4156f3c3c4c1d0ae3b650359f175df1116cc3c1b
[reactos.git] / reactos / dll / 3rdparty / mbedtls / ecdsa.c
1 /*
2 * Elliptic curve DSA
3 *
4 * Copyright (C) 2006-2015, ARM Limited, All Rights Reserved
5 * SPDX-License-Identifier: Apache-2.0
6 *
7 * Licensed under the Apache License, Version 2.0 (the "License"); you may
8 * not use this file except in compliance with the License.
9 * You may obtain a copy of the License at
10 *
11 * http://www.apache.org/licenses/LICENSE-2.0
12 *
13 * Unless required by applicable law or agreed to in writing, software
14 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
15 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16 * See the License for the specific language governing permissions and
17 * limitations under the License.
18 *
19 * This file is part of mbed TLS (https://tls.mbed.org)
20 */
21
22 /*
23 * References:
24 *
25 * SEC1 http://www.secg.org/index.php?action=secg,docs_secg
26 */
27
28 #if !defined(MBEDTLS_CONFIG_FILE)
29 #include "mbedtls/config.h"
30 #else
31 #include MBEDTLS_CONFIG_FILE
32 #endif
33
34 #if defined(MBEDTLS_ECDSA_C)
35
36 #include "mbedtls/ecdsa.h"
37 #include "mbedtls/asn1write.h"
38
39 #include <string.h>
40
41 #if defined(MBEDTLS_ECDSA_DETERMINISTIC)
42 #include "mbedtls/hmac_drbg.h"
43 #endif
44
45 /*
46 * Derive a suitable integer for group grp from a buffer of length len
47 * SEC1 4.1.3 step 5 aka SEC1 4.1.4 step 3
48 */
49 static int derive_mpi( const mbedtls_ecp_group *grp, mbedtls_mpi *x,
50 const unsigned char *buf, size_t blen )
51 {
52 int ret;
53 size_t n_size = ( grp->nbits + 7 ) / 8;
54 size_t use_size = blen > n_size ? n_size : blen;
55
56 MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( x, buf, use_size ) );
57 if( use_size * 8 > grp->nbits )
58 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( x, use_size * 8 - grp->nbits ) );
59
60 /* While at it, reduce modulo N */
61 if( mbedtls_mpi_cmp_mpi( x, &grp->N ) >= 0 )
62 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( x, x, &grp->N ) );
63
64 cleanup:
65 return( ret );
66 }
67
68 /*
69 * Compute ECDSA signature of a hashed message (SEC1 4.1.3)
70 * Obviously, compared to SEC1 4.1.3, we skip step 4 (hash message)
71 */
72 int mbedtls_ecdsa_sign( mbedtls_ecp_group *grp, mbedtls_mpi *r, mbedtls_mpi *s,
73 const mbedtls_mpi *d, const unsigned char *buf, size_t blen,
74 int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
75 {
76 int ret, key_tries, sign_tries, blind_tries;
77 mbedtls_ecp_point R;
78 mbedtls_mpi k, e, t;
79
80 /* Fail cleanly on curves such as Curve25519 that can't be used for ECDSA */
81 if( grp->N.p == NULL )
82 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
83
84 mbedtls_ecp_point_init( &R );
85 mbedtls_mpi_init( &k ); mbedtls_mpi_init( &e ); mbedtls_mpi_init( &t );
86
87 sign_tries = 0;
88 do
89 {
90 /*
91 * Steps 1-3: generate a suitable ephemeral keypair
92 * and set r = xR mod n
93 */
94 key_tries = 0;
95 do
96 {
97 MBEDTLS_MPI_CHK( mbedtls_ecp_gen_keypair( grp, &k, &R, f_rng, p_rng ) );
98 MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( r, &R.X, &grp->N ) );
99
100 if( key_tries++ > 10 )
101 {
102 ret = MBEDTLS_ERR_ECP_RANDOM_FAILED;
103 goto cleanup;
104 }
105 }
106 while( mbedtls_mpi_cmp_int( r, 0 ) == 0 );
107
108 /*
109 * Step 5: derive MPI from hashed message
110 */
111 MBEDTLS_MPI_CHK( derive_mpi( grp, &e, buf, blen ) );
112
113 /*
114 * Generate a random value to blind inv_mod in next step,
115 * avoiding a potential timing leak.
116 */
117 blind_tries = 0;
118 do
119 {
120 size_t n_size = ( grp->nbits + 7 ) / 8;
121 MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &t, n_size, f_rng, p_rng ) );
122 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &t, 8 * n_size - grp->nbits ) );
123
124 /* See mbedtls_ecp_gen_keypair() */
125 if( ++blind_tries > 30 )
126 return( MBEDTLS_ERR_ECP_RANDOM_FAILED );
127 }
128 while( mbedtls_mpi_cmp_int( &t, 1 ) < 0 ||
129 mbedtls_mpi_cmp_mpi( &t, &grp->N ) >= 0 );
130
131 /*
132 * Step 6: compute s = (e + r * d) / k = t (e + rd) / (kt) mod n
133 */
134 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( s, r, d ) );
135 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &e, &e, s ) );
136 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &e, &e, &t ) );
137 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &k, &k, &t ) );
138 MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( s, &k, &grp->N ) );
139 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( s, s, &e ) );
140 MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( s, s, &grp->N ) );
141
142 if( sign_tries++ > 10 )
143 {
144 ret = MBEDTLS_ERR_ECP_RANDOM_FAILED;
145 goto cleanup;
146 }
147 }
148 while( mbedtls_mpi_cmp_int( s, 0 ) == 0 );
149
150 cleanup:
151 mbedtls_ecp_point_free( &R );
152 mbedtls_mpi_free( &k ); mbedtls_mpi_free( &e ); mbedtls_mpi_free( &t );
153
154 return( ret );
155 }
156
157 #if defined(MBEDTLS_ECDSA_DETERMINISTIC)
158 /*
159 * Deterministic signature wrapper
160 */
161 int mbedtls_ecdsa_sign_det( mbedtls_ecp_group *grp, mbedtls_mpi *r, mbedtls_mpi *s,
162 const mbedtls_mpi *d, const unsigned char *buf, size_t blen,
163 mbedtls_md_type_t md_alg )
164 {
165 int ret;
166 mbedtls_hmac_drbg_context rng_ctx;
167 unsigned char data[2 * MBEDTLS_ECP_MAX_BYTES];
168 size_t grp_len = ( grp->nbits + 7 ) / 8;
169 const mbedtls_md_info_t *md_info;
170 mbedtls_mpi h;
171
172 if( ( md_info = mbedtls_md_info_from_type( md_alg ) ) == NULL )
173 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
174
175 mbedtls_mpi_init( &h );
176 mbedtls_hmac_drbg_init( &rng_ctx );
177
178 /* Use private key and message hash (reduced) to initialize HMAC_DRBG */
179 MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( d, data, grp_len ) );
180 MBEDTLS_MPI_CHK( derive_mpi( grp, &h, buf, blen ) );
181 MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &h, data + grp_len, grp_len ) );
182 mbedtls_hmac_drbg_seed_buf( &rng_ctx, md_info, data, 2 * grp_len );
183
184 ret = mbedtls_ecdsa_sign( grp, r, s, d, buf, blen,
185 mbedtls_hmac_drbg_random, &rng_ctx );
186
187 cleanup:
188 mbedtls_hmac_drbg_free( &rng_ctx );
189 mbedtls_mpi_free( &h );
190
191 return( ret );
192 }
193 #endif /* MBEDTLS_ECDSA_DETERMINISTIC */
194
195 /*
196 * Verify ECDSA signature of hashed message (SEC1 4.1.4)
197 * Obviously, compared to SEC1 4.1.3, we skip step 2 (hash message)
198 */
199 int mbedtls_ecdsa_verify( mbedtls_ecp_group *grp,
200 const unsigned char *buf, size_t blen,
201 const mbedtls_ecp_point *Q, const mbedtls_mpi *r, const mbedtls_mpi *s)
202 {
203 int ret;
204 mbedtls_mpi e, s_inv, u1, u2;
205 mbedtls_ecp_point R;
206
207 mbedtls_ecp_point_init( &R );
208 mbedtls_mpi_init( &e ); mbedtls_mpi_init( &s_inv ); mbedtls_mpi_init( &u1 ); mbedtls_mpi_init( &u2 );
209
210 /* Fail cleanly on curves such as Curve25519 that can't be used for ECDSA */
211 if( grp->N.p == NULL )
212 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
213
214 /*
215 * Step 1: make sure r and s are in range 1..n-1
216 */
217 if( mbedtls_mpi_cmp_int( r, 1 ) < 0 || mbedtls_mpi_cmp_mpi( r, &grp->N ) >= 0 ||
218 mbedtls_mpi_cmp_int( s, 1 ) < 0 || mbedtls_mpi_cmp_mpi( s, &grp->N ) >= 0 )
219 {
220 ret = MBEDTLS_ERR_ECP_VERIFY_FAILED;
221 goto cleanup;
222 }
223
224 /*
225 * Additional precaution: make sure Q is valid
226 */
227 MBEDTLS_MPI_CHK( mbedtls_ecp_check_pubkey( grp, Q ) );
228
229 /*
230 * Step 3: derive MPI from hashed message
231 */
232 MBEDTLS_MPI_CHK( derive_mpi( grp, &e, buf, blen ) );
233
234 /*
235 * Step 4: u1 = e / s mod n, u2 = r / s mod n
236 */
237 MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( &s_inv, s, &grp->N ) );
238
239 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &u1, &e, &s_inv ) );
240 MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &u1, &u1, &grp->N ) );
241
242 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &u2, r, &s_inv ) );
243 MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &u2, &u2, &grp->N ) );
244
245 /*
246 * Step 5: R = u1 G + u2 Q
247 *
248 * Since we're not using any secret data, no need to pass a RNG to
249 * mbedtls_ecp_mul() for countermesures.
250 */
251 MBEDTLS_MPI_CHK( mbedtls_ecp_muladd( grp, &R, &u1, &grp->G, &u2, Q ) );
252
253 if( mbedtls_ecp_is_zero( &R ) )
254 {
255 ret = MBEDTLS_ERR_ECP_VERIFY_FAILED;
256 goto cleanup;
257 }
258
259 /*
260 * Step 6: convert xR to an integer (no-op)
261 * Step 7: reduce xR mod n (gives v)
262 */
263 MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &R.X, &R.X, &grp->N ) );
264
265 /*
266 * Step 8: check if v (that is, R.X) is equal to r
267 */
268 if( mbedtls_mpi_cmp_mpi( &R.X, r ) != 0 )
269 {
270 ret = MBEDTLS_ERR_ECP_VERIFY_FAILED;
271 goto cleanup;
272 }
273
274 cleanup:
275 mbedtls_ecp_point_free( &R );
276 mbedtls_mpi_free( &e ); mbedtls_mpi_free( &s_inv ); mbedtls_mpi_free( &u1 ); mbedtls_mpi_free( &u2 );
277
278 return( ret );
279 }
280
281 /*
282 * Convert a signature (given by context) to ASN.1
283 */
284 static int ecdsa_signature_to_asn1( const mbedtls_mpi *r, const mbedtls_mpi *s,
285 unsigned char *sig, size_t *slen )
286 {
287 int ret;
288 unsigned char buf[MBEDTLS_ECDSA_MAX_LEN];
289 unsigned char *p = buf + sizeof( buf );
290 size_t len = 0;
291
292 MBEDTLS_ASN1_CHK_ADD( len, mbedtls_asn1_write_mpi( &p, buf, s ) );
293 MBEDTLS_ASN1_CHK_ADD( len, mbedtls_asn1_write_mpi( &p, buf, r ) );
294
295 MBEDTLS_ASN1_CHK_ADD( len, mbedtls_asn1_write_len( &p, buf, len ) );
296 MBEDTLS_ASN1_CHK_ADD( len, mbedtls_asn1_write_tag( &p, buf,
297 MBEDTLS_ASN1_CONSTRUCTED | MBEDTLS_ASN1_SEQUENCE ) );
298
299 memcpy( sig, p, len );
300 *slen = len;
301
302 return( 0 );
303 }
304
305 /*
306 * Compute and write signature
307 */
308 int mbedtls_ecdsa_write_signature( mbedtls_ecdsa_context *ctx, mbedtls_md_type_t md_alg,
309 const unsigned char *hash, size_t hlen,
310 unsigned char *sig, size_t *slen,
311 int (*f_rng)(void *, unsigned char *, size_t),
312 void *p_rng )
313 {
314 int ret;
315 mbedtls_mpi r, s;
316
317 mbedtls_mpi_init( &r );
318 mbedtls_mpi_init( &s );
319
320 #if defined(MBEDTLS_ECDSA_DETERMINISTIC)
321 (void) f_rng;
322 (void) p_rng;
323
324 MBEDTLS_MPI_CHK( mbedtls_ecdsa_sign_det( &ctx->grp, &r, &s, &ctx->d,
325 hash, hlen, md_alg ) );
326 #else
327 (void) md_alg;
328
329 MBEDTLS_MPI_CHK( mbedtls_ecdsa_sign( &ctx->grp, &r, &s, &ctx->d,
330 hash, hlen, f_rng, p_rng ) );
331 #endif
332
333 MBEDTLS_MPI_CHK( ecdsa_signature_to_asn1( &r, &s, sig, slen ) );
334
335 cleanup:
336 mbedtls_mpi_free( &r );
337 mbedtls_mpi_free( &s );
338
339 return( ret );
340 }
341
342 #if ! defined(MBEDTLS_DEPRECATED_REMOVED) && \
343 defined(MBEDTLS_ECDSA_DETERMINISTIC)
344 int mbedtls_ecdsa_write_signature_det( mbedtls_ecdsa_context *ctx,
345 const unsigned char *hash, size_t hlen,
346 unsigned char *sig, size_t *slen,
347 mbedtls_md_type_t md_alg )
348 {
349 return( mbedtls_ecdsa_write_signature( ctx, md_alg, hash, hlen, sig, slen,
350 NULL, NULL ) );
351 }
352 #endif
353
354 /*
355 * Read and check signature
356 */
357 int mbedtls_ecdsa_read_signature( mbedtls_ecdsa_context *ctx,
358 const unsigned char *hash, size_t hlen,
359 const unsigned char *sig, size_t slen )
360 {
361 int ret;
362 unsigned char *p = (unsigned char *) sig;
363 const unsigned char *end = sig + slen;
364 size_t len;
365 mbedtls_mpi r, s;
366
367 mbedtls_mpi_init( &r );
368 mbedtls_mpi_init( &s );
369
370 if( ( ret = mbedtls_asn1_get_tag( &p, end, &len,
371 MBEDTLS_ASN1_CONSTRUCTED | MBEDTLS_ASN1_SEQUENCE ) ) != 0 )
372 {
373 ret += MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
374 goto cleanup;
375 }
376
377 if( p + len != end )
378 {
379 ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA +
380 MBEDTLS_ERR_ASN1_LENGTH_MISMATCH;
381 goto cleanup;
382 }
383
384 if( ( ret = mbedtls_asn1_get_mpi( &p, end, &r ) ) != 0 ||
385 ( ret = mbedtls_asn1_get_mpi( &p, end, &s ) ) != 0 )
386 {
387 ret += MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
388 goto cleanup;
389 }
390
391 if( ( ret = mbedtls_ecdsa_verify( &ctx->grp, hash, hlen,
392 &ctx->Q, &r, &s ) ) != 0 )
393 goto cleanup;
394
395 if( p != end )
396 ret = MBEDTLS_ERR_ECP_SIG_LEN_MISMATCH;
397
398 cleanup:
399 mbedtls_mpi_free( &r );
400 mbedtls_mpi_free( &s );
401
402 return( ret );
403 }
404
405 /*
406 * Generate key pair
407 */
408 int mbedtls_ecdsa_genkey( mbedtls_ecdsa_context *ctx, mbedtls_ecp_group_id gid,
409 int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
410 {
411 return( mbedtls_ecp_group_load( &ctx->grp, gid ) ||
412 mbedtls_ecp_gen_keypair( &ctx->grp, &ctx->d, &ctx->Q, f_rng, p_rng ) );
413 }
414
415 /*
416 * Set context from an mbedtls_ecp_keypair
417 */
418 int mbedtls_ecdsa_from_keypair( mbedtls_ecdsa_context *ctx, const mbedtls_ecp_keypair *key )
419 {
420 int ret;
421
422 if( ( ret = mbedtls_ecp_group_copy( &ctx->grp, &key->grp ) ) != 0 ||
423 ( ret = mbedtls_mpi_copy( &ctx->d, &key->d ) ) != 0 ||
424 ( ret = mbedtls_ecp_copy( &ctx->Q, &key->Q ) ) != 0 )
425 {
426 mbedtls_ecdsa_free( ctx );
427 }
428
429 return( ret );
430 }
431
432 /*
433 * Initialize context
434 */
435 void mbedtls_ecdsa_init( mbedtls_ecdsa_context *ctx )
436 {
437 mbedtls_ecp_keypair_init( ctx );
438 }
439
440 /*
441 * Free context
442 */
443 void mbedtls_ecdsa_free( mbedtls_ecdsa_context *ctx )
444 {
445 mbedtls_ecp_keypair_free( ctx );
446 }
447
448 #endif /* MBEDTLS_ECDSA_C */