2677 cost many times greater than aligned accesses, for example if they
2678 are emulated in a trap handler.
2679
2680 When this macro is non-zero, the compiler will act as if
2681 `STRICT_ALIGNMENT' were non-zero when generating code for block
2682 moves. This can cause significantly more instructions to be
2683 produced. Therefore, do not set this macro non-zero if unaligned
2684 accesses only add a cycle or two to the time for a memory access.
2685
2686 If the value of this macro is always zero, it need not be defined. */
2687
2688 /* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
2689
2690 /* Define this macro to inhibit strength reduction of memory
2691 addresses. (On some machines, such strength reduction seems to do
2692 harm rather than good.) */
2693
2694 /* #define DONT_REDUCE_ADDR */
2695
2696 /* Define this macro if it is as good or better to call a constant
2697 function address than to call an address kept in a register.
2698
2699 Desirable on the 386 because a CALL with a constant address is
2700 faster than one with a register address. */
2701
2702 #define NO_FUNCTION_CSE
2703
2704 /* Define this macro if it is as good or better for a function to call
2705 itself with an explicit address than to call an address kept in a
2706 register. */
2707
2708 #define NO_RECURSIVE_FUNCTION_CSE
2709 \f
2710 /* Add any extra modes needed to represent the condition code.
2711
2712 For the i386, we need separate modes when floating-point
2713 equality comparisons are being done.
2714
2715 Add CCNO to indicate comparisons against zero that requires
2716 Overflow flag to be unset. Sign bit test is used instead and
2717 thus can be used to form "a&b>0" type of tests.
2718
2719 Add CCGC to indicate comparisons agains zero that allows
2720 unspecified garbage in the Carry flag. This mode is used
2721 by inc/dec instructions.
2722
2723 Add CCGOC to indicate comparisons agains zero that allows
2724 unspecified garbage in the Carry and Overflow flag. This
2725 mode is used to simulate comparisons of (a-b) and (a+b)
2726 against zero using sub/cmp/add operations.
2727
2728 Add CCZ to indicate that only the Zero flag is valid. */
2729
2730 #define EXTRA_CC_MODES \
2731 CC (CCGCmode, "CCGC") \
2732 CC (CCGOCmode, "CCGOC") \
2733 CC (CCNOmode, "CCNO") \
2734 CC (CCZmode, "CCZ") \
2735 CC (CCFPmode, "CCFP") \
2736 CC (CCFPUmode, "CCFPU")
2737
2738 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2739 return the mode to be used for the comparison.
2740
2741 For floating-point equality comparisons, CCFPEQmode should be used.
2742 VOIDmode should be used in all other cases.
2743
2744 For integer comparisons against zero, reduce to CCNOmode or CCZmode if
2745 possible, to allow for more combinations. */
2746
2747 #define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
2748
2749 /* Return non-zero if MODE implies a floating point inequality can be
2750 reversed. */
2751
2752 #define REVERSIBLE_CC_MODE(MODE) 1
2753
2754 /* A C expression whose value is reversed condition code of the CODE for
2755 comparison done in CC_MODE mode. */
2756 #define REVERSE_CONDITION(CODE, MODE) \
2757 ((MODE) != CCFPmode && (MODE) != CCFPUmode ? reverse_condition (CODE) \
2758 : reverse_condition_maybe_unordered (CODE))
2759
2760 \f
2761 /* Control the assembler format that we output, to the extent
2762 this does not vary between assemblers. */
2763
2764 /* How to refer to registers in assembler output.
2765 This sequence is indexed by compiler's hard-register-number (see above). */
2766
2767 /* In order to refer to the first 8 regs as 32 bit regs prefix an "e"
2768 For non floating point regs, the following are the HImode names.
2769
2770 For float regs, the stack top is sometimes referred to as "%st(0)"
2771 instead of just "%st". PRINT_REG handles this with the "y" code. */
2772
2773 #undef HI_REGISTER_NAMES
2774 #define HI_REGISTER_NAMES \
2775 {"ax","dx","cx","bx","si","di","bp","sp", \
2776 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)","", \
2777 "flags","fpsr", "dirflag", "frame", \
2778 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \
2779 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7" , \
2780 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
2781 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15"}
2782
2783 #define REGISTER_NAMES HI_REGISTER_NAMES
2784
2785 /* Table of additional register names to use in user input. */
2786
2787 #define ADDITIONAL_REGISTER_NAMES \
2788 { { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \
2789 { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \
2790 { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 }, \
2791 { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 }, \
2792 { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \
2793 { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 }, \
2794 { "mm0", 8}, { "mm1", 9}, { "mm2", 10}, { "mm3", 11}, \
2795 { "mm4", 12}, { "mm5", 13}, { "mm6", 14}, { "mm7", 15} }
2796
2797 /* Note we are omitting these since currently I don't know how
2798 to get gcc to use these, since they want the same but different
2799 number as al, and ax.
2800 */
2801
2802 #define QI_REGISTER_NAMES \
2803 {"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
2804
2805 /* These parallel the array above, and can be used to access bits 8:15
2806 of regs 0 through 3. */
2807
2808 #define QI_HIGH_REGISTER_NAMES \
2809 {"ah", "dh", "ch", "bh", }
2810
2811 /* How to renumber registers for dbx and gdb. */
2812
2813 #define DBX_REGISTER_NUMBER(N) \
2814 (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
2815
2816 extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
2817 extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
2818 extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
2819
2820 /* Before the prologue, RA is at 0(%esp). */
2821 #define INCOMING_RETURN_ADDR_RTX \
2822 gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
2823
2824 /* After the prologue, RA is at -4(AP) in the current frame. */
2825 #define RETURN_ADDR_RTX(COUNT, FRAME) \
2826 ((COUNT) == 0 \
2827 ? gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, -UNITS_PER_WORD)) \
2828 : gen_rtx_MEM (Pmode, plus_constant (FRAME, UNITS_PER_WORD)))
2829
2830 /* PC is dbx register 8; let's use that column for RA. */
2831 #define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8)
2832
2833 /* Before the prologue, the top of the frame is at 4(%esp). */
2834 #define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
2835
2836 /* Describe how we implement __builtin_eh_return. */
2837 #define EH_RETURN_DATA_REGNO(N) ((N) < 2 ? (N) : INVALID_REGNUM)
2838 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 2)
2839
2840
2841 /* Select a format to encode pointers in exception handling data. CODE
2842 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
2843 true if the symbol may be affected by dynamic relocations.
2844
2845 ??? All x86 object file formats are capable of representing this.
2846 After all, the relocation needed is the same as for the call insn.
2847 Whether or not a particular assembler allows us to enter such, I
2848 guess we'll have to see. */
2849 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
2850 (flag_pic \
2851 ? ((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4\
2852 : DW_EH_PE_absptr)
2853
2854 /* This is how to output the definition of a user-level label named NAME,
2855 such as the label on a static function or variable NAME. */
2856
2857 #define ASM_OUTPUT_LABEL(FILE, NAME) \
2858 (assemble_name ((FILE), (NAME)), fputs (":\n", (FILE)))
2859
2860 /* Store in OUTPUT a string (made with alloca) containing
2861 an assembler-name for a local static variable named NAME.
2862 LABELNO is an integer which is different for each call. */
2863
2864 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
2865 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
2866 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
2867
2868 /* This is how to output an insn to push a register on the stack.
2869 It need not be very fast code. */
2870
2871 #define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
2872 asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)])
2873
2874 /* This is how to output an insn to pop a register from the stack.
2875 It need not be very fast code. */
2876
2877 #define ASM_OUTPUT_REG_POP(FILE, REGNO) \
2878 asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)])
2879
2880 /* This is how to output an element of a case-vector that is absolute. */
2881
2882 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
2883 ix86_output_addr_vec_elt ((FILE), (VALUE))
2884
2885 /* This is how to output an element of a case-vector that is relative. */
2886
2887 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2888 ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
2889
2890 /* Under some conditions we need jump tables in the text section, because
2891 the assembler cannot handle label differences between sections. */
2892
2893 #define JUMP_TABLES_IN_TEXT_SECTION \
2894 (!TARGET_64BIT && flag_pic && !HAVE_AS_GOTOFF_IN_DATA)
2895
2896 /* A C statement that outputs an address constant appropriate to
2897 for DWARF debugging. */
2898
2899 #define ASM_OUTPUT_DWARF_ADDR_CONST(FILE, X) \
2900 i386_dwarf_output_addr_const ((FILE), (X))
2901
2902 /* Either simplify a location expression, or return the original. */
2903
2904 #define ASM_SIMPLIFY_DWARF_ADDR(X) \
2905 i386_simplify_dwarf_addr (X)
2906
2907 /* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2908 and switch back. For x86 we do this only to save a few bytes that
2909 would otherwise be unused in the text section. */
2910 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2911 asm (SECTION_OP "\n\t" \
2912 "call " USER_LABEL_PREFIX #FUNC "\n" \
2913 TEXT_SECTION_ASM_OP);
2914 \f
2915 /* Print operand X (an rtx) in assembler syntax to file FILE.
2916 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2917 Effect of various CODE letters is described in i386.c near
2918 print_operand function. */
2919
2920 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
2921 ((CODE) == '*' || (CODE) == '+')
2922
2923 /* Print the name of a register based on its machine mode and number.
2924 If CODE is 'w', pretend the mode is HImode.
2925 If CODE is 'b', pretend the mode is QImode.
2926 If CODE is 'k', pretend the mode is SImode.
2927 If CODE is 'q', pretend the mode is DImode.
2928 If CODE is 'h', pretend the reg is the `high' byte register.
2929 If CODE is 'y', print "st(0)" instead of "st", if the reg is stack op. */
2930
2931 #define PRINT_REG(X, CODE, FILE) \
2932 print_reg ((X), (CODE), (FILE))
2933
2934 #define PRINT_OPERAND(FILE, X, CODE) \
2935 print_operand ((FILE), (X), (CODE))
2936
2937 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
2938 print_operand_address ((FILE), (ADDR))
2939
2940 /* Print the name of a register for based on its machine mode and number.
2941 This macro is used to print debugging output.
2942 This macro is different from PRINT_REG in that it may be used in
2943 programs that are not linked with aux-output.o. */
2944
2945 #define DEBUG_PRINT_REG(X, CODE, FILE) \
2946 do { static const char * const hi_name[] = HI_REGISTER_NAMES; \
2947 static const char * const qi_name[] = QI_REGISTER_NAMES; \
2948 fprintf ((FILE), "%d ", REGNO (X)); \
2949 if (REGNO (X) == FLAGS_REG) \
2950 { fputs ("flags", (FILE)); break; } \
2951 if (REGNO (X) == DIRFLAG_REG) \
2952 { fputs ("dirflag", (FILE)); break; } \
2953 if (REGNO (X) == FPSR_REG) \
2954 { fputs ("fpsr", (FILE)); break; } \
2955 if (REGNO (X) == ARG_POINTER_REGNUM) \
2956 { fputs ("argp", (FILE)); break; } \
2957 if (REGNO (X) == FRAME_POINTER_REGNUM) \
2958 { fputs ("frame", (FILE)); break; } \
2959 if (STACK_TOP_P (X)) \
2960 { fputs ("st(0)", (FILE)); break; } \
2961 if (FP_REG_P (X)) \
2962 { fputs (hi_name[REGNO(X)], (FILE)); break; } \
2963 if (REX_INT_REG_P (X)) \
2964 { \
2965 switch (GET_MODE_SIZE (GET_MODE (X))) \
2966 { \
2967 default: \
2968 case 8: \
2969 fprintf ((FILE), "r%i", REGNO (X) \
2970 - FIRST_REX_INT_REG + 8); \
2971 break; \
2972 case 4: \
2973 fprintf ((FILE), "r%id", REGNO (X) \
2974 - FIRST_REX_INT_REG + 8); \
2975 break; \
2976 case 2: \
2977 fprintf ((FILE), "r%iw", REGNO (X) \
2978 - FIRST_REX_INT_REG + 8); \
2979 break; \
2980 case 1: \
2981 fprintf ((FILE), "r%ib", REGNO (X) \
2982 - FIRST_REX_INT_REG + 8); \
2983 break; \
2984 } \
2985 break; \
2986 } \
2987 switch (GET_MODE_SIZE (GET_MODE (X))) \
2988 { \
2989 case 8: \
2990 fputs ("r", (FILE)); \
2991 fputs (hi_name[REGNO (X)], (FILE)); \
2992 break; \
2993 default: \
2994 fputs ("e", (FILE)); \
2995 case 2: \
2996 fputs (hi_name[REGNO (X)], (FILE)); \
2997 break; \
2998 case 1: \
2999 fputs (qi_name[REGNO (X)], (FILE)); \
3000 break; \
3001 } \
3002 } while (0)
3003
3004 /* a letter which is not needed by the normal asm syntax, which
3005 we can use for operand syntax in the extended asm */
3006
3007 #define ASM_OPERAND_LETTER '#'
3008 #define RET return ""
3009 #define AT_SP(MODE) (gen_rtx_MEM ((MODE), stack_pointer_rtx))
3010 \f
3011 /* Define the codes that are matched by predicates in i386.c. */
3012
3013 #define PREDICATE_CODES \
3014 {"x86_64_immediate_operand", {CONST_INT, SUBREG, REG, \
3015 SYMBOL_REF, LABEL_REF, CONST}}, \
3016 {"x86_64_nonmemory_operand", {CONST_INT, SUBREG, REG, \
3017 SYMBOL_REF, LABEL_REF, CONST}}, \
3018 {"x86_64_movabs_operand", {CONST_INT, SUBREG, REG, \
3019 SYMBOL_REF, LABEL_REF, CONST}}, \
3020 {"x86_64_szext_nonmemory_operand", {CONST_INT, SUBREG, REG, \
3021 SYMBOL_REF, LABEL_REF, CONST}}, \
3022 {"x86_64_general_operand", {CONST_INT, SUBREG, REG, MEM, \
3023 SYMBOL_REF, LABEL_REF, CONST}}, \
3024 {"x86_64_szext_general_operand", {CONST_INT, SUBREG, REG, MEM, \
3025 SYMBOL_REF, LABEL_REF, CONST}}, \
3026 {"x86_64_zext_immediate_operand", {CONST_INT, CONST_DOUBLE, CONST, \
3027 SYMBOL_REF, LABEL_REF}}, \
3028 {"shiftdi_operand", {SUBREG, REG, MEM}}, \
3029 {"const_int_1_operand", {CONST_INT}}, \
3030 {"symbolic_operand", {SYMBOL_REF, LABEL_REF, CONST}}, \
3031 {"aligned_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \
3032 LABEL_REF, SUBREG, REG, MEM}}, \
3033 {"pic_symbolic_operand", {CONST}}, \
3034 {"call_insn_operand", {REG, SUBREG, MEM, SYMBOL_REF}}, \
3035 {"constant_call_address_operand", {SYMBOL_REF, CONST}}, \
3036 {"const0_operand", {CONST_INT, CONST_DOUBLE}}, \
3037 {"const1_operand", {CONST_INT}}, \
3038 {"const248_operand", {CONST_INT}}, \
3039 {"incdec_operand", {CONST_INT}}, \
3040 {"mmx_reg_operand", {REG}}, \
3041 {"reg_no_sp_operand", {SUBREG, REG}}, \
3042 {"general_no_elim_operand", {CONST_INT, CONST_DOUBLE, CONST, \
3043 SYMBOL_REF, LABEL_REF, SUBREG, REG, MEM}}, \
3044 {"nonmemory_no_elim_operand", {CONST_INT, REG, SUBREG}}, \
3045 {"q_regs_operand", {SUBREG, REG}}, \
3046 {"non_q_regs_operand", {SUBREG, REG}}, \
3047 {"fcmov_comparison_operator", {EQ, NE, LTU, GTU, LEU, GEU, UNORDERED, \
3048 ORDERED, LT, UNLT, GT, UNGT, LE, UNLE, \
3049 GE, UNGE, LTGT, UNEQ}}, \
3050 {"sse_comparison_operator", {EQ, LT, LE, UNORDERED, NE, UNGE, UNGT, \
3051 ORDERED, UNEQ, UNLT, UNLE, LTGT, GE, GT \
3052 }}, \
3053 {"ix86_comparison_operator", {EQ, NE, LE, LT, GE, GT, LEU, LTU, GEU, \
3054 GTU, UNORDERED, ORDERED, UNLE, UNLT, \
3055 UNGE, UNGT, LTGT, UNEQ }}, \
3056 {"cmp_fp_expander_operand", {CONST_DOUBLE, SUBREG, REG, MEM}}, \
3057 {"ext_register_operand", {SUBREG, REG}}, \
3058 {"binary_fp_operator", {PLUS, MINUS, MULT, DIV}}, \
3059 {"mult_operator", {MULT}}, \
3060 {"div_operator", {DIV}}, \
3061 {"arith_or_logical_operator", {PLUS, MULT, AND, IOR, XOR, SMIN, SMAX, \
3062 UMIN, UMAX, COMPARE, MINUS, DIV, MOD, \
3063 UDIV, UMOD, ASHIFT, ROTATE, ASHIFTRT, \
3064 LSHIFTRT, ROTATERT}}, \
3065 {"promotable_binary_operator", {PLUS, MULT, AND, IOR, XOR, ASHIFT}}, \
3066 {"memory_displacement_operand", {MEM}}, \
3067 {"cmpsi_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \
3068 LABEL_REF, SUBREG, REG, MEM, AND}}, \
3069 {"long_memory_operand", {MEM}},
3070
3071 /* A list of predicates that do special things with modes, and so
3072 should not elicit warnings for VOIDmode match_operand. */
3073
3074 #define SPECIAL_MODE_PREDICATES \
3075 "ext_register_operand",
3076 \f
3077 /* CM_32 is used by 32bit ABI
3078 CM_SMALL is small model assuming that all code and data fits in the first
3079 31bits of address space.
3080 CM_KERNEL is model assuming that all code and data fits in the negative
3081 31bits of address space.
3082 CM_MEDIUM is model assuming that code fits in the first 31bits of address
3083 space. Size of data is unlimited.
3084 CM_LARGE is model making no assumptions about size of particular sections.
3085
3086 CM_SMALL_PIC is model for PIC libraries assuming that code+data+got/plt
3087 tables first in 31bits of address space.
3088 */
3089 enum cmodel {
3090 CM_32,
3091 CM_SMALL,
3092 CM_KERNEL,
3093 CM_MEDIUM,
3094 CM_LARGE,
3095 CM_SMALL_PIC
3096 };
3097
3098 /* Size of the RED_ZONE area. */
3099 #define RED_ZONE_SIZE 128
3100 /* Reserved area of the red zone for temporaries. */
3101 #define RED_ZONE_RESERVE 8
3102 extern const char *ix86_debug_arg_string, *ix86_debug_addr_string;
3103
3104 enum asm_dialect {
3105 ASM_ATT,
3106 ASM_INTEL
3107 };
3108 extern const char *ix86_asm_string;
3109 extern enum asm_dialect ix86_asm_dialect;
3110 /* Value of -mcmodel specified by user. */
3111 extern const char *ix86_cmodel_string;
3112 extern enum cmodel ix86_cmodel;
3113 \f
3114 /* Variables in i386.c */
3115 extern const char *ix86_cpu_string; /* for -mcpu=<xxx> */
3116 extern const char *ix86_arch_string; /* for -march=<xxx> */
3117 extern const char *ix86_fpmath_string; /* for -mfpmath=<xxx> */
3118 extern const char *ix86_regparm_string; /* # registers to use to pass args */
3119 extern const char *ix86_align_loops_string; /* power of two alignment for loops */
3120 extern const char *ix86_align_jumps_string; /* power of two alignment for non-loop jumps */
3121 extern const char *ix86_align_funcs_string; /* power of two alignment for functions */
3122 extern const char *ix86_preferred_stack_boundary_string;/* power of two alignment for stack boundary */
3123 extern const char *ix86_branch_cost_string; /* values 1-5: see jump.c */
3124 extern int ix86_regparm; /* ix86_regparm_string as a number */
3125 extern int ix86_preferred_stack_boundary; /* preferred stack boundary alignment in bits */
3126 extern int ix86_branch_cost; /* values 1-5: see jump.c */
3127 extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER]; /* smalled class containing REGNO */
3128 // Commented out the following two lines due to lack of definition for "rtx" - Brian
3129 //extern rtx ix86_compare_op0; /* operand 0 for comparisons */
3130 //extern rtx ix86_compare_op1; /* operand 1 for comparisons */
3131 \f
3132 /* To properly truncate FP values into integers, we need to set i387 control
3133 word. We can't emit proper mode switching code before reload, as spills
3134 generated by reload may truncate values incorrectly, but we still can avoid
3135 redundant computation of new control word by the mode switching pass.
3136 The fldcw instructions are still emitted redundantly, but this is probably
3137 not going to be noticeable problem, as most CPUs do have fast path for
3138 the sequence.
3139
3140 The machinery is to emit simple truncation instructions and split them
3141 before reload to instructions having USEs of two memory locations that
3142 are filled by this code to old and new control word.
3143
3144 Post-reload pass may be later used to eliminate the redundant fildcw if
3145 needed. */
3146
3147 enum fp_cw_mode {FP_CW_STORED, FP_CW_UNINITIALIZED, FP_CW_ANY};
3148
3149 /* Define this macro if the port needs extra instructions inserted
3150 for mode switching in an optimizing compilation. */
3151
3152 #define OPTIMIZE_MODE_SWITCHING(ENTITY) 1
3153
3154 /* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
3155 initializer for an array of integers. Each initializer element N
3156 refers to an entity that needs mode switching, and specifies the
3157 number of different modes that might need to be set for this
3158 entity. The position of the initializer in the initializer -
3159 starting counting at zero - determines the integer that is used to
3160 refer to the mode-switched entity in question. */
3161
3162 #define NUM_MODES_FOR_MODE_SWITCHING { FP_CW_ANY }
3163
3164 /* ENTITY is an integer specifying a mode-switched entity. If
3165 `OPTIMIZE_MODE_SWITCHING' is defined, you must define this macro to
3166 return an integer value not larger than the corresponding element
3167 in `NUM_MODES_FOR_MODE_SWITCHING', to denote the mode that ENTITY
3168 must be switched into prior to the execution of INSN. */
3169
3170 #define MODE_NEEDED(ENTITY, I) \
3171 (GET_CODE (I) == CALL_INSN \
3172 || (GET_CODE (I) == INSN && (asm_noperands (PATTERN (I)) >= 0 \
3173 || GET_CODE (PATTERN (I)) == ASM_INPUT))\
3174 ? FP_CW_UNINITIALIZED \
3175 : recog_memoized (I) < 0 || get_attr_type (I) != TYPE_FISTP \
3176 ? FP_CW_ANY \
3177 : FP_CW_STORED)
3178
3179 /* This macro specifies the order in which modes for ENTITY are
3180 processed. 0 is the highest priority. */
3181
3182 #define MODE_PRIORITY_TO_MODE(ENTITY, N) (N)
3183
3184 /* Generate one or more insns to set ENTITY to MODE. HARD_REG_LIVE
3185 is the set of hard registers live at the point where the insn(s)
3186 are to be inserted. */
3187
3188 #define EMIT_MODE_SET(ENTITY, MODE, HARD_REGS_LIVE) \
3189 ((MODE) == FP_CW_STORED \
3190 ? emit_i387_cw_initialization (assign_386_stack_local (HImode, 1), \
3191 assign_386_stack_local (HImode, 2)), 0\
3192 : 0)
3193 \f
3194 /* Avoid renaming of stack registers, as doing so in combination with
3195 scheduling just increases amount of live registers at time and in
3196 the turn amount of fxch instructions needed.
3197
3198 ??? Maybe Pentium chips benefits from renaming, someone can try... */
3199
3200 #define HARD_REGNO_RENAME_OK(SRC, TARGET) \
3201 ((SRC) < FIRST_STACK_REG || (SRC) > LAST_STACK_REG)
3202
3203 \f
3204 /*
3205 Local variables:
3206 version-control: t
3207 End:
3208 */