[FMIFS]
[reactos.git] / reactos / dll / opengl / mesa / math / m_matrix.c
1 /*
2 * Mesa 3-D graphics library
3 * Version: 6.3
4 *
5 * Copyright (C) 1999-2005 Brian Paul All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included
15 * in all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
21 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25
26 /**
27 * \file m_matrix.c
28 * Matrix operations.
29 *
30 * \note
31 * -# 4x4 transformation matrices are stored in memory in column major order.
32 * -# Points/vertices are to be thought of as column vectors.
33 * -# Transformation of a point p by a matrix M is: p' = M * p
34 */
35
36 #include <precomp.h>
37
38 /**
39 * \defgroup MatFlags MAT_FLAG_XXX-flags
40 *
41 * Bitmasks to indicate different kinds of 4x4 matrices in GLmatrix::flags
42 * It would be nice to make all these flags private to m_matrix.c
43 */
44 /*@{*/
45 #define MAT_FLAG_IDENTITY 0 /**< is an identity matrix flag.
46 * (Not actually used - the identity
47 * matrix is identified by the absense
48 * of all other flags.)
49 */
50 #define MAT_FLAG_GENERAL 0x1 /**< is a general matrix flag */
51 #define MAT_FLAG_ROTATION 0x2 /**< is a rotation matrix flag */
52 #define MAT_FLAG_TRANSLATION 0x4 /**< is a translation matrix flag */
53 #define MAT_FLAG_UNIFORM_SCALE 0x8 /**< is an uniform scaling matrix flag */
54 #define MAT_FLAG_GENERAL_SCALE 0x10 /**< is a general scaling matrix flag */
55 #define MAT_FLAG_GENERAL_3D 0x20 /**< general 3D matrix flag */
56 #define MAT_FLAG_PERSPECTIVE 0x40 /**< is a perspective proj matrix flag */
57 #define MAT_FLAG_SINGULAR 0x80 /**< is a singular matrix flag */
58 #define MAT_DIRTY_TYPE 0x100 /**< matrix type is dirty */
59 #define MAT_DIRTY_FLAGS 0x200 /**< matrix flags are dirty */
60 #define MAT_DIRTY_INVERSE 0x400 /**< matrix inverse is dirty */
61
62 /** angle preserving matrix flags mask */
63 #define MAT_FLAGS_ANGLE_PRESERVING (MAT_FLAG_ROTATION | \
64 MAT_FLAG_TRANSLATION | \
65 MAT_FLAG_UNIFORM_SCALE)
66
67 /** geometry related matrix flags mask */
68 #define MAT_FLAGS_GEOMETRY (MAT_FLAG_GENERAL | \
69 MAT_FLAG_ROTATION | \
70 MAT_FLAG_TRANSLATION | \
71 MAT_FLAG_UNIFORM_SCALE | \
72 MAT_FLAG_GENERAL_SCALE | \
73 MAT_FLAG_GENERAL_3D | \
74 MAT_FLAG_PERSPECTIVE | \
75 MAT_FLAG_SINGULAR)
76
77 /** length preserving matrix flags mask */
78 #define MAT_FLAGS_LENGTH_PRESERVING (MAT_FLAG_ROTATION | \
79 MAT_FLAG_TRANSLATION)
80
81
82 /** 3D (non-perspective) matrix flags mask */
83 #define MAT_FLAGS_3D (MAT_FLAG_ROTATION | \
84 MAT_FLAG_TRANSLATION | \
85 MAT_FLAG_UNIFORM_SCALE | \
86 MAT_FLAG_GENERAL_SCALE | \
87 MAT_FLAG_GENERAL_3D)
88
89 /** dirty matrix flags mask */
90 #define MAT_DIRTY (MAT_DIRTY_TYPE | \
91 MAT_DIRTY_FLAGS | \
92 MAT_DIRTY_INVERSE)
93
94 /*@}*/
95
96
97 /**
98 * Test geometry related matrix flags.
99 *
100 * \param mat a pointer to a GLmatrix structure.
101 * \param a flags mask.
102 *
103 * \returns non-zero if all geometry related matrix flags are contained within
104 * the mask, or zero otherwise.
105 */
106 #define TEST_MAT_FLAGS(mat, a) \
107 ((MAT_FLAGS_GEOMETRY & (~(a)) & ((mat)->flags) ) == 0)
108
109
110
111 /**
112 * Names of the corresponding GLmatrixtype values.
113 */
114 static const char *types[] = {
115 "MATRIX_GENERAL",
116 "MATRIX_IDENTITY",
117 "MATRIX_3D_NO_ROT",
118 "MATRIX_PERSPECTIVE",
119 "MATRIX_2D",
120 "MATRIX_2D_NO_ROT",
121 "MATRIX_3D"
122 };
123
124
125 /**
126 * Identity matrix.
127 */
128 static GLfloat Identity[16] = {
129 1.0, 0.0, 0.0, 0.0,
130 0.0, 1.0, 0.0, 0.0,
131 0.0, 0.0, 1.0, 0.0,
132 0.0, 0.0, 0.0, 1.0
133 };
134
135
136
137 /**********************************************************************/
138 /** \name Matrix multiplication */
139 /*@{*/
140
141 #define A(row,col) a[(col<<2)+row]
142 #define B(row,col) b[(col<<2)+row]
143 #define P(row,col) product[(col<<2)+row]
144
145 /**
146 * Perform a full 4x4 matrix multiplication.
147 *
148 * \param a matrix.
149 * \param b matrix.
150 * \param product will receive the product of \p a and \p b.
151 *
152 * \warning Is assumed that \p product != \p b. \p product == \p a is allowed.
153 *
154 * \note KW: 4*16 = 64 multiplications
155 *
156 * \author This \c matmul was contributed by Thomas Malik
157 */
158 static void matmul4( GLfloat *product, const GLfloat *a, const GLfloat *b )
159 {
160 GLint i;
161 for (i = 0; i < 4; i++) {
162 const GLfloat ai0=A(i,0), ai1=A(i,1), ai2=A(i,2), ai3=A(i,3);
163 P(i,0) = ai0 * B(0,0) + ai1 * B(1,0) + ai2 * B(2,0) + ai3 * B(3,0);
164 P(i,1) = ai0 * B(0,1) + ai1 * B(1,1) + ai2 * B(2,1) + ai3 * B(3,1);
165 P(i,2) = ai0 * B(0,2) + ai1 * B(1,2) + ai2 * B(2,2) + ai3 * B(3,2);
166 P(i,3) = ai0 * B(0,3) + ai1 * B(1,3) + ai2 * B(2,3) + ai3 * B(3,3);
167 }
168 }
169
170 /**
171 * Multiply two matrices known to occupy only the top three rows, such
172 * as typical model matrices, and orthogonal matrices.
173 *
174 * \param a matrix.
175 * \param b matrix.
176 * \param product will receive the product of \p a and \p b.
177 */
178 static void matmul34( GLfloat *product, const GLfloat *a, const GLfloat *b )
179 {
180 GLint i;
181 for (i = 0; i < 3; i++) {
182 const GLfloat ai0=A(i,0), ai1=A(i,1), ai2=A(i,2), ai3=A(i,3);
183 P(i,0) = ai0 * B(0,0) + ai1 * B(1,0) + ai2 * B(2,0);
184 P(i,1) = ai0 * B(0,1) + ai1 * B(1,1) + ai2 * B(2,1);
185 P(i,2) = ai0 * B(0,2) + ai1 * B(1,2) + ai2 * B(2,2);
186 P(i,3) = ai0 * B(0,3) + ai1 * B(1,3) + ai2 * B(2,3) + ai3;
187 }
188 P(3,0) = 0;
189 P(3,1) = 0;
190 P(3,2) = 0;
191 P(3,3) = 1;
192 }
193
194 #undef A
195 #undef B
196 #undef P
197
198 /**
199 * Multiply a matrix by an array of floats with known properties.
200 *
201 * \param mat pointer to a GLmatrix structure containing the left multiplication
202 * matrix, and that will receive the product result.
203 * \param m right multiplication matrix array.
204 * \param flags flags of the matrix \p m.
205 *
206 * Joins both flags and marks the type and inverse as dirty. Calls matmul34()
207 * if both matrices are 3D, or matmul4() otherwise.
208 */
209 static void matrix_multf( GLmatrix *mat, const GLfloat *m, GLuint flags )
210 {
211 mat->flags |= (flags | MAT_DIRTY_TYPE | MAT_DIRTY_INVERSE);
212
213 if (TEST_MAT_FLAGS(mat, MAT_FLAGS_3D))
214 matmul34( mat->m, mat->m, m );
215 else
216 matmul4( mat->m, mat->m, m );
217 }
218
219 /**
220 * Matrix multiplication.
221 *
222 * \param dest destination matrix.
223 * \param a left matrix.
224 * \param b right matrix.
225 *
226 * Joins both flags and marks the type and inverse as dirty. Calls matmul34()
227 * if both matrices are 3D, or matmul4() otherwise.
228 */
229 void
230 _math_matrix_mul_matrix( GLmatrix *dest, const GLmatrix *a, const GLmatrix *b )
231 {
232 dest->flags = (a->flags |
233 b->flags |
234 MAT_DIRTY_TYPE |
235 MAT_DIRTY_INVERSE);
236
237 if (TEST_MAT_FLAGS(dest, MAT_FLAGS_3D))
238 matmul34( dest->m, a->m, b->m );
239 else
240 matmul4( dest->m, a->m, b->m );
241 }
242
243 /**
244 * Matrix multiplication.
245 *
246 * \param dest left and destination matrix.
247 * \param m right matrix array.
248 *
249 * Marks the matrix flags with general flag, and type and inverse dirty flags.
250 * Calls matmul4() for the multiplication.
251 */
252 void
253 _math_matrix_mul_floats( GLmatrix *dest, const GLfloat *m )
254 {
255 dest->flags |= (MAT_FLAG_GENERAL |
256 MAT_DIRTY_TYPE |
257 MAT_DIRTY_INVERSE |
258 MAT_DIRTY_FLAGS);
259
260 matmul4( dest->m, dest->m, m );
261 }
262
263 /*@}*/
264
265
266 /**********************************************************************/
267 /** \name Matrix output */
268 /*@{*/
269
270 /**
271 * Print a matrix array.
272 *
273 * \param m matrix array.
274 *
275 * Called by _math_matrix_print() to print a matrix or its inverse.
276 */
277 static void print_matrix_floats( const GLfloat m[16] )
278 {
279 int i;
280 for (i=0;i<4;i++) {
281 _mesa_debug(NULL,"\t%f %f %f %f\n", m[i], m[4+i], m[8+i], m[12+i] );
282 }
283 }
284
285 /**
286 * Dumps the contents of a GLmatrix structure.
287 *
288 * \param m pointer to the GLmatrix structure.
289 */
290 void
291 _math_matrix_print( const GLmatrix *m )
292 {
293 _mesa_debug(NULL, "Matrix type: %s, flags: %x\n", types[m->type], m->flags);
294 print_matrix_floats(m->m);
295 _mesa_debug(NULL, "Inverse: \n");
296 if (m->inv) {
297 GLfloat prod[16];
298 print_matrix_floats(m->inv);
299 matmul4(prod, m->m, m->inv);
300 _mesa_debug(NULL, "Mat * Inverse:\n");
301 print_matrix_floats(prod);
302 }
303 else {
304 _mesa_debug(NULL, " - not available\n");
305 }
306 }
307
308 /*@}*/
309
310
311 /**
312 * References an element of 4x4 matrix.
313 *
314 * \param m matrix array.
315 * \param c column of the desired element.
316 * \param r row of the desired element.
317 *
318 * \return value of the desired element.
319 *
320 * Calculate the linear storage index of the element and references it.
321 */
322 #define MAT(m,r,c) (m)[(c)*4+(r)]
323
324
325 /**********************************************************************/
326 /** \name Matrix inversion */
327 /*@{*/
328
329 /**
330 * Swaps the values of two floating pointer variables.
331 *
332 * Used by invert_matrix_general() to swap the row pointers.
333 */
334 #define SWAP_ROWS(a, b) { GLfloat *_tmp = a; (a)=(b); (b)=_tmp; }
335
336 /**
337 * Compute inverse of 4x4 transformation matrix.
338 *
339 * \param mat pointer to a GLmatrix structure. The matrix inverse will be
340 * stored in the GLmatrix::inv attribute.
341 *
342 * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix).
343 *
344 * \author
345 * Code contributed by Jacques Leroy jle@star.be
346 *
347 * Calculates the inverse matrix by performing the gaussian matrix reduction
348 * with partial pivoting followed by back/substitution with the loops manually
349 * unrolled.
350 */
351 static GLboolean invert_matrix_general( GLmatrix *mat )
352 {
353 const GLfloat *m = mat->m;
354 GLfloat *out = mat->inv;
355 GLfloat wtmp[4][8];
356 GLfloat m0, m1, m2, m3, s;
357 GLfloat *r0, *r1, *r2, *r3;
358
359 r0 = wtmp[0], r1 = wtmp[1], r2 = wtmp[2], r3 = wtmp[3];
360
361 r0[0] = MAT(m,0,0), r0[1] = MAT(m,0,1),
362 r0[2] = MAT(m,0,2), r0[3] = MAT(m,0,3),
363 r0[4] = 1.0, r0[5] = r0[6] = r0[7] = 0.0,
364
365 r1[0] = MAT(m,1,0), r1[1] = MAT(m,1,1),
366 r1[2] = MAT(m,1,2), r1[3] = MAT(m,1,3),
367 r1[5] = 1.0, r1[4] = r1[6] = r1[7] = 0.0,
368
369 r2[0] = MAT(m,2,0), r2[1] = MAT(m,2,1),
370 r2[2] = MAT(m,2,2), r2[3] = MAT(m,2,3),
371 r2[6] = 1.0, r2[4] = r2[5] = r2[7] = 0.0,
372
373 r3[0] = MAT(m,3,0), r3[1] = MAT(m,3,1),
374 r3[2] = MAT(m,3,2), r3[3] = MAT(m,3,3),
375 r3[7] = 1.0, r3[4] = r3[5] = r3[6] = 0.0;
376
377 /* choose pivot - or die */
378 if (FABSF(r3[0])>FABSF(r2[0])) SWAP_ROWS(r3, r2);
379 if (FABSF(r2[0])>FABSF(r1[0])) SWAP_ROWS(r2, r1);
380 if (FABSF(r1[0])>FABSF(r0[0])) SWAP_ROWS(r1, r0);
381 if (0.0 == r0[0]) return GL_FALSE;
382
383 /* eliminate first variable */
384 m1 = r1[0]/r0[0]; m2 = r2[0]/r0[0]; m3 = r3[0]/r0[0];
385 s = r0[1]; r1[1] -= m1 * s; r2[1] -= m2 * s; r3[1] -= m3 * s;
386 s = r0[2]; r1[2] -= m1 * s; r2[2] -= m2 * s; r3[2] -= m3 * s;
387 s = r0[3]; r1[3] -= m1 * s; r2[3] -= m2 * s; r3[3] -= m3 * s;
388 s = r0[4];
389 if (s != 0.0) { r1[4] -= m1 * s; r2[4] -= m2 * s; r3[4] -= m3 * s; }
390 s = r0[5];
391 if (s != 0.0) { r1[5] -= m1 * s; r2[5] -= m2 * s; r3[5] -= m3 * s; }
392 s = r0[6];
393 if (s != 0.0) { r1[6] -= m1 * s; r2[6] -= m2 * s; r3[6] -= m3 * s; }
394 s = r0[7];
395 if (s != 0.0) { r1[7] -= m1 * s; r2[7] -= m2 * s; r3[7] -= m3 * s; }
396
397 /* choose pivot - or die */
398 if (FABSF(r3[1])>FABSF(r2[1])) SWAP_ROWS(r3, r2);
399 if (FABSF(r2[1])>FABSF(r1[1])) SWAP_ROWS(r2, r1);
400 if (0.0 == r1[1]) return GL_FALSE;
401
402 /* eliminate second variable */
403 m2 = r2[1]/r1[1]; m3 = r3[1]/r1[1];
404 r2[2] -= m2 * r1[2]; r3[2] -= m3 * r1[2];
405 r2[3] -= m2 * r1[3]; r3[3] -= m3 * r1[3];
406 s = r1[4]; if (0.0 != s) { r2[4] -= m2 * s; r3[4] -= m3 * s; }
407 s = r1[5]; if (0.0 != s) { r2[5] -= m2 * s; r3[5] -= m3 * s; }
408 s = r1[6]; if (0.0 != s) { r2[6] -= m2 * s; r3[6] -= m3 * s; }
409 s = r1[7]; if (0.0 != s) { r2[7] -= m2 * s; r3[7] -= m3 * s; }
410
411 /* choose pivot - or die */
412 if (FABSF(r3[2])>FABSF(r2[2])) SWAP_ROWS(r3, r2);
413 if (0.0 == r2[2]) return GL_FALSE;
414
415 /* eliminate third variable */
416 m3 = r3[2]/r2[2];
417 r3[3] -= m3 * r2[3], r3[4] -= m3 * r2[4],
418 r3[5] -= m3 * r2[5], r3[6] -= m3 * r2[6],
419 r3[7] -= m3 * r2[7];
420
421 /* last check */
422 if (0.0 == r3[3]) return GL_FALSE;
423
424 s = 1.0F/r3[3]; /* now back substitute row 3 */
425 r3[4] *= s; r3[5] *= s; r3[6] *= s; r3[7] *= s;
426
427 m2 = r2[3]; /* now back substitute row 2 */
428 s = 1.0F/r2[2];
429 r2[4] = s * (r2[4] - r3[4] * m2), r2[5] = s * (r2[5] - r3[5] * m2),
430 r2[6] = s * (r2[6] - r3[6] * m2), r2[7] = s * (r2[7] - r3[7] * m2);
431 m1 = r1[3];
432 r1[4] -= r3[4] * m1, r1[5] -= r3[5] * m1,
433 r1[6] -= r3[6] * m1, r1[7] -= r3[7] * m1;
434 m0 = r0[3];
435 r0[4] -= r3[4] * m0, r0[5] -= r3[5] * m0,
436 r0[6] -= r3[6] * m0, r0[7] -= r3[7] * m0;
437
438 m1 = r1[2]; /* now back substitute row 1 */
439 s = 1.0F/r1[1];
440 r1[4] = s * (r1[4] - r2[4] * m1), r1[5] = s * (r1[5] - r2[5] * m1),
441 r1[6] = s * (r1[6] - r2[6] * m1), r1[7] = s * (r1[7] - r2[7] * m1);
442 m0 = r0[2];
443 r0[4] -= r2[4] * m0, r0[5] -= r2[5] * m0,
444 r0[6] -= r2[6] * m0, r0[7] -= r2[7] * m0;
445
446 m0 = r0[1]; /* now back substitute row 0 */
447 s = 1.0F/r0[0];
448 r0[4] = s * (r0[4] - r1[4] * m0), r0[5] = s * (r0[5] - r1[5] * m0),
449 r0[6] = s * (r0[6] - r1[6] * m0), r0[7] = s * (r0[7] - r1[7] * m0);
450
451 MAT(out,0,0) = r0[4]; MAT(out,0,1) = r0[5],
452 MAT(out,0,2) = r0[6]; MAT(out,0,3) = r0[7],
453 MAT(out,1,0) = r1[4]; MAT(out,1,1) = r1[5],
454 MAT(out,1,2) = r1[6]; MAT(out,1,3) = r1[7],
455 MAT(out,2,0) = r2[4]; MAT(out,2,1) = r2[5],
456 MAT(out,2,2) = r2[6]; MAT(out,2,3) = r2[7],
457 MAT(out,3,0) = r3[4]; MAT(out,3,1) = r3[5],
458 MAT(out,3,2) = r3[6]; MAT(out,3,3) = r3[7];
459
460 return GL_TRUE;
461 }
462 #undef SWAP_ROWS
463
464 /**
465 * Compute inverse of a general 3d transformation matrix.
466 *
467 * \param mat pointer to a GLmatrix structure. The matrix inverse will be
468 * stored in the GLmatrix::inv attribute.
469 *
470 * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix).
471 *
472 * \author Adapted from graphics gems II.
473 *
474 * Calculates the inverse of the upper left by first calculating its
475 * determinant and multiplying it to the symmetric adjust matrix of each
476 * element. Finally deals with the translation part by transforming the
477 * original translation vector using by the calculated submatrix inverse.
478 */
479 static GLboolean invert_matrix_3d_general( GLmatrix *mat )
480 {
481 const GLfloat *in = mat->m;
482 GLfloat *out = mat->inv;
483 GLfloat pos, neg, t;
484 GLfloat det;
485
486 /* Calculate the determinant of upper left 3x3 submatrix and
487 * determine if the matrix is singular.
488 */
489 pos = neg = 0.0;
490 t = MAT(in,0,0) * MAT(in,1,1) * MAT(in,2,2);
491 if (t >= 0.0) pos += t; else neg += t;
492
493 t = MAT(in,1,0) * MAT(in,2,1) * MAT(in,0,2);
494 if (t >= 0.0) pos += t; else neg += t;
495
496 t = MAT(in,2,0) * MAT(in,0,1) * MAT(in,1,2);
497 if (t >= 0.0) pos += t; else neg += t;
498
499 t = -MAT(in,2,0) * MAT(in,1,1) * MAT(in,0,2);
500 if (t >= 0.0) pos += t; else neg += t;
501
502 t = -MAT(in,1,0) * MAT(in,0,1) * MAT(in,2,2);
503 if (t >= 0.0) pos += t; else neg += t;
504
505 t = -MAT(in,0,0) * MAT(in,2,1) * MAT(in,1,2);
506 if (t >= 0.0) pos += t; else neg += t;
507
508 det = pos + neg;
509
510 if (det*det < 1e-25)
511 return GL_FALSE;
512
513 det = 1.0F / det;
514 MAT(out,0,0) = ( (MAT(in,1,1)*MAT(in,2,2) - MAT(in,2,1)*MAT(in,1,2) )*det);
515 MAT(out,0,1) = (- (MAT(in,0,1)*MAT(in,2,2) - MAT(in,2,1)*MAT(in,0,2) )*det);
516 MAT(out,0,2) = ( (MAT(in,0,1)*MAT(in,1,2) - MAT(in,1,1)*MAT(in,0,2) )*det);
517 MAT(out,1,0) = (- (MAT(in,1,0)*MAT(in,2,2) - MAT(in,2,0)*MAT(in,1,2) )*det);
518 MAT(out,1,1) = ( (MAT(in,0,0)*MAT(in,2,2) - MAT(in,2,0)*MAT(in,0,2) )*det);
519 MAT(out,1,2) = (- (MAT(in,0,0)*MAT(in,1,2) - MAT(in,1,0)*MAT(in,0,2) )*det);
520 MAT(out,2,0) = ( (MAT(in,1,0)*MAT(in,2,1) - MAT(in,2,0)*MAT(in,1,1) )*det);
521 MAT(out,2,1) = (- (MAT(in,0,0)*MAT(in,2,1) - MAT(in,2,0)*MAT(in,0,1) )*det);
522 MAT(out,2,2) = ( (MAT(in,0,0)*MAT(in,1,1) - MAT(in,1,0)*MAT(in,0,1) )*det);
523
524 /* Do the translation part */
525 MAT(out,0,3) = - (MAT(in,0,3) * MAT(out,0,0) +
526 MAT(in,1,3) * MAT(out,0,1) +
527 MAT(in,2,3) * MAT(out,0,2) );
528 MAT(out,1,3) = - (MAT(in,0,3) * MAT(out,1,0) +
529 MAT(in,1,3) * MAT(out,1,1) +
530 MAT(in,2,3) * MAT(out,1,2) );
531 MAT(out,2,3) = - (MAT(in,0,3) * MAT(out,2,0) +
532 MAT(in,1,3) * MAT(out,2,1) +
533 MAT(in,2,3) * MAT(out,2,2) );
534
535 return GL_TRUE;
536 }
537
538 /**
539 * Compute inverse of a 3d transformation matrix.
540 *
541 * \param mat pointer to a GLmatrix structure. The matrix inverse will be
542 * stored in the GLmatrix::inv attribute.
543 *
544 * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix).
545 *
546 * If the matrix is not an angle preserving matrix then calls
547 * invert_matrix_3d_general for the actual calculation. Otherwise calculates
548 * the inverse matrix analyzing and inverting each of the scaling, rotation and
549 * translation parts.
550 */
551 static GLboolean invert_matrix_3d( GLmatrix *mat )
552 {
553 const GLfloat *in = mat->m;
554 GLfloat *out = mat->inv;
555
556 if (!TEST_MAT_FLAGS(mat, MAT_FLAGS_ANGLE_PRESERVING)) {
557 return invert_matrix_3d_general( mat );
558 }
559
560 if (mat->flags & MAT_FLAG_UNIFORM_SCALE) {
561 GLfloat scale = (MAT(in,0,0) * MAT(in,0,0) +
562 MAT(in,0,1) * MAT(in,0,1) +
563 MAT(in,0,2) * MAT(in,0,2));
564
565 if (scale == 0.0)
566 return GL_FALSE;
567
568 scale = 1.0F / scale;
569
570 /* Transpose and scale the 3 by 3 upper-left submatrix. */
571 MAT(out,0,0) = scale * MAT(in,0,0);
572 MAT(out,1,0) = scale * MAT(in,0,1);
573 MAT(out,2,0) = scale * MAT(in,0,2);
574 MAT(out,0,1) = scale * MAT(in,1,0);
575 MAT(out,1,1) = scale * MAT(in,1,1);
576 MAT(out,2,1) = scale * MAT(in,1,2);
577 MAT(out,0,2) = scale * MAT(in,2,0);
578 MAT(out,1,2) = scale * MAT(in,2,1);
579 MAT(out,2,2) = scale * MAT(in,2,2);
580 }
581 else if (mat->flags & MAT_FLAG_ROTATION) {
582 /* Transpose the 3 by 3 upper-left submatrix. */
583 MAT(out,0,0) = MAT(in,0,0);
584 MAT(out,1,0) = MAT(in,0,1);
585 MAT(out,2,0) = MAT(in,0,2);
586 MAT(out,0,1) = MAT(in,1,0);
587 MAT(out,1,1) = MAT(in,1,1);
588 MAT(out,2,1) = MAT(in,1,2);
589 MAT(out,0,2) = MAT(in,2,0);
590 MAT(out,1,2) = MAT(in,2,1);
591 MAT(out,2,2) = MAT(in,2,2);
592 }
593 else {
594 /* pure translation */
595 memcpy( out, Identity, sizeof(Identity) );
596 MAT(out,0,3) = - MAT(in,0,3);
597 MAT(out,1,3) = - MAT(in,1,3);
598 MAT(out,2,3) = - MAT(in,2,3);
599 return GL_TRUE;
600 }
601
602 if (mat->flags & MAT_FLAG_TRANSLATION) {
603 /* Do the translation part */
604 MAT(out,0,3) = - (MAT(in,0,3) * MAT(out,0,0) +
605 MAT(in,1,3) * MAT(out,0,1) +
606 MAT(in,2,3) * MAT(out,0,2) );
607 MAT(out,1,3) = - (MAT(in,0,3) * MAT(out,1,0) +
608 MAT(in,1,3) * MAT(out,1,1) +
609 MAT(in,2,3) * MAT(out,1,2) );
610 MAT(out,2,3) = - (MAT(in,0,3) * MAT(out,2,0) +
611 MAT(in,1,3) * MAT(out,2,1) +
612 MAT(in,2,3) * MAT(out,2,2) );
613 }
614 else {
615 MAT(out,0,3) = MAT(out,1,3) = MAT(out,2,3) = 0.0;
616 }
617
618 return GL_TRUE;
619 }
620
621 /**
622 * Compute inverse of an identity transformation matrix.
623 *
624 * \param mat pointer to a GLmatrix structure. The matrix inverse will be
625 * stored in the GLmatrix::inv attribute.
626 *
627 * \return always GL_TRUE.
628 *
629 * Simply copies Identity into GLmatrix::inv.
630 */
631 static GLboolean invert_matrix_identity( GLmatrix *mat )
632 {
633 memcpy( mat->inv, Identity, sizeof(Identity) );
634 return GL_TRUE;
635 }
636
637 /**
638 * Compute inverse of a no-rotation 3d transformation matrix.
639 *
640 * \param mat pointer to a GLmatrix structure. The matrix inverse will be
641 * stored in the GLmatrix::inv attribute.
642 *
643 * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix).
644 *
645 * Calculates the
646 */
647 static GLboolean invert_matrix_3d_no_rot( GLmatrix *mat )
648 {
649 const GLfloat *in = mat->m;
650 GLfloat *out = mat->inv;
651
652 if (MAT(in,0,0) == 0 || MAT(in,1,1) == 0 || MAT(in,2,2) == 0 )
653 return GL_FALSE;
654
655 memcpy( out, Identity, 16 * sizeof(GLfloat) );
656 MAT(out,0,0) = 1.0F / MAT(in,0,0);
657 MAT(out,1,1) = 1.0F / MAT(in,1,1);
658 MAT(out,2,2) = 1.0F / MAT(in,2,2);
659
660 if (mat->flags & MAT_FLAG_TRANSLATION) {
661 MAT(out,0,3) = - (MAT(in,0,3) * MAT(out,0,0));
662 MAT(out,1,3) = - (MAT(in,1,3) * MAT(out,1,1));
663 MAT(out,2,3) = - (MAT(in,2,3) * MAT(out,2,2));
664 }
665
666 return GL_TRUE;
667 }
668
669 /**
670 * Compute inverse of a no-rotation 2d transformation matrix.
671 *
672 * \param mat pointer to a GLmatrix structure. The matrix inverse will be
673 * stored in the GLmatrix::inv attribute.
674 *
675 * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix).
676 *
677 * Calculates the inverse matrix by applying the inverse scaling and
678 * translation to the identity matrix.
679 */
680 static GLboolean invert_matrix_2d_no_rot( GLmatrix *mat )
681 {
682 const GLfloat *in = mat->m;
683 GLfloat *out = mat->inv;
684
685 if (MAT(in,0,0) == 0 || MAT(in,1,1) == 0)
686 return GL_FALSE;
687
688 memcpy( out, Identity, 16 * sizeof(GLfloat) );
689 MAT(out,0,0) = 1.0F / MAT(in,0,0);
690 MAT(out,1,1) = 1.0F / MAT(in,1,1);
691
692 if (mat->flags & MAT_FLAG_TRANSLATION) {
693 MAT(out,0,3) = - (MAT(in,0,3) * MAT(out,0,0));
694 MAT(out,1,3) = - (MAT(in,1,3) * MAT(out,1,1));
695 }
696
697 return GL_TRUE;
698 }
699
700 #if 0
701 /* broken */
702 static GLboolean invert_matrix_perspective( GLmatrix *mat )
703 {
704 const GLfloat *in = mat->m;
705 GLfloat *out = mat->inv;
706
707 if (MAT(in,2,3) == 0)
708 return GL_FALSE;
709
710 memcpy( out, Identity, 16 * sizeof(GLfloat) );
711
712 MAT(out,0,0) = 1.0F / MAT(in,0,0);
713 MAT(out,1,1) = 1.0F / MAT(in,1,1);
714
715 MAT(out,0,3) = MAT(in,0,2);
716 MAT(out,1,3) = MAT(in,1,2);
717
718 MAT(out,2,2) = 0;
719 MAT(out,2,3) = -1;
720
721 MAT(out,3,2) = 1.0F / MAT(in,2,3);
722 MAT(out,3,3) = MAT(in,2,2) * MAT(out,3,2);
723
724 return GL_TRUE;
725 }
726 #endif
727
728 /**
729 * Matrix inversion function pointer type.
730 */
731 typedef GLboolean (*inv_mat_func)( GLmatrix *mat );
732
733 /**
734 * Table of the matrix inversion functions according to the matrix type.
735 */
736 static inv_mat_func inv_mat_tab[7] = {
737 invert_matrix_general,
738 invert_matrix_identity,
739 invert_matrix_3d_no_rot,
740 #if 0
741 /* Don't use this function for now - it fails when the projection matrix
742 * is premultiplied by a translation (ala Chromium's tilesort SPU).
743 */
744 invert_matrix_perspective,
745 #else
746 invert_matrix_general,
747 #endif
748 invert_matrix_3d, /* lazy! */
749 invert_matrix_2d_no_rot,
750 invert_matrix_3d
751 };
752
753 /**
754 * Compute inverse of a transformation matrix.
755 *
756 * \param mat pointer to a GLmatrix structure. The matrix inverse will be
757 * stored in the GLmatrix::inv attribute.
758 *
759 * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix).
760 *
761 * Calls the matrix inversion function in inv_mat_tab corresponding to the
762 * given matrix type. In case of failure, updates the MAT_FLAG_SINGULAR flag,
763 * and copies the identity matrix into GLmatrix::inv.
764 */
765 static GLboolean matrix_invert( GLmatrix *mat )
766 {
767 if (inv_mat_tab[mat->type](mat)) {
768 mat->flags &= ~MAT_FLAG_SINGULAR;
769 return GL_TRUE;
770 } else {
771 mat->flags |= MAT_FLAG_SINGULAR;
772 memcpy( mat->inv, Identity, sizeof(Identity) );
773 return GL_FALSE;
774 }
775 }
776
777 /*@}*/
778
779
780 /**********************************************************************/
781 /** \name Matrix generation */
782 /*@{*/
783
784 /**
785 * Generate a 4x4 transformation matrix from glRotate parameters, and
786 * post-multiply the input matrix by it.
787 *
788 * \author
789 * This function was contributed by Erich Boleyn (erich@uruk.org).
790 * Optimizations contributed by Rudolf Opalla (rudi@khm.de).
791 */
792 void
793 _math_matrix_rotate( GLmatrix *mat,
794 GLfloat angle, GLfloat x, GLfloat y, GLfloat z )
795 {
796 GLfloat xx, yy, zz, xy, yz, zx, xs, ys, zs, one_c, s, c;
797 GLfloat m[16];
798 GLboolean optimized;
799
800 s = (GLfloat) sin( angle * DEG2RAD );
801 c = (GLfloat) cos( angle * DEG2RAD );
802
803 memcpy(m, Identity, sizeof(GLfloat)*16);
804 optimized = GL_FALSE;
805
806 #define M(row,col) m[col*4+row]
807
808 if (x == 0.0F) {
809 if (y == 0.0F) {
810 if (z != 0.0F) {
811 optimized = GL_TRUE;
812 /* rotate only around z-axis */
813 M(0,0) = c;
814 M(1,1) = c;
815 if (z < 0.0F) {
816 M(0,1) = s;
817 M(1,0) = -s;
818 }
819 else {
820 M(0,1) = -s;
821 M(1,0) = s;
822 }
823 }
824 }
825 else if (z == 0.0F) {
826 optimized = GL_TRUE;
827 /* rotate only around y-axis */
828 M(0,0) = c;
829 M(2,2) = c;
830 if (y < 0.0F) {
831 M(0,2) = -s;
832 M(2,0) = s;
833 }
834 else {
835 M(0,2) = s;
836 M(2,0) = -s;
837 }
838 }
839 }
840 else if (y == 0.0F) {
841 if (z == 0.0F) {
842 optimized = GL_TRUE;
843 /* rotate only around x-axis */
844 M(1,1) = c;
845 M(2,2) = c;
846 if (x < 0.0F) {
847 M(1,2) = s;
848 M(2,1) = -s;
849 }
850 else {
851 M(1,2) = -s;
852 M(2,1) = s;
853 }
854 }
855 }
856
857 if (!optimized) {
858 const GLfloat mag = SQRTF(x * x + y * y + z * z);
859
860 if (mag <= 1.0e-4) {
861 /* no rotation, leave mat as-is */
862 return;
863 }
864
865 x /= mag;
866 y /= mag;
867 z /= mag;
868
869
870 /*
871 * Arbitrary axis rotation matrix.
872 *
873 * This is composed of 5 matrices, Rz, Ry, T, Ry', Rz', multiplied
874 * like so: Rz * Ry * T * Ry' * Rz'. T is the final rotation
875 * (which is about the X-axis), and the two composite transforms
876 * Ry' * Rz' and Rz * Ry are (respectively) the rotations necessary
877 * from the arbitrary axis to the X-axis then back. They are
878 * all elementary rotations.
879 *
880 * Rz' is a rotation about the Z-axis, to bring the axis vector
881 * into the x-z plane. Then Ry' is applied, rotating about the
882 * Y-axis to bring the axis vector parallel with the X-axis. The
883 * rotation about the X-axis is then performed. Ry and Rz are
884 * simply the respective inverse transforms to bring the arbitrary
885 * axis back to its original orientation. The first transforms
886 * Rz' and Ry' are considered inverses, since the data from the
887 * arbitrary axis gives you info on how to get to it, not how
888 * to get away from it, and an inverse must be applied.
889 *
890 * The basic calculation used is to recognize that the arbitrary
891 * axis vector (x, y, z), since it is of unit length, actually
892 * represents the sines and cosines of the angles to rotate the
893 * X-axis to the same orientation, with theta being the angle about
894 * Z and phi the angle about Y (in the order described above)
895 * as follows:
896 *
897 * cos ( theta ) = x / sqrt ( 1 - z^2 )
898 * sin ( theta ) = y / sqrt ( 1 - z^2 )
899 *
900 * cos ( phi ) = sqrt ( 1 - z^2 )
901 * sin ( phi ) = z
902 *
903 * Note that cos ( phi ) can further be inserted to the above
904 * formulas:
905 *
906 * cos ( theta ) = x / cos ( phi )
907 * sin ( theta ) = y / sin ( phi )
908 *
909 * ...etc. Because of those relations and the standard trigonometric
910 * relations, it is pssible to reduce the transforms down to what
911 * is used below. It may be that any primary axis chosen will give the
912 * same results (modulo a sign convention) using thie method.
913 *
914 * Particularly nice is to notice that all divisions that might
915 * have caused trouble when parallel to certain planes or
916 * axis go away with care paid to reducing the expressions.
917 * After checking, it does perform correctly under all cases, since
918 * in all the cases of division where the denominator would have
919 * been zero, the numerator would have been zero as well, giving
920 * the expected result.
921 */
922
923 xx = x * x;
924 yy = y * y;
925 zz = z * z;
926 xy = x * y;
927 yz = y * z;
928 zx = z * x;
929 xs = x * s;
930 ys = y * s;
931 zs = z * s;
932 one_c = 1.0F - c;
933
934 /* We already hold the identity-matrix so we can skip some statements */
935 M(0,0) = (one_c * xx) + c;
936 M(0,1) = (one_c * xy) - zs;
937 M(0,2) = (one_c * zx) + ys;
938 /* M(0,3) = 0.0F; */
939
940 M(1,0) = (one_c * xy) + zs;
941 M(1,1) = (one_c * yy) + c;
942 M(1,2) = (one_c * yz) - xs;
943 /* M(1,3) = 0.0F; */
944
945 M(2,0) = (one_c * zx) - ys;
946 M(2,1) = (one_c * yz) + xs;
947 M(2,2) = (one_c * zz) + c;
948 /* M(2,3) = 0.0F; */
949
950 /*
951 M(3,0) = 0.0F;
952 M(3,1) = 0.0F;
953 M(3,2) = 0.0F;
954 M(3,3) = 1.0F;
955 */
956 }
957 #undef M
958
959 matrix_multf( mat, m, MAT_FLAG_ROTATION );
960 }
961
962 /**
963 * Apply a perspective projection matrix.
964 *
965 * \param mat matrix to apply the projection.
966 * \param left left clipping plane coordinate.
967 * \param right right clipping plane coordinate.
968 * \param bottom bottom clipping plane coordinate.
969 * \param top top clipping plane coordinate.
970 * \param nearval distance to the near clipping plane.
971 * \param farval distance to the far clipping plane.
972 *
973 * Creates the projection matrix and multiplies it with \p mat, marking the
974 * MAT_FLAG_PERSPECTIVE flag.
975 */
976 void
977 _math_matrix_frustum( GLmatrix *mat,
978 GLfloat left, GLfloat right,
979 GLfloat bottom, GLfloat top,
980 GLfloat nearval, GLfloat farval )
981 {
982 GLfloat x, y, a, b, c, d;
983 GLfloat m[16];
984
985 x = (2.0F*nearval) / (right-left);
986 y = (2.0F*nearval) / (top-bottom);
987 a = (right+left) / (right-left);
988 b = (top+bottom) / (top-bottom);
989 c = -(farval+nearval) / ( farval-nearval);
990 d = -(2.0F*farval*nearval) / (farval-nearval); /* error? */
991
992 #define M(row,col) m[col*4+row]
993 M(0,0) = x; M(0,1) = 0.0F; M(0,2) = a; M(0,3) = 0.0F;
994 M(1,0) = 0.0F; M(1,1) = y; M(1,2) = b; M(1,3) = 0.0F;
995 M(2,0) = 0.0F; M(2,1) = 0.0F; M(2,2) = c; M(2,3) = d;
996 M(3,0) = 0.0F; M(3,1) = 0.0F; M(3,2) = -1.0F; M(3,3) = 0.0F;
997 #undef M
998
999 matrix_multf( mat, m, MAT_FLAG_PERSPECTIVE );
1000 }
1001
1002 /**
1003 * Apply an orthographic projection matrix.
1004 *
1005 * \param mat matrix to apply the projection.
1006 * \param left left clipping plane coordinate.
1007 * \param right right clipping plane coordinate.
1008 * \param bottom bottom clipping plane coordinate.
1009 * \param top top clipping plane coordinate.
1010 * \param nearval distance to the near clipping plane.
1011 * \param farval distance to the far clipping plane.
1012 *
1013 * Creates the projection matrix and multiplies it with \p mat, marking the
1014 * MAT_FLAG_GENERAL_SCALE and MAT_FLAG_TRANSLATION flags.
1015 */
1016 void
1017 _math_matrix_ortho( GLmatrix *mat,
1018 GLfloat left, GLfloat right,
1019 GLfloat bottom, GLfloat top,
1020 GLfloat nearval, GLfloat farval )
1021 {
1022 GLfloat m[16];
1023
1024 #define M(row,col) m[col*4+row]
1025 M(0,0) = 2.0F / (right-left);
1026 M(0,1) = 0.0F;
1027 M(0,2) = 0.0F;
1028 M(0,3) = -(right+left) / (right-left);
1029
1030 M(1,0) = 0.0F;
1031 M(1,1) = 2.0F / (top-bottom);
1032 M(1,2) = 0.0F;
1033 M(1,3) = -(top+bottom) / (top-bottom);
1034
1035 M(2,0) = 0.0F;
1036 M(2,1) = 0.0F;
1037 M(2,2) = -2.0F / (farval-nearval);
1038 M(2,3) = -(farval+nearval) / (farval-nearval);
1039
1040 M(3,0) = 0.0F;
1041 M(3,1) = 0.0F;
1042 M(3,2) = 0.0F;
1043 M(3,3) = 1.0F;
1044 #undef M
1045
1046 matrix_multf( mat, m, (MAT_FLAG_GENERAL_SCALE|MAT_FLAG_TRANSLATION));
1047 }
1048
1049 /**
1050 * Multiply a matrix with a general scaling matrix.
1051 *
1052 * \param mat matrix.
1053 * \param x x axis scale factor.
1054 * \param y y axis scale factor.
1055 * \param z z axis scale factor.
1056 *
1057 * Multiplies in-place the elements of \p mat by the scale factors. Checks if
1058 * the scales factors are roughly the same, marking the MAT_FLAG_UNIFORM_SCALE
1059 * flag, or MAT_FLAG_GENERAL_SCALE. Marks the MAT_DIRTY_TYPE and
1060 * MAT_DIRTY_INVERSE dirty flags.
1061 */
1062 void
1063 _math_matrix_scale( GLmatrix *mat, GLfloat x, GLfloat y, GLfloat z )
1064 {
1065 GLfloat *m = mat->m;
1066 m[0] *= x; m[4] *= y; m[8] *= z;
1067 m[1] *= x; m[5] *= y; m[9] *= z;
1068 m[2] *= x; m[6] *= y; m[10] *= z;
1069 m[3] *= x; m[7] *= y; m[11] *= z;
1070
1071 if (FABSF(x - y) < 1e-8 && FABSF(x - z) < 1e-8)
1072 mat->flags |= MAT_FLAG_UNIFORM_SCALE;
1073 else
1074 mat->flags |= MAT_FLAG_GENERAL_SCALE;
1075
1076 mat->flags |= (MAT_DIRTY_TYPE |
1077 MAT_DIRTY_INVERSE);
1078 }
1079
1080 /**
1081 * Multiply a matrix with a translation matrix.
1082 *
1083 * \param mat matrix.
1084 * \param x translation vector x coordinate.
1085 * \param y translation vector y coordinate.
1086 * \param z translation vector z coordinate.
1087 *
1088 * Adds the translation coordinates to the elements of \p mat in-place. Marks
1089 * the MAT_FLAG_TRANSLATION flag, and the MAT_DIRTY_TYPE and MAT_DIRTY_INVERSE
1090 * dirty flags.
1091 */
1092 void
1093 _math_matrix_translate( GLmatrix *mat, GLfloat x, GLfloat y, GLfloat z )
1094 {
1095 GLfloat *m = mat->m;
1096 m[12] = m[0] * x + m[4] * y + m[8] * z + m[12];
1097 m[13] = m[1] * x + m[5] * y + m[9] * z + m[13];
1098 m[14] = m[2] * x + m[6] * y + m[10] * z + m[14];
1099 m[15] = m[3] * x + m[7] * y + m[11] * z + m[15];
1100
1101 mat->flags |= (MAT_FLAG_TRANSLATION |
1102 MAT_DIRTY_TYPE |
1103 MAT_DIRTY_INVERSE);
1104 }
1105
1106
1107 /**
1108 * Set matrix to do viewport and depthrange mapping.
1109 * Transforms Normalized Device Coords to window/Z values.
1110 */
1111 void
1112 _math_matrix_viewport(GLmatrix *m, GLint x, GLint y, GLint width, GLint height,
1113 GLfloat zNear, GLfloat zFar, GLfloat depthMax)
1114 {
1115 m->m[MAT_SX] = (GLfloat) width / 2.0F;
1116 m->m[MAT_TX] = m->m[MAT_SX] + x;
1117 m->m[MAT_SY] = (GLfloat) height / 2.0F;
1118 m->m[MAT_TY] = m->m[MAT_SY] + y;
1119 m->m[MAT_SZ] = depthMax * ((zFar - zNear) / 2.0F);
1120 m->m[MAT_TZ] = depthMax * ((zFar - zNear) / 2.0F + zNear);
1121 m->flags = MAT_FLAG_GENERAL_SCALE | MAT_FLAG_TRANSLATION;
1122 m->type = MATRIX_3D_NO_ROT;
1123 }
1124
1125
1126 /**
1127 * Set a matrix to the identity matrix.
1128 *
1129 * \param mat matrix.
1130 *
1131 * Copies ::Identity into \p GLmatrix::m, and into GLmatrix::inv if not NULL.
1132 * Sets the matrix type to identity, and clear the dirty flags.
1133 */
1134 void
1135 _math_matrix_set_identity( GLmatrix *mat )
1136 {
1137 memcpy( mat->m, Identity, 16*sizeof(GLfloat) );
1138
1139 if (mat->inv)
1140 memcpy( mat->inv, Identity, 16*sizeof(GLfloat) );
1141
1142 mat->type = MATRIX_IDENTITY;
1143 mat->flags &= ~(MAT_DIRTY_FLAGS|
1144 MAT_DIRTY_TYPE|
1145 MAT_DIRTY_INVERSE);
1146 }
1147
1148 /*@}*/
1149
1150
1151 /**********************************************************************/
1152 /** \name Matrix analysis */
1153 /*@{*/
1154
1155 #define ZERO(x) (1<<x)
1156 #define ONE(x) (1<<(x+16))
1157
1158 #define MASK_NO_TRX (ZERO(12) | ZERO(13) | ZERO(14))
1159 #define MASK_NO_2D_SCALE ( ONE(0) | ONE(5))
1160
1161 #define MASK_IDENTITY ( ONE(0) | ZERO(4) | ZERO(8) | ZERO(12) |\
1162 ZERO(1) | ONE(5) | ZERO(9) | ZERO(13) |\
1163 ZERO(2) | ZERO(6) | ONE(10) | ZERO(14) |\
1164 ZERO(3) | ZERO(7) | ZERO(11) | ONE(15) )
1165
1166 #define MASK_2D_NO_ROT ( ZERO(4) | ZERO(8) | \
1167 ZERO(1) | ZERO(9) | \
1168 ZERO(2) | ZERO(6) | ONE(10) | ZERO(14) |\
1169 ZERO(3) | ZERO(7) | ZERO(11) | ONE(15) )
1170
1171 #define MASK_2D ( ZERO(8) | \
1172 ZERO(9) | \
1173 ZERO(2) | ZERO(6) | ONE(10) | ZERO(14) |\
1174 ZERO(3) | ZERO(7) | ZERO(11) | ONE(15) )
1175
1176
1177 #define MASK_3D_NO_ROT ( ZERO(4) | ZERO(8) | \
1178 ZERO(1) | ZERO(9) | \
1179 ZERO(2) | ZERO(6) | \
1180 ZERO(3) | ZERO(7) | ZERO(11) | ONE(15) )
1181
1182 #define MASK_3D ( \
1183 \
1184 \
1185 ZERO(3) | ZERO(7) | ZERO(11) | ONE(15) )
1186
1187
1188 #define MASK_PERSPECTIVE ( ZERO(4) | ZERO(12) |\
1189 ZERO(1) | ZERO(13) |\
1190 ZERO(2) | ZERO(6) | \
1191 ZERO(3) | ZERO(7) | ZERO(15) )
1192
1193 #define SQ(x) ((x)*(x))
1194
1195 /**
1196 * Determine type and flags from scratch.
1197 *
1198 * \param mat matrix.
1199 *
1200 * This is expensive enough to only want to do it once.
1201 */
1202 static void analyse_from_scratch( GLmatrix *mat )
1203 {
1204 const GLfloat *m = mat->m;
1205 GLuint mask = 0;
1206 GLuint i;
1207
1208 for (i = 0 ; i < 16 ; i++) {
1209 if (m[i] == 0.0) mask |= (1<<i);
1210 }
1211
1212 if (m[0] == 1.0F) mask |= (1<<16);
1213 if (m[5] == 1.0F) mask |= (1<<21);
1214 if (m[10] == 1.0F) mask |= (1<<26);
1215 if (m[15] == 1.0F) mask |= (1<<31);
1216
1217 mat->flags &= ~MAT_FLAGS_GEOMETRY;
1218
1219 /* Check for translation - no-one really cares
1220 */
1221 if ((mask & MASK_NO_TRX) != MASK_NO_TRX)
1222 mat->flags |= MAT_FLAG_TRANSLATION;
1223
1224 /* Do the real work
1225 */
1226 if (mask == (GLuint) MASK_IDENTITY) {
1227 mat->type = MATRIX_IDENTITY;
1228 }
1229 else if ((mask & MASK_2D_NO_ROT) == (GLuint) MASK_2D_NO_ROT) {
1230 mat->type = MATRIX_2D_NO_ROT;
1231
1232 if ((mask & MASK_NO_2D_SCALE) != MASK_NO_2D_SCALE)
1233 mat->flags |= MAT_FLAG_GENERAL_SCALE;
1234 }
1235 else if ((mask & MASK_2D) == (GLuint) MASK_2D) {
1236 GLfloat mm = DOT2(m, m);
1237 GLfloat m4m4 = DOT2(m+4,m+4);
1238 GLfloat mm4 = DOT2(m,m+4);
1239
1240 mat->type = MATRIX_2D;
1241
1242 /* Check for scale */
1243 if (SQ(mm-1) > SQ(1e-6) ||
1244 SQ(m4m4-1) > SQ(1e-6))
1245 mat->flags |= MAT_FLAG_GENERAL_SCALE;
1246
1247 /* Check for rotation */
1248 if (SQ(mm4) > SQ(1e-6))
1249 mat->flags |= MAT_FLAG_GENERAL_3D;
1250 else
1251 mat->flags |= MAT_FLAG_ROTATION;
1252
1253 }
1254 else if ((mask & MASK_3D_NO_ROT) == (GLuint) MASK_3D_NO_ROT) {
1255 mat->type = MATRIX_3D_NO_ROT;
1256
1257 /* Check for scale */
1258 if (SQ(m[0]-m[5]) < SQ(1e-6) &&
1259 SQ(m[0]-m[10]) < SQ(1e-6)) {
1260 if (SQ(m[0]-1.0) > SQ(1e-6)) {
1261 mat->flags |= MAT_FLAG_UNIFORM_SCALE;
1262 }
1263 }
1264 else {
1265 mat->flags |= MAT_FLAG_GENERAL_SCALE;
1266 }
1267 }
1268 else if ((mask & MASK_3D) == (GLuint) MASK_3D) {
1269 GLfloat c1 = DOT3(m,m);
1270 GLfloat c2 = DOT3(m+4,m+4);
1271 GLfloat c3 = DOT3(m+8,m+8);
1272 GLfloat d1 = DOT3(m, m+4);
1273 GLfloat cp[3];
1274
1275 mat->type = MATRIX_3D;
1276
1277 /* Check for scale */
1278 if (SQ(c1-c2) < SQ(1e-6) && SQ(c1-c3) < SQ(1e-6)) {
1279 if (SQ(c1-1.0) > SQ(1e-6))
1280 mat->flags |= MAT_FLAG_UNIFORM_SCALE;
1281 /* else no scale at all */
1282 }
1283 else {
1284 mat->flags |= MAT_FLAG_GENERAL_SCALE;
1285 }
1286
1287 /* Check for rotation */
1288 if (SQ(d1) < SQ(1e-6)) {
1289 CROSS3( cp, m, m+4 );
1290 SUB_3V( cp, cp, (m+8) );
1291 if (LEN_SQUARED_3FV(cp) < SQ(1e-6))
1292 mat->flags |= MAT_FLAG_ROTATION;
1293 else
1294 mat->flags |= MAT_FLAG_GENERAL_3D;
1295 }
1296 else {
1297 mat->flags |= MAT_FLAG_GENERAL_3D; /* shear, etc */
1298 }
1299 }
1300 else if ((mask & MASK_PERSPECTIVE) == MASK_PERSPECTIVE && m[11]==-1.0F) {
1301 mat->type = MATRIX_PERSPECTIVE;
1302 mat->flags |= MAT_FLAG_GENERAL;
1303 }
1304 else {
1305 mat->type = MATRIX_GENERAL;
1306 mat->flags |= MAT_FLAG_GENERAL;
1307 }
1308 }
1309
1310 /**
1311 * Analyze a matrix given that its flags are accurate.
1312 *
1313 * This is the more common operation, hopefully.
1314 */
1315 static void analyse_from_flags( GLmatrix *mat )
1316 {
1317 const GLfloat *m = mat->m;
1318
1319 if (TEST_MAT_FLAGS(mat, 0)) {
1320 mat->type = MATRIX_IDENTITY;
1321 }
1322 else if (TEST_MAT_FLAGS(mat, (MAT_FLAG_TRANSLATION |
1323 MAT_FLAG_UNIFORM_SCALE |
1324 MAT_FLAG_GENERAL_SCALE))) {
1325 if ( m[10]==1.0F && m[14]==0.0F ) {
1326 mat->type = MATRIX_2D_NO_ROT;
1327 }
1328 else {
1329 mat->type = MATRIX_3D_NO_ROT;
1330 }
1331 }
1332 else if (TEST_MAT_FLAGS(mat, MAT_FLAGS_3D)) {
1333 if ( m[ 8]==0.0F
1334 && m[ 9]==0.0F
1335 && m[2]==0.0F && m[6]==0.0F && m[10]==1.0F && m[14]==0.0F) {
1336 mat->type = MATRIX_2D;
1337 }
1338 else {
1339 mat->type = MATRIX_3D;
1340 }
1341 }
1342 else if ( m[4]==0.0F && m[12]==0.0F
1343 && m[1]==0.0F && m[13]==0.0F
1344 && m[2]==0.0F && m[6]==0.0F
1345 && m[3]==0.0F && m[7]==0.0F && m[11]==-1.0F && m[15]==0.0F) {
1346 mat->type = MATRIX_PERSPECTIVE;
1347 }
1348 else {
1349 mat->type = MATRIX_GENERAL;
1350 }
1351 }
1352
1353 /**
1354 * Analyze and update a matrix.
1355 *
1356 * \param mat matrix.
1357 *
1358 * If the matrix type is dirty then calls either analyse_from_scratch() or
1359 * analyse_from_flags() to determine its type, according to whether the flags
1360 * are dirty or not, respectively. If the matrix has an inverse and it's dirty
1361 * then calls matrix_invert(). Finally clears the dirty flags.
1362 */
1363 void
1364 _math_matrix_analyse( GLmatrix *mat )
1365 {
1366 if (mat->flags & MAT_DIRTY_TYPE) {
1367 if (mat->flags & MAT_DIRTY_FLAGS)
1368 analyse_from_scratch( mat );
1369 else
1370 analyse_from_flags( mat );
1371 }
1372
1373 if (mat->inv && (mat->flags & MAT_DIRTY_INVERSE)) {
1374 matrix_invert( mat );
1375 mat->flags &= ~MAT_DIRTY_INVERSE;
1376 }
1377
1378 mat->flags &= ~(MAT_DIRTY_FLAGS | MAT_DIRTY_TYPE);
1379 }
1380
1381 /*@}*/
1382
1383
1384 /**
1385 * Test if the given matrix preserves vector lengths.
1386 */
1387 GLboolean
1388 _math_matrix_is_length_preserving( const GLmatrix *m )
1389 {
1390 return TEST_MAT_FLAGS( m, MAT_FLAGS_LENGTH_PRESERVING);
1391 }
1392
1393
1394 /**
1395 * Test if the given matrix does any rotation.
1396 * (or perhaps if the upper-left 3x3 is non-identity)
1397 */
1398 GLboolean
1399 _math_matrix_has_rotation( const GLmatrix *m )
1400 {
1401 if (m->flags & (MAT_FLAG_GENERAL |
1402 MAT_FLAG_ROTATION |
1403 MAT_FLAG_GENERAL_3D |
1404 MAT_FLAG_PERSPECTIVE))
1405 return GL_TRUE;
1406 else
1407 return GL_FALSE;
1408 }
1409
1410
1411 GLboolean
1412 _math_matrix_is_general_scale( const GLmatrix *m )
1413 {
1414 return (m->flags & MAT_FLAG_GENERAL_SCALE) ? GL_TRUE : GL_FALSE;
1415 }
1416
1417
1418 GLboolean
1419 _math_matrix_is_dirty( const GLmatrix *m )
1420 {
1421 return (m->flags & MAT_DIRTY) ? GL_TRUE : GL_FALSE;
1422 }
1423
1424
1425 /**********************************************************************/
1426 /** \name Matrix setup */
1427 /*@{*/
1428
1429 /**
1430 * Copy a matrix.
1431 *
1432 * \param to destination matrix.
1433 * \param from source matrix.
1434 *
1435 * Copies all fields in GLmatrix, creating an inverse array if necessary.
1436 */
1437 void
1438 _math_matrix_copy( GLmatrix *to, const GLmatrix *from )
1439 {
1440 memcpy( to->m, from->m, sizeof(Identity) );
1441 to->flags = from->flags;
1442 to->type = from->type;
1443
1444 if (to->inv != 0) {
1445 if (from->inv == 0) {
1446 matrix_invert( to );
1447 }
1448 else {
1449 memcpy(to->inv, from->inv, sizeof(GLfloat)*16);
1450 }
1451 }
1452 }
1453
1454 /**
1455 * Loads a matrix array into GLmatrix.
1456 *
1457 * \param m matrix array.
1458 * \param mat matrix.
1459 *
1460 * Copies \p m into GLmatrix::m and marks the MAT_FLAG_GENERAL and MAT_DIRTY
1461 * flags.
1462 */
1463 void
1464 _math_matrix_loadf( GLmatrix *mat, const GLfloat *m )
1465 {
1466 memcpy( mat->m, m, 16*sizeof(GLfloat) );
1467 mat->flags = (MAT_FLAG_GENERAL | MAT_DIRTY);
1468 }
1469
1470 /**
1471 * Matrix constructor.
1472 *
1473 * \param m matrix.
1474 *
1475 * Initialize the GLmatrix fields.
1476 */
1477 void
1478 _math_matrix_ctr( GLmatrix *m )
1479 {
1480 m->m = (GLfloat *) _mesa_align_malloc( 16 * sizeof(GLfloat), 16 );
1481 if (m->m)
1482 memcpy( m->m, Identity, sizeof(Identity) );
1483 m->inv = NULL;
1484 m->type = MATRIX_IDENTITY;
1485 m->flags = 0;
1486 }
1487
1488 /**
1489 * Matrix destructor.
1490 *
1491 * \param m matrix.
1492 *
1493 * Frees the data in a GLmatrix.
1494 */
1495 void
1496 _math_matrix_dtr( GLmatrix *m )
1497 {
1498 if (m->m) {
1499 _mesa_align_free( m->m );
1500 m->m = NULL;
1501 }
1502 if (m->inv) {
1503 _mesa_align_free( m->inv );
1504 m->inv = NULL;
1505 }
1506 }
1507
1508 /**
1509 * Allocate a matrix inverse.
1510 *
1511 * \param m matrix.
1512 *
1513 * Allocates the matrix inverse, GLmatrix::inv, and sets it to Identity.
1514 */
1515 void
1516 _math_matrix_alloc_inv( GLmatrix *m )
1517 {
1518 if (!m->inv) {
1519 m->inv = (GLfloat *) _mesa_align_malloc( 16 * sizeof(GLfloat), 16 );
1520 if (m->inv)
1521 memcpy( m->inv, Identity, 16 * sizeof(GLfloat) );
1522 }
1523 }
1524
1525 /*@}*/
1526
1527
1528 /**********************************************************************/
1529 /** \name Matrix transpose */
1530 /*@{*/
1531
1532 /**
1533 * Transpose a GLfloat matrix.
1534 *
1535 * \param to destination array.
1536 * \param from source array.
1537 */
1538 void
1539 _math_transposef( GLfloat to[16], const GLfloat from[16] )
1540 {
1541 to[0] = from[0];
1542 to[1] = from[4];
1543 to[2] = from[8];
1544 to[3] = from[12];
1545 to[4] = from[1];
1546 to[5] = from[5];
1547 to[6] = from[9];
1548 to[7] = from[13];
1549 to[8] = from[2];
1550 to[9] = from[6];
1551 to[10] = from[10];
1552 to[11] = from[14];
1553 to[12] = from[3];
1554 to[13] = from[7];
1555 to[14] = from[11];
1556 to[15] = from[15];
1557 }
1558
1559 /**
1560 * Transpose a GLdouble matrix.
1561 *
1562 * \param to destination array.
1563 * \param from source array.
1564 */
1565 void
1566 _math_transposed( GLdouble to[16], const GLdouble from[16] )
1567 {
1568 to[0] = from[0];
1569 to[1] = from[4];
1570 to[2] = from[8];
1571 to[3] = from[12];
1572 to[4] = from[1];
1573 to[5] = from[5];
1574 to[6] = from[9];
1575 to[7] = from[13];
1576 to[8] = from[2];
1577 to[9] = from[6];
1578 to[10] = from[10];
1579 to[11] = from[14];
1580 to[12] = from[3];
1581 to[13] = from[7];
1582 to[14] = from[11];
1583 to[15] = from[15];
1584 }
1585
1586 /**
1587 * Transpose a GLdouble matrix and convert to GLfloat.
1588 *
1589 * \param to destination array.
1590 * \param from source array.
1591 */
1592 void
1593 _math_transposefd( GLfloat to[16], const GLdouble from[16] )
1594 {
1595 to[0] = (GLfloat) from[0];
1596 to[1] = (GLfloat) from[4];
1597 to[2] = (GLfloat) from[8];
1598 to[3] = (GLfloat) from[12];
1599 to[4] = (GLfloat) from[1];
1600 to[5] = (GLfloat) from[5];
1601 to[6] = (GLfloat) from[9];
1602 to[7] = (GLfloat) from[13];
1603 to[8] = (GLfloat) from[2];
1604 to[9] = (GLfloat) from[6];
1605 to[10] = (GLfloat) from[10];
1606 to[11] = (GLfloat) from[14];
1607 to[12] = (GLfloat) from[3];
1608 to[13] = (GLfloat) from[7];
1609 to[14] = (GLfloat) from[11];
1610 to[15] = (GLfloat) from[15];
1611 }
1612
1613 /*@}*/
1614
1615
1616 /**
1617 * Transform a 4-element row vector (1x4 matrix) by a 4x4 matrix. This
1618 * function is used for transforming clipping plane equations and spotlight
1619 * directions.
1620 * Mathematically, u = v * m.
1621 * Input: v - input vector
1622 * m - transformation matrix
1623 * Output: u - transformed vector
1624 */
1625 void
1626 _mesa_transform_vector( GLfloat u[4], const GLfloat v[4], const GLfloat m[16] )
1627 {
1628 const GLfloat v0 = v[0], v1 = v[1], v2 = v[2], v3 = v[3];
1629 #define M(row,col) m[row + col*4]
1630 u[0] = v0 * M(0,0) + v1 * M(1,0) + v2 * M(2,0) + v3 * M(3,0);
1631 u[1] = v0 * M(0,1) + v1 * M(1,1) + v2 * M(2,1) + v3 * M(3,1);
1632 u[2] = v0 * M(0,2) + v1 * M(1,2) + v2 * M(2,2) + v3 * M(3,2);
1633 u[3] = v0 * M(0,3) + v1 * M(1,3) + v2 * M(2,3) + v3 * M(3,3);
1634 #undef M
1635 }