[OLEAUT32]
[reactos.git] / reactos / dll / win32 / oleaut32 / vartype.c
1 /*
2 * Low level variant functions
3 *
4 * Copyright 2003 Jon Griffiths
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
19 */
20
21 #define COBJMACROS
22 #define NONAMELESSUNION
23 #define NONAMELESSSTRUCT
24
25 #include "wine/debug.h"
26 #include "wine/unicode.h"
27 #include "winbase.h"
28 #include "winuser.h"
29 #include "winnt.h"
30 #include "variant.h"
31 #include "resource.h"
32
33 WINE_DEFAULT_DEBUG_CHANNEL(variant);
34
35 extern HMODULE hProxyDll DECLSPEC_HIDDEN;
36
37 #define CY_MULTIPLIER 10000 /* 4 dp of precision */
38 #define CY_MULTIPLIER_F 10000.0
39 #define CY_HALF (CY_MULTIPLIER/2) /* 0.5 */
40 #define CY_HALF_F (CY_MULTIPLIER_F/2.0)
41
42 static const WCHAR szFloatFormatW[] = { '%','.','7','G','\0' };
43 static const WCHAR szDoubleFormatW[] = { '%','.','1','5','G','\0' };
44
45 /* Copy data from one variant to another. */
46 static inline void VARIANT_CopyData(const VARIANT *srcVar, VARTYPE vt, void *pOut)
47 {
48 switch (vt)
49 {
50 case VT_I1:
51 case VT_UI1: memcpy(pOut, &V_UI1(srcVar), sizeof(BYTE)); break;
52 case VT_BOOL:
53 case VT_I2:
54 case VT_UI2: memcpy(pOut, &V_UI2(srcVar), sizeof(SHORT)); break;
55 case VT_R4:
56 case VT_INT:
57 case VT_I4:
58 case VT_UINT:
59 case VT_UI4: memcpy(pOut, &V_UI4(srcVar), sizeof (LONG)); break;
60 case VT_R8:
61 case VT_DATE:
62 case VT_CY:
63 case VT_I8:
64 case VT_UI8: memcpy(pOut, &V_UI8(srcVar), sizeof (LONG64)); break;
65 case VT_INT_PTR: memcpy(pOut, &V_INT_PTR(srcVar), sizeof (INT_PTR)); break;
66 case VT_DECIMAL: memcpy(pOut, &V_DECIMAL(srcVar), sizeof (DECIMAL)); break;
67 case VT_BSTR: memcpy(pOut, &V_BSTR(srcVar), sizeof(BSTR)); break;
68 default:
69 FIXME("VT_ type %d unhandled, please report!\n", vt);
70 }
71 }
72
73 /* Macro to inline conversion from a float or double to any integer type,
74 * rounding according to the 'dutch' convention.
75 */
76 #define VARIANT_DutchRound(typ, value, res) do { \
77 double whole = value < 0 ? ceil(value) : floor(value); \
78 double fract = value - whole; \
79 if (fract > 0.5) res = (typ)whole + (typ)1; \
80 else if (fract == 0.5) { typ is_odd = (typ)whole & 1; res = whole + is_odd; } \
81 else if (fract >= 0.0) res = (typ)whole; \
82 else if (fract == -0.5) { typ is_odd = (typ)whole & 1; res = whole - is_odd; } \
83 else if (fract > -0.5) res = (typ)whole; \
84 else res = (typ)whole - (typ)1; \
85 } while(0)
86
87
88 /* Coerce VT_BSTR to a numeric type */
89 static HRESULT VARIANT_NumberFromBstr(OLECHAR* pStrIn, LCID lcid, ULONG ulFlags,
90 void* pOut, VARTYPE vt)
91 {
92 VARIANTARG dstVar;
93 HRESULT hRet;
94 NUMPARSE np;
95 BYTE rgb[1024];
96
97 /* Use VarParseNumFromStr/VarNumFromParseNum as MSDN indicates */
98 np.cDig = sizeof(rgb) / sizeof(BYTE);
99 np.dwInFlags = NUMPRS_STD;
100
101 hRet = VarParseNumFromStr(pStrIn, lcid, ulFlags, &np, rgb);
102
103 if (SUCCEEDED(hRet))
104 {
105 /* 1 << vt gives us the VTBIT constant for the destination number type */
106 hRet = VarNumFromParseNum(&np, rgb, 1 << vt, &dstVar);
107 if (SUCCEEDED(hRet))
108 VARIANT_CopyData(&dstVar, vt, pOut);
109 }
110 return hRet;
111 }
112
113 /* Coerce VT_DISPATCH to another type */
114 static HRESULT VARIANT_FromDisp(IDispatch* pdispIn, LCID lcid, void* pOut,
115 VARTYPE vt, DWORD dwFlags)
116 {
117 static DISPPARAMS emptyParams = { NULL, NULL, 0, 0 };
118 VARIANTARG srcVar, dstVar;
119 HRESULT hRet;
120
121 if (!pdispIn)
122 return DISP_E_BADVARTYPE;
123
124 /* Get the default 'value' property from the IDispatch */
125 hRet = IDispatch_Invoke(pdispIn, DISPID_VALUE, &IID_NULL, lcid, DISPATCH_PROPERTYGET,
126 &emptyParams, &srcVar, NULL, NULL);
127
128 if (SUCCEEDED(hRet))
129 {
130 /* Convert the property to the requested type */
131 V_VT(&dstVar) = VT_EMPTY;
132 hRet = VariantChangeTypeEx(&dstVar, &srcVar, lcid, dwFlags, vt);
133 VariantClear(&srcVar);
134
135 if (SUCCEEDED(hRet))
136 {
137 VARIANT_CopyData(&dstVar, vt, pOut);
138 VariantClear(&srcVar);
139 }
140 }
141 else
142 hRet = DISP_E_TYPEMISMATCH;
143 return hRet;
144 }
145
146 /* Inline return type */
147 #define RETTYP static inline HRESULT
148
149
150 /* Simple compiler cast from one type to another */
151 #define SIMPLE(dest, src, func) RETTYP _##func(src in, dest* out) { \
152 *out = in; return S_OK; }
153
154 /* Compiler cast where input cannot be negative */
155 #define NEGTST(dest, src, func) RETTYP _##func(src in, dest* out) { \
156 if (in < 0) return DISP_E_OVERFLOW; *out = in; return S_OK; }
157
158 /* Compiler cast where input cannot be > some number */
159 #define POSTST(dest, src, func, tst) RETTYP _##func(src in, dest* out) { \
160 if (in > (dest)tst) return DISP_E_OVERFLOW; *out = in; return S_OK; }
161
162 /* Compiler cast where input cannot be < some number or >= some other number */
163 #define BOTHTST(dest, src, func, lo, hi) RETTYP _##func(src in, dest* out) { \
164 if (in < (dest)lo || in > hi) return DISP_E_OVERFLOW; *out = in; return S_OK; }
165
166 /* I1 */
167 POSTST(signed char, BYTE, VarI1FromUI1, I1_MAX)
168 BOTHTST(signed char, SHORT, VarI1FromI2, I1_MIN, I1_MAX)
169 BOTHTST(signed char, LONG, VarI1FromI4, I1_MIN, I1_MAX)
170 SIMPLE(signed char, VARIANT_BOOL, VarI1FromBool)
171 POSTST(signed char, USHORT, VarI1FromUI2, I1_MAX)
172 POSTST(signed char, ULONG, VarI1FromUI4, I1_MAX)
173 BOTHTST(signed char, LONG64, VarI1FromI8, I1_MIN, I1_MAX)
174 POSTST(signed char, ULONG64, VarI1FromUI8, I1_MAX)
175
176 /* UI1 */
177 BOTHTST(BYTE, SHORT, VarUI1FromI2, UI1_MIN, UI1_MAX)
178 SIMPLE(BYTE, VARIANT_BOOL, VarUI1FromBool)
179 NEGTST(BYTE, signed char, VarUI1FromI1)
180 POSTST(BYTE, USHORT, VarUI1FromUI2, UI1_MAX)
181 BOTHTST(BYTE, LONG, VarUI1FromI4, UI1_MIN, UI1_MAX)
182 POSTST(BYTE, ULONG, VarUI1FromUI4, UI1_MAX)
183 BOTHTST(BYTE, LONG64, VarUI1FromI8, UI1_MIN, UI1_MAX)
184 POSTST(BYTE, ULONG64, VarUI1FromUI8, UI1_MAX)
185
186 /* I2 */
187 SIMPLE(SHORT, BYTE, VarI2FromUI1)
188 BOTHTST(SHORT, LONG, VarI2FromI4, I2_MIN, I2_MAX)
189 SIMPLE(SHORT, VARIANT_BOOL, VarI2FromBool)
190 SIMPLE(SHORT, signed char, VarI2FromI1)
191 POSTST(SHORT, USHORT, VarI2FromUI2, I2_MAX)
192 POSTST(SHORT, ULONG, VarI2FromUI4, I2_MAX)
193 BOTHTST(SHORT, LONG64, VarI2FromI8, I2_MIN, I2_MAX)
194 POSTST(SHORT, ULONG64, VarI2FromUI8, I2_MAX)
195
196 /* UI2 */
197 SIMPLE(USHORT, BYTE, VarUI2FromUI1)
198 NEGTST(USHORT, SHORT, VarUI2FromI2)
199 BOTHTST(USHORT, LONG, VarUI2FromI4, UI2_MIN, UI2_MAX)
200 SIMPLE(USHORT, VARIANT_BOOL, VarUI2FromBool)
201 NEGTST(USHORT, signed char, VarUI2FromI1)
202 POSTST(USHORT, ULONG, VarUI2FromUI4, UI2_MAX)
203 BOTHTST(USHORT, LONG64, VarUI2FromI8, UI2_MIN, UI2_MAX)
204 POSTST(USHORT, ULONG64, VarUI2FromUI8, UI2_MAX)
205
206 /* I4 */
207 SIMPLE(LONG, BYTE, VarI4FromUI1)
208 SIMPLE(LONG, SHORT, VarI4FromI2)
209 SIMPLE(LONG, VARIANT_BOOL, VarI4FromBool)
210 SIMPLE(LONG, signed char, VarI4FromI1)
211 SIMPLE(LONG, USHORT, VarI4FromUI2)
212 POSTST(LONG, ULONG, VarI4FromUI4, I4_MAX)
213 BOTHTST(LONG, LONG64, VarI4FromI8, I4_MIN, I4_MAX)
214 POSTST(LONG, ULONG64, VarI4FromUI8, I4_MAX)
215
216 /* UI4 */
217 SIMPLE(ULONG, BYTE, VarUI4FromUI1)
218 NEGTST(ULONG, SHORT, VarUI4FromI2)
219 NEGTST(ULONG, LONG, VarUI4FromI4)
220 SIMPLE(ULONG, VARIANT_BOOL, VarUI4FromBool)
221 NEGTST(ULONG, signed char, VarUI4FromI1)
222 SIMPLE(ULONG, USHORT, VarUI4FromUI2)
223 BOTHTST(ULONG, LONG64, VarUI4FromI8, UI4_MIN, UI4_MAX)
224 POSTST(ULONG, ULONG64, VarUI4FromUI8, UI4_MAX)
225
226 /* I8 */
227 SIMPLE(LONG64, BYTE, VarI8FromUI1)
228 SIMPLE(LONG64, SHORT, VarI8FromI2)
229 SIMPLE(LONG64, signed char, VarI8FromI1)
230 SIMPLE(LONG64, USHORT, VarI8FromUI2)
231 SIMPLE(LONG64, ULONG, VarI8FromUI4)
232 POSTST(LONG64, ULONG64, VarI8FromUI8, I8_MAX)
233
234 /* UI8 */
235 SIMPLE(ULONG64, BYTE, VarUI8FromUI1)
236 NEGTST(ULONG64, SHORT, VarUI8FromI2)
237 NEGTST(ULONG64, signed char, VarUI8FromI1)
238 SIMPLE(ULONG64, USHORT, VarUI8FromUI2)
239 SIMPLE(ULONG64, ULONG, VarUI8FromUI4)
240 NEGTST(ULONG64, LONG64, VarUI8FromI8)
241
242 /* R4 (float) */
243 SIMPLE(float, BYTE, VarR4FromUI1)
244 SIMPLE(float, SHORT, VarR4FromI2)
245 SIMPLE(float, signed char, VarR4FromI1)
246 SIMPLE(float, USHORT, VarR4FromUI2)
247 SIMPLE(float, LONG, VarR4FromI4)
248 SIMPLE(float, ULONG, VarR4FromUI4)
249 SIMPLE(float, LONG64, VarR4FromI8)
250 SIMPLE(float, ULONG64, VarR4FromUI8)
251
252 /* R8 (double) */
253 SIMPLE(double, BYTE, VarR8FromUI1)
254 SIMPLE(double, SHORT, VarR8FromI2)
255 SIMPLE(double, float, VarR8FromR4)
256 RETTYP _VarR8FromCy(CY i, double* o) { *o = (double)i.int64 / CY_MULTIPLIER_F; return S_OK; }
257 SIMPLE(double, DATE, VarR8FromDate)
258 SIMPLE(double, signed char, VarR8FromI1)
259 SIMPLE(double, USHORT, VarR8FromUI2)
260 SIMPLE(double, LONG, VarR8FromI4)
261 SIMPLE(double, ULONG, VarR8FromUI4)
262 SIMPLE(double, LONG64, VarR8FromI8)
263 SIMPLE(double, ULONG64, VarR8FromUI8)
264
265
266 /* I1
267 */
268
269 /************************************************************************
270 * VarI1FromUI1 (OLEAUT32.244)
271 *
272 * Convert a VT_UI1 to a VT_I1.
273 *
274 * PARAMS
275 * bIn [I] Source
276 * pcOut [O] Destination
277 *
278 * RETURNS
279 * Success: S_OK.
280 * Failure: E_INVALIDARG, if the source value is invalid
281 * DISP_E_OVERFLOW, if the value will not fit in the destination
282 */
283 HRESULT WINAPI VarI1FromUI1(BYTE bIn, signed char* pcOut)
284 {
285 return _VarI1FromUI1(bIn, pcOut);
286 }
287
288 /************************************************************************
289 * VarI1FromI2 (OLEAUT32.245)
290 *
291 * Convert a VT_I2 to a VT_I1.
292 *
293 * PARAMS
294 * sIn [I] Source
295 * pcOut [O] Destination
296 *
297 * RETURNS
298 * Success: S_OK.
299 * Failure: E_INVALIDARG, if the source value is invalid
300 * DISP_E_OVERFLOW, if the value will not fit in the destination
301 */
302 HRESULT WINAPI VarI1FromI2(SHORT sIn, signed char* pcOut)
303 {
304 return _VarI1FromI2(sIn, pcOut);
305 }
306
307 /************************************************************************
308 * VarI1FromI4 (OLEAUT32.246)
309 *
310 * Convert a VT_I4 to a VT_I1.
311 *
312 * PARAMS
313 * iIn [I] Source
314 * pcOut [O] Destination
315 *
316 * RETURNS
317 * Success: S_OK.
318 * Failure: E_INVALIDARG, if the source value is invalid
319 * DISP_E_OVERFLOW, if the value will not fit in the destination
320 */
321 HRESULT WINAPI VarI1FromI4(LONG iIn, signed char* pcOut)
322 {
323 return _VarI1FromI4(iIn, pcOut);
324 }
325
326 /************************************************************************
327 * VarI1FromR4 (OLEAUT32.247)
328 *
329 * Convert a VT_R4 to a VT_I1.
330 *
331 * PARAMS
332 * fltIn [I] Source
333 * pcOut [O] Destination
334 *
335 * RETURNS
336 * Success: S_OK.
337 * Failure: E_INVALIDARG, if the source value is invalid
338 * DISP_E_OVERFLOW, if the value will not fit in the destination
339 */
340 HRESULT WINAPI VarI1FromR4(FLOAT fltIn, signed char* pcOut)
341 {
342 return VarI1FromR8(fltIn, pcOut);
343 }
344
345 /************************************************************************
346 * VarI1FromR8 (OLEAUT32.248)
347 *
348 * Convert a VT_R8 to a VT_I1.
349 *
350 * PARAMS
351 * dblIn [I] Source
352 * pcOut [O] Destination
353 *
354 * RETURNS
355 * Success: S_OK.
356 * Failure: E_INVALIDARG, if the source value is invalid
357 * DISP_E_OVERFLOW, if the value will not fit in the destination
358 *
359 * NOTES
360 * See VarI8FromR8() for details concerning rounding.
361 */
362 HRESULT WINAPI VarI1FromR8(double dblIn, signed char* pcOut)
363 {
364 if (dblIn < (double)I1_MIN || dblIn > (double)I1_MAX)
365 return DISP_E_OVERFLOW;
366 VARIANT_DutchRound(CHAR, dblIn, *pcOut);
367 return S_OK;
368 }
369
370 /************************************************************************
371 * VarI1FromDate (OLEAUT32.249)
372 *
373 * Convert a VT_DATE to a VT_I1.
374 *
375 * PARAMS
376 * dateIn [I] Source
377 * pcOut [O] Destination
378 *
379 * RETURNS
380 * Success: S_OK.
381 * Failure: E_INVALIDARG, if the source value is invalid
382 * DISP_E_OVERFLOW, if the value will not fit in the destination
383 */
384 HRESULT WINAPI VarI1FromDate(DATE dateIn, signed char* pcOut)
385 {
386 return VarI1FromR8(dateIn, pcOut);
387 }
388
389 /************************************************************************
390 * VarI1FromCy (OLEAUT32.250)
391 *
392 * Convert a VT_CY to a VT_I1.
393 *
394 * PARAMS
395 * cyIn [I] Source
396 * pcOut [O] Destination
397 *
398 * RETURNS
399 * Success: S_OK.
400 * Failure: E_INVALIDARG, if the source value is invalid
401 * DISP_E_OVERFLOW, if the value will not fit in the destination
402 */
403 HRESULT WINAPI VarI1FromCy(CY cyIn, signed char* pcOut)
404 {
405 LONG i = I1_MAX + 1;
406
407 VarI4FromCy(cyIn, &i);
408 return _VarI1FromI4(i, pcOut);
409 }
410
411 /************************************************************************
412 * VarI1FromStr (OLEAUT32.251)
413 *
414 * Convert a VT_BSTR to a VT_I1.
415 *
416 * PARAMS
417 * strIn [I] Source
418 * lcid [I] LCID for the conversion
419 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
420 * pcOut [O] Destination
421 *
422 * RETURNS
423 * Success: S_OK.
424 * Failure: E_INVALIDARG, if the source value is invalid
425 * DISP_E_OVERFLOW, if the value will not fit in the destination
426 * DISP_E_TYPEMISMATCH, if the type cannot be converted
427 */
428 HRESULT WINAPI VarI1FromStr(OLECHAR* strIn, LCID lcid, ULONG dwFlags, signed char* pcOut)
429 {
430 return VARIANT_NumberFromBstr(strIn, lcid, dwFlags, pcOut, VT_I1);
431 }
432
433 /************************************************************************
434 * VarI1FromDisp (OLEAUT32.252)
435 *
436 * Convert a VT_DISPATCH to a VT_I1.
437 *
438 * PARAMS
439 * pdispIn [I] Source
440 * lcid [I] LCID for conversion
441 * pcOut [O] Destination
442 *
443 * RETURNS
444 * Success: S_OK.
445 * Failure: E_INVALIDARG, if the source value is invalid
446 * DISP_E_OVERFLOW, if the value will not fit in the destination
447 * DISP_E_TYPEMISMATCH, if the type cannot be converted
448 */
449 HRESULT WINAPI VarI1FromDisp(IDispatch* pdispIn, LCID lcid, signed char* pcOut)
450 {
451 return VARIANT_FromDisp(pdispIn, lcid, pcOut, VT_I1, 0);
452 }
453
454 /************************************************************************
455 * VarI1FromBool (OLEAUT32.253)
456 *
457 * Convert a VT_BOOL to a VT_I1.
458 *
459 * PARAMS
460 * boolIn [I] Source
461 * pcOut [O] Destination
462 *
463 * RETURNS
464 * S_OK.
465 */
466 HRESULT WINAPI VarI1FromBool(VARIANT_BOOL boolIn, signed char* pcOut)
467 {
468 return _VarI1FromBool(boolIn, pcOut);
469 }
470
471 /************************************************************************
472 * VarI1FromUI2 (OLEAUT32.254)
473 *
474 * Convert a VT_UI2 to a VT_I1.
475 *
476 * PARAMS
477 * usIn [I] Source
478 * pcOut [O] Destination
479 *
480 * RETURNS
481 * Success: S_OK.
482 * Failure: E_INVALIDARG, if the source value is invalid
483 * DISP_E_OVERFLOW, if the value will not fit in the destination
484 */
485 HRESULT WINAPI VarI1FromUI2(USHORT usIn, signed char* pcOut)
486 {
487 return _VarI1FromUI2(usIn, pcOut);
488 }
489
490 /************************************************************************
491 * VarI1FromUI4 (OLEAUT32.255)
492 *
493 * Convert a VT_UI4 to a VT_I1.
494 *
495 * PARAMS
496 * ulIn [I] Source
497 * pcOut [O] Destination
498 *
499 * RETURNS
500 * Success: S_OK.
501 * Failure: E_INVALIDARG, if the source value is invalid
502 * DISP_E_OVERFLOW, if the value will not fit in the destination
503 * DISP_E_TYPEMISMATCH, if the type cannot be converted
504 */
505 HRESULT WINAPI VarI1FromUI4(ULONG ulIn, signed char* pcOut)
506 {
507 return _VarI1FromUI4(ulIn, pcOut);
508 }
509
510 /************************************************************************
511 * VarI1FromDec (OLEAUT32.256)
512 *
513 * Convert a VT_DECIMAL to a VT_I1.
514 *
515 * PARAMS
516 * pDecIn [I] Source
517 * pcOut [O] Destination
518 *
519 * RETURNS
520 * Success: S_OK.
521 * Failure: E_INVALIDARG, if the source value is invalid
522 * DISP_E_OVERFLOW, if the value will not fit in the destination
523 */
524 HRESULT WINAPI VarI1FromDec(DECIMAL *pdecIn, signed char* pcOut)
525 {
526 LONG64 i64;
527 HRESULT hRet;
528
529 hRet = VarI8FromDec(pdecIn, &i64);
530
531 if (SUCCEEDED(hRet))
532 hRet = _VarI1FromI8(i64, pcOut);
533 return hRet;
534 }
535
536 /************************************************************************
537 * VarI1FromI8 (OLEAUT32.376)
538 *
539 * Convert a VT_I8 to a VT_I1.
540 *
541 * PARAMS
542 * llIn [I] Source
543 * pcOut [O] Destination
544 *
545 * RETURNS
546 * Success: S_OK.
547 * Failure: E_INVALIDARG, if the source value is invalid
548 * DISP_E_OVERFLOW, if the value will not fit in the destination
549 */
550 HRESULT WINAPI VarI1FromI8(LONG64 llIn, signed char* pcOut)
551 {
552 return _VarI1FromI8(llIn, pcOut);
553 }
554
555 /************************************************************************
556 * VarI1FromUI8 (OLEAUT32.377)
557 *
558 * Convert a VT_UI8 to a VT_I1.
559 *
560 * PARAMS
561 * ullIn [I] Source
562 * pcOut [O] Destination
563 *
564 * RETURNS
565 * Success: S_OK.
566 * Failure: E_INVALIDARG, if the source value is invalid
567 * DISP_E_OVERFLOW, if the value will not fit in the destination
568 */
569 HRESULT WINAPI VarI1FromUI8(ULONG64 ullIn, signed char* pcOut)
570 {
571 return _VarI1FromUI8(ullIn, pcOut);
572 }
573
574 /* UI1
575 */
576
577 /************************************************************************
578 * VarUI1FromI2 (OLEAUT32.130)
579 *
580 * Convert a VT_I2 to a VT_UI1.
581 *
582 * PARAMS
583 * sIn [I] Source
584 * pbOut [O] Destination
585 *
586 * RETURNS
587 * Success: S_OK.
588 * Failure: E_INVALIDARG, if the source value is invalid
589 * DISP_E_OVERFLOW, if the value will not fit in the destination
590 */
591 HRESULT WINAPI VarUI1FromI2(SHORT sIn, BYTE* pbOut)
592 {
593 return _VarUI1FromI2(sIn, pbOut);
594 }
595
596 /************************************************************************
597 * VarUI1FromI4 (OLEAUT32.131)
598 *
599 * Convert a VT_I4 to a VT_UI1.
600 *
601 * PARAMS
602 * iIn [I] Source
603 * pbOut [O] Destination
604 *
605 * RETURNS
606 * Success: S_OK.
607 * Failure: E_INVALIDARG, if the source value is invalid
608 * DISP_E_OVERFLOW, if the value will not fit in the destination
609 */
610 HRESULT WINAPI VarUI1FromI4(LONG iIn, BYTE* pbOut)
611 {
612 return _VarUI1FromI4(iIn, pbOut);
613 }
614
615 /************************************************************************
616 * VarUI1FromR4 (OLEAUT32.132)
617 *
618 * Convert a VT_R4 to a VT_UI1.
619 *
620 * PARAMS
621 * fltIn [I] Source
622 * pbOut [O] Destination
623 *
624 * RETURNS
625 * Success: S_OK.
626 * Failure: E_INVALIDARG, if the source value is invalid
627 * DISP_E_OVERFLOW, if the value will not fit in the destination
628 * DISP_E_TYPEMISMATCH, if the type cannot be converted
629 */
630 HRESULT WINAPI VarUI1FromR4(FLOAT fltIn, BYTE* pbOut)
631 {
632 return VarUI1FromR8(fltIn, pbOut);
633 }
634
635 /************************************************************************
636 * VarUI1FromR8 (OLEAUT32.133)
637 *
638 * Convert a VT_R8 to a VT_UI1.
639 *
640 * PARAMS
641 * dblIn [I] Source
642 * pbOut [O] Destination
643 *
644 * RETURNS
645 * Success: S_OK.
646 * Failure: E_INVALIDARG, if the source value is invalid
647 * DISP_E_OVERFLOW, if the value will not fit in the destination
648 *
649 * NOTES
650 * See VarI8FromR8() for details concerning rounding.
651 */
652 HRESULT WINAPI VarUI1FromR8(double dblIn, BYTE* pbOut)
653 {
654 if (dblIn < -0.5 || dblIn > (double)UI1_MAX)
655 return DISP_E_OVERFLOW;
656 VARIANT_DutchRound(BYTE, dblIn, *pbOut);
657 return S_OK;
658 }
659
660 /************************************************************************
661 * VarUI1FromCy (OLEAUT32.134)
662 *
663 * Convert a VT_CY to a VT_UI1.
664 *
665 * PARAMS
666 * cyIn [I] Source
667 * pbOut [O] Destination
668 *
669 * RETURNS
670 * Success: S_OK.
671 * Failure: E_INVALIDARG, if the source value is invalid
672 * DISP_E_OVERFLOW, if the value will not fit in the destination
673 *
674 * NOTES
675 * Negative values >= -5000 will be converted to 0.
676 */
677 HRESULT WINAPI VarUI1FromCy(CY cyIn, BYTE* pbOut)
678 {
679 ULONG i = UI1_MAX + 1;
680
681 VarUI4FromCy(cyIn, &i);
682 return _VarUI1FromUI4(i, pbOut);
683 }
684
685 /************************************************************************
686 * VarUI1FromDate (OLEAUT32.135)
687 *
688 * Convert a VT_DATE to a VT_UI1.
689 *
690 * PARAMS
691 * dateIn [I] Source
692 * pbOut [O] Destination
693 *
694 * RETURNS
695 * Success: S_OK.
696 * Failure: E_INVALIDARG, if the source value is invalid
697 * DISP_E_OVERFLOW, if the value will not fit in the destination
698 */
699 HRESULT WINAPI VarUI1FromDate(DATE dateIn, BYTE* pbOut)
700 {
701 return VarUI1FromR8(dateIn, pbOut);
702 }
703
704 /************************************************************************
705 * VarUI1FromStr (OLEAUT32.136)
706 *
707 * Convert a VT_BSTR to a VT_UI1.
708 *
709 * PARAMS
710 * strIn [I] Source
711 * lcid [I] LCID for the conversion
712 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
713 * pbOut [O] Destination
714 *
715 * RETURNS
716 * Success: S_OK.
717 * Failure: E_INVALIDARG, if the source value is invalid
718 * DISP_E_OVERFLOW, if the value will not fit in the destination
719 * DISP_E_TYPEMISMATCH, if the type cannot be converted
720 */
721 HRESULT WINAPI VarUI1FromStr(OLECHAR* strIn, LCID lcid, ULONG dwFlags, BYTE* pbOut)
722 {
723 return VARIANT_NumberFromBstr(strIn, lcid, dwFlags, pbOut, VT_UI1);
724 }
725
726 /************************************************************************
727 * VarUI1FromDisp (OLEAUT32.137)
728 *
729 * Convert a VT_DISPATCH to a VT_UI1.
730 *
731 * PARAMS
732 * pdispIn [I] Source
733 * lcid [I] LCID for conversion
734 * pbOut [O] Destination
735 *
736 * RETURNS
737 * Success: S_OK.
738 * Failure: E_INVALIDARG, if the source value is invalid
739 * DISP_E_OVERFLOW, if the value will not fit in the destination
740 * DISP_E_TYPEMISMATCH, if the type cannot be converted
741 */
742 HRESULT WINAPI VarUI1FromDisp(IDispatch* pdispIn, LCID lcid, BYTE* pbOut)
743 {
744 return VARIANT_FromDisp(pdispIn, lcid, pbOut, VT_UI1, 0);
745 }
746
747 /************************************************************************
748 * VarUI1FromBool (OLEAUT32.138)
749 *
750 * Convert a VT_BOOL to a VT_UI1.
751 *
752 * PARAMS
753 * boolIn [I] Source
754 * pbOut [O] Destination
755 *
756 * RETURNS
757 * S_OK.
758 */
759 HRESULT WINAPI VarUI1FromBool(VARIANT_BOOL boolIn, BYTE* pbOut)
760 {
761 return _VarUI1FromBool(boolIn, pbOut);
762 }
763
764 /************************************************************************
765 * VarUI1FromI1 (OLEAUT32.237)
766 *
767 * Convert a VT_I1 to a VT_UI1.
768 *
769 * PARAMS
770 * cIn [I] Source
771 * pbOut [O] Destination
772 *
773 * RETURNS
774 * Success: S_OK.
775 * Failure: E_INVALIDARG, if the source value is invalid
776 * DISP_E_OVERFLOW, if the value will not fit in the destination
777 */
778 HRESULT WINAPI VarUI1FromI1(signed char cIn, BYTE* pbOut)
779 {
780 return _VarUI1FromI1(cIn, pbOut);
781 }
782
783 /************************************************************************
784 * VarUI1FromUI2 (OLEAUT32.238)
785 *
786 * Convert a VT_UI2 to a VT_UI1.
787 *
788 * PARAMS
789 * usIn [I] Source
790 * pbOut [O] Destination
791 *
792 * RETURNS
793 * Success: S_OK.
794 * Failure: E_INVALIDARG, if the source value is invalid
795 * DISP_E_OVERFLOW, if the value will not fit in the destination
796 */
797 HRESULT WINAPI VarUI1FromUI2(USHORT usIn, BYTE* pbOut)
798 {
799 return _VarUI1FromUI2(usIn, pbOut);
800 }
801
802 /************************************************************************
803 * VarUI1FromUI4 (OLEAUT32.239)
804 *
805 * Convert a VT_UI4 to a VT_UI1.
806 *
807 * PARAMS
808 * ulIn [I] Source
809 * pbOut [O] Destination
810 *
811 * RETURNS
812 * Success: S_OK.
813 * Failure: E_INVALIDARG, if the source value is invalid
814 * DISP_E_OVERFLOW, if the value will not fit in the destination
815 */
816 HRESULT WINAPI VarUI1FromUI4(ULONG ulIn, BYTE* pbOut)
817 {
818 return _VarUI1FromUI4(ulIn, pbOut);
819 }
820
821 /************************************************************************
822 * VarUI1FromDec (OLEAUT32.240)
823 *
824 * Convert a VT_DECIMAL to a VT_UI1.
825 *
826 * PARAMS
827 * pDecIn [I] Source
828 * pbOut [O] Destination
829 *
830 * RETURNS
831 * Success: S_OK.
832 * Failure: E_INVALIDARG, if the source value is invalid
833 * DISP_E_OVERFLOW, if the value will not fit in the destination
834 */
835 HRESULT WINAPI VarUI1FromDec(DECIMAL *pdecIn, BYTE* pbOut)
836 {
837 LONG64 i64;
838 HRESULT hRet;
839
840 hRet = VarI8FromDec(pdecIn, &i64);
841
842 if (SUCCEEDED(hRet))
843 hRet = _VarUI1FromI8(i64, pbOut);
844 return hRet;
845 }
846
847 /************************************************************************
848 * VarUI1FromI8 (OLEAUT32.372)
849 *
850 * Convert a VT_I8 to a VT_UI1.
851 *
852 * PARAMS
853 * llIn [I] Source
854 * pbOut [O] Destination
855 *
856 * RETURNS
857 * Success: S_OK.
858 * Failure: E_INVALIDARG, if the source value is invalid
859 * DISP_E_OVERFLOW, if the value will not fit in the destination
860 */
861 HRESULT WINAPI VarUI1FromI8(LONG64 llIn, BYTE* pbOut)
862 {
863 return _VarUI1FromI8(llIn, pbOut);
864 }
865
866 /************************************************************************
867 * VarUI1FromUI8 (OLEAUT32.373)
868 *
869 * Convert a VT_UI8 to a VT_UI1.
870 *
871 * PARAMS
872 * ullIn [I] Source
873 * pbOut [O] Destination
874 *
875 * RETURNS
876 * Success: S_OK.
877 * Failure: E_INVALIDARG, if the source value is invalid
878 * DISP_E_OVERFLOW, if the value will not fit in the destination
879 */
880 HRESULT WINAPI VarUI1FromUI8(ULONG64 ullIn, BYTE* pbOut)
881 {
882 return _VarUI1FromUI8(ullIn, pbOut);
883 }
884
885
886 /* I2
887 */
888
889 /************************************************************************
890 * VarI2FromUI1 (OLEAUT32.48)
891 *
892 * Convert a VT_UI2 to a VT_I2.
893 *
894 * PARAMS
895 * bIn [I] Source
896 * psOut [O] Destination
897 *
898 * RETURNS
899 * S_OK.
900 */
901 HRESULT WINAPI VarI2FromUI1(BYTE bIn, SHORT* psOut)
902 {
903 return _VarI2FromUI1(bIn, psOut);
904 }
905
906 /************************************************************************
907 * VarI2FromI4 (OLEAUT32.49)
908 *
909 * Convert a VT_I4 to a VT_I2.
910 *
911 * PARAMS
912 * iIn [I] Source
913 * psOut [O] Destination
914 *
915 * RETURNS
916 * Success: S_OK.
917 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
918 */
919 HRESULT WINAPI VarI2FromI4(LONG iIn, SHORT* psOut)
920 {
921 return _VarI2FromI4(iIn, psOut);
922 }
923
924 /************************************************************************
925 * VarI2FromR4 (OLEAUT32.50)
926 *
927 * Convert a VT_R4 to a VT_I2.
928 *
929 * PARAMS
930 * fltIn [I] Source
931 * psOut [O] Destination
932 *
933 * RETURNS
934 * Success: S_OK.
935 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
936 */
937 HRESULT WINAPI VarI2FromR4(FLOAT fltIn, SHORT* psOut)
938 {
939 return VarI2FromR8(fltIn, psOut);
940 }
941
942 /************************************************************************
943 * VarI2FromR8 (OLEAUT32.51)
944 *
945 * Convert a VT_R8 to a VT_I2.
946 *
947 * PARAMS
948 * dblIn [I] Source
949 * psOut [O] Destination
950 *
951 * RETURNS
952 * Success: S_OK.
953 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
954 *
955 * NOTES
956 * See VarI8FromR8() for details concerning rounding.
957 */
958 HRESULT WINAPI VarI2FromR8(double dblIn, SHORT* psOut)
959 {
960 if (dblIn < (double)I2_MIN || dblIn > (double)I2_MAX)
961 return DISP_E_OVERFLOW;
962 VARIANT_DutchRound(SHORT, dblIn, *psOut);
963 return S_OK;
964 }
965
966 /************************************************************************
967 * VarI2FromCy (OLEAUT32.52)
968 *
969 * Convert a VT_CY to a VT_I2.
970 *
971 * PARAMS
972 * cyIn [I] Source
973 * psOut [O] Destination
974 *
975 * RETURNS
976 * Success: S_OK.
977 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
978 */
979 HRESULT WINAPI VarI2FromCy(CY cyIn, SHORT* psOut)
980 {
981 LONG i = I2_MAX + 1;
982
983 VarI4FromCy(cyIn, &i);
984 return _VarI2FromI4(i, psOut);
985 }
986
987 /************************************************************************
988 * VarI2FromDate (OLEAUT32.53)
989 *
990 * Convert a VT_DATE to a VT_I2.
991 *
992 * PARAMS
993 * dateIn [I] Source
994 * psOut [O] Destination
995 *
996 * RETURNS
997 * Success: S_OK.
998 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
999 */
1000 HRESULT WINAPI VarI2FromDate(DATE dateIn, SHORT* psOut)
1001 {
1002 return VarI2FromR8(dateIn, psOut);
1003 }
1004
1005 /************************************************************************
1006 * VarI2FromStr (OLEAUT32.54)
1007 *
1008 * Convert a VT_BSTR to a VT_I2.
1009 *
1010 * PARAMS
1011 * strIn [I] Source
1012 * lcid [I] LCID for the conversion
1013 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
1014 * psOut [O] Destination
1015 *
1016 * RETURNS
1017 * Success: S_OK.
1018 * Failure: E_INVALIDARG, if any parameter is invalid
1019 * DISP_E_OVERFLOW, if the value will not fit in the destination
1020 * DISP_E_TYPEMISMATCH, if the type cannot be converted
1021 */
1022 HRESULT WINAPI VarI2FromStr(OLECHAR* strIn, LCID lcid, ULONG dwFlags, SHORT* psOut)
1023 {
1024 return VARIANT_NumberFromBstr(strIn, lcid, dwFlags, psOut, VT_I2);
1025 }
1026
1027 /************************************************************************
1028 * VarI2FromDisp (OLEAUT32.55)
1029 *
1030 * Convert a VT_DISPATCH to a VT_I2.
1031 *
1032 * PARAMS
1033 * pdispIn [I] Source
1034 * lcid [I] LCID for conversion
1035 * psOut [O] Destination
1036 *
1037 * RETURNS
1038 * Success: S_OK.
1039 * Failure: E_INVALIDARG, if pdispIn is invalid,
1040 * DISP_E_OVERFLOW, if the value will not fit in the destination,
1041 * DISP_E_TYPEMISMATCH, if the type cannot be converted
1042 */
1043 HRESULT WINAPI VarI2FromDisp(IDispatch* pdispIn, LCID lcid, SHORT* psOut)
1044 {
1045 return VARIANT_FromDisp(pdispIn, lcid, psOut, VT_I2, 0);
1046 }
1047
1048 /************************************************************************
1049 * VarI2FromBool (OLEAUT32.56)
1050 *
1051 * Convert a VT_BOOL to a VT_I2.
1052 *
1053 * PARAMS
1054 * boolIn [I] Source
1055 * psOut [O] Destination
1056 *
1057 * RETURNS
1058 * S_OK.
1059 */
1060 HRESULT WINAPI VarI2FromBool(VARIANT_BOOL boolIn, SHORT* psOut)
1061 {
1062 return _VarI2FromBool(boolIn, psOut);
1063 }
1064
1065 /************************************************************************
1066 * VarI2FromI1 (OLEAUT32.205)
1067 *
1068 * Convert a VT_I1 to a VT_I2.
1069 *
1070 * PARAMS
1071 * cIn [I] Source
1072 * psOut [O] Destination
1073 *
1074 * RETURNS
1075 * S_OK.
1076 */
1077 HRESULT WINAPI VarI2FromI1(signed char cIn, SHORT* psOut)
1078 {
1079 return _VarI2FromI1(cIn, psOut);
1080 }
1081
1082 /************************************************************************
1083 * VarI2FromUI2 (OLEAUT32.206)
1084 *
1085 * Convert a VT_UI2 to a VT_I2.
1086 *
1087 * PARAMS
1088 * usIn [I] Source
1089 * psOut [O] Destination
1090 *
1091 * RETURNS
1092 * Success: S_OK.
1093 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1094 */
1095 HRESULT WINAPI VarI2FromUI2(USHORT usIn, SHORT* psOut)
1096 {
1097 return _VarI2FromUI2(usIn, psOut);
1098 }
1099
1100 /************************************************************************
1101 * VarI2FromUI4 (OLEAUT32.207)
1102 *
1103 * Convert a VT_UI4 to a VT_I2.
1104 *
1105 * PARAMS
1106 * ulIn [I] Source
1107 * psOut [O] Destination
1108 *
1109 * RETURNS
1110 * Success: S_OK.
1111 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1112 */
1113 HRESULT WINAPI VarI2FromUI4(ULONG ulIn, SHORT* psOut)
1114 {
1115 return _VarI2FromUI4(ulIn, psOut);
1116 }
1117
1118 /************************************************************************
1119 * VarI2FromDec (OLEAUT32.208)
1120 *
1121 * Convert a VT_DECIMAL to a VT_I2.
1122 *
1123 * PARAMS
1124 * pDecIn [I] Source
1125 * psOut [O] Destination
1126 *
1127 * RETURNS
1128 * Success: S_OK.
1129 * Failure: E_INVALIDARG, if the source value is invalid
1130 * DISP_E_OVERFLOW, if the value will not fit in the destination
1131 */
1132 HRESULT WINAPI VarI2FromDec(DECIMAL *pdecIn, SHORT* psOut)
1133 {
1134 LONG64 i64;
1135 HRESULT hRet;
1136
1137 hRet = VarI8FromDec(pdecIn, &i64);
1138
1139 if (SUCCEEDED(hRet))
1140 hRet = _VarI2FromI8(i64, psOut);
1141 return hRet;
1142 }
1143
1144 /************************************************************************
1145 * VarI2FromI8 (OLEAUT32.346)
1146 *
1147 * Convert a VT_I8 to a VT_I2.
1148 *
1149 * PARAMS
1150 * llIn [I] Source
1151 * psOut [O] Destination
1152 *
1153 * RETURNS
1154 * Success: S_OK.
1155 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1156 */
1157 HRESULT WINAPI VarI2FromI8(LONG64 llIn, SHORT* psOut)
1158 {
1159 return _VarI2FromI8(llIn, psOut);
1160 }
1161
1162 /************************************************************************
1163 * VarI2FromUI8 (OLEAUT32.347)
1164 *
1165 * Convert a VT_UI8 to a VT_I2.
1166 *
1167 * PARAMS
1168 * ullIn [I] Source
1169 * psOut [O] Destination
1170 *
1171 * RETURNS
1172 * Success: S_OK.
1173 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1174 */
1175 HRESULT WINAPI VarI2FromUI8(ULONG64 ullIn, SHORT* psOut)
1176 {
1177 return _VarI2FromUI8(ullIn, psOut);
1178 }
1179
1180 /* UI2
1181 */
1182
1183 /************************************************************************
1184 * VarUI2FromUI1 (OLEAUT32.257)
1185 *
1186 * Convert a VT_UI1 to a VT_UI2.
1187 *
1188 * PARAMS
1189 * bIn [I] Source
1190 * pusOut [O] Destination
1191 *
1192 * RETURNS
1193 * S_OK.
1194 */
1195 HRESULT WINAPI VarUI2FromUI1(BYTE bIn, USHORT* pusOut)
1196 {
1197 return _VarUI2FromUI1(bIn, pusOut);
1198 }
1199
1200 /************************************************************************
1201 * VarUI2FromI2 (OLEAUT32.258)
1202 *
1203 * Convert a VT_I2 to a VT_UI2.
1204 *
1205 * PARAMS
1206 * sIn [I] Source
1207 * pusOut [O] Destination
1208 *
1209 * RETURNS
1210 * Success: S_OK.
1211 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1212 */
1213 HRESULT WINAPI VarUI2FromI2(SHORT sIn, USHORT* pusOut)
1214 {
1215 return _VarUI2FromI2(sIn, pusOut);
1216 }
1217
1218 /************************************************************************
1219 * VarUI2FromI4 (OLEAUT32.259)
1220 *
1221 * Convert a VT_I4 to a VT_UI2.
1222 *
1223 * PARAMS
1224 * iIn [I] Source
1225 * pusOut [O] Destination
1226 *
1227 * RETURNS
1228 * Success: S_OK.
1229 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1230 */
1231 HRESULT WINAPI VarUI2FromI4(LONG iIn, USHORT* pusOut)
1232 {
1233 return _VarUI2FromI4(iIn, pusOut);
1234 }
1235
1236 /************************************************************************
1237 * VarUI2FromR4 (OLEAUT32.260)
1238 *
1239 * Convert a VT_R4 to a VT_UI2.
1240 *
1241 * PARAMS
1242 * fltIn [I] Source
1243 * pusOut [O] Destination
1244 *
1245 * RETURNS
1246 * Success: S_OK.
1247 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1248 */
1249 HRESULT WINAPI VarUI2FromR4(FLOAT fltIn, USHORT* pusOut)
1250 {
1251 return VarUI2FromR8(fltIn, pusOut);
1252 }
1253
1254 /************************************************************************
1255 * VarUI2FromR8 (OLEAUT32.261)
1256 *
1257 * Convert a VT_R8 to a VT_UI2.
1258 *
1259 * PARAMS
1260 * dblIn [I] Source
1261 * pusOut [O] Destination
1262 *
1263 * RETURNS
1264 * Success: S_OK.
1265 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1266 *
1267 * NOTES
1268 * See VarI8FromR8() for details concerning rounding.
1269 */
1270 HRESULT WINAPI VarUI2FromR8(double dblIn, USHORT* pusOut)
1271 {
1272 if (dblIn < -0.5 || dblIn > (double)UI2_MAX)
1273 return DISP_E_OVERFLOW;
1274 VARIANT_DutchRound(USHORT, dblIn, *pusOut);
1275 return S_OK;
1276 }
1277
1278 /************************************************************************
1279 * VarUI2FromDate (OLEAUT32.262)
1280 *
1281 * Convert a VT_DATE to a VT_UI2.
1282 *
1283 * PARAMS
1284 * dateIn [I] Source
1285 * pusOut [O] Destination
1286 *
1287 * RETURNS
1288 * Success: S_OK.
1289 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1290 */
1291 HRESULT WINAPI VarUI2FromDate(DATE dateIn, USHORT* pusOut)
1292 {
1293 return VarUI2FromR8(dateIn, pusOut);
1294 }
1295
1296 /************************************************************************
1297 * VarUI2FromCy (OLEAUT32.263)
1298 *
1299 * Convert a VT_CY to a VT_UI2.
1300 *
1301 * PARAMS
1302 * cyIn [I] Source
1303 * pusOut [O] Destination
1304 *
1305 * RETURNS
1306 * Success: S_OK.
1307 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1308 *
1309 * NOTES
1310 * Negative values >= -5000 will be converted to 0.
1311 */
1312 HRESULT WINAPI VarUI2FromCy(CY cyIn, USHORT* pusOut)
1313 {
1314 ULONG i = UI2_MAX + 1;
1315
1316 VarUI4FromCy(cyIn, &i);
1317 return _VarUI2FromUI4(i, pusOut);
1318 }
1319
1320 /************************************************************************
1321 * VarUI2FromStr (OLEAUT32.264)
1322 *
1323 * Convert a VT_BSTR to a VT_UI2.
1324 *
1325 * PARAMS
1326 * strIn [I] Source
1327 * lcid [I] LCID for the conversion
1328 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
1329 * pusOut [O] Destination
1330 *
1331 * RETURNS
1332 * Success: S_OK.
1333 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1334 * DISP_E_TYPEMISMATCH, if the type cannot be converted
1335 */
1336 HRESULT WINAPI VarUI2FromStr(OLECHAR* strIn, LCID lcid, ULONG dwFlags, USHORT* pusOut)
1337 {
1338 return VARIANT_NumberFromBstr(strIn, lcid, dwFlags, pusOut, VT_UI2);
1339 }
1340
1341 /************************************************************************
1342 * VarUI2FromDisp (OLEAUT32.265)
1343 *
1344 * Convert a VT_DISPATCH to a VT_UI2.
1345 *
1346 * PARAMS
1347 * pdispIn [I] Source
1348 * lcid [I] LCID for conversion
1349 * pusOut [O] Destination
1350 *
1351 * RETURNS
1352 * Success: S_OK.
1353 * Failure: E_INVALIDARG, if the source value is invalid
1354 * DISP_E_OVERFLOW, if the value will not fit in the destination
1355 * DISP_E_TYPEMISMATCH, if the type cannot be converted
1356 */
1357 HRESULT WINAPI VarUI2FromDisp(IDispatch* pdispIn, LCID lcid, USHORT* pusOut)
1358 {
1359 return VARIANT_FromDisp(pdispIn, lcid, pusOut, VT_UI2, 0);
1360 }
1361
1362 /************************************************************************
1363 * VarUI2FromBool (OLEAUT32.266)
1364 *
1365 * Convert a VT_BOOL to a VT_UI2.
1366 *
1367 * PARAMS
1368 * boolIn [I] Source
1369 * pusOut [O] Destination
1370 *
1371 * RETURNS
1372 * S_OK.
1373 */
1374 HRESULT WINAPI VarUI2FromBool(VARIANT_BOOL boolIn, USHORT* pusOut)
1375 {
1376 return _VarUI2FromBool(boolIn, pusOut);
1377 }
1378
1379 /************************************************************************
1380 * VarUI2FromI1 (OLEAUT32.267)
1381 *
1382 * Convert a VT_I1 to a VT_UI2.
1383 *
1384 * PARAMS
1385 * cIn [I] Source
1386 * pusOut [O] Destination
1387 *
1388 * RETURNS
1389 * Success: S_OK.
1390 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1391 */
1392 HRESULT WINAPI VarUI2FromI1(signed char cIn, USHORT* pusOut)
1393 {
1394 return _VarUI2FromI1(cIn, pusOut);
1395 }
1396
1397 /************************************************************************
1398 * VarUI2FromUI4 (OLEAUT32.268)
1399 *
1400 * Convert a VT_UI4 to a VT_UI2.
1401 *
1402 * PARAMS
1403 * ulIn [I] Source
1404 * pusOut [O] Destination
1405 *
1406 * RETURNS
1407 * Success: S_OK.
1408 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1409 */
1410 HRESULT WINAPI VarUI2FromUI4(ULONG ulIn, USHORT* pusOut)
1411 {
1412 return _VarUI2FromUI4(ulIn, pusOut);
1413 }
1414
1415 /************************************************************************
1416 * VarUI2FromDec (OLEAUT32.269)
1417 *
1418 * Convert a VT_DECIMAL to a VT_UI2.
1419 *
1420 * PARAMS
1421 * pDecIn [I] Source
1422 * pusOut [O] Destination
1423 *
1424 * RETURNS
1425 * Success: S_OK.
1426 * Failure: E_INVALIDARG, if the source value is invalid
1427 * DISP_E_OVERFLOW, if the value will not fit in the destination
1428 */
1429 HRESULT WINAPI VarUI2FromDec(DECIMAL *pdecIn, USHORT* pusOut)
1430 {
1431 LONG64 i64;
1432 HRESULT hRet;
1433
1434 hRet = VarI8FromDec(pdecIn, &i64);
1435
1436 if (SUCCEEDED(hRet))
1437 hRet = _VarUI2FromI8(i64, pusOut);
1438 return hRet;
1439 }
1440
1441 /************************************************************************
1442 * VarUI2FromI8 (OLEAUT32.378)
1443 *
1444 * Convert a VT_I8 to a VT_UI2.
1445 *
1446 * PARAMS
1447 * llIn [I] Source
1448 * pusOut [O] Destination
1449 *
1450 * RETURNS
1451 * Success: S_OK.
1452 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1453 */
1454 HRESULT WINAPI VarUI2FromI8(LONG64 llIn, USHORT* pusOut)
1455 {
1456 return _VarUI2FromI8(llIn, pusOut);
1457 }
1458
1459 /************************************************************************
1460 * VarUI2FromUI8 (OLEAUT32.379)
1461 *
1462 * Convert a VT_UI8 to a VT_UI2.
1463 *
1464 * PARAMS
1465 * ullIn [I] Source
1466 * pusOut [O] Destination
1467 *
1468 * RETURNS
1469 * Success: S_OK.
1470 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1471 */
1472 HRESULT WINAPI VarUI2FromUI8(ULONG64 ullIn, USHORT* pusOut)
1473 {
1474 return _VarUI2FromUI8(ullIn, pusOut);
1475 }
1476
1477 /* I4
1478 */
1479
1480 /************************************************************************
1481 * VarI4FromUI1 (OLEAUT32.58)
1482 *
1483 * Convert a VT_UI1 to a VT_I4.
1484 *
1485 * PARAMS
1486 * bIn [I] Source
1487 * piOut [O] Destination
1488 *
1489 * RETURNS
1490 * S_OK.
1491 */
1492 HRESULT WINAPI VarI4FromUI1(BYTE bIn, LONG *piOut)
1493 {
1494 return _VarI4FromUI1(bIn, piOut);
1495 }
1496
1497 /************************************************************************
1498 * VarI4FromI2 (OLEAUT32.59)
1499 *
1500 * Convert a VT_I2 to a VT_I4.
1501 *
1502 * PARAMS
1503 * sIn [I] Source
1504 * piOut [O] Destination
1505 *
1506 * RETURNS
1507 * Success: S_OK.
1508 * Failure: E_INVALIDARG, if the source value is invalid
1509 * DISP_E_OVERFLOW, if the value will not fit in the destination
1510 */
1511 HRESULT WINAPI VarI4FromI2(SHORT sIn, LONG *piOut)
1512 {
1513 return _VarI4FromI2(sIn, piOut);
1514 }
1515
1516 /************************************************************************
1517 * VarI4FromR4 (OLEAUT32.60)
1518 *
1519 * Convert a VT_R4 to a VT_I4.
1520 *
1521 * PARAMS
1522 * fltIn [I] Source
1523 * piOut [O] Destination
1524 *
1525 * RETURNS
1526 * Success: S_OK.
1527 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1528 */
1529 HRESULT WINAPI VarI4FromR4(FLOAT fltIn, LONG *piOut)
1530 {
1531 return VarI4FromR8(fltIn, piOut);
1532 }
1533
1534 /************************************************************************
1535 * VarI4FromR8 (OLEAUT32.61)
1536 *
1537 * Convert a VT_R8 to a VT_I4.
1538 *
1539 * PARAMS
1540 * dblIn [I] Source
1541 * piOut [O] Destination
1542 *
1543 * RETURNS
1544 * Success: S_OK.
1545 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1546 *
1547 * NOTES
1548 * See VarI8FromR8() for details concerning rounding.
1549 */
1550 HRESULT WINAPI VarI4FromR8(double dblIn, LONG *piOut)
1551 {
1552 if (dblIn < (double)I4_MIN || dblIn > (double)I4_MAX)
1553 return DISP_E_OVERFLOW;
1554 VARIANT_DutchRound(LONG, dblIn, *piOut);
1555 return S_OK;
1556 }
1557
1558 /************************************************************************
1559 * VarI4FromCy (OLEAUT32.62)
1560 *
1561 * Convert a VT_CY to a VT_I4.
1562 *
1563 * PARAMS
1564 * cyIn [I] Source
1565 * piOut [O] Destination
1566 *
1567 * RETURNS
1568 * Success: S_OK.
1569 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1570 */
1571 HRESULT WINAPI VarI4FromCy(CY cyIn, LONG *piOut)
1572 {
1573 double d = cyIn.int64 / CY_MULTIPLIER_F;
1574 return VarI4FromR8(d, piOut);
1575 }
1576
1577 /************************************************************************
1578 * VarI4FromDate (OLEAUT32.63)
1579 *
1580 * Convert a VT_DATE to a VT_I4.
1581 *
1582 * PARAMS
1583 * dateIn [I] Source
1584 * piOut [O] Destination
1585 *
1586 * RETURNS
1587 * Success: S_OK.
1588 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1589 */
1590 HRESULT WINAPI VarI4FromDate(DATE dateIn, LONG *piOut)
1591 {
1592 return VarI4FromR8(dateIn, piOut);
1593 }
1594
1595 /************************************************************************
1596 * VarI4FromStr (OLEAUT32.64)
1597 *
1598 * Convert a VT_BSTR to a VT_I4.
1599 *
1600 * PARAMS
1601 * strIn [I] Source
1602 * lcid [I] LCID for the conversion
1603 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
1604 * piOut [O] Destination
1605 *
1606 * RETURNS
1607 * Success: S_OK.
1608 * Failure: E_INVALIDARG, if any parameter is invalid
1609 * DISP_E_OVERFLOW, if the value will not fit in the destination
1610 * DISP_E_TYPEMISMATCH, if strIn cannot be converted
1611 */
1612 HRESULT WINAPI VarI4FromStr(OLECHAR* strIn, LCID lcid, ULONG dwFlags, LONG *piOut)
1613 {
1614 return VARIANT_NumberFromBstr(strIn, lcid, dwFlags, piOut, VT_I4);
1615 }
1616
1617 /************************************************************************
1618 * VarI4FromDisp (OLEAUT32.65)
1619 *
1620 * Convert a VT_DISPATCH to a VT_I4.
1621 *
1622 * PARAMS
1623 * pdispIn [I] Source
1624 * lcid [I] LCID for conversion
1625 * piOut [O] Destination
1626 *
1627 * RETURNS
1628 * Success: S_OK.
1629 * Failure: E_INVALIDARG, if the source value is invalid
1630 * DISP_E_OVERFLOW, if the value will not fit in the destination
1631 * DISP_E_TYPEMISMATCH, if the type cannot be converted
1632 */
1633 HRESULT WINAPI VarI4FromDisp(IDispatch* pdispIn, LCID lcid, LONG *piOut)
1634 {
1635 return VARIANT_FromDisp(pdispIn, lcid, piOut, VT_I4, 0);
1636 }
1637
1638 /************************************************************************
1639 * VarI4FromBool (OLEAUT32.66)
1640 *
1641 * Convert a VT_BOOL to a VT_I4.
1642 *
1643 * PARAMS
1644 * boolIn [I] Source
1645 * piOut [O] Destination
1646 *
1647 * RETURNS
1648 * S_OK.
1649 */
1650 HRESULT WINAPI VarI4FromBool(VARIANT_BOOL boolIn, LONG *piOut)
1651 {
1652 return _VarI4FromBool(boolIn, piOut);
1653 }
1654
1655 /************************************************************************
1656 * VarI4FromI1 (OLEAUT32.209)
1657 *
1658 * Convert a VT_I1 to a VT_I4.
1659 *
1660 * PARAMS
1661 * cIn [I] Source
1662 * piOut [O] Destination
1663 *
1664 * RETURNS
1665 * S_OK.
1666 */
1667 HRESULT WINAPI VarI4FromI1(signed char cIn, LONG *piOut)
1668 {
1669 return _VarI4FromI1(cIn, piOut);
1670 }
1671
1672 /************************************************************************
1673 * VarI4FromUI2 (OLEAUT32.210)
1674 *
1675 * Convert a VT_UI2 to a VT_I4.
1676 *
1677 * PARAMS
1678 * usIn [I] Source
1679 * piOut [O] Destination
1680 *
1681 * RETURNS
1682 * S_OK.
1683 */
1684 HRESULT WINAPI VarI4FromUI2(USHORT usIn, LONG *piOut)
1685 {
1686 return _VarI4FromUI2(usIn, piOut);
1687 }
1688
1689 /************************************************************************
1690 * VarI4FromUI4 (OLEAUT32.211)
1691 *
1692 * Convert a VT_UI4 to a VT_I4.
1693 *
1694 * PARAMS
1695 * ulIn [I] Source
1696 * piOut [O] Destination
1697 *
1698 * RETURNS
1699 * Success: S_OK.
1700 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1701 */
1702 HRESULT WINAPI VarI4FromUI4(ULONG ulIn, LONG *piOut)
1703 {
1704 return _VarI4FromUI4(ulIn, piOut);
1705 }
1706
1707 /************************************************************************
1708 * VarI4FromDec (OLEAUT32.212)
1709 *
1710 * Convert a VT_DECIMAL to a VT_I4.
1711 *
1712 * PARAMS
1713 * pDecIn [I] Source
1714 * piOut [O] Destination
1715 *
1716 * RETURNS
1717 * Success: S_OK.
1718 * Failure: E_INVALIDARG, if pdecIn is invalid
1719 * DISP_E_OVERFLOW, if the value will not fit in the destination
1720 */
1721 HRESULT WINAPI VarI4FromDec(DECIMAL *pdecIn, LONG *piOut)
1722 {
1723 LONG64 i64;
1724 HRESULT hRet;
1725
1726 hRet = VarI8FromDec(pdecIn, &i64);
1727
1728 if (SUCCEEDED(hRet))
1729 hRet = _VarI4FromI8(i64, piOut);
1730 return hRet;
1731 }
1732
1733 /************************************************************************
1734 * VarI4FromI8 (OLEAUT32.348)
1735 *
1736 * Convert a VT_I8 to a VT_I4.
1737 *
1738 * PARAMS
1739 * llIn [I] Source
1740 * piOut [O] Destination
1741 *
1742 * RETURNS
1743 * Success: S_OK.
1744 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1745 */
1746 HRESULT WINAPI VarI4FromI8(LONG64 llIn, LONG *piOut)
1747 {
1748 return _VarI4FromI8(llIn, piOut);
1749 }
1750
1751 /************************************************************************
1752 * VarI4FromUI8 (OLEAUT32.349)
1753 *
1754 * Convert a VT_UI8 to a VT_I4.
1755 *
1756 * PARAMS
1757 * ullIn [I] Source
1758 * piOut [O] Destination
1759 *
1760 * RETURNS
1761 * Success: S_OK.
1762 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1763 */
1764 HRESULT WINAPI VarI4FromUI8(ULONG64 ullIn, LONG *piOut)
1765 {
1766 return _VarI4FromUI8(ullIn, piOut);
1767 }
1768
1769 /* UI4
1770 */
1771
1772 /************************************************************************
1773 * VarUI4FromUI1 (OLEAUT32.270)
1774 *
1775 * Convert a VT_UI1 to a VT_UI4.
1776 *
1777 * PARAMS
1778 * bIn [I] Source
1779 * pulOut [O] Destination
1780 *
1781 * RETURNS
1782 * S_OK.
1783 */
1784 HRESULT WINAPI VarUI4FromUI1(BYTE bIn, ULONG *pulOut)
1785 {
1786 return _VarUI4FromUI1(bIn, pulOut);
1787 }
1788
1789 /************************************************************************
1790 * VarUI4FromI2 (OLEAUT32.271)
1791 *
1792 * Convert a VT_I2 to a VT_UI4.
1793 *
1794 * PARAMS
1795 * sIn [I] Source
1796 * pulOut [O] Destination
1797 *
1798 * RETURNS
1799 * Success: S_OK.
1800 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1801 */
1802 HRESULT WINAPI VarUI4FromI2(SHORT sIn, ULONG *pulOut)
1803 {
1804 return _VarUI4FromI2(sIn, pulOut);
1805 }
1806
1807 /************************************************************************
1808 * VarUI4FromI4 (OLEAUT32.272)
1809 *
1810 * Convert a VT_I4 to a VT_UI4.
1811 *
1812 * PARAMS
1813 * iIn [I] Source
1814 * pulOut [O] Destination
1815 *
1816 * RETURNS
1817 * Success: S_OK.
1818 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1819 */
1820 HRESULT WINAPI VarUI4FromI4(LONG iIn, ULONG *pulOut)
1821 {
1822 return _VarUI4FromI4(iIn, pulOut);
1823 }
1824
1825 /************************************************************************
1826 * VarUI4FromR4 (OLEAUT32.273)
1827 *
1828 * Convert a VT_R4 to a VT_UI4.
1829 *
1830 * PARAMS
1831 * fltIn [I] Source
1832 * pulOut [O] Destination
1833 *
1834 * RETURNS
1835 * Success: S_OK.
1836 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1837 */
1838 HRESULT WINAPI VarUI4FromR4(FLOAT fltIn, ULONG *pulOut)
1839 {
1840 return VarUI4FromR8(fltIn, pulOut);
1841 }
1842
1843 /************************************************************************
1844 * VarUI4FromR8 (OLEAUT32.274)
1845 *
1846 * Convert a VT_R8 to a VT_UI4.
1847 *
1848 * PARAMS
1849 * dblIn [I] Source
1850 * pulOut [O] Destination
1851 *
1852 * RETURNS
1853 * Success: S_OK.
1854 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1855 *
1856 * NOTES
1857 * See VarI8FromR8() for details concerning rounding.
1858 */
1859 HRESULT WINAPI VarUI4FromR8(double dblIn, ULONG *pulOut)
1860 {
1861 if (dblIn < -0.5 || dblIn > (double)UI4_MAX)
1862 return DISP_E_OVERFLOW;
1863 VARIANT_DutchRound(ULONG, dblIn, *pulOut);
1864 return S_OK;
1865 }
1866
1867 /************************************************************************
1868 * VarUI4FromDate (OLEAUT32.275)
1869 *
1870 * Convert a VT_DATE to a VT_UI4.
1871 *
1872 * PARAMS
1873 * dateIn [I] Source
1874 * pulOut [O] Destination
1875 *
1876 * RETURNS
1877 * Success: S_OK.
1878 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1879 */
1880 HRESULT WINAPI VarUI4FromDate(DATE dateIn, ULONG *pulOut)
1881 {
1882 return VarUI4FromR8(dateIn, pulOut);
1883 }
1884
1885 /************************************************************************
1886 * VarUI4FromCy (OLEAUT32.276)
1887 *
1888 * Convert a VT_CY to a VT_UI4.
1889 *
1890 * PARAMS
1891 * cyIn [I] Source
1892 * pulOut [O] Destination
1893 *
1894 * RETURNS
1895 * Success: S_OK.
1896 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1897 */
1898 HRESULT WINAPI VarUI4FromCy(CY cyIn, ULONG *pulOut)
1899 {
1900 double d = cyIn.int64 / CY_MULTIPLIER_F;
1901 return VarUI4FromR8(d, pulOut);
1902 }
1903
1904 /************************************************************************
1905 * VarUI4FromStr (OLEAUT32.277)
1906 *
1907 * Convert a VT_BSTR to a VT_UI4.
1908 *
1909 * PARAMS
1910 * strIn [I] Source
1911 * lcid [I] LCID for the conversion
1912 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
1913 * pulOut [O] Destination
1914 *
1915 * RETURNS
1916 * Success: S_OK.
1917 * Failure: E_INVALIDARG, if any parameter is invalid
1918 * DISP_E_OVERFLOW, if the value will not fit in the destination
1919 * DISP_E_TYPEMISMATCH, if strIn cannot be converted
1920 */
1921 HRESULT WINAPI VarUI4FromStr(OLECHAR* strIn, LCID lcid, ULONG dwFlags, ULONG *pulOut)
1922 {
1923 return VARIANT_NumberFromBstr(strIn, lcid, dwFlags, pulOut, VT_UI4);
1924 }
1925
1926 /************************************************************************
1927 * VarUI4FromDisp (OLEAUT32.278)
1928 *
1929 * Convert a VT_DISPATCH to a VT_UI4.
1930 *
1931 * PARAMS
1932 * pdispIn [I] Source
1933 * lcid [I] LCID for conversion
1934 * pulOut [O] Destination
1935 *
1936 * RETURNS
1937 * Success: S_OK.
1938 * Failure: E_INVALIDARG, if the source value is invalid
1939 * DISP_E_OVERFLOW, if the value will not fit in the destination
1940 * DISP_E_TYPEMISMATCH, if the type cannot be converted
1941 */
1942 HRESULT WINAPI VarUI4FromDisp(IDispatch* pdispIn, LCID lcid, ULONG *pulOut)
1943 {
1944 return VARIANT_FromDisp(pdispIn, lcid, pulOut, VT_UI4, 0);
1945 }
1946
1947 /************************************************************************
1948 * VarUI4FromBool (OLEAUT32.279)
1949 *
1950 * Convert a VT_BOOL to a VT_UI4.
1951 *
1952 * PARAMS
1953 * boolIn [I] Source
1954 * pulOut [O] Destination
1955 *
1956 * RETURNS
1957 * S_OK.
1958 */
1959 HRESULT WINAPI VarUI4FromBool(VARIANT_BOOL boolIn, ULONG *pulOut)
1960 {
1961 return _VarUI4FromBool(boolIn, pulOut);
1962 }
1963
1964 /************************************************************************
1965 * VarUI4FromI1 (OLEAUT32.280)
1966 *
1967 * Convert a VT_I1 to a VT_UI4.
1968 *
1969 * PARAMS
1970 * cIn [I] Source
1971 * pulOut [O] Destination
1972 *
1973 * RETURNS
1974 * Success: S_OK.
1975 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1976 */
1977 HRESULT WINAPI VarUI4FromI1(signed char cIn, ULONG *pulOut)
1978 {
1979 return _VarUI4FromI1(cIn, pulOut);
1980 }
1981
1982 /************************************************************************
1983 * VarUI4FromUI2 (OLEAUT32.281)
1984 *
1985 * Convert a VT_UI2 to a VT_UI4.
1986 *
1987 * PARAMS
1988 * usIn [I] Source
1989 * pulOut [O] Destination
1990 *
1991 * RETURNS
1992 * S_OK.
1993 */
1994 HRESULT WINAPI VarUI4FromUI2(USHORT usIn, ULONG *pulOut)
1995 {
1996 return _VarUI4FromUI2(usIn, pulOut);
1997 }
1998
1999 /************************************************************************
2000 * VarUI4FromDec (OLEAUT32.282)
2001 *
2002 * Convert a VT_DECIMAL to a VT_UI4.
2003 *
2004 * PARAMS
2005 * pDecIn [I] Source
2006 * pulOut [O] Destination
2007 *
2008 * RETURNS
2009 * Success: S_OK.
2010 * Failure: E_INVALIDARG, if pdecIn is invalid
2011 * DISP_E_OVERFLOW, if the value will not fit in the destination
2012 */
2013 HRESULT WINAPI VarUI4FromDec(DECIMAL *pdecIn, ULONG *pulOut)
2014 {
2015 LONG64 i64;
2016 HRESULT hRet;
2017
2018 hRet = VarI8FromDec(pdecIn, &i64);
2019
2020 if (SUCCEEDED(hRet))
2021 hRet = _VarUI4FromI8(i64, pulOut);
2022 return hRet;
2023 }
2024
2025 /************************************************************************
2026 * VarUI4FromI8 (OLEAUT32.425)
2027 *
2028 * Convert a VT_I8 to a VT_UI4.
2029 *
2030 * PARAMS
2031 * llIn [I] Source
2032 * pulOut [O] Destination
2033 *
2034 * RETURNS
2035 * Success: S_OK.
2036 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
2037 */
2038 HRESULT WINAPI VarUI4FromI8(LONG64 llIn, ULONG *pulOut)
2039 {
2040 return _VarUI4FromI8(llIn, pulOut);
2041 }
2042
2043 /************************************************************************
2044 * VarUI4FromUI8 (OLEAUT32.426)
2045 *
2046 * Convert a VT_UI8 to a VT_UI4.
2047 *
2048 * PARAMS
2049 * ullIn [I] Source
2050 * pulOut [O] Destination
2051 *
2052 * RETURNS
2053 * Success: S_OK.
2054 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
2055 */
2056 HRESULT WINAPI VarUI4FromUI8(ULONG64 ullIn, ULONG *pulOut)
2057 {
2058 return _VarUI4FromUI8(ullIn, pulOut);
2059 }
2060
2061 /* I8
2062 */
2063
2064 /************************************************************************
2065 * VarI8FromUI1 (OLEAUT32.333)
2066 *
2067 * Convert a VT_UI1 to a VT_I8.
2068 *
2069 * PARAMS
2070 * bIn [I] Source
2071 * pi64Out [O] Destination
2072 *
2073 * RETURNS
2074 * S_OK.
2075 */
2076 HRESULT WINAPI VarI8FromUI1(BYTE bIn, LONG64* pi64Out)
2077 {
2078 return _VarI8FromUI1(bIn, pi64Out);
2079 }
2080
2081
2082 /************************************************************************
2083 * VarI8FromI2 (OLEAUT32.334)
2084 *
2085 * Convert a VT_I2 to a VT_I8.
2086 *
2087 * PARAMS
2088 * sIn [I] Source
2089 * pi64Out [O] Destination
2090 *
2091 * RETURNS
2092 * S_OK.
2093 */
2094 HRESULT WINAPI VarI8FromI2(SHORT sIn, LONG64* pi64Out)
2095 {
2096 return _VarI8FromI2(sIn, pi64Out);
2097 }
2098
2099 /************************************************************************
2100 * VarI8FromR4 (OLEAUT32.335)
2101 *
2102 * Convert a VT_R4 to a VT_I8.
2103 *
2104 * PARAMS
2105 * fltIn [I] Source
2106 * pi64Out [O] Destination
2107 *
2108 * RETURNS
2109 * Success: S_OK.
2110 * Failure: E_INVALIDARG, if the source value is invalid
2111 * DISP_E_OVERFLOW, if the value will not fit in the destination
2112 */
2113 HRESULT WINAPI VarI8FromR4(FLOAT fltIn, LONG64* pi64Out)
2114 {
2115 return VarI8FromR8(fltIn, pi64Out);
2116 }
2117
2118 /************************************************************************
2119 * VarI8FromR8 (OLEAUT32.336)
2120 *
2121 * Convert a VT_R8 to a VT_I8.
2122 *
2123 * PARAMS
2124 * dblIn [I] Source
2125 * pi64Out [O] Destination
2126 *
2127 * RETURNS
2128 * Success: S_OK.
2129 * Failure: E_INVALIDARG, if the source value is invalid
2130 * DISP_E_OVERFLOW, if the value will not fit in the destination
2131 *
2132 * NOTES
2133 * Only values that fit into 63 bits are accepted. Due to rounding issues,
2134 * very high or low values will not be accurately converted.
2135 *
2136 * Numbers are rounded using Dutch rounding, as follows:
2137 *
2138 *| Fractional Part Sign Direction Example
2139 *| --------------- ---- --------- -------
2140 *| < 0.5 + Down 0.4 -> 0.0
2141 *| < 0.5 - Up -0.4 -> 0.0
2142 *| > 0.5 + Up 0.6 -> 1.0
2143 *| < 0.5 - Up -0.6 -> -1.0
2144 *| = 0.5 + Up/Down Down if even, Up if odd
2145 *| = 0.5 - Up/Down Up if even, Down if odd
2146 *
2147 * This system is often used in supermarkets.
2148 */
2149 HRESULT WINAPI VarI8FromR8(double dblIn, LONG64* pi64Out)
2150 {
2151 if ( dblIn < -4611686018427387904.0 || dblIn >= 4611686018427387904.0)
2152 return DISP_E_OVERFLOW;
2153 VARIANT_DutchRound(LONG64, dblIn, *pi64Out);
2154 return S_OK;
2155 }
2156
2157 /************************************************************************
2158 * VarI8FromCy (OLEAUT32.337)
2159 *
2160 * Convert a VT_CY to a VT_I8.
2161 *
2162 * PARAMS
2163 * cyIn [I] Source
2164 * pi64Out [O] Destination
2165 *
2166 * RETURNS
2167 * S_OK.
2168 *
2169 * NOTES
2170 * All negative numbers are rounded down by 1, including those that are
2171 * evenly divisible by 10000 (this is a Win32 bug that Wine mimics).
2172 * Positive numbers are rounded using Dutch rounding: See VarI8FromR8()
2173 * for details.
2174 */
2175 HRESULT WINAPI VarI8FromCy(CY cyIn, LONG64* pi64Out)
2176 {
2177 *pi64Out = cyIn.int64 / CY_MULTIPLIER;
2178
2179 if (cyIn.int64 < 0)
2180 (*pi64Out)--; /* Mimic Win32 bug */
2181 else
2182 {
2183 cyIn.int64 -= *pi64Out * CY_MULTIPLIER; /* cyIn.s.Lo now holds fractional remainder */
2184
2185 if (cyIn.s.Lo > CY_HALF || (cyIn.s.Lo == CY_HALF && (*pi64Out & 0x1)))
2186 (*pi64Out)++;
2187 }
2188 return S_OK;
2189 }
2190
2191 /************************************************************************
2192 * VarI8FromDate (OLEAUT32.338)
2193 *
2194 * Convert a VT_DATE to a VT_I8.
2195 *
2196 * PARAMS
2197 * dateIn [I] Source
2198 * pi64Out [O] Destination
2199 *
2200 * RETURNS
2201 * Success: S_OK.
2202 * Failure: E_INVALIDARG, if the source value is invalid
2203 * DISP_E_OVERFLOW, if the value will not fit in the destination
2204 * DISP_E_TYPEMISMATCH, if the type cannot be converted
2205 */
2206 HRESULT WINAPI VarI8FromDate(DATE dateIn, LONG64* pi64Out)
2207 {
2208 return VarI8FromR8(dateIn, pi64Out);
2209 }
2210
2211 /************************************************************************
2212 * VarI8FromStr (OLEAUT32.339)
2213 *
2214 * Convert a VT_BSTR to a VT_I8.
2215 *
2216 * PARAMS
2217 * strIn [I] Source
2218 * lcid [I] LCID for the conversion
2219 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
2220 * pi64Out [O] Destination
2221 *
2222 * RETURNS
2223 * Success: S_OK.
2224 * Failure: E_INVALIDARG, if the source value is invalid
2225 * DISP_E_OVERFLOW, if the value will not fit in the destination
2226 * DISP_E_TYPEMISMATCH, if the type cannot be converted
2227 */
2228 HRESULT WINAPI VarI8FromStr(OLECHAR* strIn, LCID lcid, ULONG dwFlags, LONG64* pi64Out)
2229 {
2230 return VARIANT_NumberFromBstr(strIn, lcid, dwFlags, pi64Out, VT_I8);
2231 }
2232
2233 /************************************************************************
2234 * VarI8FromDisp (OLEAUT32.340)
2235 *
2236 * Convert a VT_DISPATCH to a VT_I8.
2237 *
2238 * PARAMS
2239 * pdispIn [I] Source
2240 * lcid [I] LCID for conversion
2241 * pi64Out [O] Destination
2242 *
2243 * RETURNS
2244 * Success: S_OK.
2245 * Failure: E_INVALIDARG, if the source value is invalid
2246 * DISP_E_OVERFLOW, if the value will not fit in the destination
2247 * DISP_E_TYPEMISMATCH, if the type cannot be converted
2248 */
2249 HRESULT WINAPI VarI8FromDisp(IDispatch* pdispIn, LCID lcid, LONG64* pi64Out)
2250 {
2251 return VARIANT_FromDisp(pdispIn, lcid, pi64Out, VT_I8, 0);
2252 }
2253
2254 /************************************************************************
2255 * VarI8FromBool (OLEAUT32.341)
2256 *
2257 * Convert a VT_BOOL to a VT_I8.
2258 *
2259 * PARAMS
2260 * boolIn [I] Source
2261 * pi64Out [O] Destination
2262 *
2263 * RETURNS
2264 * S_OK.
2265 */
2266 HRESULT WINAPI VarI8FromBool(VARIANT_BOOL boolIn, LONG64* pi64Out)
2267 {
2268 return VarI8FromI2(boolIn, pi64Out);
2269 }
2270
2271 /************************************************************************
2272 * VarI8FromI1 (OLEAUT32.342)
2273 *
2274 * Convert a VT_I1 to a VT_I8.
2275 *
2276 * PARAMS
2277 * cIn [I] Source
2278 * pi64Out [O] Destination
2279 *
2280 * RETURNS
2281 * S_OK.
2282 */
2283 HRESULT WINAPI VarI8FromI1(signed char cIn, LONG64* pi64Out)
2284 {
2285 return _VarI8FromI1(cIn, pi64Out);
2286 }
2287
2288 /************************************************************************
2289 * VarI8FromUI2 (OLEAUT32.343)
2290 *
2291 * Convert a VT_UI2 to a VT_I8.
2292 *
2293 * PARAMS
2294 * usIn [I] Source
2295 * pi64Out [O] Destination
2296 *
2297 * RETURNS
2298 * S_OK.
2299 */
2300 HRESULT WINAPI VarI8FromUI2(USHORT usIn, LONG64* pi64Out)
2301 {
2302 return _VarI8FromUI2(usIn, pi64Out);
2303 }
2304
2305 /************************************************************************
2306 * VarI8FromUI4 (OLEAUT32.344)
2307 *
2308 * Convert a VT_UI4 to a VT_I8.
2309 *
2310 * PARAMS
2311 * ulIn [I] Source
2312 * pi64Out [O] Destination
2313 *
2314 * RETURNS
2315 * S_OK.
2316 */
2317 HRESULT WINAPI VarI8FromUI4(ULONG ulIn, LONG64* pi64Out)
2318 {
2319 return _VarI8FromUI4(ulIn, pi64Out);
2320 }
2321
2322 /************************************************************************
2323 * VarI8FromDec (OLEAUT32.345)
2324 *
2325 * Convert a VT_DECIMAL to a VT_I8.
2326 *
2327 * PARAMS
2328 * pDecIn [I] Source
2329 * pi64Out [O] Destination
2330 *
2331 * RETURNS
2332 * Success: S_OK.
2333 * Failure: E_INVALIDARG, if the source value is invalid
2334 * DISP_E_OVERFLOW, if the value will not fit in the destination
2335 */
2336 HRESULT WINAPI VarI8FromDec(DECIMAL *pdecIn, LONG64* pi64Out)
2337 {
2338 if (!DEC_SCALE(pdecIn))
2339 {
2340 /* This decimal is just a 96 bit integer */
2341 if (DEC_SIGN(pdecIn) & ~DECIMAL_NEG)
2342 return E_INVALIDARG;
2343
2344 if (DEC_HI32(pdecIn) || DEC_MID32(pdecIn) & 0x80000000)
2345 return DISP_E_OVERFLOW;
2346
2347 if (DEC_SIGN(pdecIn))
2348 *pi64Out = -DEC_LO64(pdecIn);
2349 else
2350 *pi64Out = DEC_LO64(pdecIn);
2351 return S_OK;
2352 }
2353 else
2354 {
2355 /* Decimal contains a floating point number */
2356 HRESULT hRet;
2357 double dbl;
2358
2359 hRet = VarR8FromDec(pdecIn, &dbl);
2360 if (SUCCEEDED(hRet))
2361 hRet = VarI8FromR8(dbl, pi64Out);
2362 return hRet;
2363 }
2364 }
2365
2366 /************************************************************************
2367 * VarI8FromUI8 (OLEAUT32.427)
2368 *
2369 * Convert a VT_UI8 to a VT_I8.
2370 *
2371 * PARAMS
2372 * ullIn [I] Source
2373 * pi64Out [O] Destination
2374 *
2375 * RETURNS
2376 * Success: S_OK.
2377 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
2378 */
2379 HRESULT WINAPI VarI8FromUI8(ULONG64 ullIn, LONG64* pi64Out)
2380 {
2381 return _VarI8FromUI8(ullIn, pi64Out);
2382 }
2383
2384 /* UI8
2385 */
2386
2387 /************************************************************************
2388 * VarUI8FromI8 (OLEAUT32.428)
2389 *
2390 * Convert a VT_I8 to a VT_UI8.
2391 *
2392 * PARAMS
2393 * ulIn [I] Source
2394 * pui64Out [O] Destination
2395 *
2396 * RETURNS
2397 * Success: S_OK.
2398 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
2399 */
2400 HRESULT WINAPI VarUI8FromI8(LONG64 llIn, ULONG64* pui64Out)
2401 {
2402 return _VarUI8FromI8(llIn, pui64Out);
2403 }
2404
2405 /************************************************************************
2406 * VarUI8FromUI1 (OLEAUT32.429)
2407 *
2408 * Convert a VT_UI1 to a VT_UI8.
2409 *
2410 * PARAMS
2411 * bIn [I] Source
2412 * pui64Out [O] Destination
2413 *
2414 * RETURNS
2415 * S_OK.
2416 */
2417 HRESULT WINAPI VarUI8FromUI1(BYTE bIn, ULONG64* pui64Out)
2418 {
2419 return _VarUI8FromUI1(bIn, pui64Out);
2420 }
2421
2422 /************************************************************************
2423 * VarUI8FromI2 (OLEAUT32.430)
2424 *
2425 * Convert a VT_I2 to a VT_UI8.
2426 *
2427 * PARAMS
2428 * sIn [I] Source
2429 * pui64Out [O] Destination
2430 *
2431 * RETURNS
2432 * S_OK.
2433 */
2434 HRESULT WINAPI VarUI8FromI2(SHORT sIn, ULONG64* pui64Out)
2435 {
2436 return _VarUI8FromI2(sIn, pui64Out);
2437 }
2438
2439 /************************************************************************
2440 * VarUI8FromR4 (OLEAUT32.431)
2441 *
2442 * Convert a VT_R4 to a VT_UI8.
2443 *
2444 * PARAMS
2445 * fltIn [I] Source
2446 * pui64Out [O] Destination
2447 *
2448 * RETURNS
2449 * Success: S_OK.
2450 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
2451 */
2452 HRESULT WINAPI VarUI8FromR4(FLOAT fltIn, ULONG64* pui64Out)
2453 {
2454 return VarUI8FromR8(fltIn, pui64Out);
2455 }
2456
2457 /************************************************************************
2458 * VarUI8FromR8 (OLEAUT32.432)
2459 *
2460 * Convert a VT_R8 to a VT_UI8.
2461 *
2462 * PARAMS
2463 * dblIn [I] Source
2464 * pui64Out [O] Destination
2465 *
2466 * RETURNS
2467 * Success: S_OK.
2468 * Failure: E_INVALIDARG, if the source value is invalid
2469 * DISP_E_OVERFLOW, if the value will not fit in the destination
2470 *
2471 * NOTES
2472 * See VarI8FromR8() for details concerning rounding.
2473 */
2474 HRESULT WINAPI VarUI8FromR8(double dblIn, ULONG64* pui64Out)
2475 {
2476 if (dblIn < -0.5 || dblIn > 1.844674407370955e19)
2477 return DISP_E_OVERFLOW;
2478 VARIANT_DutchRound(ULONG64, dblIn, *pui64Out);
2479 return S_OK;
2480 }
2481
2482 /************************************************************************
2483 * VarUI8FromCy (OLEAUT32.433)
2484 *
2485 * Convert a VT_CY to a VT_UI8.
2486 *
2487 * PARAMS
2488 * cyIn [I] Source
2489 * pui64Out [O] Destination
2490 *
2491 * RETURNS
2492 * Success: S_OK.
2493 * Failure: E_INVALIDARG, if the source value is invalid
2494 * DISP_E_OVERFLOW, if the value will not fit in the destination
2495 *
2496 * NOTES
2497 * Negative values >= -5000 will be converted to 0.
2498 */
2499 HRESULT WINAPI VarUI8FromCy(CY cyIn, ULONG64* pui64Out)
2500 {
2501 if (cyIn.int64 < 0)
2502 {
2503 if (cyIn.int64 < -CY_HALF)
2504 return DISP_E_OVERFLOW;
2505 *pui64Out = 0;
2506 }
2507 else
2508 {
2509 *pui64Out = cyIn.int64 / CY_MULTIPLIER;
2510
2511 cyIn.int64 -= *pui64Out * CY_MULTIPLIER; /* cyIn.s.Lo now holds fractional remainder */
2512
2513 if (cyIn.s.Lo > CY_HALF || (cyIn.s.Lo == CY_HALF && (*pui64Out & 0x1)))
2514 (*pui64Out)++;
2515 }
2516 return S_OK;
2517 }
2518
2519 /************************************************************************
2520 * VarUI8FromDate (OLEAUT32.434)
2521 *
2522 * Convert a VT_DATE to a VT_UI8.
2523 *
2524 * PARAMS
2525 * dateIn [I] Source
2526 * pui64Out [O] Destination
2527 *
2528 * RETURNS
2529 * Success: S_OK.
2530 * Failure: E_INVALIDARG, if the source value is invalid
2531 * DISP_E_OVERFLOW, if the value will not fit in the destination
2532 * DISP_E_TYPEMISMATCH, if the type cannot be converted
2533 */
2534 HRESULT WINAPI VarUI8FromDate(DATE dateIn, ULONG64* pui64Out)
2535 {
2536 return VarUI8FromR8(dateIn, pui64Out);
2537 }
2538
2539 /************************************************************************
2540 * VarUI8FromStr (OLEAUT32.435)
2541 *
2542 * Convert a VT_BSTR to a VT_UI8.
2543 *
2544 * PARAMS
2545 * strIn [I] Source
2546 * lcid [I] LCID for the conversion
2547 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
2548 * pui64Out [O] Destination
2549 *
2550 * RETURNS
2551 * Success: S_OK.
2552 * Failure: E_INVALIDARG, if the source value is invalid
2553 * DISP_E_OVERFLOW, if the value will not fit in the destination
2554 * DISP_E_TYPEMISMATCH, if the type cannot be converted
2555 */
2556 HRESULT WINAPI VarUI8FromStr(OLECHAR* strIn, LCID lcid, ULONG dwFlags, ULONG64* pui64Out)
2557 {
2558 return VARIANT_NumberFromBstr(strIn, lcid, dwFlags, pui64Out, VT_UI8);
2559 }
2560
2561 /************************************************************************
2562 * VarUI8FromDisp (OLEAUT32.436)
2563 *
2564 * Convert a VT_DISPATCH to a VT_UI8.
2565 *
2566 * PARAMS
2567 * pdispIn [I] Source
2568 * lcid [I] LCID for conversion
2569 * pui64Out [O] Destination
2570 *
2571 * RETURNS
2572 * Success: S_OK.
2573 * Failure: E_INVALIDARG, if the source value is invalid
2574 * DISP_E_OVERFLOW, if the value will not fit in the destination
2575 * DISP_E_TYPEMISMATCH, if the type cannot be converted
2576 */
2577 HRESULT WINAPI VarUI8FromDisp(IDispatch* pdispIn, LCID lcid, ULONG64* pui64Out)
2578 {
2579 return VARIANT_FromDisp(pdispIn, lcid, pui64Out, VT_UI8, 0);
2580 }
2581
2582 /************************************************************************
2583 * VarUI8FromBool (OLEAUT32.437)
2584 *
2585 * Convert a VT_BOOL to a VT_UI8.
2586 *
2587 * PARAMS
2588 * boolIn [I] Source
2589 * pui64Out [O] Destination
2590 *
2591 * RETURNS
2592 * Success: S_OK.
2593 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
2594 */
2595 HRESULT WINAPI VarUI8FromBool(VARIANT_BOOL boolIn, ULONG64* pui64Out)
2596 {
2597 return VarI8FromI2(boolIn, (LONG64 *)pui64Out);
2598 }
2599 /************************************************************************
2600 * VarUI8FromI1 (OLEAUT32.438)
2601 *
2602 * Convert a VT_I1 to a VT_UI8.
2603 *
2604 * PARAMS
2605 * cIn [I] Source
2606 * pui64Out [O] Destination
2607 *
2608 * RETURNS
2609 * Success: S_OK.
2610 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
2611 */
2612 HRESULT WINAPI VarUI8FromI1(signed char cIn, ULONG64* pui64Out)
2613 {
2614 return _VarUI8FromI1(cIn, pui64Out);
2615 }
2616
2617 /************************************************************************
2618 * VarUI8FromUI2 (OLEAUT32.439)
2619 *
2620 * Convert a VT_UI2 to a VT_UI8.
2621 *
2622 * PARAMS
2623 * usIn [I] Source
2624 * pui64Out [O] Destination
2625 *
2626 * RETURNS
2627 * S_OK.
2628 */
2629 HRESULT WINAPI VarUI8FromUI2(USHORT usIn, ULONG64* pui64Out)
2630 {
2631 return _VarUI8FromUI2(usIn, pui64Out);
2632 }
2633
2634 /************************************************************************
2635 * VarUI8FromUI4 (OLEAUT32.440)
2636 *
2637 * Convert a VT_UI4 to a VT_UI8.
2638 *
2639 * PARAMS
2640 * ulIn [I] Source
2641 * pui64Out [O] Destination
2642 *
2643 * RETURNS
2644 * S_OK.
2645 */
2646 HRESULT WINAPI VarUI8FromUI4(ULONG ulIn, ULONG64* pui64Out)
2647 {
2648 return _VarUI8FromUI4(ulIn, pui64Out);
2649 }
2650
2651 /************************************************************************
2652 * VarUI8FromDec (OLEAUT32.441)
2653 *
2654 * Convert a VT_DECIMAL to a VT_UI8.
2655 *
2656 * PARAMS
2657 * pDecIn [I] Source
2658 * pui64Out [O] Destination
2659 *
2660 * RETURNS
2661 * Success: S_OK.
2662 * Failure: E_INVALIDARG, if the source value is invalid
2663 * DISP_E_OVERFLOW, if the value will not fit in the destination
2664 *
2665 * NOTES
2666 * Under native Win32, if the source value has a scale of 0, its sign is
2667 * ignored, i.e. this function takes the absolute value rather than fail
2668 * with DISP_E_OVERFLOW. This bug has been fixed in Wine's implementation
2669 * (use VarAbs() on pDecIn first if you really want this behaviour).
2670 */
2671 HRESULT WINAPI VarUI8FromDec(DECIMAL *pdecIn, ULONG64* pui64Out)
2672 {
2673 if (!DEC_SCALE(pdecIn))
2674 {
2675 /* This decimal is just a 96 bit integer */
2676 if (DEC_SIGN(pdecIn) & ~DECIMAL_NEG)
2677 return E_INVALIDARG;
2678
2679 if (DEC_HI32(pdecIn))
2680 return DISP_E_OVERFLOW;
2681
2682 if (DEC_SIGN(pdecIn))
2683 {
2684 WARN("Sign would be ignored under Win32!\n");
2685 return DISP_E_OVERFLOW;
2686 }
2687
2688 *pui64Out = DEC_LO64(pdecIn);
2689 return S_OK;
2690 }
2691 else
2692 {
2693 /* Decimal contains a floating point number */
2694 HRESULT hRet;
2695 double dbl;
2696
2697 hRet = VarR8FromDec(pdecIn, &dbl);
2698 if (SUCCEEDED(hRet))
2699 hRet = VarUI8FromR8(dbl, pui64Out);
2700 return hRet;
2701 }
2702 }
2703
2704 /* R4
2705 */
2706
2707 /************************************************************************
2708 * VarR4FromUI1 (OLEAUT32.68)
2709 *
2710 * Convert a VT_UI1 to a VT_R4.
2711 *
2712 * PARAMS
2713 * bIn [I] Source
2714 * pFltOut [O] Destination
2715 *
2716 * RETURNS
2717 * S_OK.
2718 */
2719 HRESULT WINAPI VarR4FromUI1(BYTE bIn, float *pFltOut)
2720 {
2721 return _VarR4FromUI1(bIn, pFltOut);
2722 }
2723
2724 /************************************************************************
2725 * VarR4FromI2 (OLEAUT32.69)
2726 *
2727 * Convert a VT_I2 to a VT_R4.
2728 *
2729 * PARAMS
2730 * sIn [I] Source
2731 * pFltOut [O] Destination
2732 *
2733 * RETURNS
2734 * S_OK.
2735 */
2736 HRESULT WINAPI VarR4FromI2(SHORT sIn, float *pFltOut)
2737 {
2738 return _VarR4FromI2(sIn, pFltOut);
2739 }
2740
2741 /************************************************************************
2742 * VarR4FromI4 (OLEAUT32.70)
2743 *
2744 * Convert a VT_I4 to a VT_R4.
2745 *
2746 * PARAMS
2747 * sIn [I] Source
2748 * pFltOut [O] Destination
2749 *
2750 * RETURNS
2751 * S_OK.
2752 */
2753 HRESULT WINAPI VarR4FromI4(LONG lIn, float *pFltOut)
2754 {
2755 return _VarR4FromI4(lIn, pFltOut);
2756 }
2757
2758 /************************************************************************
2759 * VarR4FromR8 (OLEAUT32.71)
2760 *
2761 * Convert a VT_R8 to a VT_R4.
2762 *
2763 * PARAMS
2764 * dblIn [I] Source
2765 * pFltOut [O] Destination
2766 *
2767 * RETURNS
2768 * Success: S_OK.
2769 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination.
2770 */
2771 HRESULT WINAPI VarR4FromR8(double dblIn, float *pFltOut)
2772 {
2773 double d = dblIn < 0.0 ? -dblIn : dblIn;
2774 if (d > R4_MAX) return DISP_E_OVERFLOW;
2775 *pFltOut = dblIn;
2776 return S_OK;
2777 }
2778
2779 /************************************************************************
2780 * VarR4FromCy (OLEAUT32.72)
2781 *
2782 * Convert a VT_CY to a VT_R4.
2783 *
2784 * PARAMS
2785 * cyIn [I] Source
2786 * pFltOut [O] Destination
2787 *
2788 * RETURNS
2789 * S_OK.
2790 */
2791 HRESULT WINAPI VarR4FromCy(CY cyIn, float *pFltOut)
2792 {
2793 *pFltOut = (double)cyIn.int64 / CY_MULTIPLIER_F;
2794 return S_OK;
2795 }
2796
2797 /************************************************************************
2798 * VarR4FromDate (OLEAUT32.73)
2799 *
2800 * Convert a VT_DATE to a VT_R4.
2801 *
2802 * PARAMS
2803 * dateIn [I] Source
2804 * pFltOut [O] Destination
2805 *
2806 * RETURNS
2807 * Success: S_OK.
2808 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination.
2809 */
2810 HRESULT WINAPI VarR4FromDate(DATE dateIn, float *pFltOut)
2811 {
2812 return VarR4FromR8(dateIn, pFltOut);
2813 }
2814
2815 /************************************************************************
2816 * VarR4FromStr (OLEAUT32.74)
2817 *
2818 * Convert a VT_BSTR to a VT_R4.
2819 *
2820 * PARAMS
2821 * strIn [I] Source
2822 * lcid [I] LCID for the conversion
2823 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
2824 * pFltOut [O] Destination
2825 *
2826 * RETURNS
2827 * Success: S_OK.
2828 * Failure: E_INVALIDARG, if strIn or pFltOut is invalid.
2829 * DISP_E_TYPEMISMATCH, if the type cannot be converted
2830 */
2831 HRESULT WINAPI VarR4FromStr(OLECHAR* strIn, LCID lcid, ULONG dwFlags, float *pFltOut)
2832 {
2833 return VARIANT_NumberFromBstr(strIn, lcid, dwFlags, pFltOut, VT_R4);
2834 }
2835
2836 /************************************************************************
2837 * VarR4FromDisp (OLEAUT32.75)
2838 *
2839 * Convert a VT_DISPATCH to a VT_R4.
2840 *
2841 * PARAMS
2842 * pdispIn [I] Source
2843 * lcid [I] LCID for conversion
2844 * pFltOut [O] Destination
2845 *
2846 * RETURNS
2847 * Success: S_OK.
2848 * Failure: E_INVALIDARG, if the source value is invalid
2849 * DISP_E_OVERFLOW, if the value will not fit in the destination
2850 * DISP_E_TYPEMISMATCH, if the type cannot be converted
2851 */
2852 HRESULT WINAPI VarR4FromDisp(IDispatch* pdispIn, LCID lcid, float *pFltOut)
2853 {
2854 return VARIANT_FromDisp(pdispIn, lcid, pFltOut, VT_R4, 0);
2855 }
2856
2857 /************************************************************************
2858 * VarR4FromBool (OLEAUT32.76)
2859 *
2860 * Convert a VT_BOOL to a VT_R4.
2861 *
2862 * PARAMS
2863 * boolIn [I] Source
2864 * pFltOut [O] Destination
2865 *
2866 * RETURNS
2867 * S_OK.
2868 */
2869 HRESULT WINAPI VarR4FromBool(VARIANT_BOOL boolIn, float *pFltOut)
2870 {
2871 return VarR4FromI2(boolIn, pFltOut);
2872 }
2873
2874 /************************************************************************
2875 * VarR4FromI1 (OLEAUT32.213)
2876 *
2877 * Convert a VT_I1 to a VT_R4.
2878 *
2879 * PARAMS
2880 * cIn [I] Source
2881 * pFltOut [O] Destination
2882 *
2883 * RETURNS
2884 * Success: S_OK.
2885 * Failure: E_INVALIDARG, if the source value is invalid
2886 * DISP_E_OVERFLOW, if the value will not fit in the destination
2887 * DISP_E_TYPEMISMATCH, if the type cannot be converted
2888 */
2889 HRESULT WINAPI VarR4FromI1(signed char cIn, float *pFltOut)
2890 {
2891 return _VarR4FromI1(cIn, pFltOut);
2892 }
2893
2894 /************************************************************************
2895 * VarR4FromUI2 (OLEAUT32.214)
2896 *
2897 * Convert a VT_UI2 to a VT_R4.
2898 *
2899 * PARAMS
2900 * usIn [I] Source
2901 * pFltOut [O] Destination
2902 *
2903 * RETURNS
2904 * Success: S_OK.
2905 * Failure: E_INVALIDARG, if the source value is invalid
2906 * DISP_E_OVERFLOW, if the value will not fit in the destination
2907 * DISP_E_TYPEMISMATCH, if the type cannot be converted
2908 */
2909 HRESULT WINAPI VarR4FromUI2(USHORT usIn, float *pFltOut)
2910 {
2911 return _VarR4FromUI2(usIn, pFltOut);
2912 }
2913
2914 /************************************************************************
2915 * VarR4FromUI4 (OLEAUT32.215)
2916 *
2917 * Convert a VT_UI4 to a VT_R4.
2918 *
2919 * PARAMS
2920 * ulIn [I] Source
2921 * pFltOut [O] Destination
2922 *
2923 * RETURNS
2924 * Success: S_OK.
2925 * Failure: E_INVALIDARG, if the source value is invalid
2926 * DISP_E_OVERFLOW, if the value will not fit in the destination
2927 * DISP_E_TYPEMISMATCH, if the type cannot be converted
2928 */
2929 HRESULT WINAPI VarR4FromUI4(ULONG ulIn, float *pFltOut)
2930 {
2931 return _VarR4FromUI4(ulIn, pFltOut);
2932 }
2933
2934 /************************************************************************
2935 * VarR4FromDec (OLEAUT32.216)
2936 *
2937 * Convert a VT_DECIMAL to a VT_R4.
2938 *
2939 * PARAMS
2940 * pDecIn [I] Source
2941 * pFltOut [O] Destination
2942 *
2943 * RETURNS
2944 * Success: S_OK.
2945 * Failure: E_INVALIDARG, if the source value is invalid.
2946 */
2947 HRESULT WINAPI VarR4FromDec(DECIMAL* pDecIn, float *pFltOut)
2948 {
2949 BYTE scale = DEC_SCALE(pDecIn);
2950 int divisor = 1;
2951 double highPart;
2952
2953 if (scale > DEC_MAX_SCALE || DEC_SIGN(pDecIn) & ~DECIMAL_NEG)
2954 return E_INVALIDARG;
2955
2956 while (scale--)
2957 divisor *= 10;
2958
2959 if (DEC_SIGN(pDecIn))
2960 divisor = -divisor;
2961
2962 if (DEC_HI32(pDecIn))
2963 {
2964 highPart = (double)DEC_HI32(pDecIn) / (double)divisor;
2965 highPart *= 4294967296.0F;
2966 highPart *= 4294967296.0F;
2967 }
2968 else
2969 highPart = 0.0;
2970
2971 *pFltOut = (double)DEC_LO64(pDecIn) / (double)divisor + highPart;
2972 return S_OK;
2973 }
2974
2975 /************************************************************************
2976 * VarR4FromI8 (OLEAUT32.360)
2977 *
2978 * Convert a VT_I8 to a VT_R4.
2979 *
2980 * PARAMS
2981 * ullIn [I] Source
2982 * pFltOut [O] Destination
2983 *
2984 * RETURNS
2985 * S_OK.
2986 */
2987 HRESULT WINAPI VarR4FromI8(LONG64 llIn, float *pFltOut)
2988 {
2989 return _VarR4FromI8(llIn, pFltOut);
2990 }
2991
2992 /************************************************************************
2993 * VarR4FromUI8 (OLEAUT32.361)
2994 *
2995 * Convert a VT_UI8 to a VT_R4.
2996 *
2997 * PARAMS
2998 * ullIn [I] Source
2999 * pFltOut [O] Destination
3000 *
3001 * RETURNS
3002 * S_OK.
3003 */
3004 HRESULT WINAPI VarR4FromUI8(ULONG64 ullIn, float *pFltOut)
3005 {
3006 return _VarR4FromUI8(ullIn, pFltOut);
3007 }
3008
3009 /************************************************************************
3010 * VarR4CmpR8 (OLEAUT32.316)
3011 *
3012 * Compare a VT_R4 to a VT_R8.
3013 *
3014 * PARAMS
3015 * fltLeft [I] Source
3016 * dblRight [I] Value to compare
3017 *
3018 * RETURNS
3019 * VARCMP_LT, VARCMP_EQ or VARCMP_GT indicating that fltLeft is less than,
3020 * equal to or greater than dblRight respectively.
3021 */
3022 HRESULT WINAPI VarR4CmpR8(float fltLeft, double dblRight)
3023 {
3024 if (fltLeft < dblRight)
3025 return VARCMP_LT;
3026 else if (fltLeft > dblRight)
3027 return VARCMP_GT;
3028 return VARCMP_EQ;
3029 }
3030
3031 /* R8
3032 */
3033
3034 /************************************************************************
3035 * VarR8FromUI1 (OLEAUT32.78)
3036 *
3037 * Convert a VT_UI1 to a VT_R8.
3038 *
3039 * PARAMS
3040 * bIn [I] Source
3041 * pDblOut [O] Destination
3042 *
3043 * RETURNS
3044 * S_OK.
3045 */
3046 HRESULT WINAPI VarR8FromUI1(BYTE bIn, double *pDblOut)
3047 {
3048 return _VarR8FromUI1(bIn, pDblOut);
3049 }
3050
3051 /************************************************************************
3052 * VarR8FromI2 (OLEAUT32.79)
3053 *
3054 * Convert a VT_I2 to a VT_R8.
3055 *
3056 * PARAMS
3057 * sIn [I] Source
3058 * pDblOut [O] Destination
3059 *
3060 * RETURNS
3061 * S_OK.
3062 */
3063 HRESULT WINAPI VarR8FromI2(SHORT sIn, double *pDblOut)
3064 {
3065 return _VarR8FromI2(sIn, pDblOut);
3066 }
3067
3068 /************************************************************************
3069 * VarR8FromI4 (OLEAUT32.80)
3070 *
3071 * Convert a VT_I4 to a VT_R8.
3072 *
3073 * PARAMS
3074 * sIn [I] Source
3075 * pDblOut [O] Destination
3076 *
3077 * RETURNS
3078 * S_OK.
3079 */
3080 HRESULT WINAPI VarR8FromI4(LONG lIn, double *pDblOut)
3081 {
3082 return _VarR8FromI4(lIn, pDblOut);
3083 }
3084
3085 /************************************************************************
3086 * VarR8FromR4 (OLEAUT32.81)
3087 *
3088 * Convert a VT_R4 to a VT_R8.
3089 *
3090 * PARAMS
3091 * fltIn [I] Source
3092 * pDblOut [O] Destination
3093 *
3094 * RETURNS
3095 * S_OK.
3096 */
3097 HRESULT WINAPI VarR8FromR4(FLOAT fltIn, double *pDblOut)
3098 {
3099 return _VarR8FromR4(fltIn, pDblOut);
3100 }
3101
3102 /************************************************************************
3103 * VarR8FromCy (OLEAUT32.82)
3104 *
3105 * Convert a VT_CY to a VT_R8.
3106 *
3107 * PARAMS
3108 * cyIn [I] Source
3109 * pDblOut [O] Destination
3110 *
3111 * RETURNS
3112 * S_OK.
3113 */
3114 HRESULT WINAPI VarR8FromCy(CY cyIn, double *pDblOut)
3115 {
3116 return _VarR8FromCy(cyIn, pDblOut);
3117 }
3118
3119 /************************************************************************
3120 * VarR8FromDate (OLEAUT32.83)
3121 *
3122 * Convert a VT_DATE to a VT_R8.
3123 *
3124 * PARAMS
3125 * dateIn [I] Source
3126 * pDblOut [O] Destination
3127 *
3128 * RETURNS
3129 * S_OK.
3130 */
3131 HRESULT WINAPI VarR8FromDate(DATE dateIn, double *pDblOut)
3132 {
3133 return _VarR8FromDate(dateIn, pDblOut);
3134 }
3135
3136 /************************************************************************
3137 * VarR8FromStr (OLEAUT32.84)
3138 *
3139 * Convert a VT_BSTR to a VT_R8.
3140 *
3141 * PARAMS
3142 * strIn [I] Source
3143 * lcid [I] LCID for the conversion
3144 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
3145 * pDblOut [O] Destination
3146 *
3147 * RETURNS
3148 * Success: S_OK.
3149 * Failure: E_INVALIDARG, if strIn or pDblOut is invalid.
3150 * DISP_E_TYPEMISMATCH, if the type cannot be converted
3151 */
3152 HRESULT WINAPI VarR8FromStr(OLECHAR* strIn, LCID lcid, ULONG dwFlags, double *pDblOut)
3153 {
3154 return VARIANT_NumberFromBstr(strIn, lcid, dwFlags, pDblOut, VT_R8);
3155 }
3156
3157 /************************************************************************
3158 * VarR8FromDisp (OLEAUT32.85)
3159 *
3160 * Convert a VT_DISPATCH to a VT_R8.
3161 *
3162 * PARAMS
3163 * pdispIn [I] Source
3164 * lcid [I] LCID for conversion
3165 * pDblOut [O] Destination
3166 *
3167 * RETURNS
3168 * Success: S_OK.
3169 * Failure: E_INVALIDARG, if the source value is invalid
3170 * DISP_E_OVERFLOW, if the value will not fit in the destination
3171 * DISP_E_TYPEMISMATCH, if the type cannot be converted
3172 */
3173 HRESULT WINAPI VarR8FromDisp(IDispatch* pdispIn, LCID lcid, double *pDblOut)
3174 {
3175 return VARIANT_FromDisp(pdispIn, lcid, pDblOut, VT_R8, 0);
3176 }
3177
3178 /************************************************************************
3179 * VarR8FromBool (OLEAUT32.86)
3180 *
3181 * Convert a VT_BOOL to a VT_R8.
3182 *
3183 * PARAMS
3184 * boolIn [I] Source
3185 * pDblOut [O] Destination
3186 *
3187 * RETURNS
3188 * S_OK.
3189 */
3190 HRESULT WINAPI VarR8FromBool(VARIANT_BOOL boolIn, double *pDblOut)
3191 {
3192 return VarR8FromI2(boolIn, pDblOut);
3193 }
3194
3195 /************************************************************************
3196 * VarR8FromI1 (OLEAUT32.217)
3197 *
3198 * Convert a VT_I1 to a VT_R8.
3199 *
3200 * PARAMS
3201 * cIn [I] Source
3202 * pDblOut [O] Destination
3203 *
3204 * RETURNS
3205 * Success: S_OK.
3206 * Failure: E_INVALIDARG, if the source value is invalid
3207 * DISP_E_OVERFLOW, if the value will not fit in the destination
3208 * DISP_E_TYPEMISMATCH, if the type cannot be converted
3209 */
3210 HRESULT WINAPI VarR8FromI1(signed char cIn, double *pDblOut)
3211 {
3212 return _VarR8FromI1(cIn, pDblOut);
3213 }
3214
3215 /************************************************************************
3216 * VarR8FromUI2 (OLEAUT32.218)
3217 *
3218 * Convert a VT_UI2 to a VT_R8.
3219 *
3220 * PARAMS
3221 * usIn [I] Source
3222 * pDblOut [O] Destination
3223 *
3224 * RETURNS
3225 * Success: S_OK.
3226 * Failure: E_INVALIDARG, if the source value is invalid
3227 * DISP_E_OVERFLOW, if the value will not fit in the destination
3228 * DISP_E_TYPEMISMATCH, if the type cannot be converted
3229 */
3230 HRESULT WINAPI VarR8FromUI2(USHORT usIn, double *pDblOut)
3231 {
3232 return _VarR8FromUI2(usIn, pDblOut);
3233 }
3234
3235 /************************************************************************
3236 * VarR8FromUI4 (OLEAUT32.219)
3237 *
3238 * Convert a VT_UI4 to a VT_R8.
3239 *
3240 * PARAMS
3241 * ulIn [I] Source
3242 * pDblOut [O] Destination
3243 *
3244 * RETURNS
3245 * Success: S_OK.
3246 * Failure: E_INVALIDARG, if the source value is invalid
3247 * DISP_E_OVERFLOW, if the value will not fit in the destination
3248 * DISP_E_TYPEMISMATCH, if the type cannot be converted
3249 */
3250 HRESULT WINAPI VarR8FromUI4(ULONG ulIn, double *pDblOut)
3251 {
3252 return _VarR8FromUI4(ulIn, pDblOut);
3253 }
3254
3255 /************************************************************************
3256 * VarR8FromDec (OLEAUT32.220)
3257 *
3258 * Convert a VT_DECIMAL to a VT_R8.
3259 *
3260 * PARAMS
3261 * pDecIn [I] Source
3262 * pDblOut [O] Destination
3263 *
3264 * RETURNS
3265 * Success: S_OK.
3266 * Failure: E_INVALIDARG, if the source value is invalid.
3267 */
3268 HRESULT WINAPI VarR8FromDec(const DECIMAL* pDecIn, double *pDblOut)
3269 {
3270 BYTE scale = DEC_SCALE(pDecIn);
3271 double divisor = 1.0, highPart;
3272
3273 if (scale > DEC_MAX_SCALE || DEC_SIGN(pDecIn) & ~DECIMAL_NEG)
3274 return E_INVALIDARG;
3275
3276 while (scale--)
3277 divisor *= 10;
3278
3279 if (DEC_SIGN(pDecIn))
3280 divisor = -divisor;
3281
3282 if (DEC_HI32(pDecIn))
3283 {
3284 highPart = (double)DEC_HI32(pDecIn) / divisor;
3285 highPart *= 4294967296.0F;
3286 highPart *= 4294967296.0F;
3287 }
3288 else
3289 highPart = 0.0;
3290
3291 *pDblOut = (double)DEC_LO64(pDecIn) / divisor + highPart;
3292 return S_OK;
3293 }
3294
3295 /************************************************************************
3296 * VarR8FromI8 (OLEAUT32.362)
3297 *
3298 * Convert a VT_I8 to a VT_R8.
3299 *
3300 * PARAMS
3301 * ullIn [I] Source
3302 * pDblOut [O] Destination
3303 *
3304 * RETURNS
3305 * S_OK.
3306 */
3307 HRESULT WINAPI VarR8FromI8(LONG64 llIn, double *pDblOut)
3308 {
3309 return _VarR8FromI8(llIn, pDblOut);
3310 }
3311
3312 /************************************************************************
3313 * VarR8FromUI8 (OLEAUT32.363)
3314 *
3315 * Convert a VT_UI8 to a VT_R8.
3316 *
3317 * PARAMS
3318 * ullIn [I] Source
3319 * pDblOut [O] Destination
3320 *
3321 * RETURNS
3322 * S_OK.
3323 */
3324 HRESULT WINAPI VarR8FromUI8(ULONG64 ullIn, double *pDblOut)
3325 {
3326 return _VarR8FromUI8(ullIn, pDblOut);
3327 }
3328
3329 /************************************************************************
3330 * VarR8Pow (OLEAUT32.315)
3331 *
3332 * Raise a VT_R8 to a power.
3333 *
3334 * PARAMS
3335 * dblLeft [I] Source
3336 * dblPow [I] Power to raise dblLeft by
3337 * pDblOut [O] Destination
3338 *
3339 * RETURNS
3340 * S_OK. pDblOut contains dblLeft to the power of dblRight.
3341 */
3342 HRESULT WINAPI VarR8Pow(double dblLeft, double dblPow, double *pDblOut)
3343 {
3344 *pDblOut = pow(dblLeft, dblPow);
3345 return S_OK;
3346 }
3347
3348 /************************************************************************
3349 * VarR8Round (OLEAUT32.317)
3350 *
3351 * Round a VT_R8 to a given number of decimal points.
3352 *
3353 * PARAMS
3354 * dblIn [I] Source
3355 * nDig [I] Number of decimal points to round to
3356 * pDblOut [O] Destination for rounded number
3357 *
3358 * RETURNS
3359 * Success: S_OK. pDblOut is rounded to nDig digits.
3360 * Failure: E_INVALIDARG, if cDecimals is less than 0.
3361 *
3362 * NOTES
3363 * The native version of this function rounds using the internal
3364 * binary representation of the number. Wine uses the dutch rounding
3365 * convention, so therefore small differences can occur in the value returned.
3366 * MSDN says that you should use your own rounding function if you want
3367 * rounding to be predictable in your application.
3368 */
3369 HRESULT WINAPI VarR8Round(double dblIn, int nDig, double *pDblOut)
3370 {
3371 double scale, whole, fract;
3372
3373 if (nDig < 0)
3374 return E_INVALIDARG;
3375
3376 scale = pow(10.0, nDig);
3377
3378 dblIn *= scale;
3379 whole = dblIn < 0 ? ceil(dblIn) : floor(dblIn);
3380 fract = dblIn - whole;
3381
3382 if (fract > 0.5)
3383 dblIn = whole + 1.0;
3384 else if (fract == 0.5)
3385 dblIn = whole + fmod(whole, 2.0);
3386 else if (fract >= 0.0)
3387 dblIn = whole;
3388 else if (fract == -0.5)
3389 dblIn = whole - fmod(whole, 2.0);
3390 else if (fract > -0.5)
3391 dblIn = whole;
3392 else
3393 dblIn = whole - 1.0;
3394
3395 *pDblOut = dblIn / scale;
3396 return S_OK;
3397 }
3398
3399 /* CY
3400 */
3401
3402 /* Powers of 10 from 0..4 D.P. */
3403 static const int CY_Divisors[5] = { CY_MULTIPLIER/10000, CY_MULTIPLIER/1000,
3404 CY_MULTIPLIER/100, CY_MULTIPLIER/10, CY_MULTIPLIER };
3405
3406 /************************************************************************
3407 * VarCyFromUI1 (OLEAUT32.98)
3408 *
3409 * Convert a VT_UI1 to a VT_CY.
3410 *
3411 * PARAMS
3412 * bIn [I] Source
3413 * pCyOut [O] Destination
3414 *
3415 * RETURNS
3416 * Success: S_OK.
3417 * Failure: E_INVALIDARG, if the source value is invalid
3418 * DISP_E_OVERFLOW, if the value will not fit in the destination
3419 * DISP_E_TYPEMISMATCH, if the type cannot be converted
3420 */
3421 HRESULT WINAPI VarCyFromUI1(BYTE bIn, CY* pCyOut)
3422 {
3423 pCyOut->int64 = (ULONG64)bIn * CY_MULTIPLIER;
3424 return S_OK;
3425 }
3426
3427 /************************************************************************
3428 * VarCyFromI2 (OLEAUT32.99)
3429 *
3430 * Convert a VT_I2 to a VT_CY.
3431 *
3432 * PARAMS
3433 * sIn [I] Source
3434 * pCyOut [O] Destination
3435 *
3436 * RETURNS
3437 * Success: S_OK.
3438 * Failure: E_INVALIDARG, if the source value is invalid
3439 * DISP_E_OVERFLOW, if the value will not fit in the destination
3440 * DISP_E_TYPEMISMATCH, if the type cannot be converted
3441 */
3442 HRESULT WINAPI VarCyFromI2(SHORT sIn, CY* pCyOut)
3443 {
3444 pCyOut->int64 = (LONG64)sIn * CY_MULTIPLIER;
3445 return S_OK;
3446 }
3447
3448 /************************************************************************
3449 * VarCyFromI4 (OLEAUT32.100)
3450 *
3451 * Convert a VT_I4 to a VT_CY.
3452 *
3453 * PARAMS
3454 * sIn [I] Source
3455 * pCyOut [O] Destination
3456 *
3457 * RETURNS
3458 * Success: S_OK.
3459 * Failure: E_INVALIDARG, if the source value is invalid
3460 * DISP_E_OVERFLOW, if the value will not fit in the destination
3461 * DISP_E_TYPEMISMATCH, if the type cannot be converted
3462 */
3463 HRESULT WINAPI VarCyFromI4(LONG lIn, CY* pCyOut)
3464 {
3465 pCyOut->int64 = (LONG64)lIn * CY_MULTIPLIER;
3466 return S_OK;
3467 }
3468
3469 /************************************************************************
3470 * VarCyFromR4 (OLEAUT32.101)
3471 *
3472 * Convert a VT_R4 to a VT_CY.
3473 *
3474 * PARAMS
3475 * fltIn [I] Source
3476 * pCyOut [O] Destination
3477 *
3478 * RETURNS
3479 * Success: S_OK.
3480 * Failure: E_INVALIDARG, if the source value is invalid
3481 * DISP_E_OVERFLOW, if the value will not fit in the destination
3482 * DISP_E_TYPEMISMATCH, if the type cannot be converted
3483 */
3484 HRESULT WINAPI VarCyFromR4(FLOAT fltIn, CY* pCyOut)
3485 {
3486 return VarCyFromR8(fltIn, pCyOut);
3487 }
3488
3489 /************************************************************************
3490 * VarCyFromR8 (OLEAUT32.102)
3491 *
3492 * Convert a VT_R8 to a VT_CY.
3493 *
3494 * PARAMS
3495 * dblIn [I] Source
3496 * pCyOut [O] Destination
3497 *
3498 * RETURNS
3499 * Success: S_OK.
3500 * Failure: E_INVALIDARG, if the source value is invalid
3501 * DISP_E_OVERFLOW, if the value will not fit in the destination
3502 * DISP_E_TYPEMISMATCH, if the type cannot be converted
3503 */
3504 HRESULT WINAPI VarCyFromR8(double dblIn, CY* pCyOut)
3505 {
3506 #if defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__))
3507 /* This code gives identical results to Win32 on Intel.
3508 * Here we use fp exceptions to catch overflows when storing the value.
3509 */
3510 static const unsigned short r8_fpcontrol = 0x137f;
3511 static const double r8_multiplier = CY_MULTIPLIER_F;
3512 unsigned short old_fpcontrol, result_fpstatus;
3513
3514 /* Clear exceptions, save the old fp state and load the new state */
3515 __asm__ __volatile__( "fnclex" );
3516 __asm__ __volatile__( "fstcw %0" : "=m" (old_fpcontrol) : );
3517 __asm__ __volatile__( "fldcw %0" : : "m" (r8_fpcontrol) );
3518 /* Perform the conversion. */
3519 __asm__ __volatile__( "fldl %0" : : "m" (dblIn) );
3520 __asm__ __volatile__( "fmull %0" : : "m" (r8_multiplier) );
3521 __asm__ __volatile__( "fistpll %0" : : "m" (*pCyOut) );
3522 /* Save the resulting fp state, load the old state and clear exceptions */
3523 __asm__ __volatile__( "fstsw %0" : "=m" (result_fpstatus) : );
3524 __asm__ __volatile__( "fnclex" );
3525 __asm__ __volatile__( "fldcw %0" : : "m" (old_fpcontrol) );
3526
3527 if (result_fpstatus & 0x9) /* Overflow | Invalid */
3528 return DISP_E_OVERFLOW;
3529 #else
3530 /* This version produces slightly different results for boundary cases */
3531 if (dblIn < -922337203685477.5807 || dblIn >= 922337203685477.5807)
3532 return DISP_E_OVERFLOW;
3533 dblIn *= CY_MULTIPLIER_F;
3534 VARIANT_DutchRound(LONG64, dblIn, pCyOut->int64);
3535 #endif
3536 return S_OK;
3537 }
3538
3539 /************************************************************************
3540 * VarCyFromDate (OLEAUT32.103)
3541 *
3542 * Convert a VT_DATE to a VT_CY.
3543 *
3544 * PARAMS
3545 * dateIn [I] Source
3546 * pCyOut [O] Destination
3547 *
3548 * RETURNS
3549 * Success: S_OK.
3550 * Failure: E_INVALIDARG, if the source value is invalid
3551 * DISP_E_OVERFLOW, if the value will not fit in the destination
3552 * DISP_E_TYPEMISMATCH, if the type cannot be converted
3553 */
3554 HRESULT WINAPI VarCyFromDate(DATE dateIn, CY* pCyOut)
3555 {
3556 return VarCyFromR8(dateIn, pCyOut);
3557 }
3558
3559 /************************************************************************
3560 * VarCyFromStr (OLEAUT32.104)
3561 *
3562 * Convert a VT_BSTR to a VT_CY.
3563 *
3564 * PARAMS
3565 * strIn [I] Source
3566 * lcid [I] LCID for the conversion
3567 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
3568 * pCyOut [O] Destination
3569 *
3570 * RETURNS
3571 * Success: S_OK.
3572 * Failure: E_INVALIDARG, if the source value is invalid
3573 * DISP_E_OVERFLOW, if the value will not fit in the destination
3574 * DISP_E_TYPEMISMATCH, if the type cannot be converted
3575 */
3576 HRESULT WINAPI VarCyFromStr(OLECHAR* strIn, LCID lcid, ULONG dwFlags, CY* pCyOut)
3577 {
3578 return VARIANT_NumberFromBstr(strIn, lcid, dwFlags, pCyOut, VT_CY);
3579 }
3580
3581 /************************************************************************
3582 * VarCyFromDisp (OLEAUT32.105)
3583 *
3584 * Convert a VT_DISPATCH to a VT_CY.
3585 *
3586 * PARAMS
3587 * pdispIn [I] Source
3588 * lcid [I] LCID for conversion
3589 * pCyOut [O] Destination
3590 *
3591 * RETURNS
3592 * Success: S_OK.
3593 * Failure: E_INVALIDARG, if the source value is invalid
3594 * DISP_E_OVERFLOW, if the value will not fit in the destination
3595 * DISP_E_TYPEMISMATCH, if the type cannot be converted
3596 */
3597 HRESULT WINAPI VarCyFromDisp(IDispatch* pdispIn, LCID lcid, CY* pCyOut)
3598 {
3599 return VARIANT_FromDisp(pdispIn, lcid, pCyOut, VT_CY, 0);
3600 }
3601
3602 /************************************************************************
3603 * VarCyFromBool (OLEAUT32.106)
3604 *
3605 * Convert a VT_BOOL to a VT_CY.
3606 *
3607 * PARAMS
3608 * boolIn [I] Source
3609 * pCyOut [O] Destination
3610 *
3611 * RETURNS
3612 * Success: S_OK.
3613 * Failure: E_INVALIDARG, if the source value is invalid
3614 * DISP_E_OVERFLOW, if the value will not fit in the destination
3615 * DISP_E_TYPEMISMATCH, if the type cannot be converted
3616 *
3617 * NOTES
3618 * While the sign of the boolean is stored in the currency, the value is
3619 * converted to either 0 or 1.
3620 */
3621 HRESULT WINAPI VarCyFromBool(VARIANT_BOOL boolIn, CY* pCyOut)
3622 {
3623 pCyOut->int64 = (LONG64)boolIn * CY_MULTIPLIER;
3624 return S_OK;
3625 }
3626
3627 /************************************************************************
3628 * VarCyFromI1 (OLEAUT32.225)
3629 *
3630 * Convert a VT_I1 to a VT_CY.
3631 *
3632 * PARAMS
3633 * cIn [I] Source
3634 * pCyOut [O] Destination
3635 *
3636 * RETURNS
3637 * Success: S_OK.
3638 * Failure: E_INVALIDARG, if the source value is invalid
3639 * DISP_E_OVERFLOW, if the value will not fit in the destination
3640 * DISP_E_TYPEMISMATCH, if the type cannot be converted
3641 */
3642 HRESULT WINAPI VarCyFromI1(signed char cIn, CY* pCyOut)
3643 {
3644 pCyOut->int64 = (LONG64)cIn * CY_MULTIPLIER;
3645 return S_OK;
3646 }
3647
3648 /************************************************************************
3649 * VarCyFromUI2 (OLEAUT32.226)
3650 *
3651 * Convert a VT_UI2 to a VT_CY.
3652 *
3653 * PARAMS
3654 * usIn [I] Source
3655 * pCyOut [O] Destination
3656 *
3657 * RETURNS
3658 * Success: S_OK.
3659 * Failure: E_INVALIDARG, if the source value is invalid
3660 * DISP_E_OVERFLOW, if the value will not fit in the destination
3661 * DISP_E_TYPEMISMATCH, if the type cannot be converted
3662 */
3663 HRESULT WINAPI VarCyFromUI2(USHORT usIn, CY* pCyOut)
3664 {
3665 pCyOut->int64 = (ULONG64)usIn * CY_MULTIPLIER;
3666 return S_OK;
3667 }
3668
3669 /************************************************************************
3670 * VarCyFromUI4 (OLEAUT32.227)
3671 *
3672 * Convert a VT_UI4 to a VT_CY.
3673 *
3674 * PARAMS
3675 * ulIn [I] Source
3676 * pCyOut [O] Destination
3677 *
3678 * RETURNS
3679 * Success: S_OK.
3680 * Failure: E_INVALIDARG, if the source value is invalid
3681 * DISP_E_OVERFLOW, if the value will not fit in the destination
3682 * DISP_E_TYPEMISMATCH, if the type cannot be converted
3683 */
3684 HRESULT WINAPI VarCyFromUI4(ULONG ulIn, CY* pCyOut)
3685 {
3686 pCyOut->int64 = (ULONG64)ulIn * CY_MULTIPLIER;
3687 return S_OK;
3688 }
3689
3690 /************************************************************************
3691 * VarCyFromDec (OLEAUT32.228)
3692 *
3693 * Convert a VT_DECIMAL to a VT_CY.
3694 *
3695 * PARAMS
3696 * pdecIn [I] Source
3697 * pCyOut [O] Destination
3698 *
3699 * RETURNS
3700 * Success: S_OK.
3701 * Failure: E_INVALIDARG, if the source value is invalid
3702 * DISP_E_OVERFLOW, if the value will not fit in the destination
3703 * DISP_E_TYPEMISMATCH, if the type cannot be converted
3704 */
3705 HRESULT WINAPI VarCyFromDec(DECIMAL* pdecIn, CY* pCyOut)
3706 {
3707 DECIMAL rounded;
3708 HRESULT hRet;
3709
3710 hRet = VarDecRound(pdecIn, 4, &rounded);
3711
3712 if (SUCCEEDED(hRet))
3713 {
3714 double d;
3715
3716 if (DEC_HI32(&rounded))
3717 return DISP_E_OVERFLOW;
3718
3719 /* Note: Without the casts this promotes to int64 which loses precision */
3720 d = (double)DEC_LO64(&rounded) / (double)CY_Divisors[DEC_SCALE(&rounded)];
3721 if (DEC_SIGN(&rounded))
3722 d = -d;
3723 return VarCyFromR8(d, pCyOut);
3724 }
3725 return hRet;
3726 }
3727
3728 /************************************************************************
3729 * VarCyFromI8 (OLEAUT32.366)
3730 *
3731 * Convert a VT_I8 to a VT_CY.
3732 *
3733 * PARAMS
3734 * ullIn [I] Source
3735 * pCyOut [O] Destination
3736 *
3737 * RETURNS
3738 * Success: S_OK.
3739 * Failure: E_INVALIDARG, if the source value is invalid
3740 * DISP_E_OVERFLOW, if the value will not fit in the destination
3741 * DISP_E_TYPEMISMATCH, if the type cannot be converted
3742 */
3743 HRESULT WINAPI VarCyFromI8(LONG64 llIn, CY* pCyOut)
3744 {
3745 if (llIn <= (I8_MIN/CY_MULTIPLIER) || llIn >= (I8_MAX/CY_MULTIPLIER)) return DISP_E_OVERFLOW;
3746 pCyOut->int64 = llIn * CY_MULTIPLIER;
3747 return S_OK;
3748 }
3749
3750 /************************************************************************
3751 * VarCyFromUI8 (OLEAUT32.375)
3752 *
3753 * Convert a VT_UI8 to a VT_CY.
3754 *
3755 * PARAMS
3756 * ullIn [I] Source
3757 * pCyOut [O] Destination
3758 *
3759 * RETURNS
3760 * Success: S_OK.
3761 * Failure: E_INVALIDARG, if the source value is invalid
3762 * DISP_E_OVERFLOW, if the value will not fit in the destination
3763 * DISP_E_TYPEMISMATCH, if the type cannot be converted
3764 */
3765 HRESULT WINAPI VarCyFromUI8(ULONG64 ullIn, CY* pCyOut)
3766 {
3767 if (ullIn > (I8_MAX/CY_MULTIPLIER)) return DISP_E_OVERFLOW;
3768 pCyOut->int64 = ullIn * CY_MULTIPLIER;
3769 return S_OK;
3770 }
3771
3772 /************************************************************************
3773 * VarCyAdd (OLEAUT32.299)
3774 *
3775 * Add one CY to another.
3776 *
3777 * PARAMS
3778 * cyLeft [I] Source
3779 * cyRight [I] Value to add
3780 * pCyOut [O] Destination
3781 *
3782 * RETURNS
3783 * Success: S_OK.
3784 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
3785 */
3786 HRESULT WINAPI VarCyAdd(const CY cyLeft, const CY cyRight, CY* pCyOut)
3787 {
3788 double l,r;
3789 _VarR8FromCy(cyLeft, &l);
3790 _VarR8FromCy(cyRight, &r);
3791 l = l + r;
3792 return VarCyFromR8(l, pCyOut);
3793 }
3794
3795 /************************************************************************
3796 * VarCyMul (OLEAUT32.303)
3797 *
3798 * Multiply one CY by another.
3799 *
3800 * PARAMS
3801 * cyLeft [I] Source
3802 * cyRight [I] Value to multiply by
3803 * pCyOut [O] Destination
3804 *
3805 * RETURNS
3806 * Success: S_OK.
3807 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
3808 */
3809 HRESULT WINAPI VarCyMul(const CY cyLeft, const CY cyRight, CY* pCyOut)
3810 {
3811 double l,r;
3812 _VarR8FromCy(cyLeft, &l);
3813 _VarR8FromCy(cyRight, &r);
3814 l = l * r;
3815 return VarCyFromR8(l, pCyOut);
3816 }
3817
3818 /************************************************************************
3819 * VarCyMulI4 (OLEAUT32.304)
3820 *
3821 * Multiply one CY by a VT_I4.
3822 *
3823 * PARAMS
3824 * cyLeft [I] Source
3825 * lRight [I] Value to multiply by
3826 * pCyOut [O] Destination
3827 *
3828 * RETURNS
3829 * Success: S_OK.
3830 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
3831 */
3832 HRESULT WINAPI VarCyMulI4(const CY cyLeft, LONG lRight, CY* pCyOut)
3833 {
3834 double d;
3835
3836 _VarR8FromCy(cyLeft, &d);
3837 d = d * lRight;
3838 return VarCyFromR8(d, pCyOut);
3839 }
3840
3841 /************************************************************************
3842 * VarCySub (OLEAUT32.305)
3843 *
3844 * Subtract one CY from another.
3845 *
3846 * PARAMS
3847 * cyLeft [I] Source
3848 * cyRight [I] Value to subtract
3849 * pCyOut [O] Destination
3850 *
3851 * RETURNS
3852 * Success: S_OK.
3853 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
3854 */
3855 HRESULT WINAPI VarCySub(const CY cyLeft, const CY cyRight, CY* pCyOut)
3856 {
3857 double l,r;
3858 _VarR8FromCy(cyLeft, &l);
3859 _VarR8FromCy(cyRight, &r);
3860 l = l - r;
3861 return VarCyFromR8(l, pCyOut);
3862 }
3863
3864 /************************************************************************
3865 * VarCyAbs (OLEAUT32.306)
3866 *
3867 * Convert a VT_CY into its absolute value.
3868 *
3869 * PARAMS
3870 * cyIn [I] Source
3871 * pCyOut [O] Destination
3872 *
3873 * RETURNS
3874 * Success: S_OK. pCyOut contains the absolute value.
3875 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
3876 */
3877 HRESULT WINAPI VarCyAbs(const CY cyIn, CY* pCyOut)
3878 {
3879 if (cyIn.s.Hi == (int)0x80000000 && !cyIn.s.Lo)
3880 return DISP_E_OVERFLOW;
3881
3882 pCyOut->int64 = cyIn.int64 < 0 ? -cyIn.int64 : cyIn.int64;
3883 return S_OK;
3884 }
3885
3886 /************************************************************************
3887 * VarCyFix (OLEAUT32.307)
3888 *
3889 * Return the integer part of a VT_CY.
3890 *
3891 * PARAMS
3892 * cyIn [I] Source
3893 * pCyOut [O] Destination
3894 *
3895 * RETURNS
3896 * Success: S_OK.
3897 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
3898 *
3899 * NOTES
3900 * - The difference between this function and VarCyInt() is that VarCyInt() rounds
3901 * negative numbers away from 0, while this function rounds them towards zero.
3902 */
3903 HRESULT WINAPI VarCyFix(const CY cyIn, CY* pCyOut)
3904 {
3905 pCyOut->int64 = cyIn.int64 / CY_MULTIPLIER;
3906 pCyOut->int64 *= CY_MULTIPLIER;
3907 return S_OK;
3908 }
3909
3910 /************************************************************************
3911 * VarCyInt (OLEAUT32.308)
3912 *
3913 * Return the integer part of a VT_CY.
3914 *
3915 * PARAMS
3916 * cyIn [I] Source
3917 * pCyOut [O] Destination
3918 *
3919 * RETURNS
3920 * Success: S_OK.
3921 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
3922 *
3923 * NOTES
3924 * - The difference between this function and VarCyFix() is that VarCyFix() rounds
3925 * negative numbers towards 0, while this function rounds them away from zero.
3926 */
3927 HRESULT WINAPI VarCyInt(const CY cyIn, CY* pCyOut)
3928 {
3929 pCyOut->int64 = cyIn.int64 / CY_MULTIPLIER;
3930 pCyOut->int64 *= CY_MULTIPLIER;
3931
3932 if (cyIn.int64 < 0 && cyIn.int64 % CY_MULTIPLIER != 0)
3933 {
3934 pCyOut->int64 -= CY_MULTIPLIER;
3935 }
3936 return S_OK;
3937 }
3938
3939 /************************************************************************
3940 * VarCyNeg (OLEAUT32.309)
3941 *
3942 * Change the sign of a VT_CY.
3943 *
3944 * PARAMS
3945 * cyIn [I] Source
3946 * pCyOut [O] Destination
3947 *
3948 * RETURNS
3949 * Success: S_OK.
3950 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
3951 */
3952 HRESULT WINAPI VarCyNeg(const CY cyIn, CY* pCyOut)
3953 {
3954 if (cyIn.s.Hi == (int)0x80000000 && !cyIn.s.Lo)
3955 return DISP_E_OVERFLOW;
3956
3957 pCyOut->int64 = -cyIn.int64;
3958 return S_OK;
3959 }
3960
3961 /************************************************************************
3962 * VarCyRound (OLEAUT32.310)
3963 *
3964 * Change the precision of a VT_CY.
3965 *
3966 * PARAMS
3967 * cyIn [I] Source
3968 * cDecimals [I] New number of decimals to keep
3969 * pCyOut [O] Destination
3970 *
3971 * RETURNS
3972 * Success: S_OK.
3973 * Failure: E_INVALIDARG, if cDecimals is less than 0.
3974 */
3975 HRESULT WINAPI VarCyRound(const CY cyIn, int cDecimals, CY* pCyOut)
3976 {
3977 if (cDecimals < 0)
3978 return E_INVALIDARG;
3979
3980 if (cDecimals > 3)
3981 {
3982 /* Rounding to more precision than we have */
3983 *pCyOut = cyIn;
3984 return S_OK;
3985 }
3986 else
3987 {
3988 double d, div = CY_Divisors[cDecimals];
3989
3990 _VarR8FromCy(cyIn, &d);
3991 d = d * div;
3992 VARIANT_DutchRound(LONGLONG, d, pCyOut->int64);
3993 d = (double)pCyOut->int64 / div * CY_MULTIPLIER_F;
3994 VARIANT_DutchRound(LONGLONG, d, pCyOut->int64);
3995 return S_OK;
3996 }
3997 }
3998
3999 /************************************************************************
4000 * VarCyCmp (OLEAUT32.311)
4001 *
4002 * Compare two VT_CY values.
4003 *
4004 * PARAMS
4005 * cyLeft [I] Source
4006 * cyRight [I] Value to compare
4007 *
4008 * RETURNS
4009 * Success: VARCMP_LT, VARCMP_EQ or VARCMP_GT indicating that the value to
4010 * compare is less, equal or greater than source respectively.
4011 * Failure: DISP_E_OVERFLOW, if overflow occurs during the comparison
4012 */
4013 HRESULT WINAPI VarCyCmp(const CY cyLeft, const CY cyRight)
4014 {
4015 HRESULT hRet;
4016 CY result;
4017
4018 /* Subtract right from left, and compare the result to 0 */
4019 hRet = VarCySub(cyLeft, cyRight, &result);
4020
4021 if (SUCCEEDED(hRet))
4022 {
4023 if (result.int64 < 0)
4024 hRet = (HRESULT)VARCMP_LT;
4025 else if (result.int64 > 0)
4026 hRet = (HRESULT)VARCMP_GT;
4027 else
4028 hRet = (HRESULT)VARCMP_EQ;
4029 }
4030 return hRet;
4031 }
4032
4033 /************************************************************************
4034 * VarCyCmpR8 (OLEAUT32.312)
4035 *
4036 * Compare a VT_CY to a double
4037 *
4038 * PARAMS
4039 * cyLeft [I] Currency Source
4040 * dblRight [I] double to compare to cyLeft
4041 *
4042 * RETURNS
4043 * Success: VARCMP_LT, VARCMP_EQ or VARCMP_GT indicating that dblRight is
4044 * less than, equal to or greater than cyLeft respectively.
4045 * Failure: DISP_E_OVERFLOW, if overflow occurs during the comparison
4046 */
4047 HRESULT WINAPI VarCyCmpR8(const CY cyLeft, double dblRight)
4048 {
4049 HRESULT hRet;
4050 CY cyRight;
4051
4052 hRet = VarCyFromR8(dblRight, &cyRight);
4053
4054 if (SUCCEEDED(hRet))
4055 hRet = VarCyCmp(cyLeft, cyRight);
4056
4057 return hRet;
4058 }
4059
4060 /************************************************************************
4061 * VarCyMulI8 (OLEAUT32.329)
4062 *
4063 * Multiply a VT_CY by a VT_I8.
4064 *
4065 * PARAMS
4066 * cyLeft [I] Source
4067 * llRight [I] Value to multiply by
4068 * pCyOut [O] Destination
4069 *
4070 * RETURNS
4071 * Success: S_OK.
4072 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
4073 */
4074 HRESULT WINAPI VarCyMulI8(const CY cyLeft, LONG64 llRight, CY* pCyOut)
4075 {
4076 double d;
4077
4078 _VarR8FromCy(cyLeft, &d);
4079 d = d * (double)llRight;
4080 return VarCyFromR8(d, pCyOut);
4081 }
4082
4083 /* DECIMAL
4084 */
4085
4086 /************************************************************************
4087 * VarDecFromUI1 (OLEAUT32.190)
4088 *
4089 * Convert a VT_UI1 to a DECIMAL.
4090 *
4091 * PARAMS
4092 * bIn [I] Source
4093 * pDecOut [O] Destination
4094 *
4095 * RETURNS
4096 * S_OK.
4097 */
4098 HRESULT WINAPI VarDecFromUI1(BYTE bIn, DECIMAL* pDecOut)
4099 {
4100 return VarDecFromUI4(bIn, pDecOut);
4101 }
4102
4103 /************************************************************************
4104 * VarDecFromI2 (OLEAUT32.191)
4105 *
4106 * Convert a VT_I2 to a DECIMAL.
4107 *
4108 * PARAMS
4109 * sIn [I] Source
4110 * pDecOut [O] Destination
4111 *
4112 * RETURNS
4113 * S_OK.
4114 */
4115 HRESULT WINAPI VarDecFromI2(SHORT sIn, DECIMAL* pDecOut)
4116 {
4117 return VarDecFromI4(sIn, pDecOut);
4118 }
4119
4120 /************************************************************************
4121 * VarDecFromI4 (OLEAUT32.192)
4122 *
4123 * Convert a VT_I4 to a DECIMAL.
4124 *
4125 * PARAMS
4126 * sIn [I] Source
4127 * pDecOut [O] Destination
4128 *
4129 * RETURNS
4130 * S_OK.
4131 */
4132 HRESULT WINAPI VarDecFromI4(LONG lIn, DECIMAL* pDecOut)
4133 {
4134 DEC_HI32(pDecOut) = 0;
4135 DEC_MID32(pDecOut) = 0;
4136
4137 if (lIn < 0)
4138 {
4139 DEC_SIGNSCALE(pDecOut) = SIGNSCALE(DECIMAL_NEG,0);
4140 DEC_LO32(pDecOut) = -lIn;
4141 }
4142 else
4143 {
4144 DEC_SIGNSCALE(pDecOut) = SIGNSCALE(DECIMAL_POS,0);
4145 DEC_LO32(pDecOut) = lIn;
4146 }
4147 return S_OK;
4148 }
4149
4150 #define LOCALE_EN_US (MAKELCID(MAKELANGID(LANG_ENGLISH,SUBLANG_ENGLISH_US),SORT_DEFAULT))
4151
4152 /* internal representation of the value stored in a DECIMAL. The bytes are
4153 stored from LSB at index 0 to MSB at index 11
4154 */
4155 typedef struct DECIMAL_internal
4156 {
4157 DWORD bitsnum[3]; /* 96 significant bits, unsigned */
4158 unsigned char scale; /* number scaled * 10 ^ -(scale) */
4159 unsigned int sign : 1; /* 0 - positive, 1 - negative */
4160 } VARIANT_DI;
4161
4162 static HRESULT VARIANT_DI_FromR4(float source, VARIANT_DI * dest);
4163 static HRESULT VARIANT_DI_FromR8(double source, VARIANT_DI * dest);
4164 static void VARIANT_DIFromDec(const DECIMAL * from, VARIANT_DI * to);
4165 static void VARIANT_DecFromDI(const VARIANT_DI * from, DECIMAL * to);
4166
4167 /************************************************************************
4168 * VarDecFromR4 (OLEAUT32.193)
4169 *
4170 * Convert a VT_R4 to a DECIMAL.
4171 *
4172 * PARAMS
4173 * fltIn [I] Source
4174 * pDecOut [O] Destination
4175 *
4176 * RETURNS
4177 * S_OK.
4178 */
4179 HRESULT WINAPI VarDecFromR4(FLOAT fltIn, DECIMAL* pDecOut)
4180 {
4181 VARIANT_DI di;
4182 HRESULT hres;
4183
4184 hres = VARIANT_DI_FromR4(fltIn, &di);
4185 if (hres == S_OK) VARIANT_DecFromDI(&di, pDecOut);
4186 return hres;
4187 }
4188
4189 /************************************************************************
4190 * VarDecFromR8 (OLEAUT32.194)
4191 *
4192 * Convert a VT_R8 to a DECIMAL.
4193 *
4194 * PARAMS
4195 * dblIn [I] Source
4196 * pDecOut [O] Destination
4197 *
4198 * RETURNS
4199 * S_OK.
4200 */
4201 HRESULT WINAPI VarDecFromR8(double dblIn, DECIMAL* pDecOut)
4202 {
4203 VARIANT_DI di;
4204 HRESULT hres;
4205
4206 hres = VARIANT_DI_FromR8(dblIn, &di);
4207 if (hres == S_OK) VARIANT_DecFromDI(&di, pDecOut);
4208 return hres;
4209 }
4210
4211 /************************************************************************
4212 * VarDecFromDate (OLEAUT32.195)
4213 *
4214 * Convert a VT_DATE to a DECIMAL.
4215 *
4216 * PARAMS
4217 * dateIn [I] Source
4218 * pDecOut [O] Destination
4219 *
4220 * RETURNS
4221 * S_OK.
4222 */
4223 HRESULT WINAPI VarDecFromDate(DATE dateIn, DECIMAL* pDecOut)
4224 {
4225 return VarDecFromR8(dateIn, pDecOut);
4226 }
4227
4228 /************************************************************************
4229 * VarDecFromCy (OLEAUT32.196)
4230 *
4231 * Convert a VT_CY to a DECIMAL.
4232 *
4233 * PARAMS
4234 * cyIn [I] Source
4235 * pDecOut [O] Destination
4236 *
4237 * RETURNS
4238 * S_OK.
4239 */
4240 HRESULT WINAPI VarDecFromCy(CY cyIn, DECIMAL* pDecOut)
4241 {
4242 DEC_HI32(pDecOut) = 0;
4243
4244 /* Note: This assumes 2s complement integer representation */
4245 if (cyIn.s.Hi & 0x80000000)
4246 {
4247 DEC_SIGNSCALE(pDecOut) = SIGNSCALE(DECIMAL_NEG,4);
4248 DEC_LO64(pDecOut) = -cyIn.int64;
4249 }
4250 else
4251 {
4252 DEC_SIGNSCALE(pDecOut) = SIGNSCALE(DECIMAL_POS,4);
4253 DEC_MID32(pDecOut) = cyIn.s.Hi;
4254 DEC_LO32(pDecOut) = cyIn.s.Lo;
4255 }
4256 return S_OK;
4257 }
4258
4259 /************************************************************************
4260 * VarDecFromStr (OLEAUT32.197)
4261 *
4262 * Convert a VT_BSTR to a DECIMAL.
4263 *
4264 * PARAMS
4265 * strIn [I] Source
4266 * lcid [I] LCID for the conversion
4267 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
4268 * pDecOut [O] Destination
4269 *
4270 * RETURNS
4271 * Success: S_OK.
4272 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
4273 */
4274 HRESULT WINAPI VarDecFromStr(OLECHAR* strIn, LCID lcid, ULONG dwFlags, DECIMAL* pDecOut)
4275 {
4276 return VARIANT_NumberFromBstr(strIn, lcid, dwFlags, pDecOut, VT_DECIMAL);
4277 }
4278
4279 /************************************************************************
4280 * VarDecFromDisp (OLEAUT32.198)
4281 *
4282 * Convert a VT_DISPATCH to a DECIMAL.
4283 *
4284 * PARAMS
4285 * pdispIn [I] Source
4286 * lcid [I] LCID for conversion
4287 * pDecOut [O] Destination
4288 *
4289 * RETURNS
4290 * Success: S_OK.
4291 * Failure: DISP_E_TYPEMISMATCH, if the type cannot be converted
4292 */
4293 HRESULT WINAPI VarDecFromDisp(IDispatch* pdispIn, LCID lcid, DECIMAL* pDecOut)
4294 {
4295 return VARIANT_FromDisp(pdispIn, lcid, pDecOut, VT_DECIMAL, 0);
4296 }
4297
4298 /************************************************************************
4299 * VarDecFromBool (OLEAUT32.199)
4300 *
4301 * Convert a VT_BOOL to a DECIMAL.
4302 *
4303 * PARAMS
4304 * bIn [I] Source
4305 * pDecOut [O] Destination
4306 *
4307 * RETURNS
4308 * S_OK.
4309 *
4310 * NOTES
4311 * The value is converted to either 0 (if bIn is FALSE) or -1 (TRUE).
4312 */
4313 HRESULT WINAPI VarDecFromBool(VARIANT_BOOL bIn, DECIMAL* pDecOut)
4314 {
4315 DEC_HI32(pDecOut) = 0;
4316 DEC_MID32(pDecOut) = 0;
4317 if (bIn)
4318 {
4319 DEC_SIGNSCALE(pDecOut) = SIGNSCALE(DECIMAL_NEG,0);
4320 DEC_LO32(pDecOut) = 1;
4321 }
4322 else
4323 {
4324 DEC_SIGNSCALE(pDecOut) = SIGNSCALE(DECIMAL_POS,0);
4325 DEC_LO32(pDecOut) = 0;
4326 }
4327 return S_OK;
4328 }
4329
4330 /************************************************************************
4331 * VarDecFromI1 (OLEAUT32.241)
4332 *
4333 * Convert a VT_I1 to a DECIMAL.
4334 *
4335 * PARAMS
4336 * cIn [I] Source
4337 * pDecOut [O] Destination
4338 *
4339 * RETURNS
4340 * S_OK.
4341 */
4342 HRESULT WINAPI VarDecFromI1(signed char cIn, DECIMAL* pDecOut)
4343 {
4344 return VarDecFromI4(cIn, pDecOut);
4345 }
4346
4347 /************************************************************************
4348 * VarDecFromUI2 (OLEAUT32.242)
4349 *
4350 * Convert a VT_UI2 to a DECIMAL.
4351 *
4352 * PARAMS
4353 * usIn [I] Source
4354 * pDecOut [O] Destination
4355 *
4356 * RETURNS
4357 * S_OK.
4358 */
4359 HRESULT WINAPI VarDecFromUI2(USHORT usIn, DECIMAL* pDecOut)
4360 {
4361 return VarDecFromUI4(usIn, pDecOut);
4362 }
4363
4364 /************************************************************************
4365 * VarDecFromUI4 (OLEAUT32.243)
4366 *
4367 * Convert a VT_UI4 to a DECIMAL.
4368 *
4369 * PARAMS
4370 * ulIn [I] Source
4371 * pDecOut [O] Destination
4372 *
4373 * RETURNS
4374 * S_OK.
4375 */
4376 HRESULT WINAPI VarDecFromUI4(ULONG ulIn, DECIMAL* pDecOut)
4377 {
4378 DEC_SIGNSCALE(pDecOut) = SIGNSCALE(DECIMAL_POS,0);
4379 DEC_HI32(pDecOut) = 0;
4380 DEC_MID32(pDecOut) = 0;
4381 DEC_LO32(pDecOut) = ulIn;
4382 return S_OK;
4383 }
4384
4385 /************************************************************************
4386 * VarDecFromI8 (OLEAUT32.374)
4387 *
4388 * Convert a VT_I8 to a DECIMAL.
4389 *
4390 * PARAMS
4391 * llIn [I] Source
4392 * pDecOut [O] Destination
4393 *
4394 * RETURNS
4395 * S_OK.
4396 */
4397 HRESULT WINAPI VarDecFromI8(LONG64 llIn, DECIMAL* pDecOut)
4398 {
4399 PULARGE_INTEGER pLi = (PULARGE_INTEGER)&llIn;
4400
4401 DEC_HI32(pDecOut) = 0;
4402
4403 /* Note: This assumes 2s complement integer representation */
4404 if (pLi->u.HighPart & 0x80000000)
4405 {
4406 DEC_SIGNSCALE(pDecOut) = SIGNSCALE(DECIMAL_NEG,0);
4407 DEC_LO64(pDecOut) = -pLi->QuadPart;
4408 }
4409 else
4410 {
4411 DEC_SIGNSCALE(pDecOut) = SIGNSCALE(DECIMAL_POS,0);
4412 DEC_MID32(pDecOut) = pLi->u.HighPart;
4413 DEC_LO32(pDecOut) = pLi->u.LowPart;
4414 }
4415 return S_OK;
4416 }
4417
4418 /************************************************************************
4419 * VarDecFromUI8 (OLEAUT32.375)
4420 *
4421 * Convert a VT_UI8 to a DECIMAL.
4422 *
4423 * PARAMS
4424 * ullIn [I] Source
4425 * pDecOut [O] Destination
4426 *
4427 * RETURNS
4428 * S_OK.
4429 */
4430 HRESULT WINAPI VarDecFromUI8(ULONG64 ullIn, DECIMAL* pDecOut)
4431 {
4432 DEC_SIGNSCALE(pDecOut) = SIGNSCALE(DECIMAL_POS,0);
4433 DEC_HI32(pDecOut) = 0;
4434 DEC_LO64(pDecOut) = ullIn;
4435 return S_OK;
4436 }
4437
4438 /* Make two DECIMALS the same scale; used by math functions below */
4439 static HRESULT VARIANT_DecScale(const DECIMAL** ppDecLeft,
4440 const DECIMAL** ppDecRight,
4441 DECIMAL* pDecOut)
4442 {
4443 static DECIMAL scaleFactor;
4444 DECIMAL decTemp;
4445 int scaleAmount, i;
4446 HRESULT hRet = S_OK;
4447
4448 if (DEC_SIGN(*ppDecLeft) & ~DECIMAL_NEG || DEC_SIGN(*ppDecRight) & ~DECIMAL_NEG)
4449 return E_INVALIDARG;
4450
4451 DEC_LO32(&scaleFactor) = 10;
4452
4453 i = scaleAmount = DEC_SCALE(*ppDecLeft) - DEC_SCALE(*ppDecRight);
4454
4455 if (!scaleAmount)
4456 return S_OK; /* Same scale */
4457
4458 if (scaleAmount > 0)
4459 {
4460 decTemp = *(*ppDecRight); /* Left is bigger - scale the right hand side */
4461 *ppDecRight = pDecOut;
4462 }
4463 else
4464 {
4465 decTemp = *(*ppDecLeft); /* Right is bigger - scale the left hand side */
4466 *ppDecLeft = pDecOut;
4467 i = scaleAmount = -scaleAmount;
4468 }
4469
4470 if (DEC_SCALE(&decTemp) + scaleAmount > DEC_MAX_SCALE)
4471 return DISP_E_OVERFLOW; /* Can't scale up */
4472
4473 /* Multiply up the value to be scaled by the correct amount */
4474 while (SUCCEEDED(hRet) && i--)
4475 {
4476 /* Note we are multiplying by a value with a scale of 0, so we don't recurse */
4477 hRet = VarDecMul(&decTemp, &scaleFactor, pDecOut);
4478 decTemp = *pDecOut;
4479 }
4480 DEC_SCALE(pDecOut) += scaleAmount; /* Set the new scale */
4481 return hRet;
4482 }
4483
4484 /* Add two unsigned 32 bit values with overflow */
4485 static ULONG VARIANT_Add(ULONG ulLeft, ULONG ulRight, ULONG* pulHigh)
4486 {
4487 ULARGE_INTEGER ul64;
4488
4489 ul64.QuadPart = (ULONG64)ulLeft + (ULONG64)ulRight + (ULONG64)*pulHigh;
4490 *pulHigh = ul64.u.HighPart;
4491 return ul64.u.LowPart;
4492 }
4493
4494 /* Subtract two unsigned 32 bit values with underflow */
4495 static ULONG VARIANT_Sub(ULONG ulLeft, ULONG ulRight, ULONG* pulHigh)
4496 {
4497 int invert = 0;
4498 ULARGE_INTEGER ul64;
4499
4500 ul64.QuadPart = (LONG64)ulLeft - (ULONG64)ulRight;
4501 if (ulLeft < ulRight)
4502 invert = 1;
4503
4504 if (ul64.QuadPart > (ULONG64)*pulHigh)
4505 ul64.QuadPart -= (ULONG64)*pulHigh;
4506 else
4507 {
4508 ul64.QuadPart -= (ULONG64)*pulHigh;
4509 invert = 1;
4510 }
4511 if (invert)
4512 ul64.u.HighPart = -ul64.u.HighPart ;
4513
4514 *pulHigh = ul64.u.HighPart;
4515 return ul64.u.LowPart;
4516 }
4517
4518 /* Multiply two unsigned 32 bit values with overflow */
4519 static ULONG VARIANT_Mul(ULONG ulLeft, ULONG ulRight, ULONG* pulHigh)
4520 {
4521 ULARGE_INTEGER ul64;
4522
4523 ul64.QuadPart = (ULONG64)ulLeft * (ULONG64)ulRight + (ULONG64)*pulHigh;
4524 *pulHigh = ul64.u.HighPart;
4525 return ul64.u.LowPart;
4526 }
4527
4528 /* Compare two decimals that have the same scale */
4529 static inline int VARIANT_DecCmp(const DECIMAL *pDecLeft, const DECIMAL *pDecRight)
4530 {
4531 if ( DEC_HI32(pDecLeft) < DEC_HI32(pDecRight) ||
4532 (DEC_HI32(pDecLeft) <= DEC_HI32(pDecRight) && DEC_LO64(pDecLeft) < DEC_LO64(pDecRight)))
4533 return -1;
4534 else if (DEC_HI32(pDecLeft) == DEC_HI32(pDecRight) && DEC_LO64(pDecLeft) == DEC_LO64(pDecRight))
4535 return 0;
4536 return 1;
4537 }
4538
4539 /************************************************************************
4540 * VarDecAdd (OLEAUT32.177)
4541 *
4542 * Add one DECIMAL to another.
4543 *
4544 * PARAMS
4545 * pDecLeft [I] Source
4546 * pDecRight [I] Value to add
4547 * pDecOut [O] Destination
4548 *
4549 * RETURNS
4550 * Success: S_OK.
4551 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
4552 */
4553 HRESULT WINAPI VarDecAdd(const DECIMAL* pDecLeft, const DECIMAL* pDecRight, DECIMAL* pDecOut)
4554 {
4555 HRESULT hRet;
4556 DECIMAL scaled;
4557
4558 hRet = VARIANT_DecScale(&pDecLeft, &pDecRight, &scaled);
4559
4560 if (SUCCEEDED(hRet))
4561 {
4562 /* Our decimals now have the same scale, we can add them as 96 bit integers */
4563 ULONG overflow = 0;
4564 BYTE sign = DECIMAL_POS;
4565 int cmp;
4566
4567 /* Correct for the sign of the result */
4568 if (DEC_SIGN(pDecLeft) && DEC_SIGN(pDecRight))
4569 {
4570 /* -x + -y : Negative */
4571 sign = DECIMAL_NEG;
4572 goto VarDecAdd_AsPositive;
4573 }
4574 else if (DEC_SIGN(pDecLeft) && !DEC_SIGN(pDecRight))
4575 {
4576 cmp = VARIANT_DecCmp(pDecLeft, pDecRight);
4577
4578 /* -x + y : Negative if x > y */
4579 if (cmp > 0)
4580 {
4581 sign = DECIMAL_NEG;
4582 VarDecAdd_AsNegative:
4583 DEC_LO32(pDecOut) = VARIANT_Sub(DEC_LO32(pDecLeft), DEC_LO32(pDecRight), &overflow);
4584 DEC_MID32(pDecOut) = VARIANT_Sub(DEC_MID32(pDecLeft), DEC_MID32(pDecRight), &overflow);
4585 DEC_HI32(pDecOut) = VARIANT_Sub(DEC_HI32(pDecLeft), DEC_HI32(pDecRight), &overflow);
4586 }
4587 else
4588 {
4589 VarDecAdd_AsInvertedNegative:
4590 DEC_LO32(pDecOut) = VARIANT_Sub(DEC_LO32(pDecRight), DEC_LO32(pDecLeft), &overflow);
4591 DEC_MID32(pDecOut) = VARIANT_Sub(DEC_MID32(pDecRight), DEC_MID32(pDecLeft), &overflow);
4592 DEC_HI32(pDecOut) = VARIANT_Sub(DEC_HI32(pDecRight), DEC_HI32(pDecLeft), &overflow);
4593 }
4594 }
4595 else if (!DEC_SIGN(pDecLeft) && DEC_SIGN(pDecRight))
4596 {
4597 cmp = VARIANT_DecCmp(pDecLeft, pDecRight);
4598
4599 /* x + -y : Negative if x <= y */
4600 if (cmp <= 0)
4601 {
4602 sign = DECIMAL_NEG;
4603 goto VarDecAdd_AsInvertedNegative;
4604 }
4605 goto VarDecAdd_AsNegative;
4606 }
4607 else
4608 {
4609 /* x + y : Positive */
4610 VarDecAdd_AsPositive:
4611 DEC_LO32(pDecOut) = VARIANT_Add(DEC_LO32(pDecLeft), DEC_LO32(pDecRight), &overflow);
4612 DEC_MID32(pDecOut) = VARIANT_Add(DEC_MID32(pDecLeft), DEC_MID32(pDecRight), &overflow);
4613 DEC_HI32(pDecOut) = VARIANT_Add(DEC_HI32(pDecLeft), DEC_HI32(pDecRight), &overflow);
4614 }
4615
4616 if (overflow)
4617 return DISP_E_OVERFLOW; /* overflowed */
4618
4619 DEC_SCALE(pDecOut) = DEC_SCALE(pDecLeft);
4620 DEC_SIGN(pDecOut) = sign;
4621 }
4622 return hRet;
4623 }
4624
4625 /* translate from external DECIMAL format into an internal representation */
4626 static void VARIANT_DIFromDec(const DECIMAL * from, VARIANT_DI * to)
4627 {
4628 to->scale = DEC_SCALE(from);
4629 to->sign = DEC_SIGN(from) ? 1 : 0;
4630
4631 to->bitsnum[0] = DEC_LO32(from);
4632 to->bitsnum[1] = DEC_MID32(from);
4633 to->bitsnum[2] = DEC_HI32(from);
4634 }
4635
4636 static void VARIANT_DecFromDI(const VARIANT_DI * from, DECIMAL * to)
4637 {
4638 if (from->sign) {
4639 DEC_SIGNSCALE(to) = SIGNSCALE(DECIMAL_NEG, from->scale);
4640 } else {
4641 DEC_SIGNSCALE(to) = SIGNSCALE(DECIMAL_POS, from->scale);
4642 }
4643
4644 DEC_LO32(to) = from->bitsnum[0];
4645 DEC_MID32(to) = from->bitsnum[1];
4646 DEC_HI32(to) = from->bitsnum[2];
4647 }
4648
4649 /* clear an internal representation of a DECIMAL */
4650 static void VARIANT_DI_clear(VARIANT_DI * i)
4651 {
4652 memset(i, 0, sizeof(VARIANT_DI));
4653 }
4654
4655 /* divide the (unsigned) number stored in p (LSB) by a byte value (<= 0xff). Any nonzero
4656 size is supported. The value in p is replaced by the quotient of the division, and
4657 the remainder is returned as a result. This routine is most often used with a divisor
4658 of 10 in order to scale up numbers, and in the DECIMAL->string conversion.
4659 */
4660 static unsigned char VARIANT_int_divbychar(DWORD * p, unsigned int n, unsigned char divisor)
4661 {
4662 if (divisor == 0) {
4663 /* division by 0 */
4664 return 0xFF;
4665 } else if (divisor == 1) {
4666 /* dividend remains unchanged */
4667 return 0;
4668 } else {
4669 unsigned char remainder = 0;
4670 ULONGLONG iTempDividend;
4671 signed int i;
4672
4673 for (i = n - 1; i >= 0 && !p[i]; i--); /* skip leading zeros */
4674 for (; i >= 0; i--) {
4675 iTempDividend = ((ULONGLONG)remainder << 32) + p[i];
4676 remainder = iTempDividend % divisor;
4677 p[i] = iTempDividend / divisor;
4678 }
4679
4680 return remainder;
4681 }
4682 }
4683
4684 /* check to test if encoded number is a zero. Returns 1 if zero, 0 for nonzero */
4685 static int VARIANT_int_iszero(const DWORD * p, unsigned int n)
4686 {
4687 for (; n > 0; n--) if (*p++ != 0) return 0;
4688 return 1;
4689 }
4690
4691 /* multiply two DECIMALS, without changing either one, and place result in third
4692 parameter. Result is normalized when scale is > 0. Attempts to remove significant
4693 digits when scale > 0 in order to fit an overflowing result. Final overflow
4694 flag is returned.
4695 */
4696 static int VARIANT_DI_mul(const VARIANT_DI * a, const VARIANT_DI * b, VARIANT_DI * result)
4697 {
4698 int r_overflow = 0;
4699 DWORD running[6];
4700 signed int mulstart;
4701
4702 VARIANT_DI_clear(result);
4703 result->sign = (a->sign ^ b->sign) ? 1 : 0;
4704
4705 /* Multiply 128-bit operands into a (max) 256-bit result. The scale
4706 of the result is formed by adding the scales of the operands.
4707 */
4708 result->scale = a->scale + b->scale;
4709 memset(running, 0, sizeof(running));
4710
4711 /* count number of leading zero-bytes in operand A */
4712 for (mulstart = sizeof(a->bitsnum)/sizeof(DWORD) - 1; mulstart >= 0 && !a->bitsnum[mulstart]; mulstart--);
4713 if (mulstart < 0) {
4714 /* result is 0, because operand A is 0 */
4715 result->scale = 0;
4716 result->sign = 0;
4717 } else {
4718 unsigned char remainder = 0;
4719 int iA;
4720
4721 /* perform actual multiplication */
4722 for (iA = 0; iA <= mulstart; iA++) {
4723 ULONG iOverflowMul;
4724 int iB;
4725
4726 for (iOverflowMul = 0, iB = 0; iB < sizeof(b->bitsnum)/sizeof(DWORD); iB++) {
4727 ULONG iRV;
4728 int iR;
4729
4730 iRV = VARIANT_Mul(b->bitsnum[iB], a->bitsnum[iA], &iOverflowMul);
4731 iR = iA + iB;
4732 do {
4733 running[iR] = VARIANT_Add(running[iR], 0, &iRV);
4734 iR++;
4735 } while (iRV);
4736 }
4737 }
4738
4739 /* Too bad - native oleaut does not do this, so we should not either */
4740 #if 0
4741 /* While the result is divisible by 10, and the scale > 0, divide by 10.
4742 This operation should not lose significant digits, and gives an
4743 opportunity to reduce the possibility of overflows in future
4744 operations issued by the application.
4745 */
4746 while (result->scale > 0) {
4747 memcpy(quotient, running, sizeof(quotient));
4748 remainder = VARIANT_int_divbychar(quotient, sizeof(quotient) / sizeof(DWORD), 10);
4749 if (remainder > 0) break;
4750 memcpy(running, quotient, sizeof(quotient));
4751 result->scale--;
4752 }
4753 #endif
4754 /* While the 256-bit result overflows, and the scale > 0, divide by 10.
4755 This operation *will* lose significant digits of the result because
4756 all the factors of 10 were consumed by the previous operation.
4757 */
4758 while (result->scale > 0 && !VARIANT_int_iszero(
4759 running + sizeof(result->bitsnum) / sizeof(DWORD),
4760 (sizeof(running) - sizeof(result->bitsnum)) / sizeof(DWORD))) {
4761
4762 remainder = VARIANT_int_divbychar(running, sizeof(running) / sizeof(DWORD), 10);
4763 if (remainder > 0) WARN("losing significant digits (remainder %u)...\n", remainder);
4764 result->scale--;
4765 }
4766
4767 /* round up the result - native oleaut32 does this */
4768 if (remainder >= 5) {
4769 unsigned int i;
4770 for (remainder = 1, i = 0; i < sizeof(running)/sizeof(DWORD) && remainder; i++) {
4771 ULONGLONG digit = running[i] + 1;
4772 remainder = (digit > 0xFFFFFFFF) ? 1 : 0;
4773 running[i] = digit & 0xFFFFFFFF;
4774 }
4775 }
4776
4777 /* Signal overflow if scale == 0 and 256-bit result still overflows,
4778 and copy result bits into result structure
4779 */
4780 r_overflow = !VARIANT_int_iszero(
4781 running + sizeof(result->bitsnum)/sizeof(DWORD),
4782 (sizeof(running) - sizeof(result->bitsnum))/sizeof(DWORD));
4783 memcpy(result->bitsnum, running, sizeof(result->bitsnum));
4784 }
4785 return r_overflow;
4786 }
4787
4788 /* cast DECIMAL into string. Any scale should be handled properly. en_US locale is
4789 hardcoded (period for decimal separator, dash as negative sign). Returns 0 for
4790 success, nonzero if insufficient space in output buffer.
4791 */
4792 static int VARIANT_DI_tostringW(const VARIANT_DI * a, WCHAR * s, unsigned int n)
4793 {
4794 int overflow = 0;
4795 DWORD quotient[3];
4796 unsigned char remainder;
4797 unsigned int i;
4798
4799 /* place negative sign */
4800 if (!VARIANT_int_iszero(a->bitsnum, sizeof(a->bitsnum) / sizeof(DWORD)) && a->sign) {
4801 if (n > 0) {
4802 *s++ = '-';
4803 n--;
4804 }
4805 else overflow = 1;
4806 }
4807
4808 /* prepare initial 0 */
4809 if (!overflow) {
4810 if (n >= 2) {
4811 s[0] = '0';
4812 s[1] = '\0';
4813 } else overflow = 1;
4814 }
4815
4816 i = 0;
4817 memcpy(quotient, a->bitsnum, sizeof(a->bitsnum));
4818 while (!overflow && !VARIANT_int_iszero(quotient, sizeof(quotient) / sizeof(DWORD))) {
4819 remainder = VARIANT_int_divbychar(quotient, sizeof(quotient) / sizeof(DWORD), 10);
4820 if (i + 2 > n) {
4821 overflow = 1;
4822 } else {
4823 s[i++] = '0' + remainder;
4824 s[i] = '\0';
4825 }
4826 }
4827
4828 if (!overflow && !VARIANT_int_iszero(a->bitsnum, sizeof(a->bitsnum) / sizeof(DWORD))) {
4829
4830 /* reverse order of digits */
4831 WCHAR * x = s; WCHAR * y = s + i - 1;
4832 while (x < y) {
4833 *x ^= *y;
4834 *y ^= *x;
4835 *x++ ^= *y--;
4836 }
4837
4838 /* check for decimal point. "i" now has string length */
4839 if (i <= a->scale) {
4840 unsigned int numzeroes = a->scale + 1 - i;
4841 if (i + 1 + numzeroes >= n) {
4842 overflow = 1;
4843 } else {
4844 memmove(s + numzeroes, s, (i + 1) * sizeof(WCHAR));
4845 i += numzeroes;
4846 while (numzeroes > 0) {
4847 s[--numzeroes] = '0';
4848 }
4849 }
4850 }
4851
4852 /* place decimal point */
4853 if (a->scale > 0) {
4854 unsigned int periodpos = i - a->scale;
4855 if (i + 2 >= n) {
4856 overflow = 1;
4857 } else {
4858 memmove(s + periodpos + 1, s + periodpos, (i + 1 - periodpos) * sizeof(WCHAR));
4859 s[periodpos] = '.'; i++;
4860
4861 /* remove extra zeros at the end, if any */
4862 while (s[i - 1] == '0') s[--i] = '\0';
4863 if (s[i - 1] == '.') s[--i] = '\0';
4864 }
4865 }
4866 }
4867
4868 return overflow;
4869 }
4870
4871 /* shift the bits of a DWORD array to the left. p[0] is assumed LSB */
4872 static void VARIANT_int_shiftleft(DWORD * p, unsigned int n, unsigned int shift)
4873 {
4874 DWORD shifted;
4875 unsigned int i;
4876
4877 /* shift whole DWORDs to the left */
4878 while (shift >= 32)
4879 {
4880 memmove(p + 1, p, (n - 1) * sizeof(DWORD));
4881 *p = 0; shift -= 32;
4882 }
4883
4884 /* shift remainder (1..31 bits) */
4885 shifted = 0;
4886 if (shift > 0) for (i = 0; i < n; i++)
4887 {
4888 DWORD b;
4889 b = p[i] >> (32 - shift);
4890 p[i] = (p[i] << shift) | shifted;
4891 shifted = b;
4892 }
4893 }
4894
4895 /* add the (unsigned) numbers stored in two DWORD arrays with LSB at index 0.
4896 Value at v is incremented by the value at p. Any size is supported, provided
4897 that v is not shorter than p. Any unapplied carry is returned as a result.
4898 */
4899 static unsigned char VARIANT_int_add(DWORD * v, unsigned int nv, const DWORD * p,
4900 unsigned int np)
4901 {
4902 unsigned char carry = 0;
4903
4904 if (nv >= np) {
4905 ULONGLONG sum;
4906 unsigned int i;
4907
4908 for (i = 0; i < np; i++) {
4909 sum = (ULONGLONG)v[i]
4910 + (ULONGLONG)p[i]
4911 + (ULONGLONG)carry;
4912 v[i] = sum & 0xffffffff;
4913 carry = sum >> 32;
4914 }
4915 for (; i < nv && carry; i++) {
4916 sum = (ULONGLONG)v[i]
4917 + (ULONGLONG)carry;
4918 v[i] = sum & 0xffffffff;
4919 carry = sum >> 32;
4920 }
4921 }
4922 return carry;
4923 }
4924
4925 /* perform integral division with operand p as dividend. Parameter n indicates
4926 number of available DWORDs in divisor p, but available space in p must be
4927 actually at least 2 * n DWORDs, because the remainder of the integral
4928 division is built in the next n DWORDs past the start of the quotient. This
4929 routine replaces the dividend in p with the quotient, and appends n
4930 additional DWORDs for the remainder.
4931
4932 Thanks to Lee & Mark Atkinson for their book _Using_C_ (my very first book on
4933 C/C++ :-) where the "longhand binary division" algorithm was exposed for the
4934 source code to the VLI (Very Large Integer) division operator. This algorithm
4935 was then heavily modified by me (Alex Villacis Lasso) in order to handle
4936 variably-scaled integers such as the MS DECIMAL representation.
4937 */
4938 static void VARIANT_int_div(DWORD * p, unsigned int n, const DWORD * divisor,
4939 unsigned int dn)
4940 {
4941 unsigned int i;
4942 DWORD tempsub[8];
4943 DWORD * negdivisor = tempsub + n;
4944
4945 /* build 2s-complement of divisor */
4946 for (i = 0; i < n; i++) negdivisor[i] = (i < dn) ? ~divisor[i] : 0xFFFFFFFF;
4947 p[n] = 1;
4948 VARIANT_int_add(negdivisor, n, p + n, 1);
4949 memset(p + n, 0, n * sizeof(DWORD));
4950
4951 /* skip all leading zero DWORDs in quotient */
4952 for (i = 0; i < n && !p[n - 1]; i++) VARIANT_int_shiftleft(p, n, 32);
4953 /* i is now number of DWORDs left to process */
4954 for (i <<= 5; i < (n << 5); i++) {
4955 VARIANT_int_shiftleft(p, n << 1, 1); /* shl quotient+remainder */
4956
4957 /* trial subtraction */
4958 memcpy(tempsub, p + n, n * sizeof(DWORD));
4959 VARIANT_int_add(tempsub, n, negdivisor, n);
4960
4961 /* check whether result of subtraction was negative */
4962 if ((tempsub[n - 1] & 0x80000000) == 0) {
4963 memcpy(p + n, tempsub, n * sizeof(DWORD));
4964 p[0] |= 1;
4965 }
4966 }
4967 }
4968
4969 /* perform integral multiplication by a byte operand. Used for scaling by 10 */
4970 static unsigned char VARIANT_int_mulbychar(DWORD * p, unsigned int n, unsigned char m)
4971 {
4972 unsigned int i;
4973 ULONG iOverflowMul;
4974
4975 for (iOverflowMul = 0, i = 0; i < n; i++)
4976 p[i] = VARIANT_Mul(p[i], m, &iOverflowMul);
4977 return (unsigned char)iOverflowMul;
4978 }
4979
4980 /* increment value in A by the value indicated in B, with scale adjusting.
4981 Modifies parameters by adjusting scales. Returns 0 if addition was
4982 successful, nonzero if a parameter underflowed before it could be
4983 successfully used in the addition.
4984 */
4985 static int VARIANT_int_addlossy(
4986 DWORD * a, int * ascale, unsigned int an,
4987 DWORD * b, int * bscale, unsigned int bn)
4988 {
4989 int underflow = 0;
4990
4991 if (VARIANT_int_iszero(a, an)) {
4992 /* if A is zero, copy B into A, after removing digits */
4993 while (bn > an && !VARIANT_int_iszero(b + an, bn - an)) {
4994 VARIANT_int_divbychar(b, bn, 10);
4995 (*bscale)--;
4996 }
4997 memcpy(a, b, an * sizeof(DWORD));
4998 *ascale = *bscale;
4999 } else if (!VARIANT_int_iszero(b, bn)) {
5000 unsigned int tn = an + 1;
5001 DWORD t[5];
5002
5003 if (bn + 1 > tn) tn = bn + 1;
5004 if (*ascale != *bscale) {
5005 /* first (optimistic) try - try to scale down the one with the bigger
5006 scale, while this number is divisible by 10 */
5007 DWORD * digitchosen;
5008 unsigned int nchosen;
5009 int * scalechosen;
5010 int targetscale;
5011
5012 if (*ascale < *bscale) {
5013 targetscale = *ascale;
5014 scalechosen = bscale;
5015 digitchosen = b;
5016 nchosen = bn;
5017 } else {
5018 targetscale = *bscale;
5019 scalechosen = ascale;
5020 digitchosen = a;
5021 nchosen = an;
5022 }
5023 memset(t, 0, tn * sizeof(DWORD));
5024 memcpy(t, digitchosen, nchosen * sizeof(DWORD));
5025
5026 /* divide by 10 until target scale is reached */
5027 while (*scalechosen > targetscale) {
5028 unsigned char remainder = VARIANT_int_divbychar(t, tn, 10);
5029 if (!remainder) {
5030 (*scalechosen)--;
5031 memcpy(digitchosen, t, nchosen * sizeof(DWORD));
5032 } else break;
5033 }
5034 }
5035
5036 if (*ascale != *bscale) {
5037 DWORD * digitchosen;
5038 unsigned int nchosen;
5039 int * scalechosen;
5040 int targetscale;
5041
5042 /* try to scale up the one with the smaller scale */
5043 if (*ascale > *bscale) {
5044 targetscale = *ascale;
5045 scalechosen = bscale;
5046 digitchosen = b;
5047 nchosen = bn;
5048 } else {
5049 targetscale = *bscale;
5050 scalechosen = ascale;
5051 digitchosen = a;
5052 nchosen = an;
5053 }
5054 memset(t, 0, tn * sizeof(DWORD));
5055 memcpy(t, digitchosen, nchosen * sizeof(DWORD));
5056
5057 /* multiply by 10 until target scale is reached, or
5058 significant bytes overflow the number
5059 */
5060 while (*scalechosen < targetscale && t[nchosen] == 0) {
5061 VARIANT_int_mulbychar(t, tn, 10);
5062 if (t[nchosen] == 0) {
5063 /* still does not overflow */
5064 (*scalechosen)++;
5065 memcpy(digitchosen, t, nchosen * sizeof(DWORD));
5066 }
5067 }
5068 }
5069
5070 if (*ascale != *bscale) {
5071 /* still different? try to scale down the one with the bigger scale
5072 (this *will* lose significant digits) */
5073 DWORD * digitchosen;
5074 unsigned int nchosen;
5075 int * scalechosen;
5076 int targetscale;
5077
5078 if (*ascale < *bscale) {
5079 targetscale = *ascale;
5080 scalechosen = bscale;
5081 digitchosen = b;
5082 nchosen = bn;
5083 } else {
5084 targetscale = *bscale;
5085 scalechosen = ascale;
5086 digitchosen = a;
5087 nchosen = an;
5088 }
5089 memset(t, 0, tn * sizeof(DWORD));
5090 memcpy(t, digitchosen, nchosen * sizeof(DWORD));
5091
5092 /* divide by 10 until target scale is reached */
5093 while (*scalechosen > targetscale) {
5094 VARIANT_int_divbychar(t, tn, 10);
5095 (*scalechosen)--;
5096 memcpy(digitchosen, t, nchosen * sizeof(DWORD));
5097 }
5098 }
5099
5100 /* check whether any of the operands still has significant digits
5101 (underflow case 1)
5102 */
5103 if (VARIANT_int_iszero(a, an) || VARIANT_int_iszero(b, bn)) {
5104 underflow = 1;
5105 } else {
5106 /* at this step, both numbers have the same scale and can be added
5107 as integers. However, the result might not fit in A, so further
5108 scaling down might be necessary.
5109 */
5110 while (!underflow) {
5111 memset(t, 0, tn * sizeof(DWORD));
5112 memcpy(t, a, an * sizeof(DWORD));
5113
5114 VARIANT_int_add(t, tn, b, bn);
5115 if (VARIANT_int_iszero(t + an, tn - an)) {
5116 /* addition was successful */
5117 memcpy(a, t, an * sizeof(DWORD));
5118 break;
5119 } else {
5120 /* addition overflowed - remove significant digits
5121 from both operands and try again */
5122 VARIANT_int_divbychar(a, an, 10); (*ascale)--;
5123 VARIANT_int_divbychar(b, bn, 10); (*bscale)--;
5124 /* check whether any operand keeps significant digits after
5125 scaledown (underflow case 2)
5126 */
5127 underflow = (VARIANT_int_iszero(a, an) || VARIANT_int_iszero(b, bn));
5128 }
5129 }
5130 }
5131 }
5132 return underflow;
5133 }
5134
5135 /* perform complete DECIMAL division in the internal representation. Returns
5136 0 if the division was completed (even if quotient is set to 0), or nonzero
5137 in case of quotient overflow.
5138 */
5139 static HRESULT VARIANT_DI_div(const VARIANT_DI * dividend, const VARIANT_DI * divisor,
5140 VARIANT_DI * quotient)
5141 {
5142 HRESULT r_overflow = S_OK;
5143
5144 if (VARIANT_int_iszero(divisor->bitsnum, sizeof(divisor->bitsnum)/sizeof(DWORD))) {
5145 /* division by 0 */
5146 r_overflow = DISP_E_DIVBYZERO;
5147 } else if (VARIANT_int_iszero(dividend->bitsnum, sizeof(dividend->bitsnum)/sizeof(DWORD))) {
5148 VARIANT_DI_clear(quotient);
5149 } else {
5150 int quotientscale, remainderscale, tempquotientscale;
5151 DWORD remainderplusquotient[8];
5152 int underflow;
5153
5154 quotientscale = remainderscale = (int)dividend->scale - (int)divisor->scale;
5155 tempquotientscale = quotientscale;
5156 VARIANT_DI_clear(quotient);
5157 quotient->sign = (dividend->sign ^ divisor->sign) ? 1 : 0;
5158
5159 /* The following strategy is used for division
5160 1) if there was a nonzero remainder from previous iteration, use it as
5161 dividend for this iteration, else (for first iteration) use intended
5162 dividend
5163 2) perform integer division in temporary buffer, develop quotient in
5164 low-order part, remainder in high-order part
5165 3) add quotient from step 2 to final result, with possible loss of
5166 significant digits
5167 4) multiply integer part of remainder by 10, while incrementing the
5168 scale of the remainder. This operation preserves the intended value
5169 of the remainder.
5170 5) loop to step 1 until one of the following is true:
5171 a) remainder is zero (exact division achieved)
5172 b) addition in step 3 fails to modify bits in quotient (remainder underflow)
5173 */
5174 memset(remainderplusquotient, 0, sizeof(remainderplusquotient));
5175 memcpy(remainderplusquotient, dividend->bitsnum, sizeof(dividend->bitsnum));
5176 do {
5177 VARIANT_int_div(
5178 remainderplusquotient, 4,
5179 divisor->bitsnum, sizeof(divisor->bitsnum)/sizeof(DWORD));
5180 underflow = VARIANT_int_addlossy(
5181 quotient->bitsnum, &quotientscale, sizeof(quotient->bitsnum) / sizeof(DWORD),
5182 remainderplusquotient, &tempquotientscale, 4);
5183 VARIANT_int_mulbychar(remainderplusquotient + 4, 4, 10);
5184 memcpy(remainderplusquotient, remainderplusquotient + 4, 4 * sizeof(DWORD));
5185 tempquotientscale = ++remainderscale;
5186 } while (!underflow && !VARIANT_int_iszero(remainderplusquotient + 4, 4));
5187
5188 /* quotient scale might now be negative (extremely big number). If, so, try
5189 to multiply quotient by 10 (without overflowing), while adjusting the scale,
5190 until scale is 0. If this cannot be done, it is a real overflow.
5191 */
5192 while (r_overflow == S_OK && quotientscale < 0) {
5193 memset(remainderplusquotient, 0, sizeof(remainderplusquotient));
5194 memcpy(remainderplusquotient, quotient->bitsnum, sizeof(quotient->bitsnum));
5195 VARIANT_int_mulbychar(remainderplusquotient, sizeof(remainderplusquotient)/sizeof(DWORD), 10);
5196 if (VARIANT_int_iszero(remainderplusquotient + sizeof(quotient->bitsnum)/sizeof(DWORD),
5197 (sizeof(remainderplusquotient) - sizeof(quotient->bitsnum))/sizeof(DWORD))) {
5198 quotientscale++;
5199 memcpy(quotient->bitsnum, remainderplusquotient, sizeof(quotient->bitsnum));
5200 } else r_overflow = DISP_E_OVERFLOW;
5201 }
5202 if (r_overflow == S_OK) {
5203 if (quotientscale <= 255) quotient->scale = quotientscale;
5204 else VARIANT_DI_clear(quotient);
5205 }
5206 }
5207 return r_overflow;
5208 }
5209
5210 /* This procedure receives a VARIANT_DI with a defined mantissa and sign, but
5211 with an undefined scale, which will be assigned to (if possible). It also
5212 receives an exponent of 2. This procedure will then manipulate the mantissa
5213 and calculate a corresponding scale, so that the exponent2 value is assimilated
5214 into the VARIANT_DI and is therefore no longer necessary. Returns S_OK if
5215 successful, or DISP_E_OVERFLOW if the represented value is too big to fit into
5216 a DECIMAL. */
5217 static HRESULT VARIANT_DI_normalize(VARIANT_DI * val, int exponent2, int isDouble)
5218 {
5219 HRESULT hres = S_OK;
5220 int exponent5, exponent10;
5221
5222 /* A factor of 2^exponent2 is equivalent to (10^exponent2)/(5^exponent2), and
5223 thus equal to (5^-exponent2)*(10^exponent2). After all manipulations,
5224 exponent10 might be used to set the VARIANT_DI scale directly. However,
5225 the value of 5^-exponent5 must be assimilated into the VARIANT_DI. */
5226 exponent5 = -exponent2;
5227 exponent10 = exponent2;
5228
5229 /* Handle exponent5 > 0 */
5230 while (exponent5 > 0) {
5231 char bPrevCarryBit;
5232 char bCurrCarryBit;
5233
5234 /* In order to multiply the value represented by the VARIANT_DI by 5, it
5235 is best to multiply by 10/2. Therefore, exponent10 is incremented, and
5236 somehow the mantissa should be divided by 2. */
5237 if ((val->bitsnum[0] & 1) == 0) {
5238 /* The mantissa is divisible by 2. Therefore the division can be done
5239 without losing significant digits. */
5240 exponent10++; exponent5--;
5241
5242 /* Shift right */
5243 bPrevCarryBit = val->bitsnum[2] & 1;
5244 val->bitsnum[2] >>= 1;
5245 bCurrCarryBit = val->bitsnum[1] & 1;
5246 val->bitsnum[1] = (val->bitsnum[1] >> 1) | (bPrevCarryBit ? 0x80000000 : 0);
5247 val->bitsnum[0] = (val->bitsnum[0] >> 1) | (bCurrCarryBit ? 0x80000000 : 0);
5248 } else {
5249 /* The mantissa is NOT divisible by 2. Therefore the mantissa should
5250 be multiplied by 5, unless the multiplication overflows. */
5251 DWORD temp_bitsnum[3];
5252
5253 exponent5--;
5254
5255 memcpy(temp_bitsnum, val->bitsnum, 3 * sizeof(DWORD));
5256 if (0 == VARIANT_int_mulbychar(temp_bitsnum, 3, 5)) {
5257 /* Multiplication succeeded without overflow, so copy result back
5258 into VARIANT_DI */
5259 memcpy(val->bitsnum, temp_bitsnum, 3 * sizeof(DWORD));
5260
5261 /* Mask out 3 extraneous bits introduced by the multiply */
5262 } else {
5263 /* Multiplication by 5 overflows. The mantissa should be divided
5264 by 2, and therefore will lose significant digits. */
5265 exponent10++;
5266
5267 /* Shift right */
5268 bPrevCarryBit = val->bitsnum[2] & 1;
5269 val->bitsnum[2] >>= 1;
5270 bCurrCarryBit = val->bitsnum[1] & 1;
5271 val->bitsnum[1] = (val->bitsnum[1] >> 1) | (bPrevCarryBit ? 0x80000000 : 0);
5272 val->bitsnum[0] = (val->bitsnum[0] >> 1) | (bCurrCarryBit ? 0x80000000 : 0);
5273 }
5274 }
5275 }
5276
5277 /* Handle exponent5 < 0 */
5278 while (exponent5 < 0) {
5279 /* In order to divide the value represented by the VARIANT_DI by 5, it
5280 is best to multiply by 2/10. Therefore, exponent10 is decremented,
5281 and the mantissa should be multiplied by 2 */
5282 if ((val->bitsnum[2] & 0x80000000) == 0) {
5283 /* The mantissa can withstand a shift-left without overflowing */
5284 exponent10--; exponent5++;
5285 VARIANT_int_shiftleft(val->bitsnum, 3, 1);
5286 } else {
5287 /* The mantissa would overflow if shifted. Therefore it should be
5288 directly divided by 5. This will lose significant digits, unless
5289 by chance the mantissa happens to be divisible by 5 */
5290 exponent5++;
5291 VARIANT_int_divbychar(val->bitsnum, 3, 5);
5292 }
5293 }
5294
5295 /* At this point, the mantissa has assimilated the exponent5, but the
5296 exponent10 might not be suitable for assignment. The exponent10 must be
5297 in the range [-DEC_MAX_SCALE..0], so the mantissa must be scaled up or
5298 down appropriately. */
5299 while (hres == S_OK && exponent10 > 0) {
5300 /* In order to bring exponent10 down to 0, the mantissa should be
5301 multiplied by 10 to compensate. If the exponent10 is too big, this
5302 will cause the mantissa to overflow. */
5303 if (0 == VARIANT_int_mulbychar(val->bitsnum, 3, 10)) {
5304 exponent10--;
5305 } else {
5306 hres = DISP_E_OVERFLOW;
5307 }
5308 }
5309 while (exponent10 < -DEC_MAX_SCALE) {
5310 int rem10;
5311 /* In order to bring exponent up to -DEC_MAX_SCALE, the mantissa should
5312 be divided by 10 to compensate. If the exponent10 is too small, this
5313 will cause the mantissa to underflow and become 0 */
5314 rem10 = VARIANT_int_divbychar(val->bitsnum, 3, 10);
5315 exponent10++;
5316 if (VARIANT_int_iszero(val->bitsnum, 3)) {
5317 /* Underflow, unable to keep dividing */
5318 exponent10 = 0;
5319 } else if (rem10 >= 5) {
5320 DWORD x = 1;
5321 VARIANT_int_add(val->bitsnum, 3, &x, 1);
5322 }
5323 }
5324 /* This step is required in order to remove excess bits of precision from the
5325 end of the bit representation, down to the precision guaranteed by the
5326 floating point number. */
5327 if (isDouble) {
5328 while (exponent10 < 0 && (val->bitsnum[2] != 0 || (val->bitsnum[2] == 0 && (val->bitsnum[1] & 0xFFE00000) != 0))) {
5329 int rem10;
5330
5331 rem10 = VARIANT_int_divbychar(val->bitsnum, 3, 10);
5332 exponent10++;
5333 if (rem10 >= 5) {
5334 DWORD x = 1;
5335 VARIANT_int_add(val->bitsnum, 3, &x, 1);
5336 }
5337 }
5338 } else {
5339 while (exponent10 < 0 && (val->bitsnum[2] != 0 || val->bitsnum[1] != 0 ||
5340 (val->bitsnum[2] == 0 && val->bitsnum[1] == 0 && (val->bitsnum[0] & 0xFF000000) != 0))) {
5341 int rem10;
5342
5343 rem10 = VARIANT_int_divbychar(val->bitsnum, 3, 10);
5344 exponent10++;
5345 if (rem10 >= 5) {
5346 DWORD x = 1;
5347 VARIANT_int_add(val->bitsnum, 3, &x, 1);
5348 }
5349 }
5350 }
5351 /* Remove multiples of 10 from the representation */
5352 while (exponent10 < 0) {
5353 DWORD temp_bitsnum[3];
5354
5355 memcpy(temp_bitsnum, val->bitsnum, 3 * sizeof(DWORD));
5356 if (0 == VARIANT_int_divbychar(temp_bitsnum, 3, 10)) {
5357 exponent10++;
5358 memcpy(val->bitsnum, temp_bitsnum, 3 * sizeof(DWORD));
5359 } else break;
5360 }
5361
5362 /* Scale assignment */
5363 if (hres == S_OK) val->scale = -exponent10;
5364
5365 return hres;
5366 }
5367
5368 typedef union
5369 {
5370 struct
5371 {
5372 unsigned int m : 23;
5373 unsigned int exp_bias : 8;
5374 unsigned int sign : 1;
5375 } i;
5376 float f;
5377 } R4_FIELDS;
5378
5379 /* Convert a 32-bit floating point number into a DECIMAL, without using an
5380 intermediate string step. */
5381 static HRESULT VARIANT_DI_FromR4(float source, VARIANT_DI * dest)
5382 {
5383 HRESULT hres = S_OK;
5384 R4_FIELDS fx;
5385
5386 fx.f = source;
5387
5388 /* Detect special cases */
5389 if (fx.i.m == 0 && fx.i.exp_bias == 0) {
5390 /* Floating-point zero */
5391 VARIANT_DI_clear(dest);
5392 } else if (fx.i.m == 0 && fx.i.exp_bias == 0xFF) {
5393 /* Floating-point infinity */
5394 hres = DISP_E_OVERFLOW;
5395 } else if (fx.i.exp_bias == 0xFF) {
5396 /* Floating-point NaN */
5397 hres = DISP_E_BADVARTYPE;
5398 } else {
5399 int exponent2;
5400 VARIANT_DI_clear(dest);
5401
5402 exponent2 = fx.i.exp_bias - 127; /* Get unbiased exponent */
5403 dest->sign = fx.i.sign; /* Sign is simply copied */
5404
5405 /* Copy significant bits to VARIANT_DI mantissa */
5406 dest->bitsnum[0] = fx.i.m;
5407 dest->bitsnum[0] &= 0x007FFFFF;
5408 if (fx.i.exp_bias == 0) {
5409 /* Denormalized number - correct exponent */
5410 exponent2++;
5411 } else {
5412 /* Add hidden bit to mantissa */
5413 dest->bitsnum[0] |= 0x00800000;
5414 }
5415
5416 /* The act of copying a FP mantissa as integer bits is equivalent to
5417 shifting left the mantissa 23 bits. The exponent2 is reduced to
5418 compensate. */
5419 exponent2 -= 23;
5420
5421 hres = VARIANT_DI_normalize(dest, exponent2, 0);
5422 }
5423
5424 return hres;
5425 }
5426
5427 typedef union
5428 {
5429 struct
5430 {
5431 unsigned int m_lo : 32; /* 52 bits of precision */
5432 unsigned int m_hi : 20;
5433 unsigned int exp_bias : 11; /* bias == 1023 */
5434 unsigned int sign : 1;
5435 } i;
5436 double d;
5437 } R8_FIELDS;
5438
5439 /* Convert a 64-bit floating point number into a DECIMAL, without using an
5440 intermediate string step. */
5441 static HRESULT VARIANT_DI_FromR8(double source, VARIANT_DI * dest)
5442 {
5443 HRESULT hres = S_OK;
5444 R8_FIELDS fx;
5445
5446 fx.d = source;
5447
5448 /* Detect special cases */
5449 if (fx.i.m_lo == 0 && fx.i.m_hi == 0 && fx.i.exp_bias == 0) {
5450 /* Floating-point zero */
5451 VARIANT_DI_clear(dest);
5452 } else if (fx.i.m_lo == 0 && fx.i.m_hi == 0 && fx.i.exp_bias == 0x7FF) {
5453 /* Floating-point infinity */
5454 hres = DISP_E_OVERFLOW;
5455 } else if (fx.i.exp_bias == 0x7FF) {
5456 /* Floating-point NaN */
5457 hres = DISP_E_BADVARTYPE;
5458 } else {
5459 int exponent2;
5460 VARIANT_DI_clear(dest);
5461
5462 exponent2 = fx.i.exp_bias - 1023; /* Get unbiased exponent */
5463 dest->sign = fx.i.sign; /* Sign is simply copied */
5464
5465 /* Copy significant bits to VARIANT_DI mantissa */
5466 dest->bitsnum[0] = fx.i.m_lo;
5467 dest->bitsnum[1] = fx.i.m_hi;
5468 dest->bitsnum[1] &= 0x000FFFFF;
5469 if (fx.i.exp_bias == 0) {
5470 /* Denormalized number - correct exponent */
5471 exponent2++;
5472 } else {
5473 /* Add hidden bit to mantissa */
5474 dest->bitsnum[1] |= 0x00100000;
5475 }
5476
5477 /* The act of copying a FP mantissa as integer bits is equivalent to
5478 shifting left the mantissa 52 bits. The exponent2 is reduced to
5479 compensate. */
5480 exponent2 -= 52;
5481
5482 hres = VARIANT_DI_normalize(dest, exponent2, 1);
5483 }
5484
5485 return hres;
5486 }
5487
5488 /************************************************************************
5489 * VarDecDiv (OLEAUT32.178)
5490 *
5491 * Divide one DECIMAL by another.
5492 *
5493 * PARAMS
5494 * pDecLeft [I] Source
5495 * pDecRight [I] Value to divide by
5496 * pDecOut [O] Destination
5497 *
5498 * RETURNS
5499 * Success: S_OK.
5500 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
5501 */
5502 HRESULT WINAPI VarDecDiv(const DECIMAL* pDecLeft, const DECIMAL* pDecRight, DECIMAL* pDecOut)
5503 {
5504 HRESULT hRet = S_OK;
5505 VARIANT_DI di_left, di_right, di_result;
5506 HRESULT divresult;
5507
5508 if (!pDecLeft || !pDecRight || !pDecOut) return E_INVALIDARG;
5509
5510 VARIANT_DIFromDec(pDecLeft, &di_left);
5511 VARIANT_DIFromDec(pDecRight, &di_right);
5512 divresult = VARIANT_DI_div(&di_left, &di_right, &di_result);
5513 if (divresult != S_OK)
5514 {
5515 /* division actually overflowed */
5516 hRet = divresult;
5517 }
5518 else
5519 {
5520 hRet = S_OK;
5521
5522 if (di_result.scale > DEC_MAX_SCALE)
5523 {
5524 unsigned char remainder = 0;
5525
5526 /* division underflowed. In order to comply with the MSDN
5527 specifications for DECIMAL ranges, some significant digits
5528 must be removed
5529 */
5530 WARN("result scale is %u, scaling (with loss of significant digits)...\n",
5531 di_result.scale);
5532 while (di_result.scale > DEC_MAX_SCALE &&
5533 !VARIANT_int_iszero(di_result.bitsnum, sizeof(di_result.bitsnum) / sizeof(DWORD)))
5534 {
5535 remainder = VARIANT_int_divbychar(di_result.bitsnum, sizeof(di_result.bitsnum) / sizeof(DWORD), 10);
5536 di_result.scale--;
5537 }
5538 if (di_result.scale > DEC_MAX_SCALE)
5539 {
5540 WARN("result underflowed, setting to 0\n");
5541 di_result.scale = 0;
5542 di_result.sign = 0;
5543 }
5544 else if (remainder >= 5) /* round up result - native oleaut32 does this */
5545 {
5546 unsigned int i;
5547 for (remainder = 1, i = 0; i < sizeof(di_result.bitsnum) / sizeof(DWORD) && remainder; i++) {
5548 ULONGLONG digit = di_result.bitsnum[i] + 1;
5549 remainder = (digit > 0xFFFFFFFF) ? 1 : 0;
5550 di_result.bitsnum[i] = digit & 0xFFFFFFFF;
5551 }
5552 }
5553 }
5554 VARIANT_DecFromDI(&di_result, pDecOut);
5555 }
5556 return hRet;
5557 }
5558
5559 /************************************************************************
5560 * VarDecMul (OLEAUT32.179)
5561 *
5562 * Multiply one DECIMAL by another.
5563 *
5564 * PARAMS
5565 * pDecLeft [I] Source
5566 * pDecRight [I] Value to multiply by
5567 * pDecOut [O] Destination
5568 *
5569 * RETURNS
5570 * Success: S_OK.
5571 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
5572 */
5573 HRESULT WINAPI VarDecMul(const DECIMAL* pDecLeft, const DECIMAL* pDecRight, DECIMAL* pDecOut)
5574 {
5575 HRESULT hRet = S_OK;
5576 VARIANT_DI di_left, di_right, di_result;
5577 int mulresult;
5578
5579 VARIANT_DIFromDec(pDecLeft, &di_left);
5580 VARIANT_DIFromDec(pDecRight, &di_right);
5581 mulresult = VARIANT_DI_mul(&di_left, &di_right, &di_result);
5582 if (mulresult)
5583 {
5584 /* multiplication actually overflowed */
5585 hRet = DISP_E_OVERFLOW;
5586 }
5587 else
5588 {
5589 if (di_result.scale > DEC_MAX_SCALE)
5590 {
5591 /* multiplication underflowed. In order to comply with the MSDN
5592 specifications for DECIMAL ranges, some significant digits
5593 must be removed
5594 */
5595 WARN("result scale is %u, scaling (with loss of significant digits)...\n",
5596 di_result.scale);
5597 while (di_result.scale > DEC_MAX_SCALE &&
5598 !VARIANT_int_iszero(di_result.bitsnum, sizeof(di_result.bitsnum)/sizeof(DWORD)))
5599 {
5600 VARIANT_int_divbychar(di_result.bitsnum, sizeof(di_result.bitsnum)/sizeof(DWORD), 10);
5601 di_result.scale--;
5602 }
5603 if (di_result.scale > DEC_MAX_SCALE)
5604 {
5605 WARN("result underflowed, setting to 0\n");
5606 di_result.scale = 0;
5607 di_result.sign = 0;
5608 }
5609 }
5610 VARIANT_DecFromDI(&di_result, pDecOut);
5611 }
5612 return hRet;
5613 }
5614
5615 /************************************************************************
5616 * VarDecSub (OLEAUT32.181)
5617 *
5618 * Subtract one DECIMAL from another.
5619 *
5620 * PARAMS
5621 * pDecLeft [I] Source
5622 * pDecRight [I] DECIMAL to subtract from pDecLeft
5623 * pDecOut [O] Destination
5624 *
5625 * RETURNS
5626 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
5627 */
5628 HRESULT WINAPI VarDecSub(const DECIMAL* pDecLeft, const DECIMAL* pDecRight, DECIMAL* pDecOut)
5629 {
5630 DECIMAL decRight;
5631
5632 /* Implement as addition of the negative */
5633 VarDecNeg(pDecRight, &decRight);
5634 return VarDecAdd(pDecLeft, &decRight, pDecOut);
5635 }
5636
5637 /************************************************************************
5638 * VarDecAbs (OLEAUT32.182)
5639 *
5640 * Convert a DECIMAL into its absolute value.
5641 *
5642 * PARAMS
5643 * pDecIn [I] Source
5644 * pDecOut [O] Destination
5645 *
5646 * RETURNS
5647 * S_OK. This function does not fail.
5648 */
5649 HRESULT WINAPI VarDecAbs(const DECIMAL* pDecIn, DECIMAL* pDecOut)
5650 {
5651 *pDecOut = *pDecIn;
5652 DEC_SIGN(pDecOut) &= ~DECIMAL_NEG;
5653 return S_OK;
5654 }
5655
5656 /************************************************************************
5657 * VarDecFix (OLEAUT32.187)
5658 *
5659 * Return the integer portion of a DECIMAL.
5660 *
5661 * PARAMS
5662 * pDecIn [I] Source
5663 * pDecOut [O] Destination
5664 *
5665 * RETURNS
5666 * Success: S_OK.
5667 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
5668 *
5669 * NOTES
5670 * - The difference between this function and VarDecInt() is that VarDecInt() rounds
5671 * negative numbers away from 0, while this function rounds them towards zero.
5672 */
5673 HRESULT WINAPI VarDecFix(const DECIMAL* pDecIn, DECIMAL* pDecOut)
5674 {
5675 double dbl;
5676 HRESULT hr;
5677
5678 if (DEC_SIGN(pDecIn) & ~DECIMAL_NEG)
5679 return E_INVALIDARG;
5680
5681 if (!DEC_SCALE(pDecIn))
5682 {
5683 *pDecOut = *pDecIn; /* Already an integer */
5684 return S_OK;
5685 }
5686
5687 hr = VarR8FromDec(pDecIn, &dbl);
5688 if (SUCCEEDED(hr)) {
5689 LONGLONG rounded = dbl;
5690
5691 hr = VarDecFromI8(rounded, pDecOut);
5692 }
5693 return hr;
5694 }
5695
5696 /************************************************************************
5697 * VarDecInt (OLEAUT32.188)
5698 *
5699 * Return the integer portion of a DECIMAL.
5700 *
5701 * PARAMS
5702 * pDecIn [I] Source
5703 * pDecOut [O] Destination
5704 *
5705 * RETURNS
5706 * Success: S_OK.
5707 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
5708 *
5709 * NOTES
5710 * - The difference between this function and VarDecFix() is that VarDecFix() rounds
5711 * negative numbers towards 0, while this function rounds them away from zero.
5712 */
5713 HRESULT WINAPI VarDecInt(const DECIMAL* pDecIn, DECIMAL* pDecOut)
5714 {
5715 double dbl;
5716 HRESULT hr;
5717
5718 if (DEC_SIGN(pDecIn) & ~DECIMAL_NEG)
5719 return E_INVALIDARG;
5720
5721 if (!(DEC_SIGN(pDecIn) & DECIMAL_NEG) || !DEC_SCALE(pDecIn))
5722 return VarDecFix(pDecIn, pDecOut); /* The same, if +ve or no fractionals */
5723
5724 hr = VarR8FromDec(pDecIn, &dbl);
5725 if (SUCCEEDED(hr)) {
5726 LONGLONG rounded = dbl >= 0.0 ? dbl + 0.5 : dbl - 0.5;
5727
5728 hr = VarDecFromI8(rounded, pDecOut);
5729 }
5730 return hr;
5731 }
5732
5733 /************************************************************************
5734 * VarDecNeg (OLEAUT32.189)
5735 *
5736 * Change the sign of a DECIMAL.
5737 *
5738 * PARAMS
5739 * pDecIn [I] Source
5740 * pDecOut [O] Destination
5741 *
5742 * RETURNS
5743 * S_OK. This function does not fail.
5744 */
5745 HRESULT WINAPI VarDecNeg(const DECIMAL* pDecIn, DECIMAL* pDecOut)
5746 {
5747 *pDecOut = *pDecIn;
5748 DEC_SIGN(pDecOut) ^= DECIMAL_NEG;
5749 return S_OK;
5750 }
5751
5752 /************************************************************************
5753 * VarDecRound (OLEAUT32.203)
5754 *
5755 * Change the precision of a DECIMAL.
5756 *
5757 * PARAMS
5758 * pDecIn [I] Source
5759 * cDecimals [I] New number of decimals to keep
5760 * pDecOut [O] Destination
5761 *
5762 * RETURNS
5763 * Success: S_OK. pDecOut contains the rounded value.
5764 * Failure: E_INVALIDARG if any argument is invalid.
5765 */
5766 HRESULT WINAPI VarDecRound(const DECIMAL* pDecIn, int cDecimals, DECIMAL* pDecOut)
5767 {
5768 if (cDecimals < 0 || (DEC_SIGN(pDecIn) & ~DECIMAL_NEG) || DEC_SCALE(pDecIn) > DEC_MAX_SCALE)
5769 return E_INVALIDARG;
5770
5771 if (cDecimals >= DEC_SCALE(pDecIn))
5772 {
5773 *pDecOut = *pDecIn; /* More precision than we have */
5774 return S_OK;
5775 }
5776
5777 FIXME("semi-stub!\n");
5778
5779 return DISP_E_OVERFLOW;
5780 }
5781
5782 /************************************************************************
5783 * VarDecCmp (OLEAUT32.204)
5784 *
5785 * Compare two DECIMAL values.
5786 *
5787 * PARAMS
5788 * pDecLeft [I] Source
5789 * pDecRight [I] Value to compare
5790 *
5791 * RETURNS
5792 * Success: VARCMP_LT, VARCMP_EQ or VARCMP_GT indicating that pDecLeft
5793 * is less than, equal to or greater than pDecRight respectively.
5794 * Failure: DISP_E_OVERFLOW, if overflow occurs during the comparison
5795 */
5796 HRESULT WINAPI VarDecCmp(const DECIMAL* pDecLeft, const DECIMAL* pDecRight)
5797 {
5798 HRESULT hRet;
5799 DECIMAL result;
5800
5801 if (!pDecLeft || !pDecRight)
5802 return VARCMP_NULL;
5803
5804 if ((!(DEC_SIGN(pDecLeft) & DECIMAL_NEG)) && (DEC_SIGN(pDecRight) & DECIMAL_NEG) &&
5805 (DEC_HI32(pDecLeft) | DEC_MID32(pDecLeft) | DEC_LO32(pDecLeft)))
5806 return VARCMP_GT;
5807 else if ((DEC_SIGN(pDecLeft) & DECIMAL_NEG) && (!(DEC_SIGN(pDecRight) & DECIMAL_NEG)) &&
5808 (DEC_HI32(pDecLeft) | DEC_MID32(pDecLeft) | DEC_LO32(pDecLeft)))
5809 return VARCMP_LT;
5810
5811 /* Subtract right from left, and compare the result to 0 */
5812 hRet = VarDecSub(pDecLeft, pDecRight, &result);
5813
5814 if (SUCCEEDED(hRet))
5815 {
5816 int non_zero = DEC_HI32(&result) | DEC_MID32(&result) | DEC_LO32(&result);
5817
5818 if ((DEC_SIGN(&result) & DECIMAL_NEG) && non_zero)
5819 hRet = (HRESULT)VARCMP_LT;
5820 else if (non_zero)
5821 hRet = (HRESULT)VARCMP_GT;
5822 else
5823 hRet = (HRESULT)VARCMP_EQ;
5824 }
5825 return hRet;
5826 }
5827
5828 /************************************************************************
5829 * VarDecCmpR8 (OLEAUT32.298)
5830 *
5831 * Compare a DECIMAL to a double
5832 *
5833 * PARAMS
5834 * pDecLeft [I] DECIMAL Source
5835 * dblRight [I] double to compare to pDecLeft
5836 *
5837 * RETURNS
5838 * Success: VARCMP_LT, VARCMP_EQ or VARCMP_GT indicating that dblRight
5839 * is less than, equal to or greater than pDecLeft respectively.
5840 * Failure: DISP_E_OVERFLOW, if overflow occurs during the comparison
5841 */
5842 HRESULT WINAPI VarDecCmpR8(const DECIMAL* pDecLeft, double dblRight)
5843 {
5844 HRESULT hRet;
5845 DECIMAL decRight;
5846
5847 hRet = VarDecFromR8(dblRight, &decRight);
5848
5849 if (SUCCEEDED(hRet))
5850 hRet = VarDecCmp(pDecLeft, &decRight);
5851
5852 return hRet;
5853 }
5854
5855 /* BOOL
5856 */
5857
5858 /************************************************************************
5859 * VarBoolFromUI1 (OLEAUT32.118)
5860 *
5861 * Convert a VT_UI1 to a VT_BOOL.
5862 *
5863 * PARAMS
5864 * bIn [I] Source
5865 * pBoolOut [O] Destination
5866 *
5867 * RETURNS
5868 * S_OK.
5869 */
5870 HRESULT WINAPI VarBoolFromUI1(BYTE bIn, VARIANT_BOOL *pBoolOut)
5871 {
5872 *pBoolOut = bIn ? VARIANT_TRUE : VARIANT_FALSE;
5873 return S_OK;
5874 }
5875
5876 /************************************************************************
5877 * VarBoolFromI2 (OLEAUT32.119)
5878 *
5879 * Convert a VT_I2 to a VT_BOOL.
5880 *
5881 * PARAMS
5882 * sIn [I] Source
5883 * pBoolOut [O] Destination
5884 *
5885 * RETURNS
5886 * S_OK.
5887 */
5888 HRESULT WINAPI VarBoolFromI2(SHORT sIn, VARIANT_BOOL *pBoolOut)
5889 {
5890 *pBoolOut = sIn ? VARIANT_TRUE : VARIANT_FALSE;
5891 return S_OK;
5892 }
5893
5894 /************************************************************************
5895 * VarBoolFromI4 (OLEAUT32.120)
5896 *
5897 * Convert a VT_I4 to a VT_BOOL.
5898 *
5899 * PARAMS
5900 * sIn [I] Source
5901 * pBoolOut [O] Destination
5902 *
5903 * RETURNS
5904 * S_OK.
5905 */
5906 HRESULT WINAPI VarBoolFromI4(LONG lIn, VARIANT_BOOL *pBoolOut)
5907 {
5908 *pBoolOut = lIn ? VARIANT_TRUE : VARIANT_FALSE;
5909 return S_OK;
5910 }
5911
5912 /************************************************************************
5913 * VarBoolFromR4 (OLEAUT32.121)
5914 *
5915 * Convert a VT_R4 to a VT_BOOL.
5916 *
5917 * PARAMS
5918 * fltIn [I] Source
5919 * pBoolOut [O] Destination
5920 *
5921 * RETURNS
5922 * S_OK.
5923 */
5924 HRESULT WINAPI VarBoolFromR4(FLOAT fltIn, VARIANT_BOOL *pBoolOut)
5925 {
5926 *pBoolOut = fltIn ? VARIANT_TRUE : VARIANT_FALSE;
5927 return S_OK;
5928 }
5929
5930 /************************************************************************
5931 * VarBoolFromR8 (OLEAUT32.122)
5932 *
5933 * Convert a VT_R8 to a VT_BOOL.
5934 *
5935 * PARAMS
5936 * dblIn [I] Source
5937 * pBoolOut [O] Destination
5938 *
5939 * RETURNS
5940 * S_OK.
5941 */
5942 HRESULT WINAPI VarBoolFromR8(double dblIn, VARIANT_BOOL *pBoolOut)
5943 {
5944 *pBoolOut = dblIn ? VARIANT_TRUE : VARIANT_FALSE;
5945 return S_OK;
5946 }
5947
5948 /************************************************************************
5949 * VarBoolFromDate (OLEAUT32.123)
5950 *
5951 * Convert a VT_DATE to a VT_BOOL.
5952 *
5953 * PARAMS
5954 * dateIn [I] Source
5955 * pBoolOut [O] Destination
5956 *
5957 * RETURNS
5958 * S_OK.
5959 */
5960 HRESULT WINAPI VarBoolFromDate(DATE dateIn, VARIANT_BOOL *pBoolOut)
5961 {
5962 *pBoolOut = dateIn ? VARIANT_TRUE : VARIANT_FALSE;
5963 return S_OK;
5964 }
5965
5966 /************************************************************************
5967 * VarBoolFromCy (OLEAUT32.124)
5968 *
5969 * Convert a VT_CY to a VT_BOOL.
5970 *
5971 * PARAMS
5972 * cyIn [I] Source
5973 * pBoolOut [O] Destination
5974 *
5975 * RETURNS
5976 * S_OK.
5977 */
5978 HRESULT WINAPI VarBoolFromCy(CY cyIn, VARIANT_BOOL *pBoolOut)
5979 {
5980 *pBoolOut = cyIn.int64 ? VARIANT_TRUE : VARIANT_FALSE;
5981 return S_OK;
5982 }
5983
5984 /************************************************************************
5985 * VARIANT_GetLocalisedText [internal]
5986 *
5987 * Get a localized string from the resources
5988 *
5989 */
5990 BOOL VARIANT_GetLocalisedText(LANGID langId, DWORD dwId, WCHAR *lpszDest)
5991 {
5992 HRSRC hrsrc;
5993
5994 hrsrc = FindResourceExW( hProxyDll, (LPWSTR)RT_STRING,
5995 MAKEINTRESOURCEW((dwId >> 4) + 1), langId );
5996 if (hrsrc)
5997 {
5998 HGLOBAL hmem = LoadResource( hProxyDll, hrsrc );
5999
6000 if (hmem)
6001 {
6002 const WCHAR *p;
6003 unsigned int i;
6004
6005 p = LockResource( hmem );
6006 for (i = 0; i < (dwId & 0x0f); i++) p += *p + 1;
6007
6008 memcpy( lpszDest, p + 1, *p * sizeof(WCHAR) );
6009 lpszDest[*p] = '\0';
6010 TRACE("got %s for LANGID %08x\n", debugstr_w(lpszDest), langId);
6011 return TRUE;
6012 }
6013 }
6014 return FALSE;
6015 }
6016
6017 /************************************************************************
6018 * VarBoolFromStr (OLEAUT32.125)
6019 *
6020 * Convert a VT_BSTR to a VT_BOOL.
6021 *
6022 * PARAMS
6023 * strIn [I] Source
6024 * lcid [I] LCID for the conversion
6025 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
6026 * pBoolOut [O] Destination
6027 *
6028 * RETURNS
6029 * Success: S_OK.
6030 * Failure: E_INVALIDARG, if pBoolOut is invalid.
6031 * DISP_E_TYPEMISMATCH, if the type cannot be converted
6032 *
6033 * NOTES
6034 * - strIn will be recognised if it contains "#TRUE#" or "#FALSE#". Additionally,
6035 * it may contain (in any case mapping) the text "true" or "false".
6036 * - If dwFlags includes VAR_LOCALBOOL, then the text may also match the
6037 * localised text of "True" or "False" in the language specified by lcid.
6038 * - If none of these matches occur, the string is treated as a numeric string
6039 * and the boolean pBoolOut will be set according to whether the number is zero
6040 * or not. The dwFlags parameter is passed to VarR8FromStr() for this conversion.
6041 * - If the text is not numeric and does not match any of the above, then
6042 * DISP_E_TYPEMISMATCH is returned.
6043 */
6044 HRESULT WINAPI VarBoolFromStr(OLECHAR* strIn, LCID lcid, ULONG dwFlags, VARIANT_BOOL *pBoolOut)
6045 {
6046 /* Any VB/VBA programmers out there should recognise these strings... */
6047 static const WCHAR szFalse[] = { '#','F','A','L','S','E','#','\0' };
6048 static const WCHAR szTrue[] = { '#','T','R','U','E','#','\0' };
6049 WCHAR szBuff[64];
6050 LANGID langId = MAKELANGID(LANG_ENGLISH, SUBLANG_DEFAULT);
6051 HRESULT hRes = S_OK;
6052
6053 if (!strIn || !pBoolOut)
6054 return DISP_E_TYPEMISMATCH;
6055
6056 /* Check if we should be comparing against localised text */
6057 if (dwFlags & VAR_LOCALBOOL)
6058 {
6059 /* Convert our LCID into a usable value */
6060 lcid = ConvertDefaultLocale(lcid);
6061
6062 langId = LANGIDFROMLCID(lcid);
6063
6064 if (PRIMARYLANGID(langId) == LANG_NEUTRAL)
6065 langId = MAKELANGID(LANG_ENGLISH, SUBLANG_DEFAULT);
6066
6067 /* Note: Native oleaut32 always copies strIn and maps halfwidth characters.
6068 * I don't think this is needed unless any of the localised text strings
6069 * contain characters that can be so mapped. In the event that this is
6070 * true for a given language (possibly some Asian languages), then strIn
6071 * should be mapped here _only_ if langId is an Id for which this can occur.
6072 */
6073 }
6074
6075 /* Note that if we are not comparing against localised strings, langId
6076 * will have its default value of LANG_ENGLISH. This allows us to mimic
6077 * the native behaviour of always checking against English strings even
6078 * after we've checked for localised ones.
6079 */
6080 VarBoolFromStr_CheckLocalised:
6081 if (VARIANT_GetLocalisedText(langId, IDS_TRUE, szBuff))
6082 {
6083 /* Compare against localised strings, ignoring case */
6084 if (!strcmpiW(strIn, szBuff))
6085 {
6086 *pBoolOut = VARIANT_TRUE; /* Matched localised 'true' text */
6087 return hRes;
6088 }
6089 VARIANT_GetLocalisedText(langId, IDS_FALSE, szBuff);
6090 if (!strcmpiW(strIn, szBuff))
6091 {
6092 *pBoolOut = VARIANT_FALSE; /* Matched localised 'false' text */
6093 return hRes;
6094 }
6095 }
6096
6097 if (langId != MAKELANGID(LANG_ENGLISH, SUBLANG_DEFAULT))
6098 {
6099 /* We have checked the localised text, now check English */
6100 langId = MAKELANGID(LANG_ENGLISH, SUBLANG_DEFAULT);
6101 goto VarBoolFromStr_CheckLocalised;
6102 }
6103
6104 /* All checks against localised text have failed, try #TRUE#/#FALSE# */
6105 if (!strcmpW(strIn, szFalse))
6106 *pBoolOut = VARIANT_FALSE;
6107 else if (!strcmpW(strIn, szTrue))
6108 *pBoolOut = VARIANT_TRUE;
6109 else
6110 {
6111 double d;
6112
6113 /* If this string is a number, convert it as one */
6114 hRes = VarR8FromStr(strIn, lcid, dwFlags, &d);
6115 if (SUCCEEDED(hRes)) *pBoolOut = d ? VARIANT_TRUE : VARIANT_FALSE;
6116 }
6117 return hRes;
6118 }
6119
6120 /************************************************************************
6121 * VarBoolFromDisp (OLEAUT32.126)
6122 *
6123 * Convert a VT_DISPATCH to a VT_BOOL.
6124 *
6125 * PARAMS
6126 * pdispIn [I] Source
6127 * lcid [I] LCID for conversion
6128 * pBoolOut [O] Destination
6129 *
6130 * RETURNS
6131 * Success: S_OK.
6132 * Failure: E_INVALIDARG, if the source value is invalid
6133 * DISP_E_OVERFLOW, if the value will not fit in the destination
6134 * DISP_E_TYPEMISMATCH, if the type cannot be converted
6135 */
6136 HRESULT WINAPI VarBoolFromDisp(IDispatch* pdispIn, LCID lcid, VARIANT_BOOL *pBoolOut)
6137 {
6138 return VARIANT_FromDisp(pdispIn, lcid, pBoolOut, VT_BOOL, 0);
6139 }
6140
6141 /************************************************************************
6142 * VarBoolFromI1 (OLEAUT32.233)
6143 *
6144 * Convert a VT_I1 to a VT_BOOL.
6145 *
6146 * PARAMS
6147 * cIn [I] Source
6148 * pBoolOut [O] Destination
6149 *
6150 * RETURNS
6151 * S_OK.
6152 */
6153 HRESULT WINAPI VarBoolFromI1(signed char cIn, VARIANT_BOOL *pBoolOut)
6154 {
6155 *pBoolOut = cIn ? VARIANT_TRUE : VARIANT_FALSE;
6156 return S_OK;
6157 }
6158
6159 /************************************************************************
6160 * VarBoolFromUI2 (OLEAUT32.234)
6161 *
6162 * Convert a VT_UI2 to a VT_BOOL.
6163 *
6164 * PARAMS
6165 * usIn [I] Source
6166 * pBoolOut [O] Destination
6167 *
6168 * RETURNS
6169 * S_OK.
6170 */
6171 HRESULT WINAPI VarBoolFromUI2(USHORT usIn, VARIANT_BOOL *pBoolOut)
6172 {
6173 *pBoolOut = usIn ? VARIANT_TRUE : VARIANT_FALSE;
6174 return S_OK;
6175 }
6176
6177 /************************************************************************
6178 * VarBoolFromUI4 (OLEAUT32.235)
6179 *
6180 * Convert a VT_UI4 to a VT_BOOL.
6181 *
6182 * PARAMS
6183 * ulIn [I] Source
6184 * pBoolOut [O] Destination
6185 *
6186 * RETURNS
6187 * S_OK.
6188 */
6189 HRESULT WINAPI VarBoolFromUI4(ULONG ulIn, VARIANT_BOOL *pBoolOut)
6190 {
6191 *pBoolOut = ulIn ? VARIANT_TRUE : VARIANT_FALSE;
6192 return S_OK;
6193 }
6194
6195 /************************************************************************
6196 * VarBoolFromDec (OLEAUT32.236)
6197 *
6198 * Convert a VT_DECIMAL to a VT_BOOL.
6199 *
6200 * PARAMS
6201 * pDecIn [I] Source
6202 * pBoolOut [O] Destination
6203 *
6204 * RETURNS
6205 * Success: S_OK.
6206 * Failure: E_INVALIDARG, if pDecIn is invalid.
6207 */
6208 HRESULT WINAPI VarBoolFromDec(DECIMAL* pDecIn, VARIANT_BOOL *pBoolOut)
6209 {
6210 if (DEC_SCALE(pDecIn) > DEC_MAX_SCALE || (DEC_SIGN(pDecIn) & ~DECIMAL_NEG))
6211 return E_INVALIDARG;
6212
6213 if (DEC_HI32(pDecIn) || DEC_MID32(pDecIn) || DEC_LO32(pDecIn))
6214 *pBoolOut = VARIANT_TRUE;
6215 else
6216 *pBoolOut = VARIANT_FALSE;
6217 return S_OK;
6218 }
6219
6220 /************************************************************************
6221 * VarBoolFromI8 (OLEAUT32.370)
6222 *
6223 * Convert a VT_I8 to a VT_BOOL.
6224 *
6225 * PARAMS
6226 * ullIn [I] Source
6227 * pBoolOut [O] Destination
6228 *
6229 * RETURNS
6230 * S_OK.
6231 */
6232 HRESULT WINAPI VarBoolFromI8(LONG64 llIn, VARIANT_BOOL *pBoolOut)
6233 {
6234 *pBoolOut = llIn ? VARIANT_TRUE : VARIANT_FALSE;
6235 return S_OK;
6236 }
6237
6238 /************************************************************************
6239 * VarBoolFromUI8 (OLEAUT32.371)
6240 *
6241 * Convert a VT_UI8 to a VT_BOOL.
6242 *
6243 * PARAMS
6244 * ullIn [I] Source
6245 * pBoolOut [O] Destination
6246 *
6247 * RETURNS
6248 * S_OK.
6249 */
6250 HRESULT WINAPI VarBoolFromUI8(ULONG64 ullIn, VARIANT_BOOL *pBoolOut)
6251 {
6252 *pBoolOut = ullIn ? VARIANT_TRUE : VARIANT_FALSE;
6253 return S_OK;
6254 }
6255
6256 /* BSTR
6257 */
6258
6259 /* Write a number from a UI8 and sign */
6260 static WCHAR *VARIANT_WriteNumber(ULONG64 ulVal, WCHAR* szOut)
6261 {
6262 do
6263 {
6264 WCHAR ulNextDigit = ulVal % 10;
6265
6266 *szOut-- = '0' + ulNextDigit;
6267 ulVal = (ulVal - ulNextDigit) / 10;
6268 } while (ulVal);
6269
6270 szOut++;
6271 return szOut;
6272 }
6273
6274 /* Create a (possibly localised) BSTR from a UI8 and sign */
6275 static BSTR VARIANT_MakeBstr(LCID lcid, DWORD dwFlags, WCHAR *szOut)
6276 {
6277 WCHAR szConverted[256];
6278
6279 if (dwFlags & VAR_NEGATIVE)
6280 *--szOut = '-';
6281
6282 if (dwFlags & LOCALE_USE_NLS)
6283 {
6284 /* Format the number for the locale */
6285 szConverted[0] = '\0';
6286 GetNumberFormatW(lcid,
6287 dwFlags & LOCALE_NOUSEROVERRIDE,
6288 szOut, NULL, szConverted, sizeof(szConverted)/sizeof(WCHAR));
6289 szOut = szConverted;
6290 }
6291 return SysAllocStringByteLen((LPCSTR)szOut, strlenW(szOut) * sizeof(WCHAR));
6292 }
6293
6294 /* Create a (possibly localised) BSTR from a UI8 and sign */
6295 static HRESULT VARIANT_BstrFromUInt(ULONG64 ulVal, LCID lcid, DWORD dwFlags, BSTR *pbstrOut)
6296 {
6297 WCHAR szBuff[64], *szOut = szBuff + sizeof(szBuff)/sizeof(WCHAR) - 1;
6298
6299 if (!pbstrOut)
6300 return E_INVALIDARG;
6301
6302 /* Create the basic number string */
6303 *szOut-- = '\0';
6304 szOut = VARIANT_WriteNumber(ulVal, szOut);
6305
6306 *pbstrOut = VARIANT_MakeBstr(lcid, dwFlags, szOut);
6307 TRACE("returning %s\n", debugstr_w(*pbstrOut));
6308 return *pbstrOut ? S_OK : E_OUTOFMEMORY;
6309 }
6310
6311 /******************************************************************************
6312 * VarBstrFromUI1 (OLEAUT32.108)
6313 *
6314 * Convert a VT_UI1 to a VT_BSTR.
6315 *
6316 * PARAMS
6317 * bIn [I] Source
6318 * lcid [I] LCID for the conversion
6319 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
6320 * pbstrOut [O] Destination
6321 *
6322 * RETURNS
6323 * Success: S_OK.
6324 * Failure: E_INVALIDARG, if pbstrOut is invalid.
6325 * E_OUTOFMEMORY, if memory allocation fails.
6326 */
6327 HRESULT WINAPI VarBstrFromUI1(BYTE bIn, LCID lcid, ULONG dwFlags, BSTR* pbstrOut)
6328 {
6329 return VARIANT_BstrFromUInt(bIn, lcid, dwFlags, pbstrOut);
6330 }
6331
6332 /******************************************************************************
6333 * VarBstrFromI2 (OLEAUT32.109)
6334 *
6335 * Convert a VT_I2 to a VT_BSTR.
6336 *
6337 * PARAMS
6338 * sIn [I] Source
6339 * lcid [I] LCID for the conversion
6340 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
6341 * pbstrOut [O] Destination
6342 *
6343 * RETURNS
6344 * Success: S_OK.
6345 * Failure: E_INVALIDARG, if pbstrOut is invalid.
6346 * E_OUTOFMEMORY, if memory allocation fails.
6347 */
6348 HRESULT WINAPI VarBstrFromI2(short sIn, LCID lcid, ULONG dwFlags, BSTR* pbstrOut)
6349 {
6350 ULONG64 ul64 = sIn;
6351
6352 if (sIn < 0)
6353 {
6354 ul64 = -sIn;
6355 dwFlags |= VAR_NEGATIVE;
6356 }
6357 return VARIANT_BstrFromUInt(ul64, lcid, dwFlags, pbstrOut);
6358 }
6359
6360 /******************************************************************************
6361 * VarBstrFromI4 (OLEAUT32.110)
6362 *
6363 * Convert a VT_I4 to a VT_BSTR.
6364 *
6365 * PARAMS
6366 * lIn [I] Source
6367 * lcid [I] LCID for the conversion
6368 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
6369 * pbstrOut [O] Destination
6370 *
6371 * RETURNS
6372 * Success: S_OK.
6373 * Failure: E_INVALIDARG, if pbstrOut is invalid.
6374 * E_OUTOFMEMORY, if memory allocation fails.
6375 */
6376 HRESULT WINAPI VarBstrFromI4(LONG lIn, LCID lcid, ULONG dwFlags, BSTR* pbstrOut)
6377 {
6378 ULONG64 ul64 = lIn;
6379
6380 if (lIn < 0)
6381 {
6382 ul64 = (ULONG)-lIn;
6383 dwFlags |= VAR_NEGATIVE;
6384 }
6385 return VARIANT_BstrFromUInt(ul64, lcid, dwFlags, pbstrOut);
6386 }
6387
6388 static BSTR VARIANT_BstrReplaceDecimal(const WCHAR * buff, LCID lcid, ULONG dwFlags)
6389 {
6390 BSTR bstrOut;
6391 WCHAR lpDecimalSep[16];
6392
6393 /* Native oleaut32 uses the locale-specific decimal separator even in the
6394 absence of the LOCALE_USE_NLS flag. For example, the Spanish/Latin
6395 American locales will see "one thousand and one tenth" as "1000,1"
6396 instead of "1000.1" (notice the comma). The following code checks for
6397 the need to replace the decimal separator, and if so, will prepare an
6398 appropriate NUMBERFMTW structure to do the job via GetNumberFormatW().
6399 */
6400 GetLocaleInfoW(lcid, LOCALE_SDECIMAL | (dwFlags & LOCALE_NOUSEROVERRIDE),
6401 lpDecimalSep, sizeof(lpDecimalSep) / sizeof(WCHAR));
6402 if (lpDecimalSep[0] == '.' && lpDecimalSep[1] == '\0')
6403 {
6404 /* locale is compatible with English - return original string */
6405 bstrOut = SysAllocString(buff);
6406 }
6407 else
6408 {
6409 WCHAR *p;
6410 WCHAR numbuff[256];
6411 WCHAR empty[] = {'\0'};
6412 NUMBERFMTW minFormat;
6413
6414 minFormat.NumDigits = 0;
6415 minFormat.LeadingZero = 0;
6416 minFormat.Grouping = 0;
6417 minFormat.lpDecimalSep = lpDecimalSep;
6418 minFormat.lpThousandSep = empty;
6419 minFormat.NegativeOrder = 1; /* NLS_NEG_LEFT */
6420
6421 /* count number of decimal digits in string */
6422 p = strchrW( buff, '.' );
6423 if (p) minFormat.NumDigits = strlenW(p + 1);
6424
6425 numbuff[0] = '\0';
6426 if (!GetNumberFormatW(lcid, 0, buff, &minFormat, numbuff, sizeof(numbuff) / sizeof(WCHAR)))
6427 {
6428 WARN("GetNumberFormatW() failed, returning raw number string instead\n");
6429 bstrOut = SysAllocString(buff);
6430 }
6431 else
6432 {
6433 TRACE("created minimal NLS string %s\n", debugstr_w(numbuff));
6434 bstrOut = SysAllocString(numbuff);
6435 }
6436 }
6437 return bstrOut;
6438 }
6439
6440 static HRESULT VARIANT_BstrFromReal(DOUBLE dblIn, LCID lcid, ULONG dwFlags,
6441 BSTR* pbstrOut, LPCWSTR lpszFormat)
6442 {
6443 WCHAR buff[256];
6444
6445 if (!pbstrOut)
6446 return E_INVALIDARG;
6447
6448 sprintfW( buff, lpszFormat, dblIn );
6449
6450 /* Negative zeroes are disallowed (some applications depend on this).
6451 If buff starts with a minus, and then nothing follows but zeroes
6452 and/or a period, it is a negative zero and is replaced with a
6453 canonical zero. This duplicates native oleaut32 behavior.
6454 */
6455 if (buff[0] == '-')
6456 {
6457 const WCHAR szAccept[] = {'0', '.', '\0'};
6458 if (strlenW(buff + 1) == strspnW(buff + 1, szAccept))
6459 { buff[0] = '0'; buff[1] = '\0'; }
6460 }
6461
6462 TRACE("created string %s\n", debugstr_w(buff));
6463 if (dwFlags & LOCALE_USE_NLS)
6464 {
6465 WCHAR numbuff[256];
6466
6467 /* Format the number for the locale */
6468 numbuff[0] = '\0';
6469 GetNumberFormatW(lcid, dwFlags & LOCALE_NOUSEROVERRIDE,
6470 buff, NULL, numbuff, sizeof(numbuff) / sizeof(WCHAR));
6471 TRACE("created NLS string %s\n", debugstr_w(numbuff));
6472 *pbstrOut = SysAllocString(numbuff);
6473 }
6474 else
6475 {
6476 *pbstrOut = VARIANT_BstrReplaceDecimal(buff, lcid, dwFlags);
6477 }
6478 return *pbstrOut ? S_OK : E_OUTOFMEMORY;
6479 }
6480
6481 /******************************************************************************
6482 * VarBstrFromR4 (OLEAUT32.111)
6483 *
6484 * Convert a VT_R4 to a VT_BSTR.
6485 *
6486 * PARAMS
6487 * fltIn [I] Source
6488 * lcid [I] LCID for the conversion
6489 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
6490 * pbstrOut [O] Destination
6491 *
6492 * RETURNS
6493 * Success: S_OK.
6494 * Failure: E_INVALIDARG, if pbstrOut is invalid.
6495 * E_OUTOFMEMORY, if memory allocation fails.
6496 */
6497 HRESULT WINAPI VarBstrFromR4(FLOAT fltIn, LCID lcid, ULONG dwFlags, BSTR* pbstrOut)
6498 {
6499 return VARIANT_BstrFromReal(fltIn, lcid, dwFlags, pbstrOut, szFloatFormatW);
6500 }
6501
6502 /******************************************************************************
6503 * VarBstrFromR8 (OLEAUT32.112)
6504 *
6505 * Convert a VT_R8 to a VT_BSTR.
6506 *
6507 * PARAMS
6508 * dblIn [I] Source
6509 * lcid [I] LCID for the conversion
6510 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
6511 * pbstrOut [O] Destination
6512 *
6513 * RETURNS
6514 * Success: S_OK.
6515 * Failure: E_INVALIDARG, if pbstrOut is invalid.
6516 * E_OUTOFMEMORY, if memory allocation fails.
6517 */
6518 HRESULT WINAPI VarBstrFromR8(double dblIn, LCID lcid, ULONG dwFlags, BSTR* pbstrOut)
6519 {
6520 return VARIANT_BstrFromReal(dblIn, lcid, dwFlags, pbstrOut, szDoubleFormatW);
6521 }
6522
6523 /******************************************************************************
6524 * VarBstrFromCy [OLEAUT32.113]
6525 *
6526 * Convert a VT_CY to a VT_BSTR.
6527 *
6528 * PARAMS
6529 * cyIn [I] Source
6530 * lcid [I] LCID for the conversion
6531 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
6532 * pbstrOut [O] Destination
6533 *
6534 * RETURNS
6535 * Success: S_OK.
6536 * Failure: E_INVALIDARG, if pbstrOut is invalid.
6537 * E_OUTOFMEMORY, if memory allocation fails.
6538 */
6539 HRESULT WINAPI VarBstrFromCy(CY cyIn, LCID lcid, ULONG dwFlags, BSTR *pbstrOut)
6540 {
6541 WCHAR buff[256];
6542 VARIANT_DI decVal;
6543
6544 if (!pbstrOut)
6545 return E_INVALIDARG;
6546
6547 decVal.scale = 4;
6548 decVal.sign = 0;
6549 decVal.bitsnum[0] = cyIn.s.Lo;
6550 decVal.bitsnum[1] = cyIn.s.Hi;
6551 if (cyIn.s.Hi & 0x80000000UL) {
6552 DWORD one = 1;
6553
6554 /* Negative number! */
6555 decVal.sign = 1;
6556 decVal.bitsnum[0] = ~decVal.bitsnum[0];
6557 decVal.bitsnum[1] = ~decVal.bitsnum[1];
6558 VARIANT_int_add(decVal.bitsnum, 3, &one, 1);
6559 }
6560 decVal.bitsnum[2] = 0;
6561 VARIANT_DI_tostringW(&decVal, buff, sizeof(buff)/sizeof(buff[0]));
6562
6563 if (dwFlags & LOCALE_USE_NLS)
6564 {
6565 WCHAR cybuff[256];
6566
6567 /* Format the currency for the locale */
6568 cybuff[0] = '\0';
6569 GetCurrencyFormatW(lcid, dwFlags & LOCALE_NOUSEROVERRIDE,
6570 buff, NULL, cybuff, sizeof(cybuff) / sizeof(WCHAR));
6571 *pbstrOut = SysAllocString(cybuff);
6572 }
6573 else
6574 *pbstrOut = VARIANT_BstrReplaceDecimal(buff,lcid,dwFlags);
6575
6576 return *pbstrOut ? S_OK : E_OUTOFMEMORY;
6577 }
6578
6579 /******************************************************************************
6580 * VarBstrFromDate [OLEAUT32.114]
6581 *
6582 * Convert a VT_DATE to a VT_BSTR.
6583 *
6584 * PARAMS
6585 * dateIn [I] Source
6586 * lcid [I] LCID for the conversion
6587 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
6588 * pbstrOut [O] Destination
6589 *
6590 * RETURNS
6591 * Success: S_OK.
6592 * Failure: E_INVALIDARG, if pbstrOut or dateIn is invalid.
6593 * E_OUTOFMEMORY, if memory allocation fails.
6594 */
6595 HRESULT WINAPI VarBstrFromDate(DATE dateIn, LCID lcid, ULONG dwFlags, BSTR* pbstrOut)
6596 {
6597 SYSTEMTIME st;
6598 DWORD dwFormatFlags = dwFlags & LOCALE_NOUSEROVERRIDE;
6599 WCHAR date[128], *time;
6600
6601 TRACE("(%g,0x%08x,0x%08x,%p)\n", dateIn, lcid, dwFlags, pbstrOut);
6602
6603 if (!pbstrOut || !VariantTimeToSystemTime(dateIn, &st))
6604 return E_INVALIDARG;
6605
6606 *pbstrOut = NULL;
6607
6608 if (dwFlags & VAR_CALENDAR_THAI)
6609 st.wYear += 553; /* Use the Thai buddhist calendar year */
6610 else if (dwFlags & (VAR_CALENDAR_HIJRI|VAR_CALENDAR_GREGORIAN))
6611 FIXME("VAR_CALENDAR_HIJRI/VAR_CALENDAR_GREGORIAN not handled\n");
6612
6613 if (dwFlags & LOCALE_USE_NLS)
6614 dwFlags &= ~(VAR_TIMEVALUEONLY|VAR_DATEVALUEONLY);
6615 else
6616 {
6617 double whole = dateIn < 0 ? ceil(dateIn) : floor(dateIn);
6618 double partial = dateIn - whole;
6619
6620 if (whole == 0.0)
6621 dwFlags |= VAR_TIMEVALUEONLY;
6622 else if (partial < 1e-12)
6623 dwFlags |= VAR_DATEVALUEONLY;
6624 }
6625
6626 if (dwFlags & VAR_TIMEVALUEONLY)
6627 date[0] = '\0';
6628 else
6629 if (!GetDateFormatW(lcid, dwFormatFlags|DATE_SHORTDATE, &st, NULL, date,
6630 sizeof(date)/sizeof(WCHAR)))
6631 return E_INVALIDARG;
6632
6633 if (!(dwFlags & VAR_DATEVALUEONLY))
6634 {
6635 time = date + strlenW(date);
6636 if (time != date)
6637 *time++ = ' ';
6638 if (!GetTimeFormatW(lcid, dwFormatFlags, &st, NULL, time,
6639 sizeof(date)/sizeof(WCHAR)-(time-date)))
6640 return E_INVALIDARG;
6641 }
6642
6643 *pbstrOut = SysAllocString(date);
6644 if (*pbstrOut)
6645 TRACE("returning %s\n", debugstr_w(*pbstrOut));
6646 return *pbstrOut ? S_OK : E_OUTOFMEMORY;
6647 }
6648
6649 /******************************************************************************
6650 * VarBstrFromBool (OLEAUT32.116)
6651 *
6652 * Convert a VT_BOOL to a VT_BSTR.
6653 *
6654 * PARAMS
6655 * boolIn [I] Source
6656 * lcid [I] LCID for the conversion
6657 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
6658 * pbstrOut [O] Destination
6659 *
6660 * RETURNS
6661 * Success: S_OK.
6662 * Failure: E_INVALIDARG, if pbstrOut is invalid.
6663 * E_OUTOFMEMORY, if memory allocation fails.
6664 *
6665 * NOTES
6666 * If dwFlags includes VARIANT_LOCALBOOL, this function converts to the
6667 * localised text of "True" or "False". To convert a bool into a
6668 * numeric string of "0" or "-1", use VariantChangeTypeTypeEx().
6669 */
6670 HRESULT WINAPI VarBstrFromBool(VARIANT_BOOL boolIn, LCID lcid, ULONG dwFlags, BSTR* pbstrOut)
6671 {
6672 WCHAR szBuff[64];
6673 DWORD dwResId = IDS_TRUE;
6674 LANGID langId;
6675
6676 TRACE("%d,0x%08x,0x%08x,%p\n", boolIn, lcid, dwFlags, pbstrOut);
6677
6678 if (!pbstrOut)
6679 return E_INVALIDARG;
6680
6681 /* VAR_BOOLONOFF and VAR_BOOLYESNO are internal flags used
6682 * for variant formatting */
6683 switch (dwFlags & (VAR_LOCALBOOL|VAR_BOOLONOFF|VAR_BOOLYESNO))
6684 {
6685 case VAR_BOOLONOFF:
6686 dwResId = IDS_ON;
6687 break;
6688 case VAR_BOOLYESNO:
6689 dwResId = IDS_YES;
6690 break;
6691 case VAR_LOCALBOOL:
6692 break;
6693 default:
6694 lcid = MAKELCID(MAKELANGID(LANG_ENGLISH, SUBLANG_DEFAULT),SORT_DEFAULT);
6695 }
6696
6697 lcid = ConvertDefaultLocale(lcid);
6698 langId = LANGIDFROMLCID(lcid);
6699 if (PRIMARYLANGID(langId) == LANG_NEUTRAL)
6700 langId = MAKELANGID(LANG_ENGLISH, SUBLANG_DEFAULT);
6701
6702 if (boolIn == VARIANT_FALSE)
6703 dwResId++; /* Use negative form */
6704
6705 VarBstrFromBool_GetLocalised:
6706 if (VARIANT_GetLocalisedText(langId, dwResId, szBuff))
6707 {
6708 *pbstrOut = SysAllocString(szBuff);
6709 return *pbstrOut ? S_OK : E_OUTOFMEMORY;
6710 }
6711
6712 if (langId != MAKELANGID(LANG_ENGLISH, SUBLANG_DEFAULT))
6713 {
6714 langId = MAKELANGID(LANG_ENGLISH, SUBLANG_DEFAULT);
6715 goto VarBstrFromBool_GetLocalised;
6716 }
6717
6718 /* Should never get here */
6719 WARN("Failed to load bool text!\n");
6720 return E_OUTOFMEMORY;
6721 }
6722
6723 /******************************************************************************
6724 * VarBstrFromI1 (OLEAUT32.229)
6725 *
6726 * Convert a VT_I1 to a VT_BSTR.
6727 *
6728 * PARAMS
6729 * cIn [I] Source
6730 * lcid [I] LCID for the conversion
6731 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
6732 * pbstrOut [O] Destination
6733 *
6734 * RETURNS
6735 * Success: S_OK.
6736 * Failure: E_INVALIDARG, if pbstrOut is invalid.
6737 * E_OUTOFMEMORY, if memory allocation fails.
6738 */
6739 HRESULT WINAPI VarBstrFromI1(signed char cIn, LCID lcid, ULONG dwFlags, BSTR* pbstrOut)
6740 {
6741 ULONG64 ul64 = cIn;
6742
6743 if (cIn < 0)
6744 {
6745 ul64 = -cIn;
6746 dwFlags |= VAR_NEGATIVE;
6747 }
6748 return VARIANT_BstrFromUInt(ul64, lcid, dwFlags, pbstrOut);
6749 }
6750
6751 /******************************************************************************
6752 * VarBstrFromUI2 (OLEAUT32.230)
6753 *
6754 * Convert a VT_UI2 to a VT_BSTR.
6755 *
6756 * PARAMS
6757 * usIn [I] Source
6758 * lcid [I] LCID for the conversion
6759 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
6760 * pbstrOut [O] Destination
6761 *
6762 * RETURNS
6763 * Success: S_OK.
6764 * Failure: E_INVALIDARG, if pbstrOut is invalid.
6765 * E_OUTOFMEMORY, if memory allocation fails.
6766 */
6767 HRESULT WINAPI VarBstrFromUI2(USHORT usIn, LCID lcid, ULONG dwFlags, BSTR* pbstrOut)
6768 {
6769 return VARIANT_BstrFromUInt(usIn, lcid, dwFlags, pbstrOut);
6770 }
6771
6772 /******************************************************************************
6773 * VarBstrFromUI4 (OLEAUT32.231)
6774 *
6775 * Convert a VT_UI4 to a VT_BSTR.
6776 *
6777 * PARAMS
6778 * ulIn [I] Source
6779 * lcid [I] LCID for the conversion
6780 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
6781 * pbstrOut [O] Destination
6782 *
6783 * RETURNS
6784 * Success: S_OK.
6785 * Failure: E_INVALIDARG, if pbstrOut is invalid.
6786 * E_OUTOFMEMORY, if memory allocation fails.
6787 */
6788 HRESULT WINAPI VarBstrFromUI4(ULONG ulIn, LCID lcid, ULONG dwFlags, BSTR* pbstrOut)
6789 {
6790 return VARIANT_BstrFromUInt(ulIn, lcid, dwFlags, pbstrOut);
6791 }
6792
6793 /******************************************************************************
6794 * VarBstrFromDec (OLEAUT32.232)
6795 *
6796 * Convert a VT_DECIMAL to a VT_BSTR.
6797 *
6798 * PARAMS
6799 * pDecIn [I] Source
6800 * lcid [I] LCID for the conversion
6801 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
6802 * pbstrOut [O] Destination
6803 *
6804 * RETURNS
6805 * Success: S_OK.
6806 * Failure: E_INVALIDARG, if pbstrOut is invalid.
6807 * E_OUTOFMEMORY, if memory allocation fails.
6808 */
6809 HRESULT WINAPI VarBstrFromDec(DECIMAL* pDecIn, LCID lcid, ULONG dwFlags, BSTR* pbstrOut)
6810 {
6811 WCHAR buff[256];
6812 VARIANT_DI temp;
6813
6814 if (!pbstrOut)
6815 return E_INVALIDARG;
6816
6817 VARIANT_DIFromDec(pDecIn, &temp);
6818 VARIANT_DI_tostringW(&temp, buff, 256);
6819
6820 if (dwFlags & LOCALE_USE_NLS)
6821 {
6822 WCHAR numbuff[256];
6823
6824 /* Format the number for the locale */
6825 numbuff[0] = '\0';
6826 GetNumberFormatW(lcid, dwFlags & LOCALE_NOUSEROVERRIDE,
6827 buff, NULL, numbuff, sizeof(numbuff) / sizeof(WCHAR));
6828 TRACE("created NLS string %s\n", debugstr_w(numbuff));
6829 *pbstrOut = SysAllocString(numbuff);
6830 }
6831 else
6832 {
6833 *pbstrOut = VARIANT_BstrReplaceDecimal(buff, lcid, dwFlags);
6834 }
6835
6836 TRACE("returning %s\n", debugstr_w(*pbstrOut));
6837 return *pbstrOut ? S_OK : E_OUTOFMEMORY;
6838 }
6839
6840 /************************************************************************
6841 * VarBstrFromI8 (OLEAUT32.370)
6842 *
6843 * Convert a VT_I8 to a VT_BSTR.
6844 *
6845 * PARAMS
6846 * llIn [I] Source
6847 * lcid [I] LCID for the conversion
6848 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
6849 * pbstrOut [O] Destination
6850 *
6851 * RETURNS
6852 * Success: S_OK.
6853 * Failure: E_INVALIDARG, if pbstrOut is invalid.
6854 * E_OUTOFMEMORY, if memory allocation fails.
6855 */
6856 HRESULT WINAPI VarBstrFromI8(LONG64 llIn, LCID lcid, ULONG dwFlags, BSTR* pbstrOut)
6857 {
6858 ULONG64 ul64 = llIn;
6859
6860 if (llIn < 0)
6861 {
6862 ul64 = -llIn;
6863 dwFlags |= VAR_NEGATIVE;
6864 }
6865 return VARIANT_BstrFromUInt(ul64, lcid, dwFlags, pbstrOut);
6866 }
6867
6868 /************************************************************************
6869 * VarBstrFromUI8 (OLEAUT32.371)
6870 *
6871 * Convert a VT_UI8 to a VT_BSTR.
6872 *
6873 * PARAMS
6874 * ullIn [I] Source
6875 * lcid [I] LCID for the conversion
6876 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
6877 * pbstrOut [O] Destination
6878 *
6879 * RETURNS
6880 * Success: S_OK.
6881 * Failure: E_INVALIDARG, if pbstrOut is invalid.
6882 * E_OUTOFMEMORY, if memory allocation fails.
6883 */
6884 HRESULT WINAPI VarBstrFromUI8(ULONG64 ullIn, LCID lcid, ULONG dwFlags, BSTR* pbstrOut)
6885 {
6886 return VARIANT_BstrFromUInt(ullIn, lcid, dwFlags, pbstrOut);
6887 }
6888
6889 /************************************************************************
6890 * VarBstrFromDisp (OLEAUT32.115)
6891 *
6892 * Convert a VT_DISPATCH to a BSTR.
6893 *
6894 * PARAMS
6895 * pdispIn [I] Source
6896 * lcid [I] LCID for conversion
6897 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
6898 * pbstrOut [O] Destination
6899 *
6900 * RETURNS
6901 * Success: S_OK.
6902 * Failure: E_INVALIDARG, if the source value is invalid
6903 * DISP_E_TYPEMISMATCH, if the type cannot be converted
6904 */
6905 HRESULT WINAPI VarBstrFromDisp(IDispatch* pdispIn, LCID lcid, ULONG dwFlags, BSTR* pbstrOut)
6906 {
6907 return VARIANT_FromDisp(pdispIn, lcid, pbstrOut, VT_BSTR, dwFlags);
6908 }
6909
6910 /**********************************************************************
6911 * VarBstrCat (OLEAUT32.313)
6912 *
6913 * Concatenate two BSTR values.
6914 *
6915 * PARAMS
6916 * pbstrLeft [I] Source
6917 * pbstrRight [I] Value to concatenate
6918 * pbstrOut [O] Destination
6919 *
6920 * RETURNS
6921 * Success: S_OK.
6922 * Failure: E_INVALIDARG, if pbstrOut is invalid.
6923 * E_OUTOFMEMORY, if memory allocation fails.
6924 */
6925 HRESULT WINAPI VarBstrCat(BSTR pbstrLeft, BSTR pbstrRight, BSTR *pbstrOut)
6926 {
6927 unsigned int lenLeft, lenRight;
6928
6929 TRACE("%s,%s,%p\n",
6930 debugstr_wn(pbstrLeft, SysStringLen(pbstrLeft)),
6931 debugstr_wn(pbstrRight, SysStringLen(pbstrRight)), pbstrOut);
6932
6933 if (!pbstrOut)
6934 return E_INVALIDARG;
6935
6936 /* use byte length here to properly handle ansi-allocated BSTRs */
6937 lenLeft = pbstrLeft ? SysStringByteLen(pbstrLeft) : 0;
6938 lenRight = pbstrRight ? SysStringByteLen(pbstrRight) : 0;
6939
6940 *pbstrOut = SysAllocStringByteLen(NULL, lenLeft + lenRight);
6941 if (!*pbstrOut)
6942 return E_OUTOFMEMORY;
6943
6944 (*pbstrOut)[0] = '\0';
6945
6946 if (pbstrLeft)
6947 memcpy(*pbstrOut, pbstrLeft, lenLeft);
6948
6949 if (pbstrRight)
6950 memcpy((CHAR*)*pbstrOut + lenLeft, pbstrRight, lenRight);
6951
6952 TRACE("%s\n", debugstr_wn(*pbstrOut, SysStringLen(*pbstrOut)));
6953 return S_OK;
6954 }
6955
6956 /**********************************************************************
6957 * VarBstrCmp (OLEAUT32.314)
6958 *
6959 * Compare two BSTR values.
6960 *
6961 * PARAMS
6962 * pbstrLeft [I] Source
6963 * pbstrRight [I] Value to compare
6964 * lcid [I] LCID for the comparison
6965 * dwFlags [I] Flags to pass directly to CompareStringW().
6966 *
6967 * RETURNS
6968 * VARCMP_LT, VARCMP_EQ or VARCMP_GT indicating that pbstrLeft is less
6969 * than, equal to or greater than pbstrRight respectively.
6970 *
6971 * NOTES
6972 * VARCMP_NULL is NOT returned if either string is NULL unlike MSDN
6973 * states. A NULL BSTR pointer is equivalent to an empty string.
6974 * If LCID is equal to 0, a byte by byte comparison is performed.
6975 */
6976 HRESULT WINAPI VarBstrCmp(BSTR pbstrLeft, BSTR pbstrRight, LCID lcid, DWORD dwFlags)
6977 {
6978 HRESULT hres;
6979 int ret;
6980
6981 TRACE("%s,%s,%d,%08x\n",
6982 debugstr_wn(pbstrLeft, SysStringLen(pbstrLeft)),
6983 debugstr_wn(pbstrRight, SysStringLen(pbstrRight)), lcid, dwFlags);
6984
6985 if (!pbstrLeft || !*pbstrLeft)
6986 {
6987 if (pbstrRight && *pbstrRight)
6988 return VARCMP_LT;
6989 }
6990 else if (!pbstrRight || !*pbstrRight)
6991 return VARCMP_GT;
6992
6993 if (lcid == 0)
6994 {
6995 unsigned int lenLeft = SysStringByteLen(pbstrLeft);
6996 unsigned int lenRight = SysStringByteLen(pbstrRight);
6997 ret = memcmp(pbstrLeft, pbstrRight, min(lenLeft, lenRight));
6998 if (ret < 0)
6999 return VARCMP_LT;
7000 if (ret > 0)
7001 return VARCMP_GT;
7002 if (lenLeft < lenRight)
7003 return VARCMP_LT;
7004 if (lenLeft > lenRight)
7005 return VARCMP_GT;
7006 return VARCMP_EQ;
7007 }
7008 else
7009 {
7010 unsigned int lenLeft = SysStringLen(pbstrLeft);
7011 unsigned int lenRight = SysStringLen(pbstrRight);
7012
7013 if (lenLeft == 0 || lenRight == 0)
7014 {
7015 if (lenLeft == 0 && lenRight == 0) return VARCMP_EQ;
7016 return lenLeft < lenRight ? VARCMP_LT : VARCMP_GT;
7017 }
7018
7019 hres = CompareStringW(lcid, dwFlags, pbstrLeft, lenLeft,
7020 pbstrRight, lenRight) - CSTR_LESS_THAN;
7021 TRACE("%d\n", hres);
7022 return hres;
7023 }
7024 }
7025
7026 /*
7027 * DATE
7028 */
7029
7030 /******************************************************************************
7031 * VarDateFromUI1 (OLEAUT32.88)
7032 *
7033 * Convert a VT_UI1 to a VT_DATE.
7034 *
7035 * PARAMS
7036 * bIn [I] Source
7037 * pdateOut [O] Destination
7038 *
7039 * RETURNS
7040 * S_OK.
7041 */
7042 HRESULT WINAPI VarDateFromUI1(BYTE bIn, DATE* pdateOut)
7043 {
7044 return VarR8FromUI1(bIn, pdateOut);
7045 }
7046
7047 /******************************************************************************
7048 * VarDateFromI2 (OLEAUT32.89)
7049 *
7050 * Convert a VT_I2 to a VT_DATE.
7051 *
7052 * PARAMS
7053 * sIn [I] Source
7054 * pdateOut [O] Destination
7055 *
7056 * RETURNS
7057 * S_OK.
7058 */
7059 HRESULT WINAPI VarDateFromI2(short sIn, DATE* pdateOut)
7060 {
7061 return VarR8FromI2(sIn, pdateOut);
7062 }
7063
7064 /******************************************************************************
7065 * VarDateFromI4 (OLEAUT32.90)
7066 *
7067 * Convert a VT_I4 to a VT_DATE.
7068 *
7069 * PARAMS
7070 * lIn [I] Source
7071 * pdateOut [O] Destination
7072 *
7073 * RETURNS
7074 * S_OK.
7075 */
7076 HRESULT WINAPI VarDateFromI4(LONG lIn, DATE* pdateOut)
7077 {
7078 return VarDateFromR8(lIn, pdateOut);
7079 }
7080
7081 /******************************************************************************
7082 * VarDateFromR4 (OLEAUT32.91)
7083 *
7084 * Convert a VT_R4 to a VT_DATE.
7085 *
7086 * PARAMS
7087 * fltIn [I] Source
7088 * pdateOut [O] Destination
7089 *
7090 * RETURNS
7091 * S_OK.
7092 */
7093 HRESULT WINAPI VarDateFromR4(FLOAT fltIn, DATE* pdateOut)
7094 {
7095 return VarR8FromR4(fltIn, pdateOut);
7096 }
7097
7098 /******************************************************************************
7099 * VarDateFromR8 (OLEAUT32.92)
7100 *
7101 * Convert a VT_R8 to a VT_DATE.
7102 *
7103 * PARAMS
7104 * dblIn [I] Source
7105 * pdateOut [O] Destination
7106 *
7107 * RETURNS
7108 * S_OK.
7109 */
7110 HRESULT WINAPI VarDateFromR8(double dblIn, DATE* pdateOut)
7111 {
7112 if (dblIn <= (DATE_MIN - 1.0) || dblIn >= (DATE_MAX + 1.0)) return DISP_E_OVERFLOW;
7113 *pdateOut = (DATE)dblIn;
7114 return S_OK;
7115 }
7116
7117 /**********************************************************************
7118 * VarDateFromDisp (OLEAUT32.95)
7119 *
7120 * Convert a VT_DISPATCH to a VT_DATE.
7121 *
7122 * PARAMS
7123 * pdispIn [I] Source
7124 * lcid [I] LCID for conversion
7125 * pdateOut [O] Destination
7126 *
7127 * RETURNS
7128 * Success: S_OK.
7129 * Failure: E_INVALIDARG, if the source value is invalid
7130 * DISP_E_OVERFLOW, if the value will not fit in the destination
7131 * DISP_E_TYPEMISMATCH, if the type cannot be converted
7132 */
7133 HRESULT WINAPI VarDateFromDisp(IDispatch* pdispIn, LCID lcid, DATE* pdateOut)
7134 {
7135 return VARIANT_FromDisp(pdispIn, lcid, pdateOut, VT_DATE, 0);
7136 }
7137
7138 /******************************************************************************
7139 * VarDateFromBool (OLEAUT32.96)
7140 *
7141 * Convert a VT_BOOL to a VT_DATE.
7142 *
7143 * PARAMS
7144 * boolIn [I] Source
7145 * pdateOut [O] Destination
7146 *
7147 * RETURNS
7148 * S_OK.
7149 */
7150 HRESULT WINAPI VarDateFromBool(VARIANT_BOOL boolIn, DATE* pdateOut)
7151 {
7152 return VarR8FromBool(boolIn, pdateOut);
7153 }
7154
7155 /**********************************************************************
7156 * VarDateFromCy (OLEAUT32.93)
7157 *
7158 * Convert a VT_CY to a VT_DATE.
7159 *
7160 * PARAMS
7161 * lIn [I] Source
7162 * pdateOut [O] Destination
7163 *
7164 * RETURNS
7165 * S_OK.
7166 */
7167 HRESULT WINAPI VarDateFromCy(CY cyIn, DATE* pdateOut)
7168 {
7169 return VarR8FromCy(cyIn, pdateOut);
7170 }
7171
7172 /* Date string parsing */
7173 #define DP_TIMESEP 0x01 /* Time separator ( _must_ remain 0x1, used as a bitmask) */
7174 #define DP_DATESEP 0x02 /* Date separator */
7175 #define DP_MONTH 0x04 /* Month name */
7176 #define DP_AM 0x08 /* AM */
7177 #define DP_PM 0x10 /* PM */
7178
7179 typedef struct tagDATEPARSE
7180 {
7181 DWORD dwCount; /* Number of fields found so far (maximum 6) */
7182 DWORD dwParseFlags; /* Global parse flags (DP_ Flags above) */
7183 DWORD dwFlags[6]; /* Flags for each field */
7184 DWORD dwValues[6]; /* Value of each field */
7185 } DATEPARSE;
7186
7187 #define TIMEFLAG(i) ((dp.dwFlags[i] & DP_TIMESEP) << i)
7188
7189 #define IsLeapYear(y) (((y % 4) == 0) && (((y % 100) != 0) || ((y % 400) == 0)))
7190
7191 /* Determine if a day is valid in a given month of a given year */
7192 static BOOL VARIANT_IsValidMonthDay(DWORD day, DWORD month, DWORD year)
7193 {
7194 static const BYTE days[] = { 0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
7195
7196 if (day && month && month < 13)
7197 {
7198 if (day <= days[month] || (month == 2 && day == 29 && IsLeapYear(year)))
7199 return TRUE;
7200 }
7201 return FALSE;
7202 }
7203
7204 /* Possible orders for 3 numbers making up a date */
7205 #define ORDER_MDY 0x01
7206 #define ORDER_YMD 0x02
7207 #define ORDER_YDM 0x04
7208 #define ORDER_DMY 0x08
7209 #define ORDER_MYD 0x10 /* Synthetic order, used only for funky 2 digit dates */
7210
7211 /* Determine a date for a particular locale, from 3 numbers */
7212 static inline HRESULT VARIANT_MakeDate(DATEPARSE *dp, DWORD iDate,
7213 DWORD offset, SYSTEMTIME *st)
7214 {
7215 DWORD dwAllOrders, dwTry, dwCount = 0, v1, v2, v3;
7216
7217 if (!dp->dwCount)
7218 {
7219 v1 = 30; /* Default to (Variant) 0 date part */
7220 v2 = 12;
7221 v3 = 1899;
7222 goto VARIANT_MakeDate_OK;
7223 }
7224
7225 v1 = dp->dwValues[offset + 0];
7226 v2 = dp->dwValues[offset + 1];
7227 if (dp->dwCount == 2)
7228 {
7229 SYSTEMTIME current;
7230 GetSystemTime(&current);
7231 v3 = current.wYear;
7232 }
7233 else
7234 v3 = dp->dwValues[offset + 2];
7235
7236 TRACE("(%d,%d,%d,%d,%d)\n", v1, v2, v3, iDate, offset);
7237
7238 /* If one number must be a month (Because a month name was given), then only
7239 * consider orders with the month in that position.
7240 * If we took the current year as 'v3', then only allow a year in that position.
7241 */
7242 if (dp->dwFlags[offset + 0] & DP_MONTH)
7243 {
7244 dwAllOrders = ORDER_MDY;
7245 }
7246 else if (dp->dwFlags[offset + 1] & DP_MONTH)
7247 {
7248 dwAllOrders = ORDER_DMY;
7249 if (dp->dwCount > 2)
7250 dwAllOrders |= ORDER_YMD;
7251 }
7252 else if (dp->dwCount > 2 && dp->dwFlags[offset + 2] & DP_MONTH)
7253 {
7254 dwAllOrders = ORDER_YDM;
7255 }
7256 else
7257 {
7258 dwAllOrders = ORDER_MDY|ORDER_DMY;
7259 if (dp->dwCount > 2)
7260 dwAllOrders |= (ORDER_YMD|ORDER_YDM);
7261 }
7262
7263 VARIANT_MakeDate_Start:
7264 TRACE("dwAllOrders is 0x%08x\n", dwAllOrders);
7265
7266 while (dwAllOrders)
7267 {
7268 DWORD dwTemp;
7269
7270 if (dwCount == 0)
7271 {
7272 /* First: Try the order given by iDate */
7273 switch (iDate)
7274 {
7275 case 0: dwTry = dwAllOrders & ORDER_MDY; break;
7276 case 1: dwTry = dwAllOrders & ORDER_DMY; break;
7277 default: dwTry = dwAllOrders & ORDER_YMD; break;
7278 }
7279 }
7280 else if (dwCount == 1)
7281 {
7282 /* Second: Try all the orders compatible with iDate */
7283 switch (iDate)
7284 {
7285 case 0: dwTry = dwAllOrders & ~(ORDER_DMY|ORDER_YDM); break;
7286 case 1: dwTry = dwAllOrders & ~(ORDER_MDY|ORDER_YDM|ORDER_MYD); break;
7287 default: dwTry = dwAllOrders & ~(ORDER_DMY|ORDER_YDM); break;
7288 }
7289 }
7290 else
7291 {
7292 /* Finally: Try any remaining orders */
7293 dwTry = dwAllOrders;
7294 }
7295
7296 TRACE("Attempt %d, dwTry is 0x%08x\n", dwCount, dwTry);
7297
7298 dwCount++;
7299 if (!dwTry)
7300 continue;
7301
7302 #define DATE_SWAP(x,y) do { dwTemp = x; x = y; y = dwTemp; } while (0)
7303
7304 if (dwTry & ORDER_MDY)
7305 {
7306 if (VARIANT_IsValidMonthDay(v2,v1,v3))
7307 {
7308 DATE_SWAP(v1,v2);
7309 goto VARIANT_MakeDate_OK;
7310 }
7311 dwAllOrders &= ~ORDER_MDY;
7312 }
7313 if (dwTry & ORDER_YMD)
7314 {
7315 if (VARIANT_IsValidMonthDay(v3,v2,v1))
7316 {
7317 DATE_SWAP(v1,v3);
7318 goto VARIANT_MakeDate_OK;
7319 }
7320 dwAllOrders &= ~ORDER_YMD;
7321 }
7322 if (dwTry & ORDER_YDM)
7323 {
7324 if (VARIANT_IsValidMonthDay(v2,v3,v1))
7325 {
7326 DATE_SWAP(v1,v2);
7327 DATE_SWAP(v2,v3);
7328 goto VARIANT_MakeDate_OK;
7329 }
7330 dwAllOrders &= ~ORDER_YDM;
7331 }
7332 if (dwTry & ORDER_DMY)
7333 {
7334 if (VARIANT_IsValidMonthDay(v1,v2,v3))
7335 goto VARIANT_MakeDate_OK;
7336 dwAllOrders &= ~ORDER_DMY;
7337 }
7338 if (dwTry & ORDER_MYD)
7339 {
7340 /* Only occurs if we are trying a 2 year date as M/Y not D/M */
7341 if (VARIANT_IsValidMonthDay(v3,v1,v2))
7342 {
7343 DATE_SWAP(v1,v3);
7344 DATE_SWAP(v2,v3);
7345 goto VARIANT_MakeDate_OK;
7346 }
7347 dwAllOrders &= ~ORDER_MYD;
7348 }
7349 }
7350
7351 if (dp->dwCount == 2)
7352 {
7353 /* We couldn't make a date as D/M or M/D, so try M/Y or Y/M */
7354 v3 = 1; /* 1st of the month */
7355 dwAllOrders = ORDER_YMD|ORDER_MYD;
7356 dp->dwCount = 0; /* Don't return to this code path again */
7357 dwCount = 0;
7358 goto VARIANT_MakeDate_Start;
7359 }
7360
7361 /* No valid dates were able to be constructed */
7362 return DISP_E_TYPEMISMATCH;
7363
7364 VARIANT_MakeDate_OK:
7365
7366 /* Check that the time part is ok */
7367 if (st->wHour > 23 || st->wMinute > 59 || st->wSecond > 59)
7368 return DISP_E_TYPEMISMATCH;
7369
7370 TRACE("Time %d %d %d\n", st->wHour, st->wMinute, st->wSecond);
7371 if (st->wHour < 12 && (dp->dwParseFlags & DP_PM))
7372 st->wHour += 12;
7373 else if (st->wHour == 12 && (dp->dwParseFlags & DP_AM))
7374 st->wHour = 0;
7375 TRACE("Time %d %d %d\n", st->wHour, st->wMinute, st->wSecond);
7376
7377 st->wDay = v1;
7378 st->wMonth = v2;
7379 /* FIXME: For 2 digit dates, I'm not sure if 30 is hard coded or not. It may
7380 * be retrieved from:
7381 * HKCU\Control Panel\International\Calendars\TwoDigitYearMax
7382 * But Wine doesn't have/use that key as at the time of writing.
7383 */
7384 st->wYear = v3 < 30 ? 2000 + v3 : v3 < 100 ? 1900 + v3 : v3;
7385 TRACE("Returning date %d/%d/%d\n", v1, v2, st->wYear);
7386 return S_OK;
7387 }
7388
7389 /******************************************************************************
7390 * VarDateFromStr [OLEAUT32.94]
7391 *
7392 * Convert a VT_BSTR to at VT_DATE.
7393 *
7394 * PARAMS
7395 * strIn [I] String to convert
7396 * lcid [I] Locale identifier for the conversion
7397 * dwFlags [I] Flags affecting the conversion (VAR_ flags from "oleauto.h")
7398 * pdateOut [O] Destination for the converted value
7399 *
7400 * RETURNS
7401 * Success: S_OK. pdateOut contains the converted value.
7402 * FAILURE: An HRESULT error code indicating the problem.
7403 *
7404 * NOTES
7405 * Any date format that can be created using the date formats from lcid
7406 * (Either from kernel Nls functions, variant conversion or formatting) is a
7407 * valid input to this function. In addition, a few more esoteric formats are
7408 * also supported for compatibility with the native version. The date is
7409 * interpreted according to the date settings in the control panel, unless
7410 * the date is invalid in that format, in which the most compatible format
7411 * that produces a valid date will be used.
7412 */
7413 HRESULT WINAPI VarDateFromStr(OLECHAR* strIn, LCID lcid, ULONG dwFlags, DATE* pdateOut)
7414 {
7415 static const USHORT ParseDateTokens[] =
7416 {
7417 LOCALE_SMONTHNAME1, LOCALE_SMONTHNAME2, LOCALE_SMONTHNAME3, LOCALE_SMONTHNAME4,
7418 LOCALE_SMONTHNAME5, LOCALE_SMONTHNAME6, LOCALE_SMONTHNAME7, LOCALE_SMONTHNAME8,
7419 LOCALE_SMONTHNAME9, LOCALE_SMONTHNAME10, LOCALE_SMONTHNAME11, LOCALE_SMONTHNAME12,
7420 LOCALE_SMONTHNAME13,
7421 LOCALE_SABBREVMONTHNAME1, LOCALE_SABBREVMONTHNAME2, LOCALE_SABBREVMONTHNAME3,
7422 LOCALE_SABBREVMONTHNAME4, LOCALE_SABBREVMONTHNAME5, LOCALE_SABBREVMONTHNAME6,
7423 LOCALE_SABBREVMONTHNAME7, LOCALE_SABBREVMONTHNAME8, LOCALE_SABBREVMONTHNAME9,
7424 LOCALE_SABBREVMONTHNAME10, LOCALE_SABBREVMONTHNAME11, LOCALE_SABBREVMONTHNAME12,
7425 LOCALE_SABBREVMONTHNAME13,
7426 LOCALE_SDAYNAME1, LOCALE_SDAYNAME2, LOCALE_SDAYNAME3, LOCALE_SDAYNAME4,
7427 LOCALE_SDAYNAME5, LOCALE_SDAYNAME6, LOCALE_SDAYNAME7,
7428 LOCALE_SABBREVDAYNAME1, LOCALE_SABBREVDAYNAME2, LOCALE_SABBREVDAYNAME3,
7429 LOCALE_SABBREVDAYNAME4, LOCALE_SABBREVDAYNAME5, LOCALE_SABBREVDAYNAME6,
7430 LOCALE_SABBREVDAYNAME7,
7431 LOCALE_S1159, LOCALE_S2359,
7432 LOCALE_SDATE
7433 };
7434 static const BYTE ParseDateMonths[] =
7435 {
7436 1,2,3,4,5,6,7,8,9,10,11,12,13,
7437 1,2,3,4,5,6,7,8,9,10,11,12,13
7438 };
7439 unsigned int i;
7440 BSTR tokens[sizeof(ParseDateTokens)/sizeof(ParseDateTokens[0])];
7441 DATEPARSE dp;
7442 DWORD dwDateSeps = 0, iDate = 0;
7443 HRESULT hRet = S_OK;
7444
7445 if ((dwFlags & (VAR_TIMEVALUEONLY|VAR_DATEVALUEONLY)) ==
7446 (VAR_TIMEVALUEONLY|VAR_DATEVALUEONLY))
7447 return E_INVALIDARG;
7448
7449 if (!strIn)
7450 return DISP_E_TYPEMISMATCH;
7451
7452 *pdateOut = 0.0;
7453
7454 TRACE("(%s,0x%08x,0x%08x,%p)\n", debugstr_w(strIn), lcid, dwFlags, pdateOut);
7455
7456 memset(&dp, 0, sizeof(dp));
7457
7458 GetLocaleInfoW(lcid, LOCALE_IDATE|LOCALE_RETURN_NUMBER|(dwFlags & LOCALE_NOUSEROVERRIDE),
7459 (LPWSTR)&iDate, sizeof(iDate)/sizeof(WCHAR));
7460 TRACE("iDate is %d\n", iDate);
7461
7462 /* Get the month/day/am/pm tokens for this locale */
7463 for (i = 0; i < sizeof(tokens)/sizeof(tokens[0]); i++)
7464 {
7465 WCHAR buff[128];
7466 LCTYPE lctype = ParseDateTokens[i] | (dwFlags & LOCALE_NOUSEROVERRIDE);
7467
7468 /* FIXME: Alternate calendars - should use GetCalendarInfo() and/or
7469 * GetAltMonthNames(). We should really cache these strings too.
7470 */
7471 buff[0] = '\0';
7472 GetLocaleInfoW(lcid, lctype, buff, sizeof(buff)/sizeof(WCHAR));
7473 tokens[i] = SysAllocString(buff);
7474 TRACE("token %d is %s\n", i, debugstr_w(tokens[i]));
7475 }
7476
7477 /* Parse the string into our structure */
7478 while (*strIn)
7479 {
7480 if (dp.dwCount >= 6)
7481 break;
7482
7483 if (isdigitW(*strIn))
7484 {
7485 dp.dwValues[dp.dwCount] = strtoulW(strIn, &strIn, 10);
7486 dp.dwCount++;
7487 strIn--;
7488 }
7489 else if (isalpha(*strIn))
7490 {
7491 BOOL bFound = FALSE;
7492
7493 for (i = 0; i < sizeof(tokens)/sizeof(tokens[0]); i++)
7494 {
7495 DWORD dwLen = strlenW(tokens[i]);
7496 if (dwLen && !strncmpiW(strIn, tokens[i], dwLen))
7497 {
7498 if (i <= 25)
7499 {
7500 dp.dwValues[dp.dwCount] = ParseDateMonths[i];
7501 dp.dwFlags[dp.dwCount] |= (DP_MONTH|DP_DATESEP);
7502 dp.dwCount++;
7503 }
7504 else if (i > 39 && i < 42)
7505 {
7506 if (!dp.dwCount || dp.dwParseFlags & (DP_AM|DP_PM))
7507 hRet = DISP_E_TYPEMISMATCH;
7508 else
7509 {
7510 dp.dwFlags[dp.dwCount - 1] |= (i == 40 ? DP_AM : DP_PM);
7511 dp.dwParseFlags |= (i == 40 ? DP_AM : DP_PM);
7512 }
7513 }
7514 strIn += (dwLen - 1);
7515 bFound = TRUE;
7516 break;
7517 }
7518 }
7519
7520 if (!bFound)
7521 {
7522 if ((*strIn == 'a' || *strIn == 'A' || *strIn == 'p' || *strIn == 'P') &&
7523 (dp.dwCount && !(dp.dwParseFlags & (DP_AM|DP_PM))))
7524 {
7525 /* Special case - 'a' and 'p' are recognised as short for am/pm */
7526 if (*strIn == 'a' || *strIn == 'A')
7527 {
7528 dp.dwFlags[dp.dwCount - 1] |= DP_AM;
7529 dp.dwParseFlags |= DP_AM;
7530 }
7531 else
7532 {
7533 dp.dwFlags[dp.dwCount - 1] |= DP_PM;
7534 dp.dwParseFlags |= DP_PM;
7535 }
7536 strIn++;
7537 }
7538 else
7539 {
7540 TRACE("No matching token for %s\n", debugstr_w(strIn));
7541 hRet = DISP_E_TYPEMISMATCH;
7542 break;
7543 }
7544 }
7545 }
7546 else if (*strIn == ':' || *strIn == '.')
7547 {
7548 if (!dp.dwCount || !strIn[1])
7549 hRet = DISP_E_TYPEMISMATCH;
7550 else
7551 if (tokens[42][0] == *strIn)
7552 {
7553 dwDateSeps++;
7554 if (dwDateSeps > 2)
7555 hRet = DISP_E_TYPEMISMATCH;
7556 else
7557 dp.dwFlags[dp.dwCount - 1] |= DP_DATESEP;
7558 }
7559 else
7560 dp.dwFlags[dp.dwCount - 1] |= DP_TIMESEP;
7561 }
7562 else if (*strIn == '-' || *strIn == '/')
7563 {
7564 dwDateSeps++;
7565 if (dwDateSeps > 2 || !dp.dwCount || !strIn[1])
7566 hRet = DISP_E_TYPEMISMATCH;
7567 else
7568 dp.dwFlags[dp.dwCount - 1] |= DP_DATESEP;
7569 }
7570 else if (*strIn == ',' || isspaceW(*strIn))
7571 {
7572 if (*strIn == ',' && !strIn[1])
7573 hRet = DISP_E_TYPEMISMATCH;
7574 }
7575 else
7576 {
7577 hRet = DISP_E_TYPEMISMATCH;
7578 }
7579 strIn++;
7580 }
7581
7582 if (!dp.dwCount || dp.dwCount > 6 ||
7583 (dp.dwCount == 1 && !(dp.dwParseFlags & (DP_AM|DP_PM))))
7584 hRet = DISP_E_TYPEMISMATCH;
7585
7586 if (SUCCEEDED(hRet))
7587 {
7588 SYSTEMTIME st;
7589 DWORD dwOffset = 0; /* Start of date fields in dp.dwValues */
7590
7591 st.wDayOfWeek = st.wHour = st.wMinute = st.wSecond = st.wMilliseconds = 0;
7592
7593 /* Figure out which numbers correspond to which fields.
7594 *
7595 * This switch statement works based on the fact that native interprets any
7596 * fields that are not joined with a time separator ('.' or ':') as date
7597 * fields. Thus we construct a value from 0-32 where each set bit indicates
7598 * a time field. This encapsulates the hundreds of permutations of 2-6 fields.
7599 * For valid permutations, we set dwOffset to point to the first date field
7600 * and shorten dp.dwCount by the number of time fields found. The real
7601 * magic here occurs in VARIANT_MakeDate() above, where we determine what
7602 * each date number must represent in the context of iDate.
7603 */
7604 TRACE("0x%08x\n", TIMEFLAG(0)|TIMEFLAG(1)|TIMEFLAG(2)|TIMEFLAG(3)|TIMEFLAG(4));
7605
7606 switch (TIMEFLAG(0)|TIMEFLAG(1)|TIMEFLAG(2)|TIMEFLAG(3)|TIMEFLAG(4))
7607 {
7608 case 0x1: /* TT TTDD TTDDD */
7609 if (dp.dwCount > 3 &&
7610 ((dp.dwFlags[2] & (DP_AM|DP_PM)) || (dp.dwFlags[3] & (DP_AM|DP_PM)) ||
7611 (dp.dwFlags[4] & (DP_AM|DP_PM))))
7612 hRet = DISP_E_TYPEMISMATCH;
7613 else if (dp.dwCount != 2 && dp.dwCount != 4 && dp.dwCount != 5)
7614 hRet = DISP_E_TYPEMISMATCH;
7615 st.wHour = dp.dwValues[0];
7616 st.wMinute = dp.dwValues[1];
7617 dp.dwCount -= 2;
7618 dwOffset = 2;
7619 break;
7620
7621 case 0x3: /* TTT TTTDD TTTDDD */
7622 if (dp.dwCount > 4 &&
7623 ((dp.dwFlags[3] & (DP_AM|DP_PM)) || (dp.dwFlags[4] & (DP_AM|DP_PM)) ||
7624 (dp.dwFlags[5] & (DP_AM|DP_PM))))
7625 hRet = DISP_E_TYPEMISMATCH;
7626 else if (dp.dwCount != 3 && dp.dwCount != 5 && dp.dwCount != 6)
7627 hRet = DISP_E_TYPEMISMATCH;
7628 st.wHour = dp.dwValues[0];
7629 st.wMinute = dp.dwValues[1];
7630 st.wSecond = dp.dwValues[2];
7631 dwOffset = 3;
7632 dp.dwCount -= 3;
7633 break;
7634
7635 case 0x4: /* DDTT */
7636 if (dp.dwCount != 4 ||
7637 (dp.dwFlags[0] & (DP_AM|DP_PM)) || (dp.dwFlags[1] & (DP_AM|DP_PM)))
7638 hRet = DISP_E_TYPEMISMATCH;
7639
7640 st.wHour = dp.dwValues[2];
7641 st.wMinute = dp.dwValues[3];
7642 dp.dwCount -= 2;
7643 break;
7644
7645 case 0x0: /* T DD DDD TDDD TDDD */
7646 if (dp.dwCount == 1 && (dp.dwParseFlags & (DP_AM|DP_PM)))
7647 {
7648 st.wHour = dp.dwValues[0]; /* T */
7649 dp.dwCount = 0;
7650 break;
7651 }
7652 else if (dp.dwCount > 4 || (dp.dwCount < 3 && dp.dwParseFlags & (DP_AM|DP_PM)))
7653 {
7654 hRet = DISP_E_TYPEMISMATCH;
7655 }
7656 else if (dp.dwCount == 3)
7657 {
7658 if (dp.dwFlags[0] & (DP_AM|DP_PM)) /* TDD */
7659 {
7660 dp.dwCount = 2;
7661 st.wHour = dp.dwValues[0];
7662 dwOffset = 1;
7663 break;
7664 }
7665 if (dp.dwFlags[2] & (DP_AM|DP_PM)) /* DDT */
7666 {
7667 dp.dwCount = 2;
7668 st.wHour = dp.dwValues[2];
7669 break;
7670 }
7671 else if (dp.dwParseFlags & (DP_AM|DP_PM))
7672 hRet = DISP_E_TYPEMISMATCH;
7673 }
7674 else if (dp.dwCount == 4)
7675 {
7676 dp.dwCount = 3;
7677 if (dp.dwFlags[0] & (DP_AM|DP_PM)) /* TDDD */
7678 {
7679 st.wHour = dp.dwValues[0];
7680 dwOffset = 1;
7681 }
7682 else if (dp.dwFlags[3] & (DP_AM|DP_PM)) /* DDDT */
7683 {
7684 st.wHour = dp.dwValues[3];
7685 }
7686 else
7687 hRet = DISP_E_TYPEMISMATCH;
7688 break;
7689 }
7690 /* .. fall through .. */
7691
7692 case 0x8: /* DDDTT */
7693 if ((dp.dwCount == 2 && (dp.dwParseFlags & (DP_AM|DP_PM))) ||
7694 (dp.dwCount == 5 && ((dp.dwFlags[0] & (DP_AM|DP_PM)) ||
7695 (dp.dwFlags[1] & (DP_AM|DP_PM)) || (dp.dwFlags[2] & (DP_AM|DP_PM)))) ||
7696 dp.dwCount == 4 || dp.dwCount == 6)
7697 hRet = DISP_E_TYPEMISMATCH;
7698 st.wHour = dp.dwValues[3];
7699 st.wMinute = dp.dwValues[4];
7700 if (dp.dwCount == 5)
7701 dp.dwCount -= 2;
7702 break;
7703
7704 case 0xC: /* DDTTT */
7705 if (dp.dwCount != 5 ||
7706 (dp.dwFlags[0] & (DP_AM|DP_PM)) || (dp.dwFlags[1] & (DP_AM|DP_PM)))
7707 hRet = DISP_E_TYPEMISMATCH;
7708 st.wHour = dp.dwValues[2];
7709 st.wMinute = dp.dwValues[3];
7710 st.wSecond = dp.dwValues[4];
7711 dp.dwCount -= 3;
7712 break;
7713
7714 case 0x18: /* DDDTTT */
7715 if ((dp.dwFlags[0] & (DP_AM|DP_PM)) || (dp.dwFlags[1] & (DP_AM|DP_PM)) ||
7716 (dp.dwFlags[2] & (DP_AM|DP_PM)))
7717 hRet = DISP_E_TYPEMISMATCH;
7718 st.wHour = dp.dwValues[3];
7719 st.wMinute = dp.dwValues[4];
7720 st.wSecond = dp.dwValues[5];
7721 dp.dwCount -= 3;
7722 break;
7723
7724 default:
7725 hRet = DISP_E_TYPEMISMATCH;
7726 break;
7727 }
7728
7729 if (SUCCEEDED(hRet))
7730 {
7731 hRet = VARIANT_MakeDate(&dp, iDate, dwOffset, &st);
7732
7733 if (dwFlags & VAR_TIMEVALUEONLY)
7734 {
7735 st.wYear = 1899;
7736 st.wMonth = 12;
7737 st.wDay = 30;
7738 }
7739 else if (dwFlags & VAR_DATEVALUEONLY)
7740 st.wHour = st.wMinute = st.wSecond = 0;
7741
7742 /* Finally, convert the value to a VT_DATE */
7743 if (SUCCEEDED(hRet))
7744 hRet = SystemTimeToVariantTime(&st, pdateOut) ? S_OK : DISP_E_TYPEMISMATCH;
7745 }
7746 }
7747
7748 for (i = 0; i < sizeof(tokens)/sizeof(tokens[0]); i++)
7749 SysFreeString(tokens[i]);
7750 return hRet;
7751 }
7752
7753 /******************************************************************************
7754 * VarDateFromI1 (OLEAUT32.221)
7755 *
7756 * Convert a VT_I1 to a VT_DATE.
7757 *
7758 * PARAMS
7759 * cIn [I] Source
7760 * pdateOut [O] Destination
7761 *
7762 * RETURNS
7763 * S_OK.
7764 */
7765 HRESULT WINAPI VarDateFromI1(signed char cIn, DATE* pdateOut)
7766 {
7767 return VarR8FromI1(cIn, pdateOut);
7768 }
7769
7770 /******************************************************************************
7771 * VarDateFromUI2 (OLEAUT32.222)
7772 *
7773 * Convert a VT_UI2 to a VT_DATE.
7774 *
7775 * PARAMS
7776 * uiIn [I] Source
7777 * pdateOut [O] Destination
7778 *
7779 * RETURNS
7780 * S_OK.
7781 */
7782 HRESULT WINAPI VarDateFromUI2(USHORT uiIn, DATE* pdateOut)
7783 {
7784 return VarR8FromUI2(uiIn, pdateOut);
7785 }
7786
7787 /******************************************************************************
7788 * VarDateFromUI4 (OLEAUT32.223)
7789 *
7790 * Convert a VT_UI4 to a VT_DATE.
7791 *
7792 * PARAMS
7793 * ulIn [I] Source
7794 * pdateOut [O] Destination
7795 *
7796 * RETURNS
7797 * S_OK.
7798 */
7799 HRESULT WINAPI VarDateFromUI4(ULONG ulIn, DATE* pdateOut)
7800 {
7801 return VarDateFromR8(ulIn, pdateOut);
7802 }
7803
7804 /**********************************************************************
7805 * VarDateFromDec (OLEAUT32.224)
7806 *
7807 * Convert a VT_DECIMAL to a VT_DATE.
7808 *
7809 * PARAMS
7810 * pdecIn [I] Source
7811 * pdateOut [O] Destination
7812 *
7813 * RETURNS
7814 * S_OK.
7815 */
7816 HRESULT WINAPI VarDateFromDec(DECIMAL *pdecIn, DATE* pdateOut)
7817 {
7818 return VarR8FromDec(pdecIn, pdateOut);
7819 }
7820
7821 /******************************************************************************
7822 * VarDateFromI8 (OLEAUT32.364)
7823 *
7824 * Convert a VT_I8 to a VT_DATE.
7825 *
7826 * PARAMS
7827 * llIn [I] Source
7828 * pdateOut [O] Destination
7829 *
7830 * RETURNS
7831 * Success: S_OK.
7832 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
7833 */
7834 HRESULT WINAPI VarDateFromI8(LONG64 llIn, DATE* pdateOut)
7835 {
7836 if (llIn < DATE_MIN || llIn > DATE_MAX) return DISP_E_OVERFLOW;
7837 *pdateOut = (DATE)llIn;
7838 return S_OK;
7839 }
7840
7841 /******************************************************************************
7842 * VarDateFromUI8 (OLEAUT32.365)
7843 *
7844 * Convert a VT_UI8 to a VT_DATE.
7845 *
7846 * PARAMS
7847 * ullIn [I] Source
7848 * pdateOut [O] Destination
7849 *
7850 * RETURNS
7851 * Success: S_OK.
7852 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
7853 */
7854 HRESULT WINAPI VarDateFromUI8(ULONG64 ullIn, DATE* pdateOut)
7855 {
7856 if (ullIn > DATE_MAX) return DISP_E_OVERFLOW;
7857 *pdateOut = (DATE)ullIn;
7858 return S_OK;
7859 }