[OPENGL]
[reactos.git] / reactos / dll / opengl / mesa / src / glu / sgi / libnurbs / internals / patch.cc
1 /*
2 ** License Applicability. Except to the extent portions of this file are
3 ** made subject to an alternative license as permitted in the SGI Free
4 ** Software License B, Version 1.1 (the "License"), the contents of this
5 ** file are subject only to the provisions of the License. You may not use
6 ** this file except in compliance with the License. You may obtain a copy
7 ** of the License at Silicon Graphics, Inc., attn: Legal Services, 1600
8 ** Amphitheatre Parkway, Mountain View, CA 94043-1351, or at:
9 **
10 ** http://oss.sgi.com/projects/FreeB
11 **
12 ** Note that, as provided in the License, the Software is distributed on an
13 ** "AS IS" basis, with ALL EXPRESS AND IMPLIED WARRANTIES AND CONDITIONS
14 ** DISCLAIMED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES AND
15 ** CONDITIONS OF MERCHANTABILITY, SATISFACTORY QUALITY, FITNESS FOR A
16 ** PARTICULAR PURPOSE, AND NON-INFRINGEMENT.
17 **
18 ** Original Code. The Original Code is: OpenGL Sample Implementation,
19 ** Version 1.2.1, released January 26, 2000, developed by Silicon Graphics,
20 ** Inc. The Original Code is Copyright (c) 1991-2000 Silicon Graphics, Inc.
21 ** Copyright in any portions created by third parties is as indicated
22 ** elsewhere herein. All Rights Reserved.
23 **
24 ** Additional Notice Provisions: The application programming interfaces
25 ** established by SGI in conjunction with the Original Code are The
26 ** OpenGL(R) Graphics System: A Specification (Version 1.2.1), released
27 ** April 1, 1999; The OpenGL(R) Graphics System Utility Library (Version
28 ** 1.3), released November 4, 1998; and OpenGL(R) Graphics with the X
29 ** Window System(R) (Version 1.3), released October 19, 1998. This software
30 ** was created using the OpenGL(R) version 1.2.1 Sample Implementation
31 ** published by SGI, but has not been independently verified as being
32 ** compliant with the OpenGL(R) version 1.2.1 Specification.
33 */
34
35 /*
36 * patch.c++
37 *
38 */
39
40 #include <stdio.h>
41 #include "glimports.h"
42 #include "mystdio.h"
43 #include "myassert.h"
44 #include "mymath.h"
45 #include "mystring.h"
46 #include "patch.h"
47 #include "mapdesc.h"
48 #include "quilt.h"
49 #include "nurbsconsts.h"
50 #include "simplemath.h" //for glu_abs function in ::singleStep();
51
52
53 /*--------------------------------------------------------------------------
54 * Patch - copy patch from quilt and transform control points
55 *--------------------------------------------------------------------------
56 */
57
58 Patch::Patch( Quilt_ptr geo, REAL *pta, REAL *ptb, Patch *n )
59 {
60 /* pspec[i].range is uninit here */
61 mapdesc = geo->mapdesc;
62 cullval = mapdesc->isCulling() ? CULL_ACCEPT : CULL_TRIVIAL_ACCEPT;
63 notInBbox = mapdesc->isBboxSubdividing() ? 1 : 0;
64 needsSampling = mapdesc->isRangeSampling() ? 1 : 0;
65 pspec[0].order = geo->qspec[0].order;
66 pspec[1].order = geo->qspec[1].order;
67 pspec[0].stride = pspec[1].order * MAXCOORDS;
68 pspec[1].stride = MAXCOORDS;
69
70 /* transform control points to sampling and culling spaces */
71 REAL *ps = geo->cpts;
72 geo->select( pta, ptb );
73 ps += geo->qspec[0].offset;
74 ps += geo->qspec[1].offset;
75 ps += geo->qspec[0].index * geo->qspec[0].order * geo->qspec[0].stride;
76 ps += geo->qspec[1].index * geo->qspec[1].order * geo->qspec[1].stride;
77
78 if( needsSampling ) {
79 mapdesc->xformSampling( ps, geo->qspec[0].order, geo->qspec[0].stride,
80 geo->qspec[1].order, geo->qspec[1].stride,
81 spts, pspec[0].stride, pspec[1].stride );
82 }
83
84 if( cullval == CULL_ACCEPT ) {
85 mapdesc->xformCulling( ps, geo->qspec[0].order, geo->qspec[0].stride,
86 geo->qspec[1].order, geo->qspec[1].stride,
87 cpts, pspec[0].stride, pspec[1].stride );
88 }
89
90 if( notInBbox ) {
91 mapdesc->xformBounding( ps, geo->qspec[0].order, geo->qspec[0].stride,
92 geo->qspec[1].order, geo->qspec[1].stride,
93 bpts, pspec[0].stride, pspec[1].stride );
94 }
95
96 /* set scale range */
97 pspec[0].range[0] = geo->qspec[0].breakpoints[geo->qspec[0].index];
98 pspec[0].range[1] = geo->qspec[0].breakpoints[geo->qspec[0].index+1];
99 pspec[0].range[2] = pspec[0].range[1] - pspec[0].range[0];
100
101 pspec[1].range[0] = geo->qspec[1].breakpoints[geo->qspec[1].index];
102 pspec[1].range[1] = geo->qspec[1].breakpoints[geo->qspec[1].index+1];
103 pspec[1].range[2] = pspec[1].range[1] - pspec[1].range[0];
104
105 // may need to subdivide to match range of sub-patch
106 if( pspec[0].range[0] != pta[0] ) {
107 assert( pspec[0].range[0] < pta[0] );
108 Patch lower( *this, 0, pta[0], 0 );
109 *this = lower;
110 }
111
112 if( pspec[0].range[1] != ptb[0] ) {
113 assert( pspec[0].range[1] > ptb[0] );
114 Patch upper( *this, 0, ptb[0], 0 );
115 }
116
117 if( pspec[1].range[0] != pta[1] ) {
118 assert( pspec[1].range[0] < pta[1] );
119 Patch lower( *this, 1, pta[1], 0 );
120 *this = lower;
121 }
122
123 if( pspec[1].range[1] != ptb[1] ) {
124 assert( pspec[1].range[1] > ptb[1] );
125 Patch upper( *this, 1, ptb[1], 0 );
126 }
127 checkBboxConstraint();
128 next = n;
129 }
130
131 /*--------------------------------------------------------------------------
132 * Patch - subdivide a patch along an isoparametric line
133 *--------------------------------------------------------------------------
134 */
135
136 Patch::Patch( Patch& upper, int param, REAL value, Patch *n )
137 {
138 Patch& lower = *this;
139
140 lower.cullval = upper.cullval;
141 lower.mapdesc = upper.mapdesc;
142 lower.notInBbox = upper.notInBbox;
143 lower.needsSampling = upper.needsSampling;
144 lower.pspec[0].order = upper.pspec[0].order;
145 lower.pspec[1].order = upper.pspec[1].order;
146 lower.pspec[0].stride = upper.pspec[0].stride;
147 lower.pspec[1].stride = upper.pspec[1].stride;
148 lower.next = n;
149
150 /* reset scale range */
151 switch( param ) {
152 case 0: {
153 REAL d = (value-upper.pspec[0].range[0]) / upper.pspec[0].range[2];
154 if( needsSampling )
155 mapdesc->subdivide( upper.spts, lower.spts, d, pspec[1].order,
156 pspec[1].stride, pspec[0].order, pspec[0].stride );
157
158 if( cullval == CULL_ACCEPT )
159 mapdesc->subdivide( upper.cpts, lower.cpts, d, pspec[1].order,
160 pspec[1].stride, pspec[0].order, pspec[0].stride );
161
162 if( notInBbox )
163 mapdesc->subdivide( upper.bpts, lower.bpts, d, pspec[1].order,
164 pspec[1].stride, pspec[0].order, pspec[0].stride );
165
166 lower.pspec[0].range[0] = upper.pspec[0].range[0];
167 lower.pspec[0].range[1] = value;
168 lower.pspec[0].range[2] = value - upper.pspec[0].range[0];
169 upper.pspec[0].range[0] = value;
170 upper.pspec[0].range[2] = upper.pspec[0].range[1] - value;
171
172 lower.pspec[1].range[0] = upper.pspec[1].range[0];
173 lower.pspec[1].range[1] = upper.pspec[1].range[1];
174 lower.pspec[1].range[2] = upper.pspec[1].range[2];
175 break;
176 }
177 case 1: {
178 REAL d = (value-upper.pspec[1].range[0]) / upper.pspec[1].range[2];
179 if( needsSampling )
180 mapdesc->subdivide( upper.spts, lower.spts, d, pspec[0].order,
181 pspec[0].stride, pspec[1].order, pspec[1].stride );
182 if( cullval == CULL_ACCEPT )
183 mapdesc->subdivide( upper.cpts, lower.cpts, d, pspec[0].order,
184 pspec[0].stride, pspec[1].order, pspec[1].stride );
185 if( notInBbox )
186 mapdesc->subdivide( upper.bpts, lower.bpts, d, pspec[0].order,
187 pspec[0].stride, pspec[1].order, pspec[1].stride );
188 lower.pspec[0].range[0] = upper.pspec[0].range[0];
189 lower.pspec[0].range[1] = upper.pspec[0].range[1];
190 lower.pspec[0].range[2] = upper.pspec[0].range[2];
191
192 lower.pspec[1].range[0] = upper.pspec[1].range[0];
193 lower.pspec[1].range[1] = value;
194 lower.pspec[1].range[2] = value - upper.pspec[1].range[0];
195 upper.pspec[1].range[0] = value;
196 upper.pspec[1].range[2] = upper.pspec[1].range[1] - value;
197 break;
198 }
199 }
200
201 // inherit bounding box
202 if( mapdesc->isBboxSubdividing() && ! notInBbox )
203 memcpy( lower.bb, upper.bb, sizeof( bb ) );
204
205 lower.checkBboxConstraint();
206 upper.checkBboxConstraint();
207 }
208
209 /*--------------------------------------------------------------------------
210 * clamp - clamp the sampling rate to a given maximum
211 *--------------------------------------------------------------------------
212 */
213
214 void
215 Patch::clamp( void )
216 {
217 if( mapdesc->clampfactor != N_NOCLAMPING ) {
218 pspec[0].clamp( mapdesc->clampfactor );
219 pspec[1].clamp( mapdesc->clampfactor );
220 }
221 }
222
223 void
224 Patchspec::clamp( REAL clampfactor )
225 {
226 if( sidestep[0] < minstepsize )
227 sidestep[0] = clampfactor * minstepsize;
228 if( sidestep[1] < minstepsize )
229 sidestep[1] = clampfactor * minstepsize;
230 if( stepsize < minstepsize )
231 stepsize = clampfactor * minstepsize;
232 }
233
234 void
235 Patch::checkBboxConstraint( void )
236 {
237 if( notInBbox &&
238 mapdesc->bboxTooBig( bpts, pspec[0].stride, pspec[1].stride,
239 pspec[0].order, pspec[1].order, bb ) != 1 ) {
240 notInBbox = 0;
241 }
242 }
243
244 void
245 Patch::bbox( void )
246 {
247 if( mapdesc->isBboxSubdividing() )
248 mapdesc->surfbbox( bb );
249 }
250
251 /*--------------------------------------------------------------------------
252 * getstepsize - compute the sampling density across the patch
253 * and determine if patch needs to be subdivided
254 *--------------------------------------------------------------------------
255 */
256
257 void
258 Patch::getstepsize( void )
259 {
260 pspec[0].minstepsize = pspec[1].minstepsize = 0;
261 pspec[0].needsSubdivision = pspec[1].needsSubdivision = 0;
262
263 if( mapdesc->isConstantSampling() ) {
264 // fixed number of samples per patch in each direction
265 // maxsrate is number of s samples per patch
266 // maxtrate is number of t samples per patch
267 pspec[0].getstepsize( mapdesc->maxsrate );
268 pspec[1].getstepsize( mapdesc->maxtrate );
269
270 } else if( mapdesc->isDomainSampling() ) {
271 // maxsrate is number of s samples per unit s length of domain
272 // maxtrate is number of t samples per unit t length of domain
273 pspec[0].getstepsize( mapdesc->maxsrate * pspec[0].range[2] );
274 pspec[1].getstepsize( mapdesc->maxtrate * pspec[1].range[2] );
275
276 } else if( ! needsSampling ) {
277 pspec[0].singleStep();
278 pspec[1].singleStep();
279 } else {
280 // upper bound on path length between sample points
281 REAL tmp[MAXORDER][MAXORDER][MAXCOORDS];
282 const int trstride = sizeof(tmp[0]) / sizeof(REAL);
283 const int tcstride = sizeof(tmp[0][0]) / sizeof(REAL);
284
285 assert( pspec[0].order <= MAXORDER );
286
287 /* points have been transformed, therefore they are homogeneous */
288
289 int val = mapdesc->project( spts, pspec[0].stride, pspec[1].stride,
290 &tmp[0][0][0], trstride, tcstride,
291 pspec[0].order, pspec[1].order );
292 if( val == 0 ) {
293 // control points cross infinity, therefore partials are undefined
294 pspec[0].getstepsize( mapdesc->maxsrate );
295 pspec[1].getstepsize( mapdesc->maxtrate );
296 } else {
297 REAL t1 = mapdesc->getProperty( N_PIXEL_TOLERANCE );
298 // REAL t2 = mapdesc->getProperty( N_ERROR_TOLERANCE );
299 pspec[0].minstepsize = ( mapdesc->maxsrate > 0.0 ) ?
300 (pspec[0].range[2] / mapdesc->maxsrate) : 0.0;
301 pspec[1].minstepsize = ( mapdesc->maxtrate > 0.0 ) ?
302 (pspec[1].range[2] / mapdesc->maxtrate) : 0.0;
303 if( mapdesc->isParametricDistanceSampling() ||
304 mapdesc->isObjectSpaceParaSampling() ) {
305
306 REAL t2;
307 t2 = mapdesc->getProperty( N_ERROR_TOLERANCE );
308
309 // t2 is upper bound on the distance between surface and tessellant
310 REAL ssv[2], ttv[2];
311 REAL ss = mapdesc->calcPartialVelocity( ssv, &tmp[0][0][0], trstride, tcstride, pspec[0].order, pspec[1].order, 2, 0, pspec[0].range[2], pspec[1].range[2], 0 );
312 REAL st = mapdesc->calcPartialVelocity( 0, &tmp[0][0][0], trstride, tcstride, pspec[0].order, pspec[1].order, 1, 1, pspec[0].range[2], pspec[1].range[2], -1 );
313 REAL tt = mapdesc->calcPartialVelocity( ttv, &tmp[0][0][0], trstride, tcstride, pspec[0].order, pspec[1].order, 0, 2, pspec[0].range[2], pspec[1].range[2], 1 );
314 //make sure that ss st and tt are nonnegative:
315 if(ss <0) ss = -ss;
316 if(st <0) st = -st;
317 if(tt <0) tt = -tt;
318
319 if( ss != 0.0 && tt != 0.0 ) {
320 /* printf( "ssv[0] %g ssv[1] %g ttv[0] %g ttv[1] %g\n",
321 ssv[0], ssv[1], ttv[0], ttv[1] ); */
322 REAL ttq = sqrtf( (float) ss );
323 REAL ssq = sqrtf( (float) tt );
324 REAL ds = sqrtf( 4 * t2 * ttq / ( ss * ttq + st * ssq ) );
325 REAL dt = sqrtf( 4 * t2 * ssq / ( tt * ssq + st * ttq ) );
326 pspec[0].stepsize = ( ds < pspec[0].range[2] ) ? ds : pspec[0].range[2];
327 REAL scutoff = 2.0 * t2 / ( pspec[0].range[2] * pspec[0].range[2]);
328 pspec[0].sidestep[0] = (ssv[0] > scutoff) ? sqrtf( 2.0 * t2 / ssv[0] ) : pspec[0].range[2];
329 pspec[0].sidestep[1] = (ssv[1] > scutoff) ? sqrtf( 2.0 * t2 / ssv[1] ) : pspec[0].range[2];
330
331 pspec[1].stepsize = ( dt < pspec[1].range[2] ) ? dt : pspec[1].range[2];
332 REAL tcutoff = 2.0 * t2 / ( pspec[1].range[2] * pspec[1].range[2]);
333 pspec[1].sidestep[0] = (ttv[0] > tcutoff) ? sqrtf( 2.0 * t2 / ttv[0] ) : pspec[1].range[2];
334 pspec[1].sidestep[1] = (ttv[1] > tcutoff) ? sqrtf( 2.0 * t2 / ttv[1] ) : pspec[1].range[2];
335 } else if( ss != 0.0 ) {
336 REAL x = pspec[1].range[2] * st;
337 REAL ds = ( sqrtf( x * x + 8.0 * t2 * ss ) - x ) / ss;
338 pspec[0].stepsize = ( ds < pspec[0].range[2] ) ? ds : pspec[0].range[2];
339 REAL scutoff = 2.0 * t2 / ( pspec[0].range[2] * pspec[0].range[2]);
340 pspec[0].sidestep[0] = (ssv[0] > scutoff) ? sqrtf( 2.0 * t2 / ssv[0] ) : pspec[0].range[2];
341 pspec[0].sidestep[1] = (ssv[1] > scutoff) ? sqrtf( 2.0 * t2 / ssv[1] ) : pspec[0].range[2];
342 pspec[1].singleStep();
343 } else if( tt != 0.0 ) {
344 REAL x = pspec[0].range[2] * st;
345 REAL dt = ( sqrtf( x * x + 8.0 * t2 * tt ) - x ) / tt;
346 pspec[0].singleStep();
347 REAL tcutoff = 2.0 * t2 / ( pspec[1].range[2] * pspec[1].range[2]);
348 pspec[1].stepsize = ( dt < pspec[1].range[2] ) ? dt : pspec[1].range[2];
349 pspec[1].sidestep[0] = (ttv[0] > tcutoff) ? sqrtf( 2.0 * t2 / ttv[0] ) : pspec[1].range[2];
350 pspec[1].sidestep[1] = (ttv[1] > tcutoff) ? sqrtf( 2.0 * t2 / ttv[1] ) : pspec[1].range[2];
351 } else {
352 if( 4.0 * t2 > st * pspec[0].range[2] * pspec[1].range[2] ) {
353 pspec[0].singleStep();
354 pspec[1].singleStep();
355 } else {
356 REAL area = 4.0 * t2 / st;
357 REAL ds = sqrtf( area * pspec[0].range[2] / pspec[1].range[2] );
358 REAL dt = sqrtf( area * pspec[1].range[2] / pspec[0].range[2] );
359 pspec[0].stepsize = ( ds < pspec[0].range[2] ) ? ds : pspec[0].range[2];
360 pspec[0].sidestep[0] = pspec[0].range[2];
361 pspec[0].sidestep[1] = pspec[0].range[2];
362
363 pspec[1].stepsize = ( dt < pspec[1].range[2] ) ? dt : pspec[1].range[2];
364 pspec[1].sidestep[0] = pspec[1].range[2];
365 pspec[1].sidestep[1] = pspec[1].range[2];
366 }
367 }
368 } else if( mapdesc->isPathLengthSampling() ||
369 mapdesc->isObjectSpacePathSampling()) {
370 // t1 is upper bound on path length
371 REAL msv[2], mtv[2];
372 REAL ms = mapdesc->calcPartialVelocity( msv, &tmp[0][0][0], trstride, tcstride, pspec[0].order, pspec[1].order, 1, 0, pspec[0].range[2], pspec[1].range[2], 0 );
373 REAL mt = mapdesc->calcPartialVelocity( mtv, &tmp[0][0][0], trstride, tcstride, pspec[0].order, pspec[1].order, 0, 1, pspec[0].range[2], pspec[1].range[2], 1 );
374 REAL side_scale = 1.0;
375
376 if( ms != 0.0 ) {
377 if( mt != 0.0 ) {
378 /* REAL d = t1 / ( ms * ms + mt * mt );*/
379 /* REAL ds = mt * d;*/
380 REAL ds = t1 / (2.0*ms);
381 /* REAL dt = ms * d;*/
382 REAL dt = t1 / (2.0*mt);
383 pspec[0].stepsize = ( ds < pspec[0].range[2] ) ? ds : pspec[0].range[2];
384 pspec[0].sidestep[0] = ( msv[0] * pspec[0].range[2] > t1 ) ? (side_scale* t1 / msv[0]) : pspec[0].range[2];
385 pspec[0].sidestep[1] = ( msv[1] * pspec[0].range[2] > t1 ) ? (side_scale* t1 / msv[1]) : pspec[0].range[2];
386
387 pspec[1].stepsize = ( dt < pspec[1].range[2] ) ? dt : pspec[1].range[2];
388 pspec[1].sidestep[0] = ( mtv[0] * pspec[1].range[2] > t1 ) ? (side_scale*t1 / mtv[0]) : pspec[1].range[2];
389 pspec[1].sidestep[1] = ( mtv[1] * pspec[1].range[2] > t1 ) ? (side_scale*t1 / mtv[1]) : pspec[1].range[2];
390 } else {
391 pspec[0].stepsize = ( t1 < ms * pspec[0].range[2] ) ? (t1 / ms) : pspec[0].range[2];
392 pspec[0].sidestep[0] = ( msv[0] * pspec[0].range[2] > t1 ) ? (t1 / msv[0]) : pspec[0].range[2];
393 pspec[0].sidestep[1] = ( msv[1] * pspec[0].range[2] > t1 ) ? (t1 / msv[1]) : pspec[0].range[2];
394
395 pspec[1].singleStep();
396 }
397 } else {
398 if( mt != 0.0 ) {
399 pspec[0].singleStep();
400
401 pspec[1].stepsize = ( t1 < mt * pspec[1].range[2] ) ? (t1 / mt) : pspec[1].range[2];
402 pspec[1].sidestep[0] = ( mtv[0] * pspec[1].range[2] > t1 ) ? (t1 / mtv[0]) : pspec[1].range[2];
403 pspec[1].sidestep[1] = ( mtv[1] * pspec[1].range[2] > t1 ) ? (t1 / mtv[1]) : pspec[1].range[2];
404 } else {
405 pspec[0].singleStep();
406 pspec[1].singleStep();
407 }
408 }
409 } else if( mapdesc->isSurfaceAreaSampling() ) {
410 // t is the square root of area
411 /*
412 REAL msv[2], mtv[2];
413 REAL ms = mapdesc->calcPartialVelocity( msv, &tmp[0][0][0], trstride, tcstride, pspec[0].order, pspec[1].order, 1, 0, pspec[0].range[2], pspec[1].range[2], 0 );
414 REAL mt = mapdesc->calcPartialVelocity( mtv, &tmp[0][0][0], trstride, tcstride, pspec[0].order, pspec[1].order, 0, 1, pspec[0].range[2], pspec[1].range[2], 1 );
415 if( ms != 0.0 && mt != 0.0 ) {
416 REAL d = 1.0 / (ms * mt);
417 t *= M_SQRT2;
418 REAL ds = t * sqrtf( d * pspec[0].range[2] / pspec[1].range[2] );
419 REAL dt = t * sqrtf( d * pspec[1].range[2] / pspec[0].range[2] );
420 pspec[0].stepsize = ( ds < pspec[0].range[2] ) ? ds : pspec[0].range[2];
421 pspec[0].sidestep[0] = ( msv[0] * pspec[0].range[2] > t ) ? (t / msv[0]) : pspec[0].range[2];
422 pspec[0].sidestep[1] = ( msv[1] * pspec[0].range[2] > t ) ? (t / msv[1]) : pspec[0].range[2];
423
424 pspec[1].stepsize = ( dt < pspec[1].range[2] ) ? dt : pspec[1].range[2];
425 pspec[1].sidestep[0] = ( mtv[0] * pspec[1].range[2] > t ) ? (t / mtv[0]) : pspec[1].range[2];
426 pspec[1].sidestep[1] = ( mtv[1] * pspec[1].range[2] > t ) ? (t / mtv[1]) : pspec[1].range[2];
427 } else {
428 pspec[0].singleStep();
429 pspec[1].singleStep();
430 }
431 */
432 } else {
433 pspec[0].singleStep();
434 pspec[1].singleStep();
435 }
436 }
437 }
438
439 #ifdef DEBUG
440 _glu_dprintf( "sidesteps %g %g %g %g, stepsize %g %g\n",
441 pspec[0].sidestep[0], pspec[0].sidestep[1],
442 pspec[1].sidestep[0], pspec[1].sidestep[1],
443 pspec[0].stepsize, pspec[1].stepsize );
444 #endif
445
446 if( mapdesc->minsavings != N_NOSAVINGSSUBDIVISION ) {
447 REAL savings = 1./(pspec[0].stepsize * pspec[1].stepsize) ;
448 savings-= (2./( pspec[0].sidestep[0] + pspec[0].sidestep[1] )) *
449 (2./( pspec[1].sidestep[0] + pspec[1].sidestep[1] ));
450
451 savings *= pspec[0].range[2] * pspec[1].range[2];
452 if( savings > mapdesc->minsavings ) {
453 pspec[0].needsSubdivision = pspec[1].needsSubdivision = 1;
454 }
455 }
456
457 if( pspec[0].stepsize < pspec[0].minstepsize ) pspec[0].needsSubdivision = 1;
458 if( pspec[1].stepsize < pspec[1].minstepsize ) pspec[1].needsSubdivision = 1;
459 needsSampling = (needsSampling ? needsSamplingSubdivision() : 0);
460 }
461
462 void
463 Patchspec::singleStep()
464 {
465 stepsize = sidestep[0] = sidestep[1] = glu_abs(range[2]);
466 }
467
468 void
469 Patchspec::getstepsize( REAL max ) // max is number of samples for entire patch
470 {
471 stepsize = ( max >= 1.0 ) ? range[2] / max : range[2];
472 if (stepsize < 0.0) {
473 stepsize = -stepsize;
474 }
475 sidestep[0] = sidestep[1] = minstepsize = stepsize;
476 }
477
478 int
479 Patch::needsSamplingSubdivision( void )
480 {
481 return (pspec[0].needsSubdivision || pspec[1].needsSubdivision) ? 1 : 0;
482 }
483
484 int
485 Patch::needsNonSamplingSubdivision( void )
486 {
487 return notInBbox;
488 }
489
490 int
491 Patch::needsSubdivision( int param )
492 {
493 return pspec[param].needsSubdivision;
494 }
495
496 int
497 Patch::cullCheck( void )
498 {
499 if( cullval == CULL_ACCEPT )
500 cullval = mapdesc->cullCheck( cpts, pspec[0].order, pspec[0].stride,
501 pspec[1].order, pspec[1].stride );
502 return cullval;
503 }
504