[MESA]
[reactos.git] / reactos / dll / opengl / mesa / src / mesa / swrast / s_triangle.c
1 /*
2 * Mesa 3-D graphics library
3 * Version: 7.3
4 *
5 * Copyright (C) 1999-2007 Brian Paul All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included
15 * in all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
21 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25
26 /*
27 * When the device driver doesn't implement triangle rasterization it
28 * can hook in _swrast_Triangle, which eventually calls one of these
29 * functions to draw triangles.
30 */
31
32 #include "main/glheader.h"
33 #include "main/context.h"
34 #include "main/colormac.h"
35 #include "main/imports.h"
36 #include "main/macros.h"
37 #include "main/mtypes.h"
38 #include "main/state.h"
39 #include "program/prog_instruction.h"
40
41 #include "s_aatriangle.h"
42 #include "s_context.h"
43 #include "s_feedback.h"
44 #include "s_fragprog.h"
45 #include "s_span.h"
46 #include "s_triangle.h"
47
48
49 /**
50 * Test if a triangle should be culled. Used for feedback and selection mode.
51 * \return GL_TRUE if the triangle is to be culled, GL_FALSE otherwise.
52 */
53 GLboolean
54 _swrast_culltriangle( struct gl_context *ctx,
55 const SWvertex *v0,
56 const SWvertex *v1,
57 const SWvertex *v2 )
58 {
59 SWcontext *swrast = SWRAST_CONTEXT(ctx);
60 GLfloat ex = v1->attrib[FRAG_ATTRIB_WPOS][0] - v0->attrib[FRAG_ATTRIB_WPOS][0];
61 GLfloat ey = v1->attrib[FRAG_ATTRIB_WPOS][1] - v0->attrib[FRAG_ATTRIB_WPOS][1];
62 GLfloat fx = v2->attrib[FRAG_ATTRIB_WPOS][0] - v0->attrib[FRAG_ATTRIB_WPOS][0];
63 GLfloat fy = v2->attrib[FRAG_ATTRIB_WPOS][1] - v0->attrib[FRAG_ATTRIB_WPOS][1];
64 GLfloat c = ex*fy-ey*fx;
65
66 if (c * swrast->_BackfaceSign * swrast->_BackfaceCullSign <= 0.0F)
67 return GL_FALSE;
68
69 return GL_TRUE;
70 }
71
72
73
74 /*
75 * Render a flat-shaded RGBA triangle.
76 */
77 #define NAME flat_rgba_triangle
78 #define INTERP_Z 1
79 #define SETUP_CODE \
80 ASSERT(ctx->Texture._EnabledCoordUnits == 0);\
81 ASSERT(ctx->Light.ShadeModel==GL_FLAT); \
82 span.interpMask |= SPAN_RGBA; \
83 span.red = ChanToFixed(v2->color[0]); \
84 span.green = ChanToFixed(v2->color[1]); \
85 span.blue = ChanToFixed(v2->color[2]); \
86 span.alpha = ChanToFixed(v2->color[3]); \
87 span.redStep = 0; \
88 span.greenStep = 0; \
89 span.blueStep = 0; \
90 span.alphaStep = 0;
91 #define RENDER_SPAN( span ) _swrast_write_rgba_span(ctx, &span);
92 #include "s_tritemp.h"
93
94
95
96 /*
97 * Render a smooth-shaded RGBA triangle.
98 */
99 #define NAME smooth_rgba_triangle
100 #define INTERP_Z 1
101 #define INTERP_RGB 1
102 #define INTERP_ALPHA 1
103 #define SETUP_CODE \
104 { \
105 /* texturing must be off */ \
106 ASSERT(ctx->Texture._EnabledCoordUnits == 0); \
107 ASSERT(ctx->Light.ShadeModel==GL_SMOOTH); \
108 }
109 #define RENDER_SPAN( span ) _swrast_write_rgba_span(ctx, &span);
110 #include "s_tritemp.h"
111
112
113
114 /*
115 * Render an RGB, GL_DECAL, textured triangle.
116 * Interpolate S,T only w/out mipmapping or perspective correction.
117 *
118 * No fog. No depth testing.
119 */
120 #define NAME simple_textured_triangle
121 #define INTERP_INT_TEX 1
122 #define S_SCALE twidth
123 #define T_SCALE theight
124
125 #define SETUP_CODE \
126 struct gl_renderbuffer *rb = ctx->DrawBuffer->_ColorDrawBuffers[0]; \
127 const struct gl_texture_object *obj = \
128 ctx->Texture.Unit[0].CurrentTex[TEXTURE_2D_INDEX]; \
129 const struct gl_texture_image *texImg = \
130 obj->Image[0][obj->BaseLevel]; \
131 const struct swrast_texture_image *swImg = \
132 swrast_texture_image_const(texImg); \
133 const GLfloat twidth = (GLfloat) texImg->Width; \
134 const GLfloat theight = (GLfloat) texImg->Height; \
135 const GLint twidth_log2 = texImg->WidthLog2; \
136 const GLubyte *texture = (const GLubyte *) swImg->Map; \
137 const GLint smask = texImg->Width - 1; \
138 const GLint tmask = texImg->Height - 1; \
139 ASSERT(texImg->TexFormat == MESA_FORMAT_RGB888); \
140 if (!rb || !texture) { \
141 return; \
142 }
143
144 #define RENDER_SPAN( span ) \
145 GLuint i; \
146 GLubyte rgba[MAX_WIDTH][4]; \
147 span.intTex[0] -= FIXED_HALF; /* off-by-one error? */ \
148 span.intTex[1] -= FIXED_HALF; \
149 for (i = 0; i < span.end; i++) { \
150 GLint s = FixedToInt(span.intTex[0]) & smask; \
151 GLint t = FixedToInt(span.intTex[1]) & tmask; \
152 GLint pos = (t << twidth_log2) + s; \
153 pos = pos + pos + pos; /* multiply by 3 */ \
154 rgba[i][RCOMP] = texture[pos+2]; \
155 rgba[i][GCOMP] = texture[pos+1]; \
156 rgba[i][BCOMP] = texture[pos+0]; \
157 rgba[i][ACOMP] = 0xff; \
158 span.intTex[0] += span.intTexStep[0]; \
159 span.intTex[1] += span.intTexStep[1]; \
160 } \
161 _swrast_put_row(ctx, rb, GL_UNSIGNED_BYTE, span.end, \
162 span.x, span.y, rgba, NULL);
163
164 #include "s_tritemp.h"
165
166
167
168 /*
169 * Render an RGB, GL_DECAL, textured triangle.
170 * Interpolate S,T, GL_LESS depth test, w/out mipmapping or
171 * perspective correction.
172 * Depth buffer bits must be <= sizeof(DEFAULT_SOFTWARE_DEPTH_TYPE)
173 *
174 * No fog.
175 */
176 #define NAME simple_z_textured_triangle
177 #define INTERP_Z 1
178 #define DEPTH_TYPE DEFAULT_SOFTWARE_DEPTH_TYPE
179 #define INTERP_INT_TEX 1
180 #define S_SCALE twidth
181 #define T_SCALE theight
182
183 #define SETUP_CODE \
184 struct gl_renderbuffer *rb = ctx->DrawBuffer->_ColorDrawBuffers[0]; \
185 const struct gl_texture_object *obj = \
186 ctx->Texture.Unit[0].CurrentTex[TEXTURE_2D_INDEX]; \
187 const struct gl_texture_image *texImg = \
188 obj->Image[0][obj->BaseLevel]; \
189 const struct swrast_texture_image *swImg = \
190 swrast_texture_image_const(texImg); \
191 const GLfloat twidth = (GLfloat) texImg->Width; \
192 const GLfloat theight = (GLfloat) texImg->Height; \
193 const GLint twidth_log2 = texImg->WidthLog2; \
194 const GLubyte *texture = (const GLubyte *) swImg->Map; \
195 const GLint smask = texImg->Width - 1; \
196 const GLint tmask = texImg->Height - 1; \
197 ASSERT(texImg->TexFormat == MESA_FORMAT_RGB888); \
198 if (!rb || !texture) { \
199 return; \
200 }
201
202 #define RENDER_SPAN( span ) \
203 GLuint i; \
204 GLubyte rgba[MAX_WIDTH][4]; \
205 span.intTex[0] -= FIXED_HALF; /* off-by-one error? */ \
206 span.intTex[1] -= FIXED_HALF; \
207 for (i = 0; i < span.end; i++) { \
208 const GLuint z = FixedToDepth(span.z); \
209 if (z < zRow[i]) { \
210 GLint s = FixedToInt(span.intTex[0]) & smask; \
211 GLint t = FixedToInt(span.intTex[1]) & tmask; \
212 GLint pos = (t << twidth_log2) + s; \
213 pos = pos + pos + pos; /* multiply by 3 */ \
214 rgba[i][RCOMP] = texture[pos+2]; \
215 rgba[i][GCOMP] = texture[pos+1]; \
216 rgba[i][BCOMP] = texture[pos+0]; \
217 rgba[i][ACOMP] = 0xff; \
218 zRow[i] = z; \
219 span.array->mask[i] = 1; \
220 } \
221 else { \
222 span.array->mask[i] = 0; \
223 } \
224 span.intTex[0] += span.intTexStep[0]; \
225 span.intTex[1] += span.intTexStep[1]; \
226 span.z += span.zStep; \
227 } \
228 _swrast_put_row(ctx, rb, GL_UNSIGNED_BYTE, \
229 span.end, span.x, span.y, rgba, span.array->mask);
230
231 #include "s_tritemp.h"
232
233
234 #if CHAN_TYPE != GL_FLOAT
235
236 struct affine_info
237 {
238 GLenum filter;
239 GLenum format;
240 GLenum envmode;
241 GLint smask, tmask;
242 GLint twidth_log2;
243 const GLchan *texture;
244 GLfixed er, eg, eb, ea;
245 GLint tbytesline, tsize;
246 };
247
248
249 static inline GLint
250 ilerp(GLint t, GLint a, GLint b)
251 {
252 return a + ((t * (b - a)) >> FIXED_SHIFT);
253 }
254
255 static inline GLint
256 ilerp_2d(GLint ia, GLint ib, GLint v00, GLint v10, GLint v01, GLint v11)
257 {
258 const GLint temp0 = ilerp(ia, v00, v10);
259 const GLint temp1 = ilerp(ia, v01, v11);
260 return ilerp(ib, temp0, temp1);
261 }
262
263
264 /* This function can handle GL_NEAREST or GL_LINEAR sampling of 2D RGB or RGBA
265 * textures with GL_REPLACE, GL_MODULATE, GL_BLEND, GL_DECAL or GL_ADD
266 * texture env modes.
267 */
268 static inline void
269 affine_span(struct gl_context *ctx, SWspan *span,
270 struct affine_info *info)
271 {
272 GLchan sample[4]; /* the filtered texture sample */
273 const GLuint texEnableSave = ctx->Texture._EnabledCoordUnits;
274
275 /* Instead of defining a function for each mode, a test is done
276 * between the outer and inner loops. This is to reduce code size
277 * and complexity. Observe that an optimizing compiler kills
278 * unused variables (for instance tf,sf,ti,si in case of GL_NEAREST).
279 */
280
281 #define NEAREST_RGB \
282 sample[RCOMP] = tex00[2]; \
283 sample[GCOMP] = tex00[1]; \
284 sample[BCOMP] = tex00[0]; \
285 sample[ACOMP] = CHAN_MAX;
286
287 #define LINEAR_RGB \
288 sample[RCOMP] = ilerp_2d(sf, tf, tex00[2], tex01[2], tex10[2], tex11[2]);\
289 sample[GCOMP] = ilerp_2d(sf, tf, tex00[1], tex01[1], tex10[1], tex11[1]);\
290 sample[BCOMP] = ilerp_2d(sf, tf, tex00[0], tex01[0], tex10[0], tex11[0]);\
291 sample[ACOMP] = CHAN_MAX;
292
293 #define NEAREST_RGBA \
294 sample[RCOMP] = tex00[3]; \
295 sample[GCOMP] = tex00[2]; \
296 sample[BCOMP] = tex00[1]; \
297 sample[ACOMP] = tex00[0];
298
299 #define LINEAR_RGBA \
300 sample[RCOMP] = ilerp_2d(sf, tf, tex00[3], tex01[3], tex10[3], tex11[3]);\
301 sample[GCOMP] = ilerp_2d(sf, tf, tex00[2], tex01[2], tex10[2], tex11[2]);\
302 sample[BCOMP] = ilerp_2d(sf, tf, tex00[1], tex01[1], tex10[1], tex11[1]);\
303 sample[ACOMP] = ilerp_2d(sf, tf, tex00[0], tex01[0], tex10[0], tex11[0])
304
305 #define MODULATE \
306 dest[RCOMP] = span->red * (sample[RCOMP] + 1u) >> (FIXED_SHIFT + 8); \
307 dest[GCOMP] = span->green * (sample[GCOMP] + 1u) >> (FIXED_SHIFT + 8); \
308 dest[BCOMP] = span->blue * (sample[BCOMP] + 1u) >> (FIXED_SHIFT + 8); \
309 dest[ACOMP] = span->alpha * (sample[ACOMP] + 1u) >> (FIXED_SHIFT + 8)
310
311 #define DECAL \
312 dest[RCOMP] = ((CHAN_MAX - sample[ACOMP]) * span->red + \
313 ((sample[ACOMP] + 1) * sample[RCOMP] << FIXED_SHIFT)) \
314 >> (FIXED_SHIFT + 8); \
315 dest[GCOMP] = ((CHAN_MAX - sample[ACOMP]) * span->green + \
316 ((sample[ACOMP] + 1) * sample[GCOMP] << FIXED_SHIFT)) \
317 >> (FIXED_SHIFT + 8); \
318 dest[BCOMP] = ((CHAN_MAX - sample[ACOMP]) * span->blue + \
319 ((sample[ACOMP] + 1) * sample[BCOMP] << FIXED_SHIFT)) \
320 >> (FIXED_SHIFT + 8); \
321 dest[ACOMP] = FixedToInt(span->alpha)
322
323 #define BLEND \
324 dest[RCOMP] = ((CHAN_MAX - sample[RCOMP]) * span->red \
325 + (sample[RCOMP] + 1) * info->er) >> (FIXED_SHIFT + 8); \
326 dest[GCOMP] = ((CHAN_MAX - sample[GCOMP]) * span->green \
327 + (sample[GCOMP] + 1) * info->eg) >> (FIXED_SHIFT + 8); \
328 dest[BCOMP] = ((CHAN_MAX - sample[BCOMP]) * span->blue \
329 + (sample[BCOMP] + 1) * info->eb) >> (FIXED_SHIFT + 8); \
330 dest[ACOMP] = span->alpha * (sample[ACOMP] + 1) >> (FIXED_SHIFT + 8)
331
332 #define REPLACE COPY_CHAN4(dest, sample)
333
334 #define ADD \
335 { \
336 GLint rSum = FixedToInt(span->red) + (GLint) sample[RCOMP]; \
337 GLint gSum = FixedToInt(span->green) + (GLint) sample[GCOMP]; \
338 GLint bSum = FixedToInt(span->blue) + (GLint) sample[BCOMP]; \
339 dest[RCOMP] = MIN2(rSum, CHAN_MAX); \
340 dest[GCOMP] = MIN2(gSum, CHAN_MAX); \
341 dest[BCOMP] = MIN2(bSum, CHAN_MAX); \
342 dest[ACOMP] = span->alpha * (sample[ACOMP] + 1) >> (FIXED_SHIFT + 8); \
343 }
344
345 /* shortcuts */
346
347 #define NEAREST_RGB_REPLACE \
348 NEAREST_RGB; \
349 dest[0] = sample[0]; \
350 dest[1] = sample[1]; \
351 dest[2] = sample[2]; \
352 dest[3] = FixedToInt(span->alpha);
353
354 #define NEAREST_RGBA_REPLACE \
355 dest[RCOMP] = tex00[3]; \
356 dest[GCOMP] = tex00[2]; \
357 dest[BCOMP] = tex00[1]; \
358 dest[ACOMP] = tex00[0]
359
360 #define SPAN_NEAREST(DO_TEX, COMPS) \
361 for (i = 0; i < span->end; i++) { \
362 /* Isn't it necessary to use FixedFloor below?? */ \
363 GLint s = FixedToInt(span->intTex[0]) & info->smask; \
364 GLint t = FixedToInt(span->intTex[1]) & info->tmask; \
365 GLint pos = (t << info->twidth_log2) + s; \
366 const GLchan *tex00 = info->texture + COMPS * pos; \
367 DO_TEX; \
368 span->red += span->redStep; \
369 span->green += span->greenStep; \
370 span->blue += span->blueStep; \
371 span->alpha += span->alphaStep; \
372 span->intTex[0] += span->intTexStep[0]; \
373 span->intTex[1] += span->intTexStep[1]; \
374 dest += 4; \
375 }
376
377 #define SPAN_LINEAR(DO_TEX, COMPS) \
378 for (i = 0; i < span->end; i++) { \
379 /* Isn't it necessary to use FixedFloor below?? */ \
380 const GLint s = FixedToInt(span->intTex[0]) & info->smask; \
381 const GLint t = FixedToInt(span->intTex[1]) & info->tmask; \
382 const GLfixed sf = span->intTex[0] & FIXED_FRAC_MASK; \
383 const GLfixed tf = span->intTex[1] & FIXED_FRAC_MASK; \
384 const GLint pos = (t << info->twidth_log2) + s; \
385 const GLchan *tex00 = info->texture + COMPS * pos; \
386 const GLchan *tex10 = tex00 + info->tbytesline; \
387 const GLchan *tex01 = tex00 + COMPS; \
388 const GLchan *tex11 = tex10 + COMPS; \
389 if (t == info->tmask) { \
390 tex10 -= info->tsize; \
391 tex11 -= info->tsize; \
392 } \
393 if (s == info->smask) { \
394 tex01 -= info->tbytesline; \
395 tex11 -= info->tbytesline; \
396 } \
397 DO_TEX; \
398 span->red += span->redStep; \
399 span->green += span->greenStep; \
400 span->blue += span->blueStep; \
401 span->alpha += span->alphaStep; \
402 span->intTex[0] += span->intTexStep[0]; \
403 span->intTex[1] += span->intTexStep[1]; \
404 dest += 4; \
405 }
406
407
408 GLuint i;
409 GLchan *dest = span->array->rgba[0];
410
411 /* Disable tex units so they're not re-applied in swrast_write_rgba_span */
412 ctx->Texture._EnabledCoordUnits = 0x0;
413
414 span->intTex[0] -= FIXED_HALF;
415 span->intTex[1] -= FIXED_HALF;
416 switch (info->filter) {
417 case GL_NEAREST:
418 switch (info->format) {
419 case MESA_FORMAT_RGB888:
420 switch (info->envmode) {
421 case GL_MODULATE:
422 SPAN_NEAREST(NEAREST_RGB;MODULATE,3);
423 break;
424 case GL_DECAL:
425 case GL_REPLACE:
426 SPAN_NEAREST(NEAREST_RGB_REPLACE,3);
427 break;
428 case GL_BLEND:
429 SPAN_NEAREST(NEAREST_RGB;BLEND,3);
430 break;
431 case GL_ADD:
432 SPAN_NEAREST(NEAREST_RGB;ADD,3);
433 break;
434 default:
435 _mesa_problem(ctx, "bad tex env mode in SPAN_LINEAR");
436 return;
437 }
438 break;
439 case MESA_FORMAT_RGBA8888:
440 switch(info->envmode) {
441 case GL_MODULATE:
442 SPAN_NEAREST(NEAREST_RGBA;MODULATE,4);
443 break;
444 case GL_DECAL:
445 SPAN_NEAREST(NEAREST_RGBA;DECAL,4);
446 break;
447 case GL_BLEND:
448 SPAN_NEAREST(NEAREST_RGBA;BLEND,4);
449 break;
450 case GL_ADD:
451 SPAN_NEAREST(NEAREST_RGBA;ADD,4);
452 break;
453 case GL_REPLACE:
454 SPAN_NEAREST(NEAREST_RGBA_REPLACE,4);
455 break;
456 default:
457 _mesa_problem(ctx, "bad tex env mode (2) in SPAN_LINEAR");
458 return;
459 }
460 break;
461 }
462 break;
463
464 case GL_LINEAR:
465 span->intTex[0] -= FIXED_HALF;
466 span->intTex[1] -= FIXED_HALF;
467 switch (info->format) {
468 case MESA_FORMAT_RGB888:
469 switch (info->envmode) {
470 case GL_MODULATE:
471 SPAN_LINEAR(LINEAR_RGB;MODULATE,3);
472 break;
473 case GL_DECAL:
474 case GL_REPLACE:
475 SPAN_LINEAR(LINEAR_RGB;REPLACE,3);
476 break;
477 case GL_BLEND:
478 SPAN_LINEAR(LINEAR_RGB;BLEND,3);
479 break;
480 case GL_ADD:
481 SPAN_LINEAR(LINEAR_RGB;ADD,3);
482 break;
483 default:
484 _mesa_problem(ctx, "bad tex env mode (3) in SPAN_LINEAR");
485 return;
486 }
487 break;
488 case MESA_FORMAT_RGBA8888:
489 switch (info->envmode) {
490 case GL_MODULATE:
491 SPAN_LINEAR(LINEAR_RGBA;MODULATE,4);
492 break;
493 case GL_DECAL:
494 SPAN_LINEAR(LINEAR_RGBA;DECAL,4);
495 break;
496 case GL_BLEND:
497 SPAN_LINEAR(LINEAR_RGBA;BLEND,4);
498 break;
499 case GL_ADD:
500 SPAN_LINEAR(LINEAR_RGBA;ADD,4);
501 break;
502 case GL_REPLACE:
503 SPAN_LINEAR(LINEAR_RGBA;REPLACE,4);
504 break;
505 default:
506 _mesa_problem(ctx, "bad tex env mode (4) in SPAN_LINEAR");
507 return;
508 }
509 break;
510 }
511 break;
512 }
513 span->interpMask &= ~SPAN_RGBA;
514 ASSERT(span->arrayMask & SPAN_RGBA);
515
516 _swrast_write_rgba_span(ctx, span);
517
518 /* re-enable texture units */
519 ctx->Texture._EnabledCoordUnits = texEnableSave;
520
521 #undef SPAN_NEAREST
522 #undef SPAN_LINEAR
523 }
524
525
526
527 /*
528 * Render an RGB/RGBA textured triangle without perspective correction.
529 */
530 #define NAME affine_textured_triangle
531 #define INTERP_Z 1
532 #define INTERP_RGB 1
533 #define INTERP_ALPHA 1
534 #define INTERP_INT_TEX 1
535 #define S_SCALE twidth
536 #define T_SCALE theight
537
538 #define SETUP_CODE \
539 struct affine_info info; \
540 struct gl_texture_unit *unit = ctx->Texture.Unit+0; \
541 const struct gl_texture_object *obj = \
542 ctx->Texture.Unit[0].CurrentTex[TEXTURE_2D_INDEX]; \
543 const struct gl_texture_image *texImg = \
544 obj->Image[0][obj->BaseLevel]; \
545 const struct swrast_texture_image *swImg = \
546 swrast_texture_image_const(texImg); \
547 const GLfloat twidth = (GLfloat) texImg->Width; \
548 const GLfloat theight = (GLfloat) texImg->Height; \
549 info.texture = (const GLchan *) swImg->Map; \
550 info.twidth_log2 = texImg->WidthLog2; \
551 info.smask = texImg->Width - 1; \
552 info.tmask = texImg->Height - 1; \
553 info.format = texImg->TexFormat; \
554 info.filter = obj->Sampler.MinFilter; \
555 info.envmode = unit->EnvMode; \
556 info.er = 0; \
557 info.eg = 0; \
558 info.eb = 0; \
559 span.arrayMask |= SPAN_RGBA; \
560 \
561 if (info.envmode == GL_BLEND) { \
562 /* potential off-by-one error here? (1.0f -> 2048 -> 0) */ \
563 info.er = FloatToFixed(unit->EnvColor[RCOMP] * CHAN_MAXF); \
564 info.eg = FloatToFixed(unit->EnvColor[GCOMP] * CHAN_MAXF); \
565 info.eb = FloatToFixed(unit->EnvColor[BCOMP] * CHAN_MAXF); \
566 info.ea = FloatToFixed(unit->EnvColor[ACOMP] * CHAN_MAXF); \
567 } \
568 if (!info.texture) { \
569 /* this shouldn't happen */ \
570 return; \
571 } \
572 \
573 switch (info.format) { \
574 case MESA_FORMAT_RGB888: \
575 info.tbytesline = texImg->Width * 3; \
576 break; \
577 case MESA_FORMAT_RGBA8888: \
578 info.tbytesline = texImg->Width * 4; \
579 break; \
580 default: \
581 _mesa_problem(NULL, "Bad texture format in affine_texture_triangle");\
582 return; \
583 } \
584 info.tsize = texImg->Height * info.tbytesline;
585
586 #define RENDER_SPAN( span ) affine_span(ctx, &span, &info);
587
588 #include "s_tritemp.h"
589
590
591
592 struct persp_info
593 {
594 GLenum filter;
595 GLenum format;
596 GLenum envmode;
597 GLint smask, tmask;
598 GLint twidth_log2;
599 const GLchan *texture;
600 GLfixed er, eg, eb, ea; /* texture env color */
601 GLint tbytesline, tsize;
602 };
603
604
605 static inline void
606 fast_persp_span(struct gl_context *ctx, SWspan *span,
607 struct persp_info *info)
608 {
609 GLchan sample[4]; /* the filtered texture sample */
610
611 /* Instead of defining a function for each mode, a test is done
612 * between the outer and inner loops. This is to reduce code size
613 * and complexity. Observe that an optimizing compiler kills
614 * unused variables (for instance tf,sf,ti,si in case of GL_NEAREST).
615 */
616 #define SPAN_NEAREST(DO_TEX,COMP) \
617 for (i = 0; i < span->end; i++) { \
618 GLdouble invQ = tex_coord[2] ? \
619 (1.0 / tex_coord[2]) : 1.0; \
620 GLfloat s_tmp = (GLfloat) (tex_coord[0] * invQ); \
621 GLfloat t_tmp = (GLfloat) (tex_coord[1] * invQ); \
622 GLint s = IFLOOR(s_tmp) & info->smask; \
623 GLint t = IFLOOR(t_tmp) & info->tmask; \
624 GLint pos = (t << info->twidth_log2) + s; \
625 const GLchan *tex00 = info->texture + COMP * pos; \
626 DO_TEX; \
627 span->red += span->redStep; \
628 span->green += span->greenStep; \
629 span->blue += span->blueStep; \
630 span->alpha += span->alphaStep; \
631 tex_coord[0] += tex_step[0]; \
632 tex_coord[1] += tex_step[1]; \
633 tex_coord[2] += tex_step[2]; \
634 dest += 4; \
635 }
636
637 #define SPAN_LINEAR(DO_TEX,COMP) \
638 for (i = 0; i < span->end; i++) { \
639 GLdouble invQ = tex_coord[2] ? \
640 (1.0 / tex_coord[2]) : 1.0; \
641 const GLfloat s_tmp = (GLfloat) (tex_coord[0] * invQ); \
642 const GLfloat t_tmp = (GLfloat) (tex_coord[1] * invQ); \
643 const GLfixed s_fix = FloatToFixed(s_tmp) - FIXED_HALF; \
644 const GLfixed t_fix = FloatToFixed(t_tmp) - FIXED_HALF; \
645 const GLint s = FixedToInt(FixedFloor(s_fix)) & info->smask; \
646 const GLint t = FixedToInt(FixedFloor(t_fix)) & info->tmask; \
647 const GLfixed sf = s_fix & FIXED_FRAC_MASK; \
648 const GLfixed tf = t_fix & FIXED_FRAC_MASK; \
649 const GLint pos = (t << info->twidth_log2) + s; \
650 const GLchan *tex00 = info->texture + COMP * pos; \
651 const GLchan *tex10 = tex00 + info->tbytesline; \
652 const GLchan *tex01 = tex00 + COMP; \
653 const GLchan *tex11 = tex10 + COMP; \
654 if (t == info->tmask) { \
655 tex10 -= info->tsize; \
656 tex11 -= info->tsize; \
657 } \
658 if (s == info->smask) { \
659 tex01 -= info->tbytesline; \
660 tex11 -= info->tbytesline; \
661 } \
662 DO_TEX; \
663 span->red += span->redStep; \
664 span->green += span->greenStep; \
665 span->blue += span->blueStep; \
666 span->alpha += span->alphaStep; \
667 tex_coord[0] += tex_step[0]; \
668 tex_coord[1] += tex_step[1]; \
669 tex_coord[2] += tex_step[2]; \
670 dest += 4; \
671 }
672
673 GLuint i;
674 GLfloat tex_coord[3], tex_step[3];
675 GLchan *dest = span->array->rgba[0];
676
677 const GLuint texEnableSave = ctx->Texture._EnabledCoordUnits;
678 ctx->Texture._EnabledCoordUnits = 0;
679
680 tex_coord[0] = span->attrStart[FRAG_ATTRIB_TEX0][0] * (info->smask + 1);
681 tex_step[0] = span->attrStepX[FRAG_ATTRIB_TEX0][0] * (info->smask + 1);
682 tex_coord[1] = span->attrStart[FRAG_ATTRIB_TEX0][1] * (info->tmask + 1);
683 tex_step[1] = span->attrStepX[FRAG_ATTRIB_TEX0][1] * (info->tmask + 1);
684 /* span->attrStart[FRAG_ATTRIB_TEX0][2] only if 3D-texturing, here only 2D */
685 tex_coord[2] = span->attrStart[FRAG_ATTRIB_TEX0][3];
686 tex_step[2] = span->attrStepX[FRAG_ATTRIB_TEX0][3];
687
688 switch (info->filter) {
689 case GL_NEAREST:
690 switch (info->format) {
691 case MESA_FORMAT_RGB888:
692 switch (info->envmode) {
693 case GL_MODULATE:
694 SPAN_NEAREST(NEAREST_RGB;MODULATE,3);
695 break;
696 case GL_DECAL:
697 case GL_REPLACE:
698 SPAN_NEAREST(NEAREST_RGB_REPLACE,3);
699 break;
700 case GL_BLEND:
701 SPAN_NEAREST(NEAREST_RGB;BLEND,3);
702 break;
703 case GL_ADD:
704 SPAN_NEAREST(NEAREST_RGB;ADD,3);
705 break;
706 default:
707 _mesa_problem(ctx, "bad tex env mode (5) in SPAN_LINEAR");
708 return;
709 }
710 break;
711 case MESA_FORMAT_RGBA8888:
712 switch(info->envmode) {
713 case GL_MODULATE:
714 SPAN_NEAREST(NEAREST_RGBA;MODULATE,4);
715 break;
716 case GL_DECAL:
717 SPAN_NEAREST(NEAREST_RGBA;DECAL,4);
718 break;
719 case GL_BLEND:
720 SPAN_NEAREST(NEAREST_RGBA;BLEND,4);
721 break;
722 case GL_ADD:
723 SPAN_NEAREST(NEAREST_RGBA;ADD,4);
724 break;
725 case GL_REPLACE:
726 SPAN_NEAREST(NEAREST_RGBA_REPLACE,4);
727 break;
728 default:
729 _mesa_problem(ctx, "bad tex env mode (6) in SPAN_LINEAR");
730 return;
731 }
732 break;
733 }
734 break;
735
736 case GL_LINEAR:
737 switch (info->format) {
738 case MESA_FORMAT_RGB888:
739 switch (info->envmode) {
740 case GL_MODULATE:
741 SPAN_LINEAR(LINEAR_RGB;MODULATE,3);
742 break;
743 case GL_DECAL:
744 case GL_REPLACE:
745 SPAN_LINEAR(LINEAR_RGB;REPLACE,3);
746 break;
747 case GL_BLEND:
748 SPAN_LINEAR(LINEAR_RGB;BLEND,3);
749 break;
750 case GL_ADD:
751 SPAN_LINEAR(LINEAR_RGB;ADD,3);
752 break;
753 default:
754 _mesa_problem(ctx, "bad tex env mode (7) in SPAN_LINEAR");
755 return;
756 }
757 break;
758 case MESA_FORMAT_RGBA8888:
759 switch (info->envmode) {
760 case GL_MODULATE:
761 SPAN_LINEAR(LINEAR_RGBA;MODULATE,4);
762 break;
763 case GL_DECAL:
764 SPAN_LINEAR(LINEAR_RGBA;DECAL,4);
765 break;
766 case GL_BLEND:
767 SPAN_LINEAR(LINEAR_RGBA;BLEND,4);
768 break;
769 case GL_ADD:
770 SPAN_LINEAR(LINEAR_RGBA;ADD,4);
771 break;
772 case GL_REPLACE:
773 SPAN_LINEAR(LINEAR_RGBA;REPLACE,4);
774 break;
775 default:
776 _mesa_problem(ctx, "bad tex env mode (8) in SPAN_LINEAR");
777 return;
778 }
779 break;
780 }
781 break;
782 }
783
784 ASSERT(span->arrayMask & SPAN_RGBA);
785 _swrast_write_rgba_span(ctx, span);
786
787 #undef SPAN_NEAREST
788 #undef SPAN_LINEAR
789
790 /* restore state */
791 ctx->Texture._EnabledCoordUnits = texEnableSave;
792 }
793
794
795 /*
796 * Render an perspective corrected RGB/RGBA textured triangle.
797 * The Q (aka V in Mesa) coordinate must be zero such that the divide
798 * by interpolated Q/W comes out right.
799 *
800 */
801 #define NAME persp_textured_triangle
802 #define INTERP_Z 1
803 #define INTERP_RGB 1
804 #define INTERP_ALPHA 1
805 #define INTERP_ATTRIBS 1
806
807 #define SETUP_CODE \
808 struct persp_info info; \
809 const struct gl_texture_unit *unit = ctx->Texture.Unit+0; \
810 const struct gl_texture_object *obj = \
811 ctx->Texture.Unit[0].CurrentTex[TEXTURE_2D_INDEX]; \
812 const struct gl_texture_image *texImg = \
813 obj->Image[0][obj->BaseLevel]; \
814 const struct swrast_texture_image *swImg = \
815 swrast_texture_image_const(texImg); \
816 info.texture = (const GLchan *) swImg->Map; \
817 info.twidth_log2 = texImg->WidthLog2; \
818 info.smask = texImg->Width - 1; \
819 info.tmask = texImg->Height - 1; \
820 info.format = texImg->TexFormat; \
821 info.filter = obj->Sampler.MinFilter; \
822 info.envmode = unit->EnvMode; \
823 info.er = 0; \
824 info.eg = 0; \
825 info.eb = 0; \
826 \
827 if (info.envmode == GL_BLEND) { \
828 /* potential off-by-one error here? (1.0f -> 2048 -> 0) */ \
829 info.er = FloatToFixed(unit->EnvColor[RCOMP] * CHAN_MAXF); \
830 info.eg = FloatToFixed(unit->EnvColor[GCOMP] * CHAN_MAXF); \
831 info.eb = FloatToFixed(unit->EnvColor[BCOMP] * CHAN_MAXF); \
832 info.ea = FloatToFixed(unit->EnvColor[ACOMP] * CHAN_MAXF); \
833 } \
834 if (!info.texture) { \
835 /* this shouldn't happen */ \
836 return; \
837 } \
838 \
839 switch (info.format) { \
840 case MESA_FORMAT_RGB888: \
841 info.tbytesline = texImg->Width * 3; \
842 break; \
843 case MESA_FORMAT_RGBA8888: \
844 info.tbytesline = texImg->Width * 4; \
845 break; \
846 default: \
847 _mesa_problem(NULL, "Bad texture format in persp_textured_triangle");\
848 return; \
849 } \
850 info.tsize = texImg->Height * info.tbytesline;
851
852 #define RENDER_SPAN( span ) \
853 span.interpMask &= ~SPAN_RGBA; \
854 span.arrayMask |= SPAN_RGBA; \
855 fast_persp_span(ctx, &span, &info);
856
857 #include "s_tritemp.h"
858
859 #endif /*CHAN_TYPE != GL_FLOAT*/
860
861
862
863 /*
864 * Render an RGBA triangle with arbitrary attributes.
865 */
866 #define NAME general_triangle
867 #define INTERP_Z 1
868 #define INTERP_RGB 1
869 #define INTERP_ALPHA 1
870 #define INTERP_ATTRIBS 1
871 #define RENDER_SPAN( span ) _swrast_write_rgba_span(ctx, &span);
872 #include "s_tritemp.h"
873
874
875
876 static void
877 nodraw_triangle( struct gl_context *ctx,
878 const SWvertex *v0,
879 const SWvertex *v1,
880 const SWvertex *v2 )
881 {
882 (void) (ctx && v0 && v1 && v2);
883 }
884
885
886 /*
887 * This is used when separate specular color is enabled, but not
888 * texturing. We add the specular color to the primary color,
889 * draw the triangle, then restore the original primary color.
890 * Inefficient, but seldom needed.
891 */
892 void
893 _swrast_add_spec_terms_triangle(struct gl_context *ctx, const SWvertex *v0,
894 const SWvertex *v1, const SWvertex *v2)
895 {
896 SWvertex *ncv0 = (SWvertex *)v0; /* drop const qualifier */
897 SWvertex *ncv1 = (SWvertex *)v1;
898 SWvertex *ncv2 = (SWvertex *)v2;
899 GLfloat rSum, gSum, bSum;
900 GLchan cSave[3][4];
901
902 /* save original colors */
903 COPY_CHAN4( cSave[0], ncv0->color );
904 COPY_CHAN4( cSave[1], ncv1->color );
905 COPY_CHAN4( cSave[2], ncv2->color );
906 /* sum v0 */
907 rSum = CHAN_TO_FLOAT(ncv0->color[0]) + ncv0->attrib[FRAG_ATTRIB_COL1][0];
908 gSum = CHAN_TO_FLOAT(ncv0->color[1]) + ncv0->attrib[FRAG_ATTRIB_COL1][1];
909 bSum = CHAN_TO_FLOAT(ncv0->color[2]) + ncv0->attrib[FRAG_ATTRIB_COL1][2];
910 UNCLAMPED_FLOAT_TO_CHAN(ncv0->color[0], rSum);
911 UNCLAMPED_FLOAT_TO_CHAN(ncv0->color[1], gSum);
912 UNCLAMPED_FLOAT_TO_CHAN(ncv0->color[2], bSum);
913 /* sum v1 */
914 rSum = CHAN_TO_FLOAT(ncv1->color[0]) + ncv1->attrib[FRAG_ATTRIB_COL1][0];
915 gSum = CHAN_TO_FLOAT(ncv1->color[1]) + ncv1->attrib[FRAG_ATTRIB_COL1][1];
916 bSum = CHAN_TO_FLOAT(ncv1->color[2]) + ncv1->attrib[FRAG_ATTRIB_COL1][2];
917 UNCLAMPED_FLOAT_TO_CHAN(ncv1->color[0], rSum);
918 UNCLAMPED_FLOAT_TO_CHAN(ncv1->color[1], gSum);
919 UNCLAMPED_FLOAT_TO_CHAN(ncv1->color[2], bSum);
920 /* sum v2 */
921 rSum = CHAN_TO_FLOAT(ncv2->color[0]) + ncv2->attrib[FRAG_ATTRIB_COL1][0];
922 gSum = CHAN_TO_FLOAT(ncv2->color[1]) + ncv2->attrib[FRAG_ATTRIB_COL1][1];
923 bSum = CHAN_TO_FLOAT(ncv2->color[2]) + ncv2->attrib[FRAG_ATTRIB_COL1][2];
924 UNCLAMPED_FLOAT_TO_CHAN(ncv2->color[0], rSum);
925 UNCLAMPED_FLOAT_TO_CHAN(ncv2->color[1], gSum);
926 UNCLAMPED_FLOAT_TO_CHAN(ncv2->color[2], bSum);
927 /* draw */
928 SWRAST_CONTEXT(ctx)->SpecTriangle( ctx, ncv0, ncv1, ncv2 );
929 /* restore original colors */
930 COPY_CHAN4( ncv0->color, cSave[0] );
931 COPY_CHAN4( ncv1->color, cSave[1] );
932 COPY_CHAN4( ncv2->color, cSave[2] );
933 }
934
935
936
937 #ifdef DEBUG
938
939 /* record the current triangle function name */
940 const char *_mesa_triFuncName = NULL;
941
942 #define USE(triFunc) \
943 do { \
944 _mesa_triFuncName = #triFunc; \
945 /*printf("%s\n", _mesa_triFuncName);*/ \
946 swrast->Triangle = triFunc; \
947 } while (0)
948
949 #else
950
951 #define USE(triFunc) swrast->Triangle = triFunc;
952
953 #endif
954
955
956
957
958 /*
959 * Determine which triangle rendering function to use given the current
960 * rendering context.
961 *
962 * Please update the summary flag _SWRAST_NEW_TRIANGLE if you add or
963 * remove tests to this code.
964 */
965 void
966 _swrast_choose_triangle( struct gl_context *ctx )
967 {
968 SWcontext *swrast = SWRAST_CONTEXT(ctx);
969
970 if (ctx->Polygon.CullFlag &&
971 ctx->Polygon.CullFaceMode == GL_FRONT_AND_BACK) {
972 USE(nodraw_triangle);
973 return;
974 }
975
976 if (ctx->RenderMode==GL_RENDER) {
977
978 if (ctx->Polygon.SmoothFlag) {
979 _swrast_set_aa_triangle_function(ctx);
980 ASSERT(swrast->Triangle);
981 return;
982 }
983
984 /*
985 * XXX should examine swrast->_ActiveAttribMask to determine what
986 * needs to be interpolated.
987 */
988 if (ctx->Texture._EnabledCoordUnits ||
989 _swrast_use_fragment_program(ctx) ||
990 _mesa_need_secondary_color(ctx) ||
991 swrast->_FogEnabled) {
992 /* Ugh, we do a _lot_ of tests to pick the best textured tri func */
993 const struct gl_texture_object *texObj2D;
994 const struct gl_texture_image *texImg;
995 const struct swrast_texture_image *swImg;
996 GLenum minFilter, magFilter, envMode;
997 gl_format format;
998 texObj2D = ctx->Texture.Unit[0].CurrentTex[TEXTURE_2D_INDEX];
999
1000 texImg = texObj2D ? texObj2D->Image[0][texObj2D->BaseLevel] : NULL;
1001 swImg = swrast_texture_image_const(texImg);
1002
1003 format = texImg ? texImg->TexFormat : MESA_FORMAT_NONE;
1004 minFilter = texObj2D ? texObj2D->Sampler.MinFilter : GL_NONE;
1005 magFilter = texObj2D ? texObj2D->Sampler.MagFilter : GL_NONE;
1006 envMode = ctx->Texture.Unit[0].EnvMode;
1007
1008 /* First see if we can use an optimized 2-D texture function */
1009 if (ctx->Texture._EnabledCoordUnits == 0x1
1010 && !_swrast_use_fragment_program(ctx)
1011 && ctx->Texture._EnabledUnits == 0x1
1012 && ctx->Texture.Unit[0]._ReallyEnabled == TEXTURE_2D_BIT
1013 && texObj2D->Sampler.WrapS == GL_REPEAT
1014 && texObj2D->Sampler.WrapT == GL_REPEAT
1015 && swImg->_IsPowerOfTwo
1016 && texImg->Border == 0
1017 && texImg->Width == swImg->RowStride
1018 && (format == MESA_FORMAT_RGB888 || format == MESA_FORMAT_RGBA8888)
1019 && minFilter == magFilter
1020 && ctx->Light.Model.ColorControl == GL_SINGLE_COLOR
1021 && !swrast->_FogEnabled
1022 && ctx->Texture.Unit[0].EnvMode != GL_COMBINE_EXT
1023 && ctx->Texture.Unit[0].EnvMode != GL_COMBINE4_NV) {
1024 if (ctx->Hint.PerspectiveCorrection==GL_FASTEST) {
1025 if (minFilter == GL_NEAREST
1026 && format == MESA_FORMAT_RGB888
1027 && (envMode == GL_REPLACE || envMode == GL_DECAL)
1028 && ((swrast->_RasterMask == (DEPTH_BIT | TEXTURE_BIT)
1029 && ctx->Depth.Func == GL_LESS
1030 && ctx->Depth.Mask == GL_TRUE)
1031 || swrast->_RasterMask == TEXTURE_BIT)
1032 && ctx->Polygon.StippleFlag == GL_FALSE
1033 && ctx->DrawBuffer->Visual.depthBits <= 16) {
1034 if (swrast->_RasterMask == (DEPTH_BIT | TEXTURE_BIT)) {
1035 USE(simple_z_textured_triangle);
1036 }
1037 else {
1038 USE(simple_textured_triangle);
1039 }
1040 }
1041 else {
1042 #if CHAN_BITS != 8
1043 USE(general_triangle);
1044 #else
1045 if (format == MESA_FORMAT_RGBA8888 && !_mesa_little_endian()) {
1046 /* We only handle RGBA8888 correctly on little endian
1047 * in the optimized code above.
1048 */
1049 USE(general_triangle);
1050 }
1051 else {
1052 USE(affine_textured_triangle);
1053 }
1054 #endif
1055 }
1056 }
1057 else {
1058 #if CHAN_BITS != 8
1059 USE(general_triangle);
1060 #else
1061 USE(persp_textured_triangle);
1062 #endif
1063 }
1064 }
1065 else {
1066 /* general case textured triangles */
1067 USE(general_triangle);
1068 }
1069 }
1070 else {
1071 ASSERT(!swrast->_FogEnabled);
1072 ASSERT(!_mesa_need_secondary_color(ctx));
1073 if (ctx->Light.ShadeModel==GL_SMOOTH) {
1074 /* smooth shaded, no texturing, stippled or some raster ops */
1075 #if CHAN_BITS != 8
1076 USE(general_triangle);
1077 #else
1078 USE(smooth_rgba_triangle);
1079 #endif
1080 }
1081 else {
1082 /* flat shaded, no texturing, stippled or some raster ops */
1083 #if CHAN_BITS != 8
1084 USE(general_triangle);
1085 #else
1086 USE(flat_rgba_triangle);
1087 #endif
1088 }
1089 }
1090 }
1091 else if (ctx->RenderMode==GL_FEEDBACK) {
1092 USE(_swrast_feedback_triangle);
1093 }
1094 else {
1095 /* GL_SELECT mode */
1096 USE(_swrast_select_triangle);
1097 }
1098 }