[OPENGL]
[reactos.git] / reactos / dll / opengl / mesa / src / mesa / main / querymatrix.c
1 /**************************************************************************
2 *
3 * Copyright 2008 Tungsten Graphics, Inc., Cedar Park, Texas.
4 * All Rights Reserved.
5 *
6 **************************************************************************/
7
8
9 /**
10 * Code to implement GL_OES_query_matrix. See the spec at:
11 * http://www.khronos.org/registry/gles/extensions/OES/OES_query_matrix.txt
12 */
13
14
15 #include <stdlib.h>
16 #include <math.h>
17 #include "GLES/gl.h"
18 #include "GLES/glext.h"
19
20
21 /**
22 * This is from the GL_OES_query_matrix extension specification:
23 *
24 * GLbitfield glQueryMatrixxOES( GLfixed mantissa[16],
25 * GLint exponent[16] )
26 * mantissa[16] contains the contents of the current matrix in GLfixed
27 * format. exponent[16] contains the unbiased exponents applied to the
28 * matrix components, so that the internal representation of component i
29 * is close to mantissa[i] * 2^exponent[i]. The function returns a status
30 * word which is zero if all the components are valid. If
31 * status & (1<<i) != 0, the component i is invalid (e.g., NaN, Inf).
32 * The implementations are not required to keep track of overflows. In
33 * that case, the invalid bits are never set.
34 */
35
36 #define INT_TO_FIXED(x) ((GLfixed) ((x) << 16))
37 #define FLOAT_TO_FIXED(x) ((GLfixed) ((x) * 65536.0))
38
39 #if defined(_MSC_VER)
40 /* Oddly, the fpclassify() function doesn't exist in such a form
41 * on MSVC. This is an implementation using slightly different
42 * lower-level Windows functions.
43 */
44 #include <float.h>
45
46 enum {FP_NAN, FP_INFINITE, FP_ZERO, FP_SUBNORMAL, FP_NORMAL}
47 fpclassify(double x)
48 {
49 switch(_fpclass(x)) {
50 case _FPCLASS_SNAN: /* signaling NaN */
51 case _FPCLASS_QNAN: /* quiet NaN */
52 return FP_NAN;
53 case _FPCLASS_NINF: /* negative infinity */
54 case _FPCLASS_PINF: /* positive infinity */
55 return FP_INFINITE;
56 case _FPCLASS_NN: /* negative normal */
57 case _FPCLASS_PN: /* positive normal */
58 return FP_NORMAL;
59 case _FPCLASS_ND: /* negative denormalized */
60 case _FPCLASS_PD: /* positive denormalized */
61 return FP_SUBNORMAL;
62 case _FPCLASS_NZ: /* negative zero */
63 case _FPCLASS_PZ: /* positive zero */
64 return FP_ZERO;
65 default:
66 /* Should never get here; but if we do, this will guarantee
67 * that the pattern is not treated like a number.
68 */
69 return FP_NAN;
70 }
71 }
72
73 #elif defined(__APPLE__) || defined(__CYGWIN__) || defined(__FreeBSD__) || \
74 defined(__OpenBSD__) || defined(__NetBSD__) || defined(__DragonFly__) || \
75 (defined(__sun) && defined(__C99FEATURES__)) || defined(__MINGW32__) || \
76 (defined(__sun) && defined(__GNUC__)) || defined(ANDROID) || defined(__HAIKU__)
77
78 /* fpclassify is available. */
79
80 #elif !defined(_XOPEN_SOURCE) || _XOPEN_SOURCE < 600
81
82 enum {FP_NAN, FP_INFINITE, FP_ZERO, FP_SUBNORMAL, FP_NORMAL}
83 fpclassify(double x)
84 {
85 /* XXX do something better someday */
86 return FP_NORMAL;
87 }
88
89 #endif
90
91 extern GLbitfield GL_APIENTRY _es_QueryMatrixxOES(GLfixed mantissa[16], GLint exponent[16]);
92
93 /* The Mesa functions we'll need */
94 extern void GL_APIENTRY _mesa_GetIntegerv(GLenum pname, GLint *params);
95 extern void GL_APIENTRY _mesa_GetFloatv(GLenum pname, GLfloat *params);
96
97 GLbitfield GL_APIENTRY _es_QueryMatrixxOES(GLfixed mantissa[16], GLint exponent[16])
98 {
99 GLfloat matrix[16];
100 GLint tmp;
101 GLenum currentMode = GL_FALSE;
102 GLenum desiredMatrix = GL_FALSE;
103 /* The bitfield returns 1 for each component that is invalid (i.e.
104 * NaN or Inf). In case of error, everything is invalid.
105 */
106 GLbitfield rv;
107 register unsigned int i;
108 unsigned int bit;
109
110 /* This data structure defines the mapping between the current matrix
111 * mode and the desired matrix identifier.
112 */
113 static struct {
114 GLenum currentMode;
115 GLenum desiredMatrix;
116 } modes[] = {
117 {GL_MODELVIEW, GL_MODELVIEW_MATRIX},
118 {GL_PROJECTION, GL_PROJECTION_MATRIX},
119 {GL_TEXTURE, GL_TEXTURE_MATRIX},
120 };
121
122 /* Call Mesa to get the current matrix in floating-point form. First,
123 * we have to figure out what the current matrix mode is.
124 */
125 _mesa_GetIntegerv(GL_MATRIX_MODE, &tmp);
126 currentMode = (GLenum) tmp;
127
128 /* The mode is either GL_FALSE, if for some reason we failed to query
129 * the mode, or a given mode from the above table. Search for the
130 * returned mode to get the desired matrix; if we don't find it,
131 * we can return immediately, as _mesa_GetInteger() will have
132 * logged the necessary error already.
133 */
134 for (i = 0; i < sizeof(modes)/sizeof(modes[0]); i++) {
135 if (modes[i].currentMode == currentMode) {
136 desiredMatrix = modes[i].desiredMatrix;
137 break;
138 }
139 }
140 if (desiredMatrix == GL_FALSE) {
141 /* Early error means all values are invalid. */
142 return 0xffff;
143 }
144
145 /* Now pull the matrix itself. */
146 _mesa_GetFloatv(desiredMatrix, matrix);
147
148 rv = 0;
149 for (i = 0, bit = 1; i < 16; i++, bit<<=1) {
150 float normalizedFraction;
151 int exp;
152
153 switch (fpclassify(matrix[i])) {
154 /* A "subnormal" or denormalized number is too small to be
155 * represented in normal format; but despite that it's a
156 * valid floating point number. FP_ZERO and FP_NORMAL
157 * are both valid as well. We should be fine treating
158 * these three cases as legitimate floating-point numbers.
159 */
160 case FP_SUBNORMAL:
161 case FP_NORMAL:
162 case FP_ZERO:
163 normalizedFraction = (GLfloat)frexp(matrix[i], &exp);
164 mantissa[i] = FLOAT_TO_FIXED(normalizedFraction);
165 exponent[i] = (GLint) exp;
166 break;
167
168 /* If the entry is not-a-number or an infinity, then the
169 * matrix component is invalid. The invalid flag for
170 * the component is already set; might as well set the
171 * other return values to known values. We'll set
172 * distinct values so that a savvy end user could determine
173 * whether the matrix component was a NaN or an infinity,
174 * but this is more useful for debugging than anything else
175 * since the standard doesn't specify any such magic
176 * values to return.
177 */
178 case FP_NAN:
179 mantissa[i] = INT_TO_FIXED(0);
180 exponent[i] = (GLint) 0;
181 rv |= bit;
182 break;
183
184 case FP_INFINITE:
185 /* Return +/- 1 based on whether it's a positive or
186 * negative infinity.
187 */
188 if (matrix[i] > 0) {
189 mantissa[i] = INT_TO_FIXED(1);
190 }
191 else {
192 mantissa[i] = -INT_TO_FIXED(1);
193 }
194 exponent[i] = (GLint) 0;
195 rv |= bit;
196 break;
197
198 /* We should never get here; but here's a catching case
199 * in case fpclassify() is returnings something unexpected.
200 */
201 default:
202 mantissa[i] = INT_TO_FIXED(2);
203 exponent[i] = (GLint) 0;
204 rv |= bit;
205 break;
206 }
207
208 } /* for each component */
209
210 /* All done */
211 return rv;
212 }