c77511e20fe3aa29947323049609f1305bffded1
[reactos.git] / reactos / dll / opengl / mesa / src / glsl / ast_to_hir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file ast_to_hir.c
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27 *
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program. This includes:
30 *
31 * * Symbol table management
32 * * Type checking
33 * * Function binding
34 *
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly. However, this results in frequent changes
37 * to the parser code. Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system. In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
43 *
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating. When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
47 *
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
50 */
51
52 #include "main/core.h" /* for struct gl_extensions */
53 #include "glsl_symbol_table.h"
54 #include "glsl_parser_extras.h"
55 #include "ast.h"
56 #include "glsl_types.h"
57 #include "program/hash_table.h"
58 #include "ir.h"
59
60 void
61 _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
62 {
63 _mesa_glsl_initialize_variables(instructions, state);
64
65 state->symbols->language_version = state->language_version;
66
67 state->current_function = NULL;
68
69 state->toplevel_ir = instructions;
70
71 /* Section 4.2 of the GLSL 1.20 specification states:
72 * "The built-in functions are scoped in a scope outside the global scope
73 * users declare global variables in. That is, a shader's global scope,
74 * available for user-defined functions and global variables, is nested
75 * inside the scope containing the built-in functions."
76 *
77 * Since built-in functions like ftransform() access built-in variables,
78 * it follows that those must be in the outer scope as well.
79 *
80 * We push scope here to create this nesting effect...but don't pop.
81 * This way, a shader's globals are still in the symbol table for use
82 * by the linker.
83 */
84 state->symbols->push_scope();
85
86 foreach_list_typed (ast_node, ast, link, & state->translation_unit)
87 ast->hir(instructions, state);
88
89 detect_recursion_unlinked(state, instructions);
90
91 state->toplevel_ir = NULL;
92 }
93
94
95 /**
96 * If a conversion is available, convert one operand to a different type
97 *
98 * The \c from \c ir_rvalue is converted "in place".
99 *
100 * \param to Type that the operand it to be converted to
101 * \param from Operand that is being converted
102 * \param state GLSL compiler state
103 *
104 * \return
105 * If a conversion is possible (or unnecessary), \c true is returned.
106 * Otherwise \c false is returned.
107 */
108 bool
109 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
110 struct _mesa_glsl_parse_state *state)
111 {
112 void *ctx = state;
113 if (to->base_type == from->type->base_type)
114 return true;
115
116 /* This conversion was added in GLSL 1.20. If the compilation mode is
117 * GLSL 1.10, the conversion is skipped.
118 */
119 if (state->language_version < 120)
120 return false;
121
122 /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
123 *
124 * "There are no implicit array or structure conversions. For
125 * example, an array of int cannot be implicitly converted to an
126 * array of float. There are no implicit conversions between
127 * signed and unsigned integers."
128 */
129 /* FINISHME: The above comment is partially a lie. There is int/uint
130 * FINISHME: conversion for immediate constants.
131 */
132 if (!to->is_float() || !from->type->is_numeric())
133 return false;
134
135 /* Convert to a floating point type with the same number of components
136 * as the original type - i.e. int to float, not int to vec4.
137 */
138 to = glsl_type::get_instance(GLSL_TYPE_FLOAT, from->type->vector_elements,
139 from->type->matrix_columns);
140
141 switch (from->type->base_type) {
142 case GLSL_TYPE_INT:
143 from = new(ctx) ir_expression(ir_unop_i2f, to, from, NULL);
144 break;
145 case GLSL_TYPE_UINT:
146 from = new(ctx) ir_expression(ir_unop_u2f, to, from, NULL);
147 break;
148 case GLSL_TYPE_BOOL:
149 from = new(ctx) ir_expression(ir_unop_b2f, to, from, NULL);
150 break;
151 default:
152 assert(0);
153 }
154
155 return true;
156 }
157
158
159 static const struct glsl_type *
160 arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
161 bool multiply,
162 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
163 {
164 const glsl_type *type_a = value_a->type;
165 const glsl_type *type_b = value_b->type;
166
167 /* From GLSL 1.50 spec, page 56:
168 *
169 * "The arithmetic binary operators add (+), subtract (-),
170 * multiply (*), and divide (/) operate on integer and
171 * floating-point scalars, vectors, and matrices."
172 */
173 if (!type_a->is_numeric() || !type_b->is_numeric()) {
174 _mesa_glsl_error(loc, state,
175 "Operands to arithmetic operators must be numeric");
176 return glsl_type::error_type;
177 }
178
179
180 /* "If one operand is floating-point based and the other is
181 * not, then the conversions from Section 4.1.10 "Implicit
182 * Conversions" are applied to the non-floating-point-based operand."
183 */
184 if (!apply_implicit_conversion(type_a, value_b, state)
185 && !apply_implicit_conversion(type_b, value_a, state)) {
186 _mesa_glsl_error(loc, state,
187 "Could not implicitly convert operands to "
188 "arithmetic operator");
189 return glsl_type::error_type;
190 }
191 type_a = value_a->type;
192 type_b = value_b->type;
193
194 /* "If the operands are integer types, they must both be signed or
195 * both be unsigned."
196 *
197 * From this rule and the preceeding conversion it can be inferred that
198 * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
199 * The is_numeric check above already filtered out the case where either
200 * type is not one of these, so now the base types need only be tested for
201 * equality.
202 */
203 if (type_a->base_type != type_b->base_type) {
204 _mesa_glsl_error(loc, state,
205 "base type mismatch for arithmetic operator");
206 return glsl_type::error_type;
207 }
208
209 /* "All arithmetic binary operators result in the same fundamental type
210 * (signed integer, unsigned integer, or floating-point) as the
211 * operands they operate on, after operand type conversion. After
212 * conversion, the following cases are valid
213 *
214 * * The two operands are scalars. In this case the operation is
215 * applied, resulting in a scalar."
216 */
217 if (type_a->is_scalar() && type_b->is_scalar())
218 return type_a;
219
220 /* "* One operand is a scalar, and the other is a vector or matrix.
221 * In this case, the scalar operation is applied independently to each
222 * component of the vector or matrix, resulting in the same size
223 * vector or matrix."
224 */
225 if (type_a->is_scalar()) {
226 if (!type_b->is_scalar())
227 return type_b;
228 } else if (type_b->is_scalar()) {
229 return type_a;
230 }
231
232 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
233 * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
234 * handled.
235 */
236 assert(!type_a->is_scalar());
237 assert(!type_b->is_scalar());
238
239 /* "* The two operands are vectors of the same size. In this case, the
240 * operation is done component-wise resulting in the same size
241 * vector."
242 */
243 if (type_a->is_vector() && type_b->is_vector()) {
244 if (type_a == type_b) {
245 return type_a;
246 } else {
247 _mesa_glsl_error(loc, state,
248 "vector size mismatch for arithmetic operator");
249 return glsl_type::error_type;
250 }
251 }
252
253 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
254 * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
255 * <vector, vector> have been handled. At least one of the operands must
256 * be matrix. Further, since there are no integer matrix types, the base
257 * type of both operands must be float.
258 */
259 assert(type_a->is_matrix() || type_b->is_matrix());
260 assert(type_a->base_type == GLSL_TYPE_FLOAT);
261 assert(type_b->base_type == GLSL_TYPE_FLOAT);
262
263 /* "* The operator is add (+), subtract (-), or divide (/), and the
264 * operands are matrices with the same number of rows and the same
265 * number of columns. In this case, the operation is done component-
266 * wise resulting in the same size matrix."
267 * * The operator is multiply (*), where both operands are matrices or
268 * one operand is a vector and the other a matrix. A right vector
269 * operand is treated as a column vector and a left vector operand as a
270 * row vector. In all these cases, it is required that the number of
271 * columns of the left operand is equal to the number of rows of the
272 * right operand. Then, the multiply (*) operation does a linear
273 * algebraic multiply, yielding an object that has the same number of
274 * rows as the left operand and the same number of columns as the right
275 * operand. Section 5.10 "Vector and Matrix Operations" explains in
276 * more detail how vectors and matrices are operated on."
277 */
278 if (! multiply) {
279 if (type_a == type_b)
280 return type_a;
281 } else {
282 if (type_a->is_matrix() && type_b->is_matrix()) {
283 /* Matrix multiply. The columns of A must match the rows of B. Given
284 * the other previously tested constraints, this means the vector type
285 * of a row from A must be the same as the vector type of a column from
286 * B.
287 */
288 if (type_a->row_type() == type_b->column_type()) {
289 /* The resulting matrix has the number of columns of matrix B and
290 * the number of rows of matrix A. We get the row count of A by
291 * looking at the size of a vector that makes up a column. The
292 * transpose (size of a row) is done for B.
293 */
294 const glsl_type *const type =
295 glsl_type::get_instance(type_a->base_type,
296 type_a->column_type()->vector_elements,
297 type_b->row_type()->vector_elements);
298 assert(type != glsl_type::error_type);
299
300 return type;
301 }
302 } else if (type_a->is_matrix()) {
303 /* A is a matrix and B is a column vector. Columns of A must match
304 * rows of B. Given the other previously tested constraints, this
305 * means the vector type of a row from A must be the same as the
306 * vector the type of B.
307 */
308 if (type_a->row_type() == type_b) {
309 /* The resulting vector has a number of elements equal to
310 * the number of rows of matrix A. */
311 const glsl_type *const type =
312 glsl_type::get_instance(type_a->base_type,
313 type_a->column_type()->vector_elements,
314 1);
315 assert(type != glsl_type::error_type);
316
317 return type;
318 }
319 } else {
320 assert(type_b->is_matrix());
321
322 /* A is a row vector and B is a matrix. Columns of A must match rows
323 * of B. Given the other previously tested constraints, this means
324 * the type of A must be the same as the vector type of a column from
325 * B.
326 */
327 if (type_a == type_b->column_type()) {
328 /* The resulting vector has a number of elements equal to
329 * the number of columns of matrix B. */
330 const glsl_type *const type =
331 glsl_type::get_instance(type_a->base_type,
332 type_b->row_type()->vector_elements,
333 1);
334 assert(type != glsl_type::error_type);
335
336 return type;
337 }
338 }
339
340 _mesa_glsl_error(loc, state, "size mismatch for matrix multiplication");
341 return glsl_type::error_type;
342 }
343
344
345 /* "All other cases are illegal."
346 */
347 _mesa_glsl_error(loc, state, "type mismatch");
348 return glsl_type::error_type;
349 }
350
351
352 static const struct glsl_type *
353 unary_arithmetic_result_type(const struct glsl_type *type,
354 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
355 {
356 /* From GLSL 1.50 spec, page 57:
357 *
358 * "The arithmetic unary operators negate (-), post- and pre-increment
359 * and decrement (-- and ++) operate on integer or floating-point
360 * values (including vectors and matrices). All unary operators work
361 * component-wise on their operands. These result with the same type
362 * they operated on."
363 */
364 if (!type->is_numeric()) {
365 _mesa_glsl_error(loc, state,
366 "Operands to arithmetic operators must be numeric");
367 return glsl_type::error_type;
368 }
369
370 return type;
371 }
372
373 /**
374 * \brief Return the result type of a bit-logic operation.
375 *
376 * If the given types to the bit-logic operator are invalid, return
377 * glsl_type::error_type.
378 *
379 * \param type_a Type of LHS of bit-logic op
380 * \param type_b Type of RHS of bit-logic op
381 */
382 static const struct glsl_type *
383 bit_logic_result_type(const struct glsl_type *type_a,
384 const struct glsl_type *type_b,
385 ast_operators op,
386 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
387 {
388 if (state->language_version < 130) {
389 _mesa_glsl_error(loc, state, "bit operations require GLSL 1.30");
390 return glsl_type::error_type;
391 }
392
393 /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
394 *
395 * "The bitwise operators and (&), exclusive-or (^), and inclusive-or
396 * (|). The operands must be of type signed or unsigned integers or
397 * integer vectors."
398 */
399 if (!type_a->is_integer()) {
400 _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
401 ast_expression::operator_string(op));
402 return glsl_type::error_type;
403 }
404 if (!type_b->is_integer()) {
405 _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
406 ast_expression::operator_string(op));
407 return glsl_type::error_type;
408 }
409
410 /* "The fundamental types of the operands (signed or unsigned) must
411 * match,"
412 */
413 if (type_a->base_type != type_b->base_type) {
414 _mesa_glsl_error(loc, state, "operands of `%s' must have the same "
415 "base type", ast_expression::operator_string(op));
416 return glsl_type::error_type;
417 }
418
419 /* "The operands cannot be vectors of differing size." */
420 if (type_a->is_vector() &&
421 type_b->is_vector() &&
422 type_a->vector_elements != type_b->vector_elements) {
423 _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
424 "different sizes", ast_expression::operator_string(op));
425 return glsl_type::error_type;
426 }
427
428 /* "If one operand is a scalar and the other a vector, the scalar is
429 * applied component-wise to the vector, resulting in the same type as
430 * the vector. The fundamental types of the operands [...] will be the
431 * resulting fundamental type."
432 */
433 if (type_a->is_scalar())
434 return type_b;
435 else
436 return type_a;
437 }
438
439 static const struct glsl_type *
440 modulus_result_type(const struct glsl_type *type_a,
441 const struct glsl_type *type_b,
442 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
443 {
444 if (state->language_version < 130) {
445 _mesa_glsl_error(loc, state,
446 "operator '%%' is reserved in %s",
447 state->version_string);
448 return glsl_type::error_type;
449 }
450
451 /* From GLSL 1.50 spec, page 56:
452 * "The operator modulus (%) operates on signed or unsigned integers or
453 * integer vectors. The operand types must both be signed or both be
454 * unsigned."
455 */
456 if (!type_a->is_integer()) {
457 _mesa_glsl_error(loc, state, "LHS of operator %% must be an integer.");
458 return glsl_type::error_type;
459 }
460 if (!type_b->is_integer()) {
461 _mesa_glsl_error(loc, state, "RHS of operator %% must be an integer.");
462 return glsl_type::error_type;
463 }
464 if (type_a->base_type != type_b->base_type) {
465 _mesa_glsl_error(loc, state,
466 "operands of %% must have the same base type");
467 return glsl_type::error_type;
468 }
469
470 /* "The operands cannot be vectors of differing size. If one operand is
471 * a scalar and the other vector, then the scalar is applied component-
472 * wise to the vector, resulting in the same type as the vector. If both
473 * are vectors of the same size, the result is computed component-wise."
474 */
475 if (type_a->is_vector()) {
476 if (!type_b->is_vector()
477 || (type_a->vector_elements == type_b->vector_elements))
478 return type_a;
479 } else
480 return type_b;
481
482 /* "The operator modulus (%) is not defined for any other data types
483 * (non-integer types)."
484 */
485 _mesa_glsl_error(loc, state, "type mismatch");
486 return glsl_type::error_type;
487 }
488
489
490 static const struct glsl_type *
491 relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
492 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
493 {
494 const glsl_type *type_a = value_a->type;
495 const glsl_type *type_b = value_b->type;
496
497 /* From GLSL 1.50 spec, page 56:
498 * "The relational operators greater than (>), less than (<), greater
499 * than or equal (>=), and less than or equal (<=) operate only on
500 * scalar integer and scalar floating-point expressions."
501 */
502 if (!type_a->is_numeric()
503 || !type_b->is_numeric()
504 || !type_a->is_scalar()
505 || !type_b->is_scalar()) {
506 _mesa_glsl_error(loc, state,
507 "Operands to relational operators must be scalar and "
508 "numeric");
509 return glsl_type::error_type;
510 }
511
512 /* "Either the operands' types must match, or the conversions from
513 * Section 4.1.10 "Implicit Conversions" will be applied to the integer
514 * operand, after which the types must match."
515 */
516 if (!apply_implicit_conversion(type_a, value_b, state)
517 && !apply_implicit_conversion(type_b, value_a, state)) {
518 _mesa_glsl_error(loc, state,
519 "Could not implicitly convert operands to "
520 "relational operator");
521 return glsl_type::error_type;
522 }
523 type_a = value_a->type;
524 type_b = value_b->type;
525
526 if (type_a->base_type != type_b->base_type) {
527 _mesa_glsl_error(loc, state, "base type mismatch");
528 return glsl_type::error_type;
529 }
530
531 /* "The result is scalar Boolean."
532 */
533 return glsl_type::bool_type;
534 }
535
536 /**
537 * \brief Return the result type of a bit-shift operation.
538 *
539 * If the given types to the bit-shift operator are invalid, return
540 * glsl_type::error_type.
541 *
542 * \param type_a Type of LHS of bit-shift op
543 * \param type_b Type of RHS of bit-shift op
544 */
545 static const struct glsl_type *
546 shift_result_type(const struct glsl_type *type_a,
547 const struct glsl_type *type_b,
548 ast_operators op,
549 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
550 {
551 if (state->language_version < 130) {
552 _mesa_glsl_error(loc, state, "bit operations require GLSL 1.30");
553 return glsl_type::error_type;
554 }
555
556 /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
557 *
558 * "The shift operators (<<) and (>>). For both operators, the operands
559 * must be signed or unsigned integers or integer vectors. One operand
560 * can be signed while the other is unsigned."
561 */
562 if (!type_a->is_integer()) {
563 _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
564 "integer vector", ast_expression::operator_string(op));
565 return glsl_type::error_type;
566
567 }
568 if (!type_b->is_integer()) {
569 _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
570 "integer vector", ast_expression::operator_string(op));
571 return glsl_type::error_type;
572 }
573
574 /* "If the first operand is a scalar, the second operand has to be
575 * a scalar as well."
576 */
577 if (type_a->is_scalar() && !type_b->is_scalar()) {
578 _mesa_glsl_error(loc, state, "If the first operand of %s is scalar, the "
579 "second must be scalar as well",
580 ast_expression::operator_string(op));
581 return glsl_type::error_type;
582 }
583
584 /* If both operands are vectors, check that they have same number of
585 * elements.
586 */
587 if (type_a->is_vector() &&
588 type_b->is_vector() &&
589 type_a->vector_elements != type_b->vector_elements) {
590 _mesa_glsl_error(loc, state, "Vector operands to operator %s must "
591 "have same number of elements",
592 ast_expression::operator_string(op));
593 return glsl_type::error_type;
594 }
595
596 /* "In all cases, the resulting type will be the same type as the left
597 * operand."
598 */
599 return type_a;
600 }
601
602 /**
603 * Validates that a value can be assigned to a location with a specified type
604 *
605 * Validates that \c rhs can be assigned to some location. If the types are
606 * not an exact match but an automatic conversion is possible, \c rhs will be
607 * converted.
608 *
609 * \return
610 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
611 * Otherwise the actual RHS to be assigned will be returned. This may be
612 * \c rhs, or it may be \c rhs after some type conversion.
613 *
614 * \note
615 * In addition to being used for assignments, this function is used to
616 * type-check return values.
617 */
618 ir_rvalue *
619 validate_assignment(struct _mesa_glsl_parse_state *state,
620 const glsl_type *lhs_type, ir_rvalue *rhs,
621 bool is_initializer)
622 {
623 /* If there is already some error in the RHS, just return it. Anything
624 * else will lead to an avalanche of error message back to the user.
625 */
626 if (rhs->type->is_error())
627 return rhs;
628
629 /* If the types are identical, the assignment can trivially proceed.
630 */
631 if (rhs->type == lhs_type)
632 return rhs;
633
634 /* If the array element types are the same and the size of the LHS is zero,
635 * the assignment is okay for initializers embedded in variable
636 * declarations.
637 *
638 * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
639 * is handled by ir_dereference::is_lvalue.
640 */
641 if (is_initializer && lhs_type->is_array() && rhs->type->is_array()
642 && (lhs_type->element_type() == rhs->type->element_type())
643 && (lhs_type->array_size() == 0)) {
644 return rhs;
645 }
646
647 /* Check for implicit conversion in GLSL 1.20 */
648 if (apply_implicit_conversion(lhs_type, rhs, state)) {
649 if (rhs->type == lhs_type)
650 return rhs;
651 }
652
653 return NULL;
654 }
655
656 static void
657 mark_whole_array_access(ir_rvalue *access)
658 {
659 ir_dereference_variable *deref = access->as_dereference_variable();
660
661 if (deref && deref->var) {
662 deref->var->max_array_access = deref->type->length - 1;
663 }
664 }
665
666 ir_rvalue *
667 do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
668 const char *non_lvalue_description,
669 ir_rvalue *lhs, ir_rvalue *rhs, bool is_initializer,
670 YYLTYPE lhs_loc)
671 {
672 void *ctx = state;
673 bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
674
675 if (!error_emitted) {
676 if (non_lvalue_description != NULL) {
677 _mesa_glsl_error(&lhs_loc, state,
678 "assignment to %s",
679 non_lvalue_description);
680 error_emitted = true;
681 } else if (lhs->variable_referenced() != NULL
682 && lhs->variable_referenced()->read_only) {
683 _mesa_glsl_error(&lhs_loc, state,
684 "assignment to read-only variable '%s'",
685 lhs->variable_referenced()->name);
686 error_emitted = true;
687
688 } else if (state->language_version <= 110 && lhs->type->is_array()) {
689 /* From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
690 *
691 * "Other binary or unary expressions, non-dereferenced
692 * arrays, function names, swizzles with repeated fields,
693 * and constants cannot be l-values."
694 */
695 _mesa_glsl_error(&lhs_loc, state, "whole array assignment is not "
696 "allowed in GLSL 1.10 or GLSL ES 1.00.");
697 error_emitted = true;
698 } else if (!lhs->is_lvalue()) {
699 _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
700 error_emitted = true;
701 }
702 }
703
704 ir_rvalue *new_rhs =
705 validate_assignment(state, lhs->type, rhs, is_initializer);
706 if (new_rhs == NULL) {
707 _mesa_glsl_error(& lhs_loc, state, "type mismatch");
708 } else {
709 rhs = new_rhs;
710
711 /* If the LHS array was not declared with a size, it takes it size from
712 * the RHS. If the LHS is an l-value and a whole array, it must be a
713 * dereference of a variable. Any other case would require that the LHS
714 * is either not an l-value or not a whole array.
715 */
716 if (lhs->type->array_size() == 0) {
717 ir_dereference *const d = lhs->as_dereference();
718
719 assert(d != NULL);
720
721 ir_variable *const var = d->variable_referenced();
722
723 assert(var != NULL);
724
725 if (var->max_array_access >= unsigned(rhs->type->array_size())) {
726 /* FINISHME: This should actually log the location of the RHS. */
727 _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
728 "previous access",
729 var->max_array_access);
730 }
731
732 var->type = glsl_type::get_array_instance(lhs->type->element_type(),
733 rhs->type->array_size());
734 d->type = var->type;
735 }
736 mark_whole_array_access(rhs);
737 mark_whole_array_access(lhs);
738 }
739
740 /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
741 * but not post_inc) need the converted assigned value as an rvalue
742 * to handle things like:
743 *
744 * i = j += 1;
745 *
746 * So we always just store the computed value being assigned to a
747 * temporary and return a deref of that temporary. If the rvalue
748 * ends up not being used, the temp will get copy-propagated out.
749 */
750 ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
751 ir_var_temporary);
752 ir_dereference_variable *deref_var = new(ctx) ir_dereference_variable(var);
753 instructions->push_tail(var);
754 instructions->push_tail(new(ctx) ir_assignment(deref_var,
755 rhs,
756 NULL));
757 deref_var = new(ctx) ir_dereference_variable(var);
758
759 if (!error_emitted)
760 instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var, NULL));
761
762 return new(ctx) ir_dereference_variable(var);
763 }
764
765 static ir_rvalue *
766 get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
767 {
768 void *ctx = ralloc_parent(lvalue);
769 ir_variable *var;
770
771 var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
772 ir_var_temporary);
773 instructions->push_tail(var);
774 var->mode = ir_var_auto;
775
776 instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
777 lvalue, NULL));
778
779 return new(ctx) ir_dereference_variable(var);
780 }
781
782
783 ir_rvalue *
784 ast_node::hir(exec_list *instructions,
785 struct _mesa_glsl_parse_state *state)
786 {
787 (void) instructions;
788 (void) state;
789
790 return NULL;
791 }
792
793 static ir_rvalue *
794 do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
795 {
796 int join_op;
797 ir_rvalue *cmp = NULL;
798
799 if (operation == ir_binop_all_equal)
800 join_op = ir_binop_logic_and;
801 else
802 join_op = ir_binop_logic_or;
803
804 switch (op0->type->base_type) {
805 case GLSL_TYPE_FLOAT:
806 case GLSL_TYPE_UINT:
807 case GLSL_TYPE_INT:
808 case GLSL_TYPE_BOOL:
809 return new(mem_ctx) ir_expression(operation, op0, op1);
810
811 case GLSL_TYPE_ARRAY: {
812 for (unsigned int i = 0; i < op0->type->length; i++) {
813 ir_rvalue *e0, *e1, *result;
814
815 e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
816 new(mem_ctx) ir_constant(i));
817 e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
818 new(mem_ctx) ir_constant(i));
819 result = do_comparison(mem_ctx, operation, e0, e1);
820
821 if (cmp) {
822 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
823 } else {
824 cmp = result;
825 }
826 }
827
828 mark_whole_array_access(op0);
829 mark_whole_array_access(op1);
830 break;
831 }
832
833 case GLSL_TYPE_STRUCT: {
834 for (unsigned int i = 0; i < op0->type->length; i++) {
835 ir_rvalue *e0, *e1, *result;
836 const char *field_name = op0->type->fields.structure[i].name;
837
838 e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
839 field_name);
840 e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
841 field_name);
842 result = do_comparison(mem_ctx, operation, e0, e1);
843
844 if (cmp) {
845 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
846 } else {
847 cmp = result;
848 }
849 }
850 break;
851 }
852
853 case GLSL_TYPE_ERROR:
854 case GLSL_TYPE_VOID:
855 case GLSL_TYPE_SAMPLER:
856 /* I assume a comparison of a struct containing a sampler just
857 * ignores the sampler present in the type.
858 */
859 break;
860
861 default:
862 assert(!"Should not get here.");
863 break;
864 }
865
866 if (cmp == NULL)
867 cmp = new(mem_ctx) ir_constant(true);
868
869 return cmp;
870 }
871
872 /* For logical operations, we want to ensure that the operands are
873 * scalar booleans. If it isn't, emit an error and return a constant
874 * boolean to avoid triggering cascading error messages.
875 */
876 ir_rvalue *
877 get_scalar_boolean_operand(exec_list *instructions,
878 struct _mesa_glsl_parse_state *state,
879 ast_expression *parent_expr,
880 int operand,
881 const char *operand_name,
882 bool *error_emitted)
883 {
884 ast_expression *expr = parent_expr->subexpressions[operand];
885 void *ctx = state;
886 ir_rvalue *val = expr->hir(instructions, state);
887
888 if (val->type->is_boolean() && val->type->is_scalar())
889 return val;
890
891 if (!*error_emitted) {
892 YYLTYPE loc = expr->get_location();
893 _mesa_glsl_error(&loc, state, "%s of `%s' must be scalar boolean",
894 operand_name,
895 parent_expr->operator_string(parent_expr->oper));
896 *error_emitted = true;
897 }
898
899 return new(ctx) ir_constant(true);
900 }
901
902 /**
903 * If name refers to a builtin array whose maximum allowed size is less than
904 * size, report an error and return true. Otherwise return false.
905 */
906 static bool
907 check_builtin_array_max_size(const char *name, unsigned size,
908 YYLTYPE loc, struct _mesa_glsl_parse_state *state)
909 {
910 if ((strcmp("gl_TexCoord", name) == 0)
911 && (size > state->Const.MaxTextureCoords)) {
912 /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
913 *
914 * "The size [of gl_TexCoord] can be at most
915 * gl_MaxTextureCoords."
916 */
917 _mesa_glsl_error(&loc, state, "`gl_TexCoord' array size cannot "
918 "be larger than gl_MaxTextureCoords (%u)\n",
919 state->Const.MaxTextureCoords);
920 return true;
921 } else if (strcmp("gl_ClipDistance", name) == 0
922 && size > state->Const.MaxClipPlanes) {
923 /* From section 7.1 (Vertex Shader Special Variables) of the
924 * GLSL 1.30 spec:
925 *
926 * "The gl_ClipDistance array is predeclared as unsized and
927 * must be sized by the shader either redeclaring it with a
928 * size or indexing it only with integral constant
929 * expressions. ... The size can be at most
930 * gl_MaxClipDistances."
931 */
932 _mesa_glsl_error(&loc, state, "`gl_ClipDistance' array size cannot "
933 "be larger than gl_MaxClipDistances (%u)\n",
934 state->Const.MaxClipPlanes);
935 return true;
936 }
937 return false;
938 }
939
940 /**
941 * Create the constant 1, of a which is appropriate for incrementing and
942 * decrementing values of the given GLSL type. For example, if type is vec4,
943 * this creates a constant value of 1.0 having type float.
944 *
945 * If the given type is invalid for increment and decrement operators, return
946 * a floating point 1--the error will be detected later.
947 */
948 static ir_rvalue *
949 constant_one_for_inc_dec(void *ctx, const glsl_type *type)
950 {
951 switch (type->base_type) {
952 case GLSL_TYPE_UINT:
953 return new(ctx) ir_constant((unsigned) 1);
954 case GLSL_TYPE_INT:
955 return new(ctx) ir_constant(1);
956 default:
957 case GLSL_TYPE_FLOAT:
958 return new(ctx) ir_constant(1.0f);
959 }
960 }
961
962 ir_rvalue *
963 ast_expression::hir(exec_list *instructions,
964 struct _mesa_glsl_parse_state *state)
965 {
966 void *ctx = state;
967 static const int operations[AST_NUM_OPERATORS] = {
968 -1, /* ast_assign doesn't convert to ir_expression. */
969 -1, /* ast_plus doesn't convert to ir_expression. */
970 ir_unop_neg,
971 ir_binop_add,
972 ir_binop_sub,
973 ir_binop_mul,
974 ir_binop_div,
975 ir_binop_mod,
976 ir_binop_lshift,
977 ir_binop_rshift,
978 ir_binop_less,
979 ir_binop_greater,
980 ir_binop_lequal,
981 ir_binop_gequal,
982 ir_binop_all_equal,
983 ir_binop_any_nequal,
984 ir_binop_bit_and,
985 ir_binop_bit_xor,
986 ir_binop_bit_or,
987 ir_unop_bit_not,
988 ir_binop_logic_and,
989 ir_binop_logic_xor,
990 ir_binop_logic_or,
991 ir_unop_logic_not,
992
993 /* Note: The following block of expression types actually convert
994 * to multiple IR instructions.
995 */
996 ir_binop_mul, /* ast_mul_assign */
997 ir_binop_div, /* ast_div_assign */
998 ir_binop_mod, /* ast_mod_assign */
999 ir_binop_add, /* ast_add_assign */
1000 ir_binop_sub, /* ast_sub_assign */
1001 ir_binop_lshift, /* ast_ls_assign */
1002 ir_binop_rshift, /* ast_rs_assign */
1003 ir_binop_bit_and, /* ast_and_assign */
1004 ir_binop_bit_xor, /* ast_xor_assign */
1005 ir_binop_bit_or, /* ast_or_assign */
1006
1007 -1, /* ast_conditional doesn't convert to ir_expression. */
1008 ir_binop_add, /* ast_pre_inc. */
1009 ir_binop_sub, /* ast_pre_dec. */
1010 ir_binop_add, /* ast_post_inc. */
1011 ir_binop_sub, /* ast_post_dec. */
1012 -1, /* ast_field_selection doesn't conv to ir_expression. */
1013 -1, /* ast_array_index doesn't convert to ir_expression. */
1014 -1, /* ast_function_call doesn't conv to ir_expression. */
1015 -1, /* ast_identifier doesn't convert to ir_expression. */
1016 -1, /* ast_int_constant doesn't convert to ir_expression. */
1017 -1, /* ast_uint_constant doesn't conv to ir_expression. */
1018 -1, /* ast_float_constant doesn't conv to ir_expression. */
1019 -1, /* ast_bool_constant doesn't conv to ir_expression. */
1020 -1, /* ast_sequence doesn't convert to ir_expression. */
1021 };
1022 ir_rvalue *result = NULL;
1023 ir_rvalue *op[3];
1024 const struct glsl_type *type; /* a temporary variable for switch cases */
1025 bool error_emitted = false;
1026 YYLTYPE loc;
1027
1028 loc = this->get_location();
1029
1030 switch (this->oper) {
1031 case ast_assign: {
1032 op[0] = this->subexpressions[0]->hir(instructions, state);
1033 op[1] = this->subexpressions[1]->hir(instructions, state);
1034
1035 result = do_assignment(instructions, state,
1036 this->subexpressions[0]->non_lvalue_description,
1037 op[0], op[1], false,
1038 this->subexpressions[0]->get_location());
1039 error_emitted = result->type->is_error();
1040 break;
1041 }
1042
1043 case ast_plus:
1044 op[0] = this->subexpressions[0]->hir(instructions, state);
1045
1046 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1047
1048 error_emitted = type->is_error();
1049
1050 result = op[0];
1051 break;
1052
1053 case ast_neg:
1054 op[0] = this->subexpressions[0]->hir(instructions, state);
1055
1056 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1057
1058 error_emitted = type->is_error();
1059
1060 result = new(ctx) ir_expression(operations[this->oper], type,
1061 op[0], NULL);
1062 break;
1063
1064 case ast_add:
1065 case ast_sub:
1066 case ast_mul:
1067 case ast_div:
1068 op[0] = this->subexpressions[0]->hir(instructions, state);
1069 op[1] = this->subexpressions[1]->hir(instructions, state);
1070
1071 type = arithmetic_result_type(op[0], op[1],
1072 (this->oper == ast_mul),
1073 state, & loc);
1074 error_emitted = type->is_error();
1075
1076 result = new(ctx) ir_expression(operations[this->oper], type,
1077 op[0], op[1]);
1078 break;
1079
1080 case ast_mod:
1081 op[0] = this->subexpressions[0]->hir(instructions, state);
1082 op[1] = this->subexpressions[1]->hir(instructions, state);
1083
1084 type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
1085
1086 assert(operations[this->oper] == ir_binop_mod);
1087
1088 result = new(ctx) ir_expression(operations[this->oper], type,
1089 op[0], op[1]);
1090 error_emitted = type->is_error();
1091 break;
1092
1093 case ast_lshift:
1094 case ast_rshift:
1095 if (state->language_version < 130) {
1096 _mesa_glsl_error(&loc, state, "operator %s requires GLSL 1.30",
1097 operator_string(this->oper));
1098 error_emitted = true;
1099 }
1100
1101 op[0] = this->subexpressions[0]->hir(instructions, state);
1102 op[1] = this->subexpressions[1]->hir(instructions, state);
1103 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1104 &loc);
1105 result = new(ctx) ir_expression(operations[this->oper], type,
1106 op[0], op[1]);
1107 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1108 break;
1109
1110 case ast_less:
1111 case ast_greater:
1112 case ast_lequal:
1113 case ast_gequal:
1114 op[0] = this->subexpressions[0]->hir(instructions, state);
1115 op[1] = this->subexpressions[1]->hir(instructions, state);
1116
1117 type = relational_result_type(op[0], op[1], state, & loc);
1118
1119 /* The relational operators must either generate an error or result
1120 * in a scalar boolean. See page 57 of the GLSL 1.50 spec.
1121 */
1122 assert(type->is_error()
1123 || ((type->base_type == GLSL_TYPE_BOOL)
1124 && type->is_scalar()));
1125
1126 result = new(ctx) ir_expression(operations[this->oper], type,
1127 op[0], op[1]);
1128 error_emitted = type->is_error();
1129 break;
1130
1131 case ast_nequal:
1132 case ast_equal:
1133 op[0] = this->subexpressions[0]->hir(instructions, state);
1134 op[1] = this->subexpressions[1]->hir(instructions, state);
1135
1136 /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
1137 *
1138 * "The equality operators equal (==), and not equal (!=)
1139 * operate on all types. They result in a scalar Boolean. If
1140 * the operand types do not match, then there must be a
1141 * conversion from Section 4.1.10 "Implicit Conversions"
1142 * applied to one operand that can make them match, in which
1143 * case this conversion is done."
1144 */
1145 if ((!apply_implicit_conversion(op[0]->type, op[1], state)
1146 && !apply_implicit_conversion(op[1]->type, op[0], state))
1147 || (op[0]->type != op[1]->type)) {
1148 _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
1149 "type", (this->oper == ast_equal) ? "==" : "!=");
1150 error_emitted = true;
1151 } else if ((state->language_version <= 110)
1152 && (op[0]->type->is_array() || op[1]->type->is_array())) {
1153 _mesa_glsl_error(& loc, state, "array comparisons forbidden in "
1154 "GLSL 1.10");
1155 error_emitted = true;
1156 }
1157
1158 if (error_emitted) {
1159 result = new(ctx) ir_constant(false);
1160 } else {
1161 result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
1162 assert(result->type == glsl_type::bool_type);
1163 }
1164 break;
1165
1166 case ast_bit_and:
1167 case ast_bit_xor:
1168 case ast_bit_or:
1169 op[0] = this->subexpressions[0]->hir(instructions, state);
1170 op[1] = this->subexpressions[1]->hir(instructions, state);
1171 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1172 state, &loc);
1173 result = new(ctx) ir_expression(operations[this->oper], type,
1174 op[0], op[1]);
1175 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1176 break;
1177
1178 case ast_bit_not:
1179 op[0] = this->subexpressions[0]->hir(instructions, state);
1180
1181 if (state->language_version < 130) {
1182 _mesa_glsl_error(&loc, state, "bit-wise operations require GLSL 1.30");
1183 error_emitted = true;
1184 }
1185
1186 if (!op[0]->type->is_integer()) {
1187 _mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
1188 error_emitted = true;
1189 }
1190
1191 type = error_emitted ? glsl_type::error_type : op[0]->type;
1192 result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
1193 break;
1194
1195 case ast_logic_and: {
1196 exec_list rhs_instructions;
1197 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1198 "LHS", &error_emitted);
1199 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1200 "RHS", &error_emitted);
1201
1202 ir_constant *op0_const = op[0]->constant_expression_value();
1203 if (op0_const) {
1204 if (op0_const->value.b[0]) {
1205 instructions->append_list(&rhs_instructions);
1206 result = op[1];
1207 } else {
1208 result = op0_const;
1209 }
1210 type = glsl_type::bool_type;
1211 } else {
1212 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1213 "and_tmp",
1214 ir_var_temporary);
1215 instructions->push_tail(tmp);
1216
1217 ir_if *const stmt = new(ctx) ir_if(op[0]);
1218 instructions->push_tail(stmt);
1219
1220 stmt->then_instructions.append_list(&rhs_instructions);
1221 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1222 ir_assignment *const then_assign =
1223 new(ctx) ir_assignment(then_deref, op[1], NULL);
1224 stmt->then_instructions.push_tail(then_assign);
1225
1226 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1227 ir_assignment *const else_assign =
1228 new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false), NULL);
1229 stmt->else_instructions.push_tail(else_assign);
1230
1231 result = new(ctx) ir_dereference_variable(tmp);
1232 type = tmp->type;
1233 }
1234 break;
1235 }
1236
1237 case ast_logic_or: {
1238 exec_list rhs_instructions;
1239 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1240 "LHS", &error_emitted);
1241 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1242 "RHS", &error_emitted);
1243
1244 ir_constant *op0_const = op[0]->constant_expression_value();
1245 if (op0_const) {
1246 if (op0_const->value.b[0]) {
1247 result = op0_const;
1248 } else {
1249 result = op[1];
1250 }
1251 type = glsl_type::bool_type;
1252 } else {
1253 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1254 "or_tmp",
1255 ir_var_temporary);
1256 instructions->push_tail(tmp);
1257
1258 ir_if *const stmt = new(ctx) ir_if(op[0]);
1259 instructions->push_tail(stmt);
1260
1261 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1262 ir_assignment *const then_assign =
1263 new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true), NULL);
1264 stmt->then_instructions.push_tail(then_assign);
1265
1266 stmt->else_instructions.append_list(&rhs_instructions);
1267 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1268 ir_assignment *const else_assign =
1269 new(ctx) ir_assignment(else_deref, op[1], NULL);
1270 stmt->else_instructions.push_tail(else_assign);
1271
1272 result = new(ctx) ir_dereference_variable(tmp);
1273 type = tmp->type;
1274 }
1275 break;
1276 }
1277
1278 case ast_logic_xor:
1279 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1280 *
1281 * "The logical binary operators and (&&), or ( | | ), and
1282 * exclusive or (^^). They operate only on two Boolean
1283 * expressions and result in a Boolean expression."
1284 */
1285 op[0] = get_scalar_boolean_operand(instructions, state, this, 0, "LHS",
1286 &error_emitted);
1287 op[1] = get_scalar_boolean_operand(instructions, state, this, 1, "RHS",
1288 &error_emitted);
1289
1290 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1291 op[0], op[1]);
1292 break;
1293
1294 case ast_logic_not:
1295 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1296 "operand", &error_emitted);
1297
1298 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1299 op[0], NULL);
1300 break;
1301
1302 case ast_mul_assign:
1303 case ast_div_assign:
1304 case ast_add_assign:
1305 case ast_sub_assign: {
1306 op[0] = this->subexpressions[0]->hir(instructions, state);
1307 op[1] = this->subexpressions[1]->hir(instructions, state);
1308
1309 type = arithmetic_result_type(op[0], op[1],
1310 (this->oper == ast_mul_assign),
1311 state, & loc);
1312
1313 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1314 op[0], op[1]);
1315
1316 result = do_assignment(instructions, state,
1317 this->subexpressions[0]->non_lvalue_description,
1318 op[0]->clone(ctx, NULL), temp_rhs, false,
1319 this->subexpressions[0]->get_location());
1320 error_emitted = (op[0]->type->is_error());
1321
1322 /* GLSL 1.10 does not allow array assignment. However, we don't have to
1323 * explicitly test for this because none of the binary expression
1324 * operators allow array operands either.
1325 */
1326
1327 break;
1328 }
1329
1330 case ast_mod_assign: {
1331 op[0] = this->subexpressions[0]->hir(instructions, state);
1332 op[1] = this->subexpressions[1]->hir(instructions, state);
1333
1334 type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
1335
1336 assert(operations[this->oper] == ir_binop_mod);
1337
1338 ir_rvalue *temp_rhs;
1339 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1340 op[0], op[1]);
1341
1342 result = do_assignment(instructions, state,
1343 this->subexpressions[0]->non_lvalue_description,
1344 op[0]->clone(ctx, NULL), temp_rhs, false,
1345 this->subexpressions[0]->get_location());
1346 error_emitted = type->is_error();
1347 break;
1348 }
1349
1350 case ast_ls_assign:
1351 case ast_rs_assign: {
1352 op[0] = this->subexpressions[0]->hir(instructions, state);
1353 op[1] = this->subexpressions[1]->hir(instructions, state);
1354 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1355 &loc);
1356 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1357 type, op[0], op[1]);
1358 result = do_assignment(instructions, state,
1359 this->subexpressions[0]->non_lvalue_description,
1360 op[0]->clone(ctx, NULL), temp_rhs, false,
1361 this->subexpressions[0]->get_location());
1362 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1363 break;
1364 }
1365
1366 case ast_and_assign:
1367 case ast_xor_assign:
1368 case ast_or_assign: {
1369 op[0] = this->subexpressions[0]->hir(instructions, state);
1370 op[1] = this->subexpressions[1]->hir(instructions, state);
1371 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1372 state, &loc);
1373 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1374 type, op[0], op[1]);
1375 result = do_assignment(instructions, state,
1376 this->subexpressions[0]->non_lvalue_description,
1377 op[0]->clone(ctx, NULL), temp_rhs, false,
1378 this->subexpressions[0]->get_location());
1379 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1380 break;
1381 }
1382
1383 case ast_conditional: {
1384 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1385 *
1386 * "The ternary selection operator (?:). It operates on three
1387 * expressions (exp1 ? exp2 : exp3). This operator evaluates the
1388 * first expression, which must result in a scalar Boolean."
1389 */
1390 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1391 "condition", &error_emitted);
1392
1393 /* The :? operator is implemented by generating an anonymous temporary
1394 * followed by an if-statement. The last instruction in each branch of
1395 * the if-statement assigns a value to the anonymous temporary. This
1396 * temporary is the r-value of the expression.
1397 */
1398 exec_list then_instructions;
1399 exec_list else_instructions;
1400
1401 op[1] = this->subexpressions[1]->hir(&then_instructions, state);
1402 op[2] = this->subexpressions[2]->hir(&else_instructions, state);
1403
1404 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1405 *
1406 * "The second and third expressions can be any type, as
1407 * long their types match, or there is a conversion in
1408 * Section 4.1.10 "Implicit Conversions" that can be applied
1409 * to one of the expressions to make their types match. This
1410 * resulting matching type is the type of the entire
1411 * expression."
1412 */
1413 if ((!apply_implicit_conversion(op[1]->type, op[2], state)
1414 && !apply_implicit_conversion(op[2]->type, op[1], state))
1415 || (op[1]->type != op[2]->type)) {
1416 YYLTYPE loc = this->subexpressions[1]->get_location();
1417
1418 _mesa_glsl_error(& loc, state, "Second and third operands of ?: "
1419 "operator must have matching types.");
1420 error_emitted = true;
1421 type = glsl_type::error_type;
1422 } else {
1423 type = op[1]->type;
1424 }
1425
1426 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1427 *
1428 * "The second and third expressions must be the same type, but can
1429 * be of any type other than an array."
1430 */
1431 if ((state->language_version <= 110) && type->is_array()) {
1432 _mesa_glsl_error(& loc, state, "Second and third operands of ?: "
1433 "operator must not be arrays.");
1434 error_emitted = true;
1435 }
1436
1437 ir_constant *cond_val = op[0]->constant_expression_value();
1438 ir_constant *then_val = op[1]->constant_expression_value();
1439 ir_constant *else_val = op[2]->constant_expression_value();
1440
1441 if (then_instructions.is_empty()
1442 && else_instructions.is_empty()
1443 && (cond_val != NULL) && (then_val != NULL) && (else_val != NULL)) {
1444 result = (cond_val->value.b[0]) ? then_val : else_val;
1445 } else {
1446 ir_variable *const tmp =
1447 new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
1448 instructions->push_tail(tmp);
1449
1450 ir_if *const stmt = new(ctx) ir_if(op[0]);
1451 instructions->push_tail(stmt);
1452
1453 then_instructions.move_nodes_to(& stmt->then_instructions);
1454 ir_dereference *const then_deref =
1455 new(ctx) ir_dereference_variable(tmp);
1456 ir_assignment *const then_assign =
1457 new(ctx) ir_assignment(then_deref, op[1], NULL);
1458 stmt->then_instructions.push_tail(then_assign);
1459
1460 else_instructions.move_nodes_to(& stmt->else_instructions);
1461 ir_dereference *const else_deref =
1462 new(ctx) ir_dereference_variable(tmp);
1463 ir_assignment *const else_assign =
1464 new(ctx) ir_assignment(else_deref, op[2], NULL);
1465 stmt->else_instructions.push_tail(else_assign);
1466
1467 result = new(ctx) ir_dereference_variable(tmp);
1468 }
1469 break;
1470 }
1471
1472 case ast_pre_inc:
1473 case ast_pre_dec: {
1474 this->non_lvalue_description = (this->oper == ast_pre_inc)
1475 ? "pre-increment operation" : "pre-decrement operation";
1476
1477 op[0] = this->subexpressions[0]->hir(instructions, state);
1478 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1479
1480 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1481
1482 ir_rvalue *temp_rhs;
1483 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1484 op[0], op[1]);
1485
1486 result = do_assignment(instructions, state,
1487 this->subexpressions[0]->non_lvalue_description,
1488 op[0]->clone(ctx, NULL), temp_rhs, false,
1489 this->subexpressions[0]->get_location());
1490 error_emitted = op[0]->type->is_error();
1491 break;
1492 }
1493
1494 case ast_post_inc:
1495 case ast_post_dec: {
1496 this->non_lvalue_description = (this->oper == ast_post_inc)
1497 ? "post-increment operation" : "post-decrement operation";
1498 op[0] = this->subexpressions[0]->hir(instructions, state);
1499 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1500
1501 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1502
1503 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1504
1505 ir_rvalue *temp_rhs;
1506 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1507 op[0], op[1]);
1508
1509 /* Get a temporary of a copy of the lvalue before it's modified.
1510 * This may get thrown away later.
1511 */
1512 result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
1513
1514 (void)do_assignment(instructions, state,
1515 this->subexpressions[0]->non_lvalue_description,
1516 op[0]->clone(ctx, NULL), temp_rhs, false,
1517 this->subexpressions[0]->get_location());
1518
1519 error_emitted = op[0]->type->is_error();
1520 break;
1521 }
1522
1523 case ast_field_selection:
1524 result = _mesa_ast_field_selection_to_hir(this, instructions, state);
1525 break;
1526
1527 case ast_array_index: {
1528 YYLTYPE index_loc = subexpressions[1]->get_location();
1529
1530 op[0] = subexpressions[0]->hir(instructions, state);
1531 op[1] = subexpressions[1]->hir(instructions, state);
1532
1533 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1534
1535 ir_rvalue *const array = op[0];
1536
1537 result = new(ctx) ir_dereference_array(op[0], op[1]);
1538
1539 /* Do not use op[0] after this point. Use array.
1540 */
1541 op[0] = NULL;
1542
1543
1544 if (error_emitted)
1545 break;
1546
1547 if (!array->type->is_array()
1548 && !array->type->is_matrix()
1549 && !array->type->is_vector()) {
1550 _mesa_glsl_error(& index_loc, state,
1551 "cannot dereference non-array / non-matrix / "
1552 "non-vector");
1553 error_emitted = true;
1554 }
1555
1556 if (!op[1]->type->is_integer()) {
1557 _mesa_glsl_error(& index_loc, state,
1558 "array index must be integer type");
1559 error_emitted = true;
1560 } else if (!op[1]->type->is_scalar()) {
1561 _mesa_glsl_error(& index_loc, state,
1562 "array index must be scalar");
1563 error_emitted = true;
1564 }
1565
1566 /* If the array index is a constant expression and the array has a
1567 * declared size, ensure that the access is in-bounds. If the array
1568 * index is not a constant expression, ensure that the array has a
1569 * declared size.
1570 */
1571 ir_constant *const const_index = op[1]->constant_expression_value();
1572 if (const_index != NULL) {
1573 const int idx = const_index->value.i[0];
1574 const char *type_name;
1575 unsigned bound = 0;
1576
1577 if (array->type->is_matrix()) {
1578 type_name = "matrix";
1579 } else if (array->type->is_vector()) {
1580 type_name = "vector";
1581 } else {
1582 type_name = "array";
1583 }
1584
1585 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec:
1586 *
1587 * "It is illegal to declare an array with a size, and then
1588 * later (in the same shader) index the same array with an
1589 * integral constant expression greater than or equal to the
1590 * declared size. It is also illegal to index an array with a
1591 * negative constant expression."
1592 */
1593 if (array->type->is_matrix()) {
1594 if (array->type->row_type()->vector_elements <= idx) {
1595 bound = array->type->row_type()->vector_elements;
1596 }
1597 } else if (array->type->is_vector()) {
1598 if (array->type->vector_elements <= idx) {
1599 bound = array->type->vector_elements;
1600 }
1601 } else {
1602 if ((array->type->array_size() > 0)
1603 && (array->type->array_size() <= idx)) {
1604 bound = array->type->array_size();
1605 }
1606 }
1607
1608 if (bound > 0) {
1609 _mesa_glsl_error(& loc, state, "%s index must be < %u",
1610 type_name, bound);
1611 error_emitted = true;
1612 } else if (idx < 0) {
1613 _mesa_glsl_error(& loc, state, "%s index must be >= 0",
1614 type_name);
1615 error_emitted = true;
1616 }
1617
1618 if (array->type->is_array()) {
1619 /* If the array is a variable dereference, it dereferences the
1620 * whole array, by definition. Use this to get the variable.
1621 *
1622 * FINISHME: Should some methods for getting / setting / testing
1623 * FINISHME: array access limits be added to ir_dereference?
1624 */
1625 ir_variable *const v = array->whole_variable_referenced();
1626 if ((v != NULL) && (unsigned(idx) > v->max_array_access)) {
1627 v->max_array_access = idx;
1628
1629 /* Check whether this access will, as a side effect, implicitly
1630 * cause the size of a built-in array to be too large.
1631 */
1632 if (check_builtin_array_max_size(v->name, idx+1, loc, state))
1633 error_emitted = true;
1634 }
1635 }
1636 } else if (array->type->array_size() == 0) {
1637 _mesa_glsl_error(&loc, state, "unsized array index must be constant");
1638 } else {
1639 if (array->type->is_array()) {
1640 /* whole_variable_referenced can return NULL if the array is a
1641 * member of a structure. In this case it is safe to not update
1642 * the max_array_access field because it is never used for fields
1643 * of structures.
1644 */
1645 ir_variable *v = array->whole_variable_referenced();
1646 if (v != NULL)
1647 v->max_array_access = array->type->array_size() - 1;
1648 }
1649 }
1650
1651 /* From page 23 (29 of the PDF) of the GLSL 1.30 spec:
1652 *
1653 * "Samplers aggregated into arrays within a shader (using square
1654 * brackets [ ]) can only be indexed with integral constant
1655 * expressions [...]."
1656 *
1657 * This restriction was added in GLSL 1.30. Shaders using earlier version
1658 * of the language should not be rejected by the compiler front-end for
1659 * using this construct. This allows useful things such as using a loop
1660 * counter as the index to an array of samplers. If the loop in unrolled,
1661 * the code should compile correctly. Instead, emit a warning.
1662 */
1663 if (array->type->is_array() &&
1664 array->type->element_type()->is_sampler() &&
1665 const_index == NULL) {
1666
1667 if (state->language_version == 100) {
1668 _mesa_glsl_warning(&loc, state,
1669 "sampler arrays indexed with non-constant "
1670 "expressions is optional in GLSL ES 1.00");
1671 } else if (state->language_version < 130) {
1672 _mesa_glsl_warning(&loc, state,
1673 "sampler arrays indexed with non-constant "
1674 "expressions is forbidden in GLSL 1.30 and "
1675 "later");
1676 } else {
1677 _mesa_glsl_error(&loc, state,
1678 "sampler arrays indexed with non-constant "
1679 "expressions is forbidden in GLSL 1.30 and "
1680 "later");
1681 error_emitted = true;
1682 }
1683 }
1684
1685 if (error_emitted)
1686 result->type = glsl_type::error_type;
1687
1688 break;
1689 }
1690
1691 case ast_function_call:
1692 /* Should *NEVER* get here. ast_function_call should always be handled
1693 * by ast_function_expression::hir.
1694 */
1695 assert(0);
1696 break;
1697
1698 case ast_identifier: {
1699 /* ast_identifier can appear several places in a full abstract syntax
1700 * tree. This particular use must be at location specified in the grammar
1701 * as 'variable_identifier'.
1702 */
1703 ir_variable *var =
1704 state->symbols->get_variable(this->primary_expression.identifier);
1705
1706 result = new(ctx) ir_dereference_variable(var);
1707
1708 if (var != NULL) {
1709 var->used = true;
1710 } else {
1711 _mesa_glsl_error(& loc, state, "`%s' undeclared",
1712 this->primary_expression.identifier);
1713
1714 error_emitted = true;
1715 }
1716 break;
1717 }
1718
1719 case ast_int_constant:
1720 result = new(ctx) ir_constant(this->primary_expression.int_constant);
1721 break;
1722
1723 case ast_uint_constant:
1724 result = new(ctx) ir_constant(this->primary_expression.uint_constant);
1725 break;
1726
1727 case ast_float_constant:
1728 result = new(ctx) ir_constant(this->primary_expression.float_constant);
1729 break;
1730
1731 case ast_bool_constant:
1732 result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
1733 break;
1734
1735 case ast_sequence: {
1736 /* It should not be possible to generate a sequence in the AST without
1737 * any expressions in it.
1738 */
1739 assert(!this->expressions.is_empty());
1740
1741 /* The r-value of a sequence is the last expression in the sequence. If
1742 * the other expressions in the sequence do not have side-effects (and
1743 * therefore add instructions to the instruction list), they get dropped
1744 * on the floor.
1745 */
1746 exec_node *previous_tail_pred = NULL;
1747 YYLTYPE previous_operand_loc = loc;
1748
1749 foreach_list_typed (ast_node, ast, link, &this->expressions) {
1750 /* If one of the operands of comma operator does not generate any
1751 * code, we want to emit a warning. At each pass through the loop
1752 * previous_tail_pred will point to the last instruction in the
1753 * stream *before* processing the previous operand. Naturally,
1754 * instructions->tail_pred will point to the last instruction in the
1755 * stream *after* processing the previous operand. If the two
1756 * pointers match, then the previous operand had no effect.
1757 *
1758 * The warning behavior here differs slightly from GCC. GCC will
1759 * only emit a warning if none of the left-hand operands have an
1760 * effect. However, it will emit a warning for each. I believe that
1761 * there are some cases in C (especially with GCC extensions) where
1762 * it is useful to have an intermediate step in a sequence have no
1763 * effect, but I don't think these cases exist in GLSL. Either way,
1764 * it would be a giant hassle to replicate that behavior.
1765 */
1766 if (previous_tail_pred == instructions->tail_pred) {
1767 _mesa_glsl_warning(&previous_operand_loc, state,
1768 "left-hand operand of comma expression has "
1769 "no effect");
1770 }
1771
1772 /* tail_pred is directly accessed instead of using the get_tail()
1773 * method for performance reasons. get_tail() has extra code to
1774 * return NULL when the list is empty. We don't care about that
1775 * here, so using tail_pred directly is fine.
1776 */
1777 previous_tail_pred = instructions->tail_pred;
1778 previous_operand_loc = ast->get_location();
1779
1780 result = ast->hir(instructions, state);
1781 }
1782
1783 /* Any errors should have already been emitted in the loop above.
1784 */
1785 error_emitted = true;
1786 break;
1787 }
1788 }
1789 type = NULL; /* use result->type, not type. */
1790 assert(result != NULL);
1791
1792 if (result->type->is_error() && !error_emitted)
1793 _mesa_glsl_error(& loc, state, "type mismatch");
1794
1795 return result;
1796 }
1797
1798
1799 ir_rvalue *
1800 ast_expression_statement::hir(exec_list *instructions,
1801 struct _mesa_glsl_parse_state *state)
1802 {
1803 /* It is possible to have expression statements that don't have an
1804 * expression. This is the solitary semicolon:
1805 *
1806 * for (i = 0; i < 5; i++)
1807 * ;
1808 *
1809 * In this case the expression will be NULL. Test for NULL and don't do
1810 * anything in that case.
1811 */
1812 if (expression != NULL)
1813 expression->hir(instructions, state);
1814
1815 /* Statements do not have r-values.
1816 */
1817 return NULL;
1818 }
1819
1820
1821 ir_rvalue *
1822 ast_compound_statement::hir(exec_list *instructions,
1823 struct _mesa_glsl_parse_state *state)
1824 {
1825 if (new_scope)
1826 state->symbols->push_scope();
1827
1828 foreach_list_typed (ast_node, ast, link, &this->statements)
1829 ast->hir(instructions, state);
1830
1831 if (new_scope)
1832 state->symbols->pop_scope();
1833
1834 /* Compound statements do not have r-values.
1835 */
1836 return NULL;
1837 }
1838
1839
1840 static const glsl_type *
1841 process_array_type(YYLTYPE *loc, const glsl_type *base, ast_node *array_size,
1842 struct _mesa_glsl_parse_state *state)
1843 {
1844 unsigned length = 0;
1845
1846 /* From page 19 (page 25) of the GLSL 1.20 spec:
1847 *
1848 * "Only one-dimensional arrays may be declared."
1849 */
1850 if (base->is_array()) {
1851 _mesa_glsl_error(loc, state,
1852 "invalid array of `%s' (only one-dimensional arrays "
1853 "may be declared)",
1854 base->name);
1855 return glsl_type::error_type;
1856 }
1857
1858 if (array_size != NULL) {
1859 exec_list dummy_instructions;
1860 ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
1861 YYLTYPE loc = array_size->get_location();
1862
1863 if (ir != NULL) {
1864 if (!ir->type->is_integer()) {
1865 _mesa_glsl_error(& loc, state, "array size must be integer type");
1866 } else if (!ir->type->is_scalar()) {
1867 _mesa_glsl_error(& loc, state, "array size must be scalar type");
1868 } else {
1869 ir_constant *const size = ir->constant_expression_value();
1870
1871 if (size == NULL) {
1872 _mesa_glsl_error(& loc, state, "array size must be a "
1873 "constant valued expression");
1874 } else if (size->value.i[0] <= 0) {
1875 _mesa_glsl_error(& loc, state, "array size must be > 0");
1876 } else {
1877 assert(size->type == ir->type);
1878 length = size->value.u[0];
1879
1880 /* If the array size is const (and we've verified that
1881 * it is) then no instructions should have been emitted
1882 * when we converted it to HIR. If they were emitted,
1883 * then either the array size isn't const after all, or
1884 * we are emitting unnecessary instructions.
1885 */
1886 assert(dummy_instructions.is_empty());
1887 }
1888 }
1889 }
1890 } else if (state->es_shader) {
1891 /* Section 10.17 of the GLSL ES 1.00 specification states that unsized
1892 * array declarations have been removed from the language.
1893 */
1894 _mesa_glsl_error(loc, state, "unsized array declarations are not "
1895 "allowed in GLSL ES 1.00.");
1896 }
1897
1898 return glsl_type::get_array_instance(base, length);
1899 }
1900
1901
1902 const glsl_type *
1903 ast_type_specifier::glsl_type(const char **name,
1904 struct _mesa_glsl_parse_state *state) const
1905 {
1906 const struct glsl_type *type;
1907
1908 type = state->symbols->get_type(this->type_name);
1909 *name = this->type_name;
1910
1911 if (this->is_array) {
1912 YYLTYPE loc = this->get_location();
1913 type = process_array_type(&loc, type, this->array_size, state);
1914 }
1915
1916 return type;
1917 }
1918
1919
1920 static void
1921 apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
1922 ir_variable *var,
1923 struct _mesa_glsl_parse_state *state,
1924 YYLTYPE *loc)
1925 {
1926 if (qual->flags.q.invariant) {
1927 if (var->used) {
1928 _mesa_glsl_error(loc, state,
1929 "variable `%s' may not be redeclared "
1930 "`invariant' after being used",
1931 var->name);
1932 } else {
1933 var->invariant = 1;
1934 }
1935 }
1936
1937 if (qual->flags.q.constant || qual->flags.q.attribute
1938 || qual->flags.q.uniform
1939 || (qual->flags.q.varying && (state->target == fragment_shader)))
1940 var->read_only = 1;
1941
1942 if (qual->flags.q.centroid)
1943 var->centroid = 1;
1944
1945 if (qual->flags.q.attribute && state->target != vertex_shader) {
1946 var->type = glsl_type::error_type;
1947 _mesa_glsl_error(loc, state,
1948 "`attribute' variables may not be declared in the "
1949 "%s shader",
1950 _mesa_glsl_shader_target_name(state->target));
1951 }
1952
1953 /* From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
1954 *
1955 * "The varying qualifier can be used only with the data types
1956 * float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
1957 * these."
1958 */
1959 if (qual->flags.q.varying) {
1960 const glsl_type *non_array_type;
1961
1962 if (var->type && var->type->is_array())
1963 non_array_type = var->type->fields.array;
1964 else
1965 non_array_type = var->type;
1966
1967 if (non_array_type && non_array_type->base_type != GLSL_TYPE_FLOAT) {
1968 var->type = glsl_type::error_type;
1969 _mesa_glsl_error(loc, state,
1970 "varying variables must be of base type float");
1971 }
1972 }
1973
1974 /* If there is no qualifier that changes the mode of the variable, leave
1975 * the setting alone.
1976 */
1977 if (qual->flags.q.in && qual->flags.q.out)
1978 var->mode = ir_var_inout;
1979 else if (qual->flags.q.attribute || qual->flags.q.in
1980 || (qual->flags.q.varying && (state->target == fragment_shader)))
1981 var->mode = ir_var_in;
1982 else if (qual->flags.q.out
1983 || (qual->flags.q.varying && (state->target == vertex_shader)))
1984 var->mode = ir_var_out;
1985 else if (qual->flags.q.uniform)
1986 var->mode = ir_var_uniform;
1987
1988 if (state->all_invariant && (state->current_function == NULL)) {
1989 switch (state->target) {
1990 case vertex_shader:
1991 if (var->mode == ir_var_out)
1992 var->invariant = true;
1993 break;
1994 case geometry_shader:
1995 if ((var->mode == ir_var_in) || (var->mode == ir_var_out))
1996 var->invariant = true;
1997 break;
1998 case fragment_shader:
1999 if (var->mode == ir_var_in)
2000 var->invariant = true;
2001 break;
2002 }
2003 }
2004
2005 if (qual->flags.q.flat)
2006 var->interpolation = INTERP_QUALIFIER_FLAT;
2007 else if (qual->flags.q.noperspective)
2008 var->interpolation = INTERP_QUALIFIER_NOPERSPECTIVE;
2009 else if (qual->flags.q.smooth)
2010 var->interpolation = INTERP_QUALIFIER_SMOOTH;
2011 else
2012 var->interpolation = INTERP_QUALIFIER_NONE;
2013
2014 if (var->interpolation != INTERP_QUALIFIER_NONE &&
2015 !(state->target == vertex_shader && var->mode == ir_var_out) &&
2016 !(state->target == fragment_shader && var->mode == ir_var_in)) {
2017 const char *qual_string = NULL;
2018 switch (var->interpolation) {
2019 case INTERP_QUALIFIER_FLAT:
2020 qual_string = "flat";
2021 break;
2022 case INTERP_QUALIFIER_NOPERSPECTIVE:
2023 qual_string = "noperspective";
2024 break;
2025 case INTERP_QUALIFIER_SMOOTH:
2026 qual_string = "smooth";
2027 break;
2028 }
2029
2030 _mesa_glsl_error(loc, state,
2031 "interpolation qualifier `%s' can only be applied to "
2032 "vertex shader outputs and fragment shader inputs.",
2033 qual_string);
2034
2035 }
2036
2037 var->pixel_center_integer = qual->flags.q.pixel_center_integer;
2038 var->origin_upper_left = qual->flags.q.origin_upper_left;
2039 if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
2040 && (strcmp(var->name, "gl_FragCoord") != 0)) {
2041 const char *const qual_string = (qual->flags.q.origin_upper_left)
2042 ? "origin_upper_left" : "pixel_center_integer";
2043
2044 _mesa_glsl_error(loc, state,
2045 "layout qualifier `%s' can only be applied to "
2046 "fragment shader input `gl_FragCoord'",
2047 qual_string);
2048 }
2049
2050 if (qual->flags.q.explicit_location) {
2051 const bool global_scope = (state->current_function == NULL);
2052 bool fail = false;
2053 const char *string = "";
2054
2055 /* In the vertex shader only shader inputs can be given explicit
2056 * locations.
2057 *
2058 * In the fragment shader only shader outputs can be given explicit
2059 * locations.
2060 */
2061 switch (state->target) {
2062 case vertex_shader:
2063 if (!global_scope || (var->mode != ir_var_in)) {
2064 fail = true;
2065 string = "input";
2066 }
2067 break;
2068
2069 case geometry_shader:
2070 _mesa_glsl_error(loc, state,
2071 "geometry shader variables cannot be given "
2072 "explicit locations\n");
2073 break;
2074
2075 case fragment_shader:
2076 if (!global_scope || (var->mode != ir_var_out)) {
2077 fail = true;
2078 string = "output";
2079 }
2080 break;
2081 };
2082
2083 if (fail) {
2084 _mesa_glsl_error(loc, state,
2085 "only %s shader %s variables can be given an "
2086 "explicit location\n",
2087 _mesa_glsl_shader_target_name(state->target),
2088 string);
2089 } else {
2090 var->explicit_location = true;
2091
2092 /* This bit of silliness is needed because invalid explicit locations
2093 * are supposed to be flagged during linking. Small negative values
2094 * biased by VERT_ATTRIB_GENERIC0 or FRAG_RESULT_DATA0 could alias
2095 * built-in values (e.g., -16+VERT_ATTRIB_GENERIC0 = VERT_ATTRIB_POS).
2096 * The linker needs to be able to differentiate these cases. This
2097 * ensures that negative values stay negative.
2098 */
2099 if (qual->location >= 0) {
2100 var->location = (state->target == vertex_shader)
2101 ? (qual->location + VERT_ATTRIB_GENERIC0)
2102 : (qual->location + FRAG_RESULT_DATA0);
2103 } else {
2104 var->location = qual->location;
2105 }
2106 }
2107 }
2108
2109 /* Does the declaration use the 'layout' keyword?
2110 */
2111 const bool uses_layout = qual->flags.q.pixel_center_integer
2112 || qual->flags.q.origin_upper_left
2113 || qual->flags.q.explicit_location;
2114
2115 /* Does the declaration use the deprecated 'attribute' or 'varying'
2116 * keywords?
2117 */
2118 const bool uses_deprecated_qualifier = qual->flags.q.attribute
2119 || qual->flags.q.varying;
2120
2121 /* Is the 'layout' keyword used with parameters that allow relaxed checking.
2122 * Many implementations of GL_ARB_fragment_coord_conventions_enable and some
2123 * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable
2124 * allowed the layout qualifier to be used with 'varying' and 'attribute'.
2125 * These extensions and all following extensions that add the 'layout'
2126 * keyword have been modified to require the use of 'in' or 'out'.
2127 *
2128 * The following extension do not allow the deprecated keywords:
2129 *
2130 * GL_AMD_conservative_depth
2131 * GL_ARB_conservative_depth
2132 * GL_ARB_gpu_shader5
2133 * GL_ARB_separate_shader_objects
2134 * GL_ARB_tesselation_shader
2135 * GL_ARB_transform_feedback3
2136 * GL_ARB_uniform_buffer_object
2137 *
2138 * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5
2139 * allow layout with the deprecated keywords.
2140 */
2141 const bool relaxed_layout_qualifier_checking =
2142 state->ARB_fragment_coord_conventions_enable;
2143
2144 if (uses_layout && uses_deprecated_qualifier) {
2145 if (relaxed_layout_qualifier_checking) {
2146 _mesa_glsl_warning(loc, state,
2147 "`layout' qualifier may not be used with "
2148 "`attribute' or `varying'");
2149 } else {
2150 _mesa_glsl_error(loc, state,
2151 "`layout' qualifier may not be used with "
2152 "`attribute' or `varying'");
2153 }
2154 }
2155
2156 /* Layout qualifiers for gl_FragDepth, which are enabled by extension
2157 * AMD_conservative_depth.
2158 */
2159 int depth_layout_count = qual->flags.q.depth_any
2160 + qual->flags.q.depth_greater
2161 + qual->flags.q.depth_less
2162 + qual->flags.q.depth_unchanged;
2163 if (depth_layout_count > 0
2164 && !state->AMD_conservative_depth_enable
2165 && !state->ARB_conservative_depth_enable) {
2166 _mesa_glsl_error(loc, state,
2167 "extension GL_AMD_conservative_depth or "
2168 "GL_ARB_conservative_depth must be enabled "
2169 "to use depth layout qualifiers");
2170 } else if (depth_layout_count > 0
2171 && strcmp(var->name, "gl_FragDepth") != 0) {
2172 _mesa_glsl_error(loc, state,
2173 "depth layout qualifiers can be applied only to "
2174 "gl_FragDepth");
2175 } else if (depth_layout_count > 1
2176 && strcmp(var->name, "gl_FragDepth") == 0) {
2177 _mesa_glsl_error(loc, state,
2178 "at most one depth layout qualifier can be applied to "
2179 "gl_FragDepth");
2180 }
2181 if (qual->flags.q.depth_any)
2182 var->depth_layout = ir_depth_layout_any;
2183 else if (qual->flags.q.depth_greater)
2184 var->depth_layout = ir_depth_layout_greater;
2185 else if (qual->flags.q.depth_less)
2186 var->depth_layout = ir_depth_layout_less;
2187 else if (qual->flags.q.depth_unchanged)
2188 var->depth_layout = ir_depth_layout_unchanged;
2189 else
2190 var->depth_layout = ir_depth_layout_none;
2191 }
2192
2193 /**
2194 * Get the variable that is being redeclared by this declaration
2195 *
2196 * Semantic checks to verify the validity of the redeclaration are also
2197 * performed. If semantic checks fail, compilation error will be emitted via
2198 * \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned.
2199 *
2200 * \returns
2201 * A pointer to an existing variable in the current scope if the declaration
2202 * is a redeclaration, \c NULL otherwise.
2203 */
2204 ir_variable *
2205 get_variable_being_redeclared(ir_variable *var, ast_declaration *decl,
2206 struct _mesa_glsl_parse_state *state)
2207 {
2208 /* Check if this declaration is actually a re-declaration, either to
2209 * resize an array or add qualifiers to an existing variable.
2210 *
2211 * This is allowed for variables in the current scope, or when at
2212 * global scope (for built-ins in the implicit outer scope).
2213 */
2214 ir_variable *earlier = state->symbols->get_variable(decl->identifier);
2215 if (earlier == NULL ||
2216 (state->current_function != NULL &&
2217 !state->symbols->name_declared_this_scope(decl->identifier))) {
2218 return NULL;
2219 }
2220
2221
2222 YYLTYPE loc = decl->get_location();
2223
2224 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
2225 *
2226 * "It is legal to declare an array without a size and then
2227 * later re-declare the same name as an array of the same
2228 * type and specify a size."
2229 */
2230 if ((earlier->type->array_size() == 0)
2231 && var->type->is_array()
2232 && (var->type->element_type() == earlier->type->element_type())) {
2233 /* FINISHME: This doesn't match the qualifiers on the two
2234 * FINISHME: declarations. It's not 100% clear whether this is
2235 * FINISHME: required or not.
2236 */
2237
2238 const unsigned size = unsigned(var->type->array_size());
2239 check_builtin_array_max_size(var->name, size, loc, state);
2240 if ((size > 0) && (size <= earlier->max_array_access)) {
2241 _mesa_glsl_error(& loc, state, "array size must be > %u due to "
2242 "previous access",
2243 earlier->max_array_access);
2244 }
2245
2246 earlier->type = var->type;
2247 delete var;
2248 var = NULL;
2249 } else if (state->ARB_fragment_coord_conventions_enable
2250 && strcmp(var->name, "gl_FragCoord") == 0
2251 && earlier->type == var->type
2252 && earlier->mode == var->mode) {
2253 /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
2254 * qualifiers.
2255 */
2256 earlier->origin_upper_left = var->origin_upper_left;
2257 earlier->pixel_center_integer = var->pixel_center_integer;
2258
2259 /* According to section 4.3.7 of the GLSL 1.30 spec,
2260 * the following built-in varaibles can be redeclared with an
2261 * interpolation qualifier:
2262 * * gl_FrontColor
2263 * * gl_BackColor
2264 * * gl_FrontSecondaryColor
2265 * * gl_BackSecondaryColor
2266 * * gl_Color
2267 * * gl_SecondaryColor
2268 */
2269 } else if (state->language_version >= 130
2270 && (strcmp(var->name, "gl_FrontColor") == 0
2271 || strcmp(var->name, "gl_BackColor") == 0
2272 || strcmp(var->name, "gl_FrontSecondaryColor") == 0
2273 || strcmp(var->name, "gl_BackSecondaryColor") == 0
2274 || strcmp(var->name, "gl_Color") == 0
2275 || strcmp(var->name, "gl_SecondaryColor") == 0)
2276 && earlier->type == var->type
2277 && earlier->mode == var->mode) {
2278 earlier->interpolation = var->interpolation;
2279
2280 /* Layout qualifiers for gl_FragDepth. */
2281 } else if ((state->AMD_conservative_depth_enable ||
2282 state->ARB_conservative_depth_enable)
2283 && strcmp(var->name, "gl_FragDepth") == 0
2284 && earlier->type == var->type
2285 && earlier->mode == var->mode) {
2286
2287 /** From the AMD_conservative_depth spec:
2288 * Within any shader, the first redeclarations of gl_FragDepth
2289 * must appear before any use of gl_FragDepth.
2290 */
2291 if (earlier->used) {
2292 _mesa_glsl_error(&loc, state,
2293 "the first redeclaration of gl_FragDepth "
2294 "must appear before any use of gl_FragDepth");
2295 }
2296
2297 /* Prevent inconsistent redeclaration of depth layout qualifier. */
2298 if (earlier->depth_layout != ir_depth_layout_none
2299 && earlier->depth_layout != var->depth_layout) {
2300 _mesa_glsl_error(&loc, state,
2301 "gl_FragDepth: depth layout is declared here "
2302 "as '%s, but it was previously declared as "
2303 "'%s'",
2304 depth_layout_string(var->depth_layout),
2305 depth_layout_string(earlier->depth_layout));
2306 }
2307
2308 earlier->depth_layout = var->depth_layout;
2309
2310 } else {
2311 _mesa_glsl_error(&loc, state, "`%s' redeclared", decl->identifier);
2312 }
2313
2314 return earlier;
2315 }
2316
2317 /**
2318 * Generate the IR for an initializer in a variable declaration
2319 */
2320 ir_rvalue *
2321 process_initializer(ir_variable *var, ast_declaration *decl,
2322 ast_fully_specified_type *type,
2323 exec_list *initializer_instructions,
2324 struct _mesa_glsl_parse_state *state)
2325 {
2326 ir_rvalue *result = NULL;
2327
2328 YYLTYPE initializer_loc = decl->initializer->get_location();
2329
2330 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
2331 *
2332 * "All uniform variables are read-only and are initialized either
2333 * directly by an application via API commands, or indirectly by
2334 * OpenGL."
2335 */
2336 if ((state->language_version <= 110)
2337 && (var->mode == ir_var_uniform)) {
2338 _mesa_glsl_error(& initializer_loc, state,
2339 "cannot initialize uniforms in GLSL 1.10");
2340 }
2341
2342 if (var->type->is_sampler()) {
2343 _mesa_glsl_error(& initializer_loc, state,
2344 "cannot initialize samplers");
2345 }
2346
2347 if ((var->mode == ir_var_in) && (state->current_function == NULL)) {
2348 _mesa_glsl_error(& initializer_loc, state,
2349 "cannot initialize %s shader input / %s",
2350 _mesa_glsl_shader_target_name(state->target),
2351 (state->target == vertex_shader)
2352 ? "attribute" : "varying");
2353 }
2354
2355 ir_dereference *const lhs = new(state) ir_dereference_variable(var);
2356 ir_rvalue *rhs = decl->initializer->hir(initializer_instructions,
2357 state);
2358
2359 /* Calculate the constant value if this is a const or uniform
2360 * declaration.
2361 */
2362 if (type->qualifier.flags.q.constant
2363 || type->qualifier.flags.q.uniform) {
2364 ir_rvalue *new_rhs = validate_assignment(state, var->type, rhs, true);
2365 if (new_rhs != NULL) {
2366 rhs = new_rhs;
2367
2368 ir_constant *constant_value = rhs->constant_expression_value();
2369 if (!constant_value) {
2370 _mesa_glsl_error(& initializer_loc, state,
2371 "initializer of %s variable `%s' must be a "
2372 "constant expression",
2373 (type->qualifier.flags.q.constant)
2374 ? "const" : "uniform",
2375 decl->identifier);
2376 if (var->type->is_numeric()) {
2377 /* Reduce cascading errors. */
2378 var->constant_value = ir_constant::zero(state, var->type);
2379 }
2380 } else {
2381 rhs = constant_value;
2382 var->constant_value = constant_value;
2383 }
2384 } else {
2385 _mesa_glsl_error(&initializer_loc, state,
2386 "initializer of type %s cannot be assigned to "
2387 "variable of type %s",
2388 rhs->type->name, var->type->name);
2389 if (var->type->is_numeric()) {
2390 /* Reduce cascading errors. */
2391 var->constant_value = ir_constant::zero(state, var->type);
2392 }
2393 }
2394 }
2395
2396 if (rhs && !rhs->type->is_error()) {
2397 bool temp = var->read_only;
2398 if (type->qualifier.flags.q.constant)
2399 var->read_only = false;
2400
2401 /* Never emit code to initialize a uniform.
2402 */
2403 const glsl_type *initializer_type;
2404 if (!type->qualifier.flags.q.uniform) {
2405 result = do_assignment(initializer_instructions, state,
2406 NULL,
2407 lhs, rhs, true,
2408 type->get_location());
2409 initializer_type = result->type;
2410 } else
2411 initializer_type = rhs->type;
2412
2413 var->constant_initializer = rhs->constant_expression_value();
2414 var->has_initializer = true;
2415
2416 /* If the declared variable is an unsized array, it must inherrit
2417 * its full type from the initializer. A declaration such as
2418 *
2419 * uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
2420 *
2421 * becomes
2422 *
2423 * uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
2424 *
2425 * The assignment generated in the if-statement (below) will also
2426 * automatically handle this case for non-uniforms.
2427 *
2428 * If the declared variable is not an array, the types must
2429 * already match exactly. As a result, the type assignment
2430 * here can be done unconditionally. For non-uniforms the call
2431 * to do_assignment can change the type of the initializer (via
2432 * the implicit conversion rules). For uniforms the initializer
2433 * must be a constant expression, and the type of that expression
2434 * was validated above.
2435 */
2436 var->type = initializer_type;
2437
2438 var->read_only = temp;
2439 }
2440
2441 return result;
2442 }
2443
2444 ir_rvalue *
2445 ast_declarator_list::hir(exec_list *instructions,
2446 struct _mesa_glsl_parse_state *state)
2447 {
2448 void *ctx = state;
2449 const struct glsl_type *decl_type;
2450 const char *type_name = NULL;
2451 ir_rvalue *result = NULL;
2452 YYLTYPE loc = this->get_location();
2453
2454 /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
2455 *
2456 * "To ensure that a particular output variable is invariant, it is
2457 * necessary to use the invariant qualifier. It can either be used to
2458 * qualify a previously declared variable as being invariant
2459 *
2460 * invariant gl_Position; // make existing gl_Position be invariant"
2461 *
2462 * In these cases the parser will set the 'invariant' flag in the declarator
2463 * list, and the type will be NULL.
2464 */
2465 if (this->invariant) {
2466 assert(this->type == NULL);
2467
2468 if (state->current_function != NULL) {
2469 _mesa_glsl_error(& loc, state,
2470 "All uses of `invariant' keyword must be at global "
2471 "scope\n");
2472 }
2473
2474 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
2475 assert(!decl->is_array);
2476 assert(decl->array_size == NULL);
2477 assert(decl->initializer == NULL);
2478
2479 ir_variable *const earlier =
2480 state->symbols->get_variable(decl->identifier);
2481 if (earlier == NULL) {
2482 _mesa_glsl_error(& loc, state,
2483 "Undeclared variable `%s' cannot be marked "
2484 "invariant\n", decl->identifier);
2485 } else if ((state->target == vertex_shader)
2486 && (earlier->mode != ir_var_out)) {
2487 _mesa_glsl_error(& loc, state,
2488 "`%s' cannot be marked invariant, vertex shader "
2489 "outputs only\n", decl->identifier);
2490 } else if ((state->target == fragment_shader)
2491 && (earlier->mode != ir_var_in)) {
2492 _mesa_glsl_error(& loc, state,
2493 "`%s' cannot be marked invariant, fragment shader "
2494 "inputs only\n", decl->identifier);
2495 } else if (earlier->used) {
2496 _mesa_glsl_error(& loc, state,
2497 "variable `%s' may not be redeclared "
2498 "`invariant' after being used",
2499 earlier->name);
2500 } else {
2501 earlier->invariant = true;
2502 }
2503 }
2504
2505 /* Invariant redeclarations do not have r-values.
2506 */
2507 return NULL;
2508 }
2509
2510 assert(this->type != NULL);
2511 assert(!this->invariant);
2512
2513 /* The type specifier may contain a structure definition. Process that
2514 * before any of the variable declarations.
2515 */
2516 (void) this->type->specifier->hir(instructions, state);
2517
2518 decl_type = this->type->specifier->glsl_type(& type_name, state);
2519 if (this->declarations.is_empty()) {
2520 /* If there is no structure involved in the program text, there are two
2521 * possible scenarios:
2522 *
2523 * - The program text contained something like 'vec4;'. This is an
2524 * empty declaration. It is valid but weird. Emit a warning.
2525 *
2526 * - The program text contained something like 'S;' and 'S' is not the
2527 * name of a known structure type. This is both invalid and weird.
2528 * Emit an error.
2529 *
2530 * Note that if decl_type is NULL and there is a structure involved,
2531 * there must have been some sort of error with the structure. In this
2532 * case we assume that an error was already generated on this line of
2533 * code for the structure. There is no need to generate an additional,
2534 * confusing error.
2535 */
2536 assert(this->type->specifier->structure == NULL || decl_type != NULL
2537 || state->error);
2538 if (this->type->specifier->structure == NULL) {
2539 if (decl_type != NULL) {
2540 _mesa_glsl_warning(&loc, state, "empty declaration");
2541 } else {
2542 _mesa_glsl_error(&loc, state,
2543 "invalid type `%s' in empty declaration",
2544 type_name);
2545 }
2546 }
2547 }
2548
2549 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
2550 const struct glsl_type *var_type;
2551 ir_variable *var;
2552
2553 /* FINISHME: Emit a warning if a variable declaration shadows a
2554 * FINISHME: declaration at a higher scope.
2555 */
2556
2557 if ((decl_type == NULL) || decl_type->is_void()) {
2558 if (type_name != NULL) {
2559 _mesa_glsl_error(& loc, state,
2560 "invalid type `%s' in declaration of `%s'",
2561 type_name, decl->identifier);
2562 } else {
2563 _mesa_glsl_error(& loc, state,
2564 "invalid type in declaration of `%s'",
2565 decl->identifier);
2566 }
2567 continue;
2568 }
2569
2570 if (decl->is_array) {
2571 var_type = process_array_type(&loc, decl_type, decl->array_size,
2572 state);
2573 if (var_type->is_error())
2574 continue;
2575 } else {
2576 var_type = decl_type;
2577 }
2578
2579 var = new(ctx) ir_variable(var_type, decl->identifier, ir_var_auto);
2580
2581 /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
2582 *
2583 * "Global variables can only use the qualifiers const,
2584 * attribute, uni form, or varying. Only one may be
2585 * specified.
2586 *
2587 * Local variables can only use the qualifier const."
2588 *
2589 * This is relaxed in GLSL 1.30. It is also relaxed by any extension
2590 * that adds the 'layout' keyword.
2591 */
2592 if ((state->language_version < 130)
2593 && !state->ARB_explicit_attrib_location_enable
2594 && !state->ARB_fragment_coord_conventions_enable) {
2595 if (this->type->qualifier.flags.q.out) {
2596 _mesa_glsl_error(& loc, state,
2597 "`out' qualifier in declaration of `%s' "
2598 "only valid for function parameters in %s.",
2599 decl->identifier, state->version_string);
2600 }
2601 if (this->type->qualifier.flags.q.in) {
2602 _mesa_glsl_error(& loc, state,
2603 "`in' qualifier in declaration of `%s' "
2604 "only valid for function parameters in %s.",
2605 decl->identifier, state->version_string);
2606 }
2607 /* FINISHME: Test for other invalid qualifiers. */
2608 }
2609
2610 apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
2611 & loc);
2612
2613 if (this->type->qualifier.flags.q.invariant) {
2614 if ((state->target == vertex_shader) && !(var->mode == ir_var_out ||
2615 var->mode == ir_var_inout)) {
2616 /* FINISHME: Note that this doesn't work for invariant on
2617 * a function signature outval
2618 */
2619 _mesa_glsl_error(& loc, state,
2620 "`%s' cannot be marked invariant, vertex shader "
2621 "outputs only\n", var->name);
2622 } else if ((state->target == fragment_shader) &&
2623 !(var->mode == ir_var_in || var->mode == ir_var_inout)) {
2624 /* FINISHME: Note that this doesn't work for invariant on
2625 * a function signature inval
2626 */
2627 _mesa_glsl_error(& loc, state,
2628 "`%s' cannot be marked invariant, fragment shader "
2629 "inputs only\n", var->name);
2630 }
2631 }
2632
2633 if (state->current_function != NULL) {
2634 const char *mode = NULL;
2635 const char *extra = "";
2636
2637 /* There is no need to check for 'inout' here because the parser will
2638 * only allow that in function parameter lists.
2639 */
2640 if (this->type->qualifier.flags.q.attribute) {
2641 mode = "attribute";
2642 } else if (this->type->qualifier.flags.q.uniform) {
2643 mode = "uniform";
2644 } else if (this->type->qualifier.flags.q.varying) {
2645 mode = "varying";
2646 } else if (this->type->qualifier.flags.q.in) {
2647 mode = "in";
2648 extra = " or in function parameter list";
2649 } else if (this->type->qualifier.flags.q.out) {
2650 mode = "out";
2651 extra = " or in function parameter list";
2652 }
2653
2654 if (mode) {
2655 _mesa_glsl_error(& loc, state,
2656 "%s variable `%s' must be declared at "
2657 "global scope%s",
2658 mode, var->name, extra);
2659 }
2660 } else if (var->mode == ir_var_in) {
2661 var->read_only = true;
2662
2663 if (state->target == vertex_shader) {
2664 bool error_emitted = false;
2665
2666 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
2667 *
2668 * "Vertex shader inputs can only be float, floating-point
2669 * vectors, matrices, signed and unsigned integers and integer
2670 * vectors. Vertex shader inputs can also form arrays of these
2671 * types, but not structures."
2672 *
2673 * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
2674 *
2675 * "Vertex shader inputs can only be float, floating-point
2676 * vectors, matrices, signed and unsigned integers and integer
2677 * vectors. They cannot be arrays or structures."
2678 *
2679 * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
2680 *
2681 * "The attribute qualifier can be used only with float,
2682 * floating-point vectors, and matrices. Attribute variables
2683 * cannot be declared as arrays or structures."
2684 */
2685 const glsl_type *check_type = var->type->is_array()
2686 ? var->type->fields.array : var->type;
2687
2688 switch (check_type->base_type) {
2689 case GLSL_TYPE_FLOAT:
2690 break;
2691 case GLSL_TYPE_UINT:
2692 case GLSL_TYPE_INT:
2693 if (state->language_version > 120)
2694 break;
2695 /* FALLTHROUGH */
2696 default:
2697 _mesa_glsl_error(& loc, state,
2698 "vertex shader input / attribute cannot have "
2699 "type %s`%s'",
2700 var->type->is_array() ? "array of " : "",
2701 check_type->name);
2702 error_emitted = true;
2703 }
2704
2705 if (!error_emitted && (state->language_version <= 130)
2706 && var->type->is_array()) {
2707 _mesa_glsl_error(& loc, state,
2708 "vertex shader input / attribute cannot have "
2709 "array type");
2710 error_emitted = true;
2711 }
2712 }
2713 }
2714
2715 /* Integer vertex outputs must be qualified with 'flat'.
2716 *
2717 * From section 4.3.6 of the GLSL 1.30 spec:
2718 * "If a vertex output is a signed or unsigned integer or integer
2719 * vector, then it must be qualified with the interpolation qualifier
2720 * flat."
2721 */
2722 if (state->language_version >= 130
2723 && state->target == vertex_shader
2724 && state->current_function == NULL
2725 && var->type->is_integer()
2726 && var->mode == ir_var_out
2727 && var->interpolation != INTERP_QUALIFIER_FLAT) {
2728
2729 _mesa_glsl_error(&loc, state, "If a vertex output is an integer, "
2730 "then it must be qualified with 'flat'");
2731 }
2732
2733
2734 /* Interpolation qualifiers cannot be applied to 'centroid' and
2735 * 'centroid varying'.
2736 *
2737 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
2738 * "interpolation qualifiers may only precede the qualifiers in,
2739 * centroid in, out, or centroid out in a declaration. They do not apply
2740 * to the deprecated storage qualifiers varying or centroid varying."
2741 */
2742 if (state->language_version >= 130
2743 && this->type->qualifier.has_interpolation()
2744 && this->type->qualifier.flags.q.varying) {
2745
2746 const char *i = this->type->qualifier.interpolation_string();
2747 assert(i != NULL);
2748 const char *s;
2749 if (this->type->qualifier.flags.q.centroid)
2750 s = "centroid varying";
2751 else
2752 s = "varying";
2753
2754 _mesa_glsl_error(&loc, state,
2755 "qualifier '%s' cannot be applied to the "
2756 "deprecated storage qualifier '%s'", i, s);
2757 }
2758
2759
2760 /* Interpolation qualifiers can only apply to vertex shader outputs and
2761 * fragment shader inputs.
2762 *
2763 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
2764 * "Outputs from a vertex shader (out) and inputs to a fragment
2765 * shader (in) can be further qualified with one or more of these
2766 * interpolation qualifiers"
2767 */
2768 if (state->language_version >= 130
2769 && this->type->qualifier.has_interpolation()) {
2770
2771 const char *i = this->type->qualifier.interpolation_string();
2772 assert(i != NULL);
2773
2774 switch (state->target) {
2775 case vertex_shader:
2776 if (this->type->qualifier.flags.q.in) {
2777 _mesa_glsl_error(&loc, state,
2778 "qualifier '%s' cannot be applied to vertex "
2779 "shader inputs", i);
2780 }
2781 break;
2782 case fragment_shader:
2783 if (this->type->qualifier.flags.q.out) {
2784 _mesa_glsl_error(&loc, state,
2785 "qualifier '%s' cannot be applied to fragment "
2786 "shader outputs", i);
2787 }
2788 break;
2789 default:
2790 assert(0);
2791 }
2792 }
2793
2794
2795 /* From section 4.3.4 of the GLSL 1.30 spec:
2796 * "It is an error to use centroid in in a vertex shader."
2797 */
2798 if (state->language_version >= 130
2799 && this->type->qualifier.flags.q.centroid
2800 && this->type->qualifier.flags.q.in
2801 && state->target == vertex_shader) {
2802
2803 _mesa_glsl_error(&loc, state,
2804 "'centroid in' cannot be used in a vertex shader");
2805 }
2806
2807
2808 /* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30.
2809 */
2810 if (this->type->specifier->precision != ast_precision_none
2811 && state->language_version != 100
2812 && state->language_version < 130) {
2813
2814 _mesa_glsl_error(&loc, state,
2815 "precision qualifiers are supported only in GLSL ES "
2816 "1.00, and GLSL 1.30 and later");
2817 }
2818
2819
2820 /* Precision qualifiers only apply to floating point and integer types.
2821 *
2822 * From section 4.5.2 of the GLSL 1.30 spec:
2823 * "Any floating point or any integer declaration can have the type
2824 * preceded by one of these precision qualifiers [...] Literal
2825 * constants do not have precision qualifiers. Neither do Boolean
2826 * variables.
2827 *
2828 * In GLSL ES, sampler types are also allowed.
2829 *
2830 * From page 87 of the GLSL ES spec:
2831 * "RESOLUTION: Allow sampler types to take a precision qualifier."
2832 */
2833 if (this->type->specifier->precision != ast_precision_none
2834 && !var->type->is_float()
2835 && !var->type->is_integer()
2836 && !(var->type->is_sampler() && state->es_shader)
2837 && !(var->type->is_array()
2838 && (var->type->fields.array->is_float()
2839 || var->type->fields.array->is_integer()))) {
2840
2841 _mesa_glsl_error(&loc, state,
2842 "precision qualifiers apply only to floating point"
2843 "%s types", state->es_shader ? ", integer, and sampler"
2844 : "and integer");
2845 }
2846
2847 /* From page 17 (page 23 of the PDF) of the GLSL 1.20 spec:
2848 *
2849 * "[Sampler types] can only be declared as function
2850 * parameters or uniform variables (see Section 4.3.5
2851 * "Uniform")".
2852 */
2853 if (var_type->contains_sampler() &&
2854 !this->type->qualifier.flags.q.uniform) {
2855 _mesa_glsl_error(&loc, state, "samplers must be declared uniform");
2856 }
2857
2858 /* Process the initializer and add its instructions to a temporary
2859 * list. This list will be added to the instruction stream (below) after
2860 * the declaration is added. This is done because in some cases (such as
2861 * redeclarations) the declaration may not actually be added to the
2862 * instruction stream.
2863 */
2864 exec_list initializer_instructions;
2865 ir_variable *earlier = get_variable_being_redeclared(var, decl, state);
2866
2867 if (decl->initializer != NULL) {
2868 result = process_initializer((earlier == NULL) ? var : earlier,
2869 decl, this->type,
2870 &initializer_instructions, state);
2871 }
2872
2873 /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
2874 *
2875 * "It is an error to write to a const variable outside of
2876 * its declaration, so they must be initialized when
2877 * declared."
2878 */
2879 if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
2880 _mesa_glsl_error(& loc, state,
2881 "const declaration of `%s' must be initialized",
2882 decl->identifier);
2883 }
2884
2885 /* If the declaration is not a redeclaration, there are a few additional
2886 * semantic checks that must be applied. In addition, variable that was
2887 * created for the declaration should be added to the IR stream.
2888 */
2889 if (earlier == NULL) {
2890 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
2891 *
2892 * "Identifiers starting with "gl_" are reserved for use by
2893 * OpenGL, and may not be declared in a shader as either a
2894 * variable or a function."
2895 */
2896 if (strncmp(decl->identifier, "gl_", 3) == 0)
2897 _mesa_glsl_error(& loc, state,
2898 "identifier `%s' uses reserved `gl_' prefix",
2899 decl->identifier);
2900 else if (strstr(decl->identifier, "__")) {
2901 /* From page 14 (page 20 of the PDF) of the GLSL 1.10
2902 * spec:
2903 *
2904 * "In addition, all identifiers containing two
2905 * consecutive underscores (__) are reserved as
2906 * possible future keywords."
2907 */
2908 _mesa_glsl_error(& loc, state,
2909 "identifier `%s' uses reserved `__' string",
2910 decl->identifier);
2911 }
2912
2913 /* Add the variable to the symbol table. Note that the initializer's
2914 * IR was already processed earlier (though it hasn't been emitted
2915 * yet), without the variable in scope.
2916 *
2917 * This differs from most C-like languages, but it follows the GLSL
2918 * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
2919 * spec:
2920 *
2921 * "Within a declaration, the scope of a name starts immediately
2922 * after the initializer if present or immediately after the name
2923 * being declared if not."
2924 */
2925 if (!state->symbols->add_variable(var)) {
2926 YYLTYPE loc = this->get_location();
2927 _mesa_glsl_error(&loc, state, "name `%s' already taken in the "
2928 "current scope", decl->identifier);
2929 continue;
2930 }
2931
2932 /* Push the variable declaration to the top. It means that all the
2933 * variable declarations will appear in a funny last-to-first order,
2934 * but otherwise we run into trouble if a function is prototyped, a
2935 * global var is decled, then the function is defined with usage of
2936 * the global var. See glslparsertest's CorrectModule.frag.
2937 */
2938 instructions->push_head(var);
2939 }
2940
2941 instructions->append_list(&initializer_instructions);
2942 }
2943
2944
2945 /* Generally, variable declarations do not have r-values. However,
2946 * one is used for the declaration in
2947 *
2948 * while (bool b = some_condition()) {
2949 * ...
2950 * }
2951 *
2952 * so we return the rvalue from the last seen declaration here.
2953 */
2954 return result;
2955 }
2956
2957
2958 ir_rvalue *
2959 ast_parameter_declarator::hir(exec_list *instructions,
2960 struct _mesa_glsl_parse_state *state)
2961 {
2962 void *ctx = state;
2963 const struct glsl_type *type;
2964 const char *name = NULL;
2965 YYLTYPE loc = this->get_location();
2966
2967 type = this->type->specifier->glsl_type(& name, state);
2968
2969 if (type == NULL) {
2970 if (name != NULL) {
2971 _mesa_glsl_error(& loc, state,
2972 "invalid type `%s' in declaration of `%s'",
2973 name, this->identifier);
2974 } else {
2975 _mesa_glsl_error(& loc, state,
2976 "invalid type in declaration of `%s'",
2977 this->identifier);
2978 }
2979
2980 type = glsl_type::error_type;
2981 }
2982
2983 /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
2984 *
2985 * "Functions that accept no input arguments need not use void in the
2986 * argument list because prototypes (or definitions) are required and
2987 * therefore there is no ambiguity when an empty argument list "( )" is
2988 * declared. The idiom "(void)" as a parameter list is provided for
2989 * convenience."
2990 *
2991 * Placing this check here prevents a void parameter being set up
2992 * for a function, which avoids tripping up checks for main taking
2993 * parameters and lookups of an unnamed symbol.
2994 */
2995 if (type->is_void()) {
2996 if (this->identifier != NULL)
2997 _mesa_glsl_error(& loc, state,
2998 "named parameter cannot have type `void'");
2999
3000 is_void = true;
3001 return NULL;
3002 }
3003
3004 if (formal_parameter && (this->identifier == NULL)) {
3005 _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
3006 return NULL;
3007 }
3008
3009 /* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...)
3010 * call already handled the "vec4[..] foo" case.
3011 */
3012 if (this->is_array) {
3013 type = process_array_type(&loc, type, this->array_size, state);
3014 }
3015
3016 if (!type->is_error() && type->array_size() == 0) {
3017 _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
3018 "a declared size.");
3019 type = glsl_type::error_type;
3020 }
3021
3022 is_void = false;
3023 ir_variable *var = new(ctx) ir_variable(type, this->identifier, ir_var_in);
3024
3025 /* Apply any specified qualifiers to the parameter declaration. Note that
3026 * for function parameters the default mode is 'in'.
3027 */
3028 apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc);
3029
3030 /* From page 17 (page 23 of the PDF) of the GLSL 1.20 spec:
3031 *
3032 * "Samplers cannot be treated as l-values; hence cannot be used
3033 * as out or inout function parameters, nor can they be assigned
3034 * into."
3035 */
3036 if ((var->mode == ir_var_inout || var->mode == ir_var_out)
3037 && type->contains_sampler()) {
3038 _mesa_glsl_error(&loc, state, "out and inout parameters cannot contain samplers");
3039 type = glsl_type::error_type;
3040 }
3041
3042 /* From page 39 (page 45 of the PDF) of the GLSL 1.10 spec:
3043 *
3044 * "When calling a function, expressions that do not evaluate to
3045 * l-values cannot be passed to parameters declared as out or inout."
3046 *
3047 * From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
3048 *
3049 * "Other binary or unary expressions, non-dereferenced arrays,
3050 * function names, swizzles with repeated fields, and constants
3051 * cannot be l-values."
3052 *
3053 * So for GLSL 1.10, passing an array as an out or inout parameter is not
3054 * allowed. This restriction is removed in GLSL 1.20, and in GLSL ES.
3055 */
3056 if ((var->mode == ir_var_inout || var->mode == ir_var_out)
3057 && type->is_array() && state->language_version == 110) {
3058 _mesa_glsl_error(&loc, state, "Arrays cannot be out or inout parameters in GLSL 1.10");
3059 type = glsl_type::error_type;
3060 }
3061
3062 instructions->push_tail(var);
3063
3064 /* Parameter declarations do not have r-values.
3065 */
3066 return NULL;
3067 }
3068
3069
3070 void
3071 ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
3072 bool formal,
3073 exec_list *ir_parameters,
3074 _mesa_glsl_parse_state *state)
3075 {
3076 ast_parameter_declarator *void_param = NULL;
3077 unsigned count = 0;
3078
3079 foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
3080 param->formal_parameter = formal;
3081 param->hir(ir_parameters, state);
3082
3083 if (param->is_void)
3084 void_param = param;
3085
3086 count++;
3087 }
3088
3089 if ((void_param != NULL) && (count > 1)) {
3090 YYLTYPE loc = void_param->get_location();
3091
3092 _mesa_glsl_error(& loc, state,
3093 "`void' parameter must be only parameter");
3094 }
3095 }
3096
3097
3098 void
3099 emit_function(_mesa_glsl_parse_state *state, ir_function *f)
3100 {
3101 /* IR invariants disallow function declarations or definitions
3102 * nested within other function definitions. But there is no
3103 * requirement about the relative order of function declarations
3104 * and definitions with respect to one another. So simply insert
3105 * the new ir_function block at the end of the toplevel instruction
3106 * list.
3107 */
3108 state->toplevel_ir->push_tail(f);
3109 }
3110
3111
3112 ir_rvalue *
3113 ast_function::hir(exec_list *instructions,
3114 struct _mesa_glsl_parse_state *state)
3115 {
3116 void *ctx = state;
3117 ir_function *f = NULL;
3118 ir_function_signature *sig = NULL;
3119 exec_list hir_parameters;
3120
3121 const char *const name = identifier;
3122
3123 /* New functions are always added to the top-level IR instruction stream,
3124 * so this instruction list pointer is ignored. See also emit_function
3125 * (called below).
3126 */
3127 (void) instructions;
3128
3129 /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
3130 *
3131 * "Function declarations (prototypes) cannot occur inside of functions;
3132 * they must be at global scope, or for the built-in functions, outside
3133 * the global scope."
3134 *
3135 * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
3136 *
3137 * "User defined functions may only be defined within the global scope."
3138 *
3139 * Note that this language does not appear in GLSL 1.10.
3140 */
3141 if ((state->current_function != NULL) && (state->language_version != 110)) {
3142 YYLTYPE loc = this->get_location();
3143 _mesa_glsl_error(&loc, state,
3144 "declaration of function `%s' not allowed within "
3145 "function body", name);
3146 }
3147
3148 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
3149 *
3150 * "Identifiers starting with "gl_" are reserved for use by
3151 * OpenGL, and may not be declared in a shader as either a
3152 * variable or a function."
3153 */
3154 if (strncmp(name, "gl_", 3) == 0) {
3155 YYLTYPE loc = this->get_location();
3156 _mesa_glsl_error(&loc, state,
3157 "identifier `%s' uses reserved `gl_' prefix", name);
3158 }
3159
3160 /* Convert the list of function parameters to HIR now so that they can be
3161 * used below to compare this function's signature with previously seen
3162 * signatures for functions with the same name.
3163 */
3164 ast_parameter_declarator::parameters_to_hir(& this->parameters,
3165 is_definition,
3166 & hir_parameters, state);
3167
3168 const char *return_type_name;
3169 const glsl_type *return_type =
3170 this->return_type->specifier->glsl_type(& return_type_name, state);
3171
3172 if (!return_type) {
3173 YYLTYPE loc = this->get_location();
3174 _mesa_glsl_error(&loc, state,
3175 "function `%s' has undeclared return type `%s'",
3176 name, return_type_name);
3177 return_type = glsl_type::error_type;
3178 }
3179
3180 /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
3181 * "No qualifier is allowed on the return type of a function."
3182 */
3183 if (this->return_type->has_qualifiers()) {
3184 YYLTYPE loc = this->get_location();
3185 _mesa_glsl_error(& loc, state,
3186 "function `%s' return type has qualifiers", name);
3187 }
3188
3189 /* From page 17 (page 23 of the PDF) of the GLSL 1.20 spec:
3190 *
3191 * "[Sampler types] can only be declared as function parameters
3192 * or uniform variables (see Section 4.3.5 "Uniform")".
3193 */
3194 if (return_type->contains_sampler()) {
3195 YYLTYPE loc = this->get_location();
3196 _mesa_glsl_error(&loc, state,
3197 "function `%s' return type can't contain a sampler",
3198 name);
3199 }
3200
3201 /* Verify that this function's signature either doesn't match a previously
3202 * seen signature for a function with the same name, or, if a match is found,
3203 * that the previously seen signature does not have an associated definition.
3204 */
3205 f = state->symbols->get_function(name);
3206 if (f != NULL && (state->es_shader || f->has_user_signature())) {
3207 sig = f->exact_matching_signature(&hir_parameters);
3208 if (sig != NULL) {
3209 const char *badvar = sig->qualifiers_match(&hir_parameters);
3210 if (badvar != NULL) {
3211 YYLTYPE loc = this->get_location();
3212
3213 _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
3214 "qualifiers don't match prototype", name, badvar);
3215 }
3216
3217 if (sig->return_type != return_type) {
3218 YYLTYPE loc = this->get_location();
3219
3220 _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
3221 "match prototype", name);
3222 }
3223
3224 if (is_definition && sig->is_defined) {
3225 YYLTYPE loc = this->get_location();
3226
3227 _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
3228 }
3229 }
3230 } else {
3231 f = new(ctx) ir_function(name);
3232 if (!state->symbols->add_function(f)) {
3233 /* This function name shadows a non-function use of the same name. */
3234 YYLTYPE loc = this->get_location();
3235
3236 _mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
3237 "non-function", name);
3238 return NULL;
3239 }
3240
3241 emit_function(state, f);
3242 }
3243
3244 /* Verify the return type of main() */
3245 if (strcmp(name, "main") == 0) {
3246 if (! return_type->is_void()) {
3247 YYLTYPE loc = this->get_location();
3248
3249 _mesa_glsl_error(& loc, state, "main() must return void");
3250 }
3251
3252 if (!hir_parameters.is_empty()) {
3253 YYLTYPE loc = this->get_location();
3254
3255 _mesa_glsl_error(& loc, state, "main() must not take any parameters");
3256 }
3257 }
3258
3259 /* Finish storing the information about this new function in its signature.
3260 */
3261 if (sig == NULL) {
3262 sig = new(ctx) ir_function_signature(return_type);
3263 f->add_signature(sig);
3264 }
3265
3266 sig->replace_parameters(&hir_parameters);
3267 signature = sig;
3268
3269 /* Function declarations (prototypes) do not have r-values.
3270 */
3271 return NULL;
3272 }
3273
3274
3275 ir_rvalue *
3276 ast_function_definition::hir(exec_list *instructions,
3277 struct _mesa_glsl_parse_state *state)
3278 {
3279 prototype->is_definition = true;
3280 prototype->hir(instructions, state);
3281
3282 ir_function_signature *signature = prototype->signature;
3283 if (signature == NULL)
3284 return NULL;
3285
3286 assert(state->current_function == NULL);
3287 state->current_function = signature;
3288 state->found_return = false;
3289
3290 /* Duplicate parameters declared in the prototype as concrete variables.
3291 * Add these to the symbol table.
3292 */
3293 state->symbols->push_scope();
3294 foreach_iter(exec_list_iterator, iter, signature->parameters) {
3295 ir_variable *const var = ((ir_instruction *) iter.get())->as_variable();
3296
3297 assert(var != NULL);
3298
3299 /* The only way a parameter would "exist" is if two parameters have
3300 * the same name.
3301 */
3302 if (state->symbols->name_declared_this_scope(var->name)) {
3303 YYLTYPE loc = this->get_location();
3304
3305 _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
3306 } else {
3307 state->symbols->add_variable(var);
3308 }
3309 }
3310
3311 /* Convert the body of the function to HIR. */
3312 this->body->hir(&signature->body, state);
3313 signature->is_defined = true;
3314
3315 state->symbols->pop_scope();
3316
3317 assert(state->current_function == signature);
3318 state->current_function = NULL;
3319
3320 if (!signature->return_type->is_void() && !state->found_return) {
3321 YYLTYPE loc = this->get_location();
3322 _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
3323 "%s, but no return statement",
3324 signature->function_name(),
3325 signature->return_type->name);
3326 }
3327
3328 /* Function definitions do not have r-values.
3329 */
3330 return NULL;
3331 }
3332
3333
3334 ir_rvalue *
3335 ast_jump_statement::hir(exec_list *instructions,
3336 struct _mesa_glsl_parse_state *state)
3337 {
3338 void *ctx = state;
3339
3340 switch (mode) {
3341 case ast_return: {
3342 ir_return *inst;
3343 assert(state->current_function);
3344
3345 if (opt_return_value) {
3346 ir_rvalue *const ret = opt_return_value->hir(instructions, state);
3347
3348 /* The value of the return type can be NULL if the shader says
3349 * 'return foo();' and foo() is a function that returns void.
3350 *
3351 * NOTE: The GLSL spec doesn't say that this is an error. The type
3352 * of the return value is void. If the return type of the function is
3353 * also void, then this should compile without error. Seriously.
3354 */
3355 const glsl_type *const ret_type =
3356 (ret == NULL) ? glsl_type::void_type : ret->type;
3357
3358 /* Implicit conversions are not allowed for return values. */
3359 if (state->current_function->return_type != ret_type) {
3360 YYLTYPE loc = this->get_location();
3361
3362 _mesa_glsl_error(& loc, state,
3363 "`return' with wrong type %s, in function `%s' "
3364 "returning %s",
3365 ret_type->name,
3366 state->current_function->function_name(),
3367 state->current_function->return_type->name);
3368 }
3369
3370 inst = new(ctx) ir_return(ret);
3371 } else {
3372 if (state->current_function->return_type->base_type !=
3373 GLSL_TYPE_VOID) {
3374 YYLTYPE loc = this->get_location();
3375
3376 _mesa_glsl_error(& loc, state,
3377 "`return' with no value, in function %s returning "
3378 "non-void",
3379 state->current_function->function_name());
3380 }
3381 inst = new(ctx) ir_return;
3382 }
3383
3384 state->found_return = true;
3385 instructions->push_tail(inst);
3386 break;
3387 }
3388
3389 case ast_discard:
3390 if (state->target != fragment_shader) {
3391 YYLTYPE loc = this->get_location();
3392
3393 _mesa_glsl_error(& loc, state,
3394 "`discard' may only appear in a fragment shader");
3395 }
3396 instructions->push_tail(new(ctx) ir_discard);
3397 break;
3398
3399 case ast_break:
3400 case ast_continue:
3401 if (mode == ast_continue &&
3402 state->loop_nesting_ast == NULL) {
3403 YYLTYPE loc = this->get_location();
3404
3405 _mesa_glsl_error(& loc, state,
3406 "continue may only appear in a loop");
3407 } else if (mode == ast_break &&
3408 state->loop_nesting_ast == NULL &&
3409 state->switch_state.switch_nesting_ast == NULL) {
3410 YYLTYPE loc = this->get_location();
3411
3412 _mesa_glsl_error(& loc, state,
3413 "break may only appear in a loop or a switch");
3414 } else {
3415 /* For a loop, inline the for loop expression again,
3416 * since we don't know where near the end of
3417 * the loop body the normal copy of it
3418 * is going to be placed.
3419 */
3420 if (state->loop_nesting_ast != NULL &&
3421 mode == ast_continue &&
3422 state->loop_nesting_ast->rest_expression) {
3423 state->loop_nesting_ast->rest_expression->hir(instructions,
3424 state);
3425 }
3426
3427 if (state->switch_state.is_switch_innermost &&
3428 mode == ast_break) {
3429 /* Force break out of switch by setting is_break switch state.
3430 */
3431 ir_variable *const is_break_var = state->switch_state.is_break_var;
3432 ir_dereference_variable *const deref_is_break_var =
3433 new(ctx) ir_dereference_variable(is_break_var);
3434 ir_constant *const true_val = new(ctx) ir_constant(true);
3435 ir_assignment *const set_break_var =
3436 new(ctx) ir_assignment(deref_is_break_var,
3437 true_val,
3438 NULL);
3439
3440 instructions->push_tail(set_break_var);
3441 }
3442 else {
3443 ir_loop_jump *const jump =
3444 new(ctx) ir_loop_jump((mode == ast_break)
3445 ? ir_loop_jump::jump_break
3446 : ir_loop_jump::jump_continue);
3447 instructions->push_tail(jump);
3448 }
3449 }
3450
3451 break;
3452 }
3453
3454 /* Jump instructions do not have r-values.
3455 */
3456 return NULL;
3457 }
3458
3459
3460 ir_rvalue *
3461 ast_selection_statement::hir(exec_list *instructions,
3462 struct _mesa_glsl_parse_state *state)
3463 {
3464 void *ctx = state;
3465
3466 ir_rvalue *const condition = this->condition->hir(instructions, state);
3467
3468 /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
3469 *
3470 * "Any expression whose type evaluates to a Boolean can be used as the
3471 * conditional expression bool-expression. Vector types are not accepted
3472 * as the expression to if."
3473 *
3474 * The checks are separated so that higher quality diagnostics can be
3475 * generated for cases where both rules are violated.
3476 */
3477 if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
3478 YYLTYPE loc = this->condition->get_location();
3479
3480 _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
3481 "boolean");
3482 }
3483
3484 ir_if *const stmt = new(ctx) ir_if(condition);
3485
3486 if (then_statement != NULL) {
3487 state->symbols->push_scope();
3488 then_statement->hir(& stmt->then_instructions, state);
3489 state->symbols->pop_scope();
3490 }
3491
3492 if (else_statement != NULL) {
3493 state->symbols->push_scope();
3494 else_statement->hir(& stmt->else_instructions, state);
3495 state->symbols->pop_scope();
3496 }
3497
3498 instructions->push_tail(stmt);
3499
3500 /* if-statements do not have r-values.
3501 */
3502 return NULL;
3503 }
3504
3505
3506 ir_rvalue *
3507 ast_switch_statement::hir(exec_list *instructions,
3508 struct _mesa_glsl_parse_state *state)
3509 {
3510 void *ctx = state;
3511
3512 ir_rvalue *const test_expression =
3513 this->test_expression->hir(instructions, state);
3514
3515 /* From page 66 (page 55 of the PDF) of the GLSL 1.50 spec:
3516 *
3517 * "The type of init-expression in a switch statement must be a
3518 * scalar integer."
3519 */
3520 if (!test_expression->type->is_scalar() ||
3521 !test_expression->type->is_integer()) {
3522 YYLTYPE loc = this->test_expression->get_location();
3523
3524 _mesa_glsl_error(& loc,
3525 state,
3526 "switch-statement expression must be scalar "
3527 "integer");
3528 }
3529
3530 /* Track the switch-statement nesting in a stack-like manner.
3531 */
3532 struct glsl_switch_state saved = state->switch_state;
3533
3534 state->switch_state.is_switch_innermost = true;
3535 state->switch_state.switch_nesting_ast = this;
3536 state->switch_state.labels_ht = hash_table_ctor(0, hash_table_pointer_hash,
3537 hash_table_pointer_compare);
3538 state->switch_state.previous_default = NULL;
3539
3540 /* Initalize is_fallthru state to false.
3541 */
3542 ir_rvalue *const is_fallthru_val = new (ctx) ir_constant(false);
3543 state->switch_state.is_fallthru_var =
3544 new(ctx) ir_variable(glsl_type::bool_type,
3545 "switch_is_fallthru_tmp",
3546 ir_var_temporary);
3547 instructions->push_tail(state->switch_state.is_fallthru_var);
3548
3549 ir_dereference_variable *deref_is_fallthru_var =
3550 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
3551 instructions->push_tail(new(ctx) ir_assignment(deref_is_fallthru_var,
3552 is_fallthru_val,
3553 NULL));
3554
3555 /* Initalize is_break state to false.
3556 */
3557 ir_rvalue *const is_break_val = new (ctx) ir_constant(false);
3558 state->switch_state.is_break_var = new(ctx) ir_variable(glsl_type::bool_type,
3559 "switch_is_break_tmp",
3560 ir_var_temporary);
3561 instructions->push_tail(state->switch_state.is_break_var);
3562
3563 ir_dereference_variable *deref_is_break_var =
3564 new(ctx) ir_dereference_variable(state->switch_state.is_break_var);
3565 instructions->push_tail(new(ctx) ir_assignment(deref_is_break_var,
3566 is_break_val,
3567 NULL));
3568
3569 /* Cache test expression.
3570 */
3571 test_to_hir(instructions, state);
3572
3573 /* Emit code for body of switch stmt.
3574 */
3575 body->hir(instructions, state);
3576
3577 hash_table_dtor(state->switch_state.labels_ht);
3578
3579 state->switch_state = saved;
3580
3581 /* Switch statements do not have r-values. */
3582 return NULL;
3583 }
3584
3585
3586 void
3587 ast_switch_statement::test_to_hir(exec_list *instructions,
3588 struct _mesa_glsl_parse_state *state)
3589 {
3590 void *ctx = state;
3591
3592 /* Cache value of test expression. */
3593 ir_rvalue *const test_val =
3594 test_expression->hir(instructions,
3595 state);
3596
3597 state->switch_state.test_var = new(ctx) ir_variable(test_val->type,
3598 "switch_test_tmp",
3599 ir_var_temporary);
3600 ir_dereference_variable *deref_test_var =
3601 new(ctx) ir_dereference_variable(state->switch_state.test_var);
3602
3603 instructions->push_tail(state->switch_state.test_var);
3604 instructions->push_tail(new(ctx) ir_assignment(deref_test_var, test_val,
3605 NULL));
3606 }
3607
3608
3609 ir_rvalue *
3610 ast_switch_body::hir(exec_list *instructions,
3611 struct _mesa_glsl_parse_state *state)
3612 {
3613 if (stmts != NULL)
3614 stmts->hir(instructions, state);
3615
3616 /* Switch bodies do not have r-values. */
3617 return NULL;
3618 }
3619
3620 ir_rvalue *
3621 ast_case_statement_list::hir(exec_list *instructions,
3622 struct _mesa_glsl_parse_state *state)
3623 {
3624 foreach_list_typed (ast_case_statement, case_stmt, link, & this->cases)
3625 case_stmt->hir(instructions, state);
3626
3627 /* Case statements do not have r-values. */
3628 return NULL;
3629 }
3630
3631 ir_rvalue *
3632 ast_case_statement::hir(exec_list *instructions,
3633 struct _mesa_glsl_parse_state *state)
3634 {
3635 labels->hir(instructions, state);
3636
3637 /* Conditionally set fallthru state based on break state. */
3638 ir_constant *const false_val = new(state) ir_constant(false);
3639 ir_dereference_variable *const deref_is_fallthru_var =
3640 new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
3641 ir_dereference_variable *const deref_is_break_var =
3642 new(state) ir_dereference_variable(state->switch_state.is_break_var);
3643 ir_assignment *const reset_fallthru_on_break =
3644 new(state) ir_assignment(deref_is_fallthru_var,
3645 false_val,
3646 deref_is_break_var);
3647 instructions->push_tail(reset_fallthru_on_break);
3648
3649 /* Guard case statements depending on fallthru state. */
3650 ir_dereference_variable *const deref_fallthru_guard =
3651 new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
3652 ir_if *const test_fallthru = new(state) ir_if(deref_fallthru_guard);
3653
3654 foreach_list_typed (ast_node, stmt, link, & this->stmts)
3655 stmt->hir(& test_fallthru->then_instructions, state);
3656
3657 instructions->push_tail(test_fallthru);
3658
3659 /* Case statements do not have r-values. */
3660 return NULL;
3661 }
3662
3663
3664 ir_rvalue *
3665 ast_case_label_list::hir(exec_list *instructions,
3666 struct _mesa_glsl_parse_state *state)
3667 {
3668 foreach_list_typed (ast_case_label, label, link, & this->labels)
3669 label->hir(instructions, state);
3670
3671 /* Case labels do not have r-values. */
3672 return NULL;
3673 }
3674
3675 ir_rvalue *
3676 ast_case_label::hir(exec_list *instructions,
3677 struct _mesa_glsl_parse_state *state)
3678 {
3679 void *ctx = state;
3680
3681 ir_dereference_variable *deref_fallthru_var =
3682 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
3683
3684 ir_rvalue *const true_val = new(ctx) ir_constant(true);
3685
3686 /* If not default case, ... */
3687 if (this->test_value != NULL) {
3688 /* Conditionally set fallthru state based on
3689 * comparison of cached test expression value to case label.
3690 */
3691 ir_rvalue *const label_rval = this->test_value->hir(instructions, state);
3692 ir_constant *label_const = label_rval->constant_expression_value();
3693
3694 if (!label_const) {
3695 YYLTYPE loc = this->test_value->get_location();
3696
3697 _mesa_glsl_error(& loc, state,
3698 "switch statement case label must be a "
3699 "constant expression");
3700
3701 /* Stuff a dummy value in to allow processing to continue. */
3702 label_const = new(ctx) ir_constant(0);
3703 } else {
3704 ast_expression *previous_label = (ast_expression *)
3705 hash_table_find(state->switch_state.labels_ht,
3706 (void *)(uintptr_t)label_const->value.u[0]);
3707
3708 if (previous_label) {
3709 YYLTYPE loc = this->test_value->get_location();
3710 _mesa_glsl_error(& loc, state,
3711 "duplicate case value");
3712
3713 loc = previous_label->get_location();
3714 _mesa_glsl_error(& loc, state,
3715 "this is the previous case label");
3716 } else {
3717 hash_table_insert(state->switch_state.labels_ht,
3718 this->test_value,
3719 (void *)(uintptr_t)label_const->value.u[0]);
3720 }
3721 }
3722
3723 ir_dereference_variable *deref_test_var =
3724 new(ctx) ir_dereference_variable(state->switch_state.test_var);
3725
3726 ir_rvalue *const test_cond = new(ctx) ir_expression(ir_binop_all_equal,
3727 label_const,
3728 deref_test_var);
3729
3730 ir_assignment *set_fallthru_on_test =
3731 new(ctx) ir_assignment(deref_fallthru_var,
3732 true_val,
3733 test_cond);
3734
3735 instructions->push_tail(set_fallthru_on_test);
3736 } else { /* default case */
3737 if (state->switch_state.previous_default) {
3738 YYLTYPE loc = this->get_location();
3739 _mesa_glsl_error(& loc, state,
3740 "multiple default labels in one switch");
3741
3742 loc = state->switch_state.previous_default->get_location();
3743 _mesa_glsl_error(& loc, state,
3744 "this is the first default label");
3745 }
3746 state->switch_state.previous_default = this;
3747
3748 /* Set falltrhu state. */
3749 ir_assignment *set_fallthru =
3750 new(ctx) ir_assignment(deref_fallthru_var, true_val, NULL);
3751
3752 instructions->push_tail(set_fallthru);
3753 }
3754
3755 /* Case statements do not have r-values. */
3756 return NULL;
3757 }
3758
3759 void
3760 ast_iteration_statement::condition_to_hir(ir_loop *stmt,
3761 struct _mesa_glsl_parse_state *state)
3762 {
3763 void *ctx = state;
3764
3765 if (condition != NULL) {
3766 ir_rvalue *const cond =
3767 condition->hir(& stmt->body_instructions, state);
3768
3769 if ((cond == NULL)
3770 || !cond->type->is_boolean() || !cond->type->is_scalar()) {
3771 YYLTYPE loc = condition->get_location();
3772
3773 _mesa_glsl_error(& loc, state,
3774 "loop condition must be scalar boolean");
3775 } else {
3776 /* As the first code in the loop body, generate a block that looks
3777 * like 'if (!condition) break;' as the loop termination condition.
3778 */
3779 ir_rvalue *const not_cond =
3780 new(ctx) ir_expression(ir_unop_logic_not, cond);
3781
3782 ir_if *const if_stmt = new(ctx) ir_if(not_cond);
3783
3784 ir_jump *const break_stmt =
3785 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
3786
3787 if_stmt->then_instructions.push_tail(break_stmt);
3788 stmt->body_instructions.push_tail(if_stmt);
3789 }
3790 }
3791 }
3792
3793
3794 ir_rvalue *
3795 ast_iteration_statement::hir(exec_list *instructions,
3796 struct _mesa_glsl_parse_state *state)
3797 {
3798 void *ctx = state;
3799
3800 /* For-loops and while-loops start a new scope, but do-while loops do not.
3801 */
3802 if (mode != ast_do_while)
3803 state->symbols->push_scope();
3804
3805 if (init_statement != NULL)
3806 init_statement->hir(instructions, state);
3807
3808 ir_loop *const stmt = new(ctx) ir_loop();
3809 instructions->push_tail(stmt);
3810
3811 /* Track the current loop nesting. */
3812 ast_iteration_statement *nesting_ast = state->loop_nesting_ast;
3813
3814 state->loop_nesting_ast = this;
3815
3816 /* Likewise, indicate that following code is closest to a loop,
3817 * NOT closest to a switch.
3818 */
3819 bool saved_is_switch_innermost = state->switch_state.is_switch_innermost;
3820 state->switch_state.is_switch_innermost = false;
3821
3822 if (mode != ast_do_while)
3823 condition_to_hir(stmt, state);
3824
3825 if (body != NULL)
3826 body->hir(& stmt->body_instructions, state);
3827
3828 if (rest_expression != NULL)
3829 rest_expression->hir(& stmt->body_instructions, state);
3830
3831 if (mode == ast_do_while)
3832 condition_to_hir(stmt, state);
3833
3834 if (mode != ast_do_while)
3835 state->symbols->pop_scope();
3836
3837 /* Restore previous nesting before returning. */
3838 state->loop_nesting_ast = nesting_ast;
3839 state->switch_state.is_switch_innermost = saved_is_switch_innermost;
3840
3841 /* Loops do not have r-values.
3842 */
3843 return NULL;
3844 }
3845
3846
3847 ir_rvalue *
3848 ast_type_specifier::hir(exec_list *instructions,
3849 struct _mesa_glsl_parse_state *state)
3850 {
3851 if (!this->is_precision_statement && this->structure == NULL)
3852 return NULL;
3853
3854 YYLTYPE loc = this->get_location();
3855
3856 if (this->precision != ast_precision_none
3857 && state->language_version != 100
3858 && state->language_version < 130) {
3859 _mesa_glsl_error(&loc, state,
3860 "precision qualifiers exist only in "
3861 "GLSL ES 1.00, and GLSL 1.30 and later");
3862 return NULL;
3863 }
3864 if (this->precision != ast_precision_none
3865 && this->structure != NULL) {
3866 _mesa_glsl_error(&loc, state,
3867 "precision qualifiers do not apply to structures");
3868 return NULL;
3869 }
3870
3871 /* If this is a precision statement, check that the type to which it is
3872 * applied is either float or int.
3873 *
3874 * From section 4.5.3 of the GLSL 1.30 spec:
3875 * "The precision statement
3876 * precision precision-qualifier type;
3877 * can be used to establish a default precision qualifier. The type
3878 * field can be either int or float [...]. Any other types or
3879 * qualifiers will result in an error.
3880 */
3881 if (this->is_precision_statement) {
3882 assert(this->precision != ast_precision_none);
3883 assert(this->structure == NULL); /* The check for structures was
3884 * performed above. */
3885 if (this->is_array) {
3886 _mesa_glsl_error(&loc, state,
3887 "default precision statements do not apply to "
3888 "arrays");
3889 return NULL;
3890 }
3891 if (this->type_specifier != ast_float
3892 && this->type_specifier != ast_int) {
3893 _mesa_glsl_error(&loc, state,
3894 "default precision statements apply only to types "
3895 "float and int");
3896 return NULL;
3897 }
3898
3899 /* FINISHME: Translate precision statements into IR. */
3900 return NULL;
3901 }
3902
3903 if (this->structure != NULL)
3904 return this->structure->hir(instructions, state);
3905
3906 return NULL;
3907 }
3908
3909
3910 ir_rvalue *
3911 ast_struct_specifier::hir(exec_list *instructions,
3912 struct _mesa_glsl_parse_state *state)
3913 {
3914 unsigned decl_count = 0;
3915
3916 /* Make an initial pass over the list of structure fields to determine how
3917 * many there are. Each element in this list is an ast_declarator_list.
3918 * This means that we actually need to count the number of elements in the
3919 * 'declarations' list in each of the elements.
3920 */
3921 foreach_list_typed (ast_declarator_list, decl_list, link,
3922 &this->declarations) {
3923 foreach_list_const (decl_ptr, & decl_list->declarations) {
3924 decl_count++;
3925 }
3926 }
3927
3928 /* Allocate storage for the structure fields and process the field
3929 * declarations. As the declarations are processed, try to also convert
3930 * the types to HIR. This ensures that structure definitions embedded in
3931 * other structure definitions are processed.
3932 */
3933 glsl_struct_field *const fields = ralloc_array(state, glsl_struct_field,
3934 decl_count);
3935
3936 unsigned i = 0;
3937 foreach_list_typed (ast_declarator_list, decl_list, link,
3938 &this->declarations) {
3939 const char *type_name;
3940
3941 decl_list->type->specifier->hir(instructions, state);
3942
3943 /* Section 10.9 of the GLSL ES 1.00 specification states that
3944 * embedded structure definitions have been removed from the language.
3945 */
3946 if (state->es_shader && decl_list->type->specifier->structure != NULL) {
3947 YYLTYPE loc = this->get_location();
3948 _mesa_glsl_error(&loc, state, "Embedded structure definitions are "
3949 "not allowed in GLSL ES 1.00.");
3950 }
3951
3952 const glsl_type *decl_type =
3953 decl_list->type->specifier->glsl_type(& type_name, state);
3954
3955 foreach_list_typed (ast_declaration, decl, link,
3956 &decl_list->declarations) {
3957 const struct glsl_type *field_type = decl_type;
3958 if (decl->is_array) {
3959 YYLTYPE loc = decl->get_location();
3960 field_type = process_array_type(&loc, decl_type, decl->array_size,
3961 state);
3962 }
3963 fields[i].type = (field_type != NULL)
3964 ? field_type : glsl_type::error_type;
3965 fields[i].name = decl->identifier;
3966 i++;
3967 }
3968 }
3969
3970 assert(i == decl_count);
3971
3972 const glsl_type *t =
3973 glsl_type::get_record_instance(fields, decl_count, this->name);
3974
3975 YYLTYPE loc = this->get_location();
3976 if (!state->symbols->add_type(name, t)) {
3977 _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
3978 } else {
3979 const glsl_type **s = reralloc(state, state->user_structures,
3980 const glsl_type *,
3981 state->num_user_structures + 1);
3982 if (s != NULL) {
3983 s[state->num_user_structures] = t;
3984 state->user_structures = s;
3985 state->num_user_structures++;
3986 }
3987 }
3988
3989 /* Structure type definitions do not have r-values.
3990 */
3991 return NULL;
3992 }