[RSAENH]
[reactos.git] / reactos / dll / win32 / rsaenh / rsaenh.c
1 /*
2 * dlls/rsaenh/rsaenh.c
3 * RSAENH - RSA encryption for Wine
4 *
5 * Copyright 2002 TransGaming Technologies (David Hammerton)
6 * Copyright 2004 Mike McCormack for CodeWeavers
7 * Copyright 2004, 2005 Michael Jung
8 * Copyright 2007 Vijay Kiran Kamuju
9 *
10 * This library is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU Lesser General Public
12 * License as published by the Free Software Foundation; either
13 * version 2.1 of the License, or (at your option) any later version.
14 *
15 * This library is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * Lesser General Public License for more details.
19 *
20 * You should have received a copy of the GNU Lesser General Public
21 * License along with this library; if not, write to the Free Software
22 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
23 */
24
25 #include "config.h"
26 #include "wine/port.h"
27 #include "wine/library.h"
28 #include "wine/debug.h"
29
30 #include <stdarg.h>
31 #include <stdio.h>
32
33 #include "windef.h"
34 #include "winbase.h"
35 #include "winreg.h"
36 #include "wincrypt.h"
37 #include "handle.h"
38 #include "implglue.h"
39 #include "objbase.h"
40
41 WINE_DEFAULT_DEBUG_CHANNEL(crypt);
42
43 /******************************************************************************
44 * CRYPTHASH - hash objects
45 */
46 #define RSAENH_MAGIC_HASH 0x85938417u
47 #define RSAENH_MAX_HASH_SIZE 104
48 #define RSAENH_HASHSTATE_HASHING 1
49 #define RSAENH_HASHSTATE_FINISHED 2
50 typedef struct _RSAENH_TLS1PRF_PARAMS
51 {
52 CRYPT_DATA_BLOB blobLabel;
53 CRYPT_DATA_BLOB blobSeed;
54 } RSAENH_TLS1PRF_PARAMS;
55
56 typedef struct tagCRYPTHASH
57 {
58 OBJECTHDR header;
59 ALG_ID aiAlgid;
60 HCRYPTKEY hKey;
61 HCRYPTPROV hProv;
62 DWORD dwHashSize;
63 DWORD dwState;
64 HASH_CONTEXT context;
65 BYTE abHashValue[RSAENH_MAX_HASH_SIZE];
66 PHMAC_INFO pHMACInfo;
67 RSAENH_TLS1PRF_PARAMS tpPRFParams;
68 } CRYPTHASH;
69
70 /******************************************************************************
71 * CRYPTKEY - key objects
72 */
73 #define RSAENH_MAGIC_KEY 0x73620457u
74 #define RSAENH_MAX_KEY_SIZE 48
75 #define RSAENH_MAX_BLOCK_SIZE 24
76 #define RSAENH_KEYSTATE_IDLE 0
77 #define RSAENH_KEYSTATE_ENCRYPTING 1
78 #define RSAENH_KEYSTATE_MASTERKEY 2
79 typedef struct _RSAENH_SCHANNEL_INFO
80 {
81 SCHANNEL_ALG saEncAlg;
82 SCHANNEL_ALG saMACAlg;
83 CRYPT_DATA_BLOB blobClientRandom;
84 CRYPT_DATA_BLOB blobServerRandom;
85 } RSAENH_SCHANNEL_INFO;
86
87 typedef struct tagCRYPTKEY
88 {
89 OBJECTHDR header;
90 ALG_ID aiAlgid;
91 HCRYPTPROV hProv;
92 DWORD dwMode;
93 DWORD dwModeBits;
94 DWORD dwPermissions;
95 DWORD dwKeyLen;
96 DWORD dwEffectiveKeyLen;
97 DWORD dwSaltLen;
98 DWORD dwBlockLen;
99 DWORD dwState;
100 KEY_CONTEXT context;
101 BYTE abKeyValue[RSAENH_MAX_KEY_SIZE];
102 BYTE abInitVector[RSAENH_MAX_BLOCK_SIZE];
103 BYTE abChainVector[RSAENH_MAX_BLOCK_SIZE];
104 RSAENH_SCHANNEL_INFO siSChannelInfo;
105 } CRYPTKEY;
106
107 /******************************************************************************
108 * KEYCONTAINER - key containers
109 */
110 #define RSAENH_PERSONALITY_BASE 0u
111 #define RSAENH_PERSONALITY_STRONG 1u
112 #define RSAENH_PERSONALITY_ENHANCED 2u
113 #define RSAENH_PERSONALITY_SCHANNEL 3u
114 #define RSAENH_PERSONALITY_AES 4u
115
116 #define RSAENH_MAGIC_CONTAINER 0x26384993u
117 typedef struct tagKEYCONTAINER
118 {
119 OBJECTHDR header;
120 DWORD dwFlags;
121 DWORD dwPersonality;
122 DWORD dwEnumAlgsCtr;
123 DWORD dwEnumContainersCtr;
124 CHAR szName[MAX_PATH];
125 CHAR szProvName[MAX_PATH];
126 HCRYPTKEY hKeyExchangeKeyPair;
127 HCRYPTKEY hSignatureKeyPair;
128 } KEYCONTAINER;
129
130 /******************************************************************************
131 * Some magic constants
132 */
133 #define RSAENH_ENCRYPT 1
134 #define RSAENH_DECRYPT 0
135 #define RSAENH_HMAC_DEF_IPAD_CHAR 0x36
136 #define RSAENH_HMAC_DEF_OPAD_CHAR 0x5c
137 #define RSAENH_HMAC_DEF_PAD_LEN 64
138 #define RSAENH_DES_EFFECTIVE_KEYLEN 56
139 #define RSAENH_DES_STORAGE_KEYLEN 64
140 #define RSAENH_3DES112_EFFECTIVE_KEYLEN 112
141 #define RSAENH_3DES112_STORAGE_KEYLEN 128
142 #define RSAENH_3DES_EFFECTIVE_KEYLEN 168
143 #define RSAENH_3DES_STORAGE_KEYLEN 192
144 #define RSAENH_MAGIC_RSA2 0x32415352
145 #define RSAENH_MAGIC_RSA1 0x31415352
146 #define RSAENH_PKC_BLOCKTYPE 0x02
147 #define RSAENH_SSL3_VERSION_MAJOR 3
148 #define RSAENH_SSL3_VERSION_MINOR 0
149 #define RSAENH_TLS1_VERSION_MAJOR 3
150 #define RSAENH_TLS1_VERSION_MINOR 1
151 #define RSAENH_REGKEY "Software\\Wine\\Crypto\\RSA\\%s"
152
153 #define RSAENH_MIN(a,b) ((a)<(b)?(a):(b))
154 /******************************************************************************
155 * aProvEnumAlgsEx - Defines the capabilities of the CSP personalities.
156 */
157 #define RSAENH_MAX_ENUMALGS 24
158 #define RSAENH_PCT1_SSL2_SSL3_TLS1 (CRYPT_FLAG_PCT1|CRYPT_FLAG_SSL2|CRYPT_FLAG_SSL3|CRYPT_FLAG_TLS1)
159 static const PROV_ENUMALGS_EX aProvEnumAlgsEx[5][RSAENH_MAX_ENUMALGS+1] =
160 {
161 {
162 {CALG_RC2, 40, 40, 56,0, 4,"RC2", 24,"RSA Data Security's RC2"},
163 {CALG_RC4, 40, 40, 56,0, 4,"RC4", 24,"RSA Data Security's RC4"},
164 {CALG_DES, 56, 56, 56,0, 4,"DES", 31,"Data Encryption Standard (DES)"},
165 {CALG_SHA, 160,160, 160,CRYPT_FLAG_SIGNING, 6,"SHA-1", 30,"Secure Hash Algorithm (SHA-1)"},
166 {CALG_MD2, 128,128, 128,CRYPT_FLAG_SIGNING, 4,"MD2", 23,"Message Digest 2 (MD2)"},
167 {CALG_MD4, 128,128, 128,CRYPT_FLAG_SIGNING, 4,"MD4", 23,"Message Digest 4 (MD4)"},
168 {CALG_MD5, 128,128, 128,CRYPT_FLAG_SIGNING, 4,"MD5", 23,"Message Digest 5 (MD5)"},
169 {CALG_SSL3_SHAMD5,288,288,288,0, 12,"SSL3 SHAMD5",12,"SSL3 SHAMD5"},
170 {CALG_MAC, 0, 0, 0,0, 4,"MAC", 28,"Message Authentication Code"},
171 {CALG_RSA_SIGN, 512,384,16384,CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC,9,"RSA_SIGN",14,"RSA Signature"},
172 {CALG_RSA_KEYX, 512,384, 1024,CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC,9,"RSA_KEYX",17,"RSA Key Exchange"},
173 {CALG_HMAC, 0, 0, 0,0, 5,"HMAC", 18,"Hugo's MAC (HMAC)"},
174 {0, 0, 0, 0,0, 1,"", 1,""}
175 },
176 {
177 {CALG_RC2, 128, 40, 128,0, 4,"RC2", 24,"RSA Data Security's RC2"},
178 {CALG_RC4, 128, 40, 128,0, 4,"RC4", 24,"RSA Data Security's RC4"},
179 {CALG_DES, 56, 56, 56,0, 4,"DES", 31,"Data Encryption Standard (DES)"},
180 {CALG_3DES_112, 112,112, 112,0, 13,"3DES TWO KEY",19,"Two Key Triple DES"},
181 {CALG_3DES, 168,168, 168,0, 5,"3DES", 21,"Three Key Triple DES"},
182 {CALG_SHA, 160,160, 160,CRYPT_FLAG_SIGNING, 6,"SHA-1", 30,"Secure Hash Algorithm (SHA-1)"},
183 {CALG_MD2, 128,128, 128,CRYPT_FLAG_SIGNING, 4,"MD2", 23,"Message Digest 2 (MD2)"},
184 {CALG_MD4, 128,128, 128,CRYPT_FLAG_SIGNING, 4,"MD4", 23,"Message Digest 4 (MD4)"},
185 {CALG_MD5, 128,128, 128,CRYPT_FLAG_SIGNING, 4,"MD5", 23,"Message Digest 5 (MD5)"},
186 {CALG_SSL3_SHAMD5,288,288,288,0, 12,"SSL3 SHAMD5",12,"SSL3 SHAMD5"},
187 {CALG_MAC, 0, 0, 0,0, 4,"MAC", 28,"Message Authentication Code"},
188 {CALG_RSA_SIGN,1024,384,16384,CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC,9,"RSA_SIGN",14,"RSA Signature"},
189 {CALG_RSA_KEYX,1024,384,16384,CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC,9,"RSA_KEYX",17,"RSA Key Exchange"},
190 {CALG_HMAC, 0, 0, 0,0, 5,"HMAC", 18,"Hugo's MAC (HMAC)"},
191 {0, 0, 0, 0,0, 1,"", 1,""}
192 },
193 {
194 {CALG_RC2, 128, 40, 128,0, 4,"RC2", 24,"RSA Data Security's RC2"},
195 {CALG_RC4, 128, 40, 128,0, 4,"RC4", 24,"RSA Data Security's RC4"},
196 {CALG_DES, 56, 56, 56,0, 4,"DES", 31,"Data Encryption Standard (DES)"},
197 {CALG_3DES_112, 112,112, 112,0, 13,"3DES TWO KEY",19,"Two Key Triple DES"},
198 {CALG_3DES, 168,168, 168,0, 5,"3DES", 21,"Three Key Triple DES"},
199 {CALG_SHA, 160,160, 160,CRYPT_FLAG_SIGNING, 6,"SHA-1", 30,"Secure Hash Algorithm (SHA-1)"},
200 {CALG_MD2, 128,128, 128,CRYPT_FLAG_SIGNING, 4,"MD2", 23,"Message Digest 2 (MD2)"},
201 {CALG_MD4, 128,128, 128,CRYPT_FLAG_SIGNING, 4,"MD4", 23,"Message Digest 4 (MD4)"},
202 {CALG_MD5, 128,128, 128,CRYPT_FLAG_SIGNING, 4,"MD5", 23,"Message Digest 5 (MD5)"},
203 {CALG_SSL3_SHAMD5,288,288,288,0, 12,"SSL3 SHAMD5",12,"SSL3 SHAMD5"},
204 {CALG_MAC, 0, 0, 0,0, 4,"MAC", 28,"Message Authentication Code"},
205 {CALG_RSA_SIGN,1024,384,16384,CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC,9,"RSA_SIGN",14,"RSA Signature"},
206 {CALG_RSA_KEYX,1024,384,16384,CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC,9,"RSA_KEYX",17,"RSA Key Exchange"},
207 {CALG_HMAC, 0, 0, 0,0, 5,"HMAC", 18,"Hugo's MAC (HMAC)"},
208 {0, 0, 0, 0,0, 1,"", 1,""}
209 },
210 {
211 {CALG_RC2, 128, 40, 128,RSAENH_PCT1_SSL2_SSL3_TLS1, 4,"RC2", 24,"RSA Data Security's RC2"},
212 {CALG_RC4, 128, 40, 128,RSAENH_PCT1_SSL2_SSL3_TLS1, 4,"RC4", 24,"RSA Data Security's RC4"},
213 {CALG_DES, 56, 56, 56,RSAENH_PCT1_SSL2_SSL3_TLS1, 4,"DES", 31,"Data Encryption Standard (DES)"},
214 {CALG_3DES_112, 112,112, 112,RSAENH_PCT1_SSL2_SSL3_TLS1,13,"3DES TWO KEY",19,"Two Key Triple DES"},
215 {CALG_3DES, 168,168, 168,RSAENH_PCT1_SSL2_SSL3_TLS1, 5,"3DES", 21,"Three Key Triple DES"},
216 {CALG_SHA,160,160,160,CRYPT_FLAG_SIGNING|RSAENH_PCT1_SSL2_SSL3_TLS1,6,"SHA-1",30,"Secure Hash Algorithm (SHA-1)"},
217 {CALG_MD5,128,128,128,CRYPT_FLAG_SIGNING|RSAENH_PCT1_SSL2_SSL3_TLS1,4,"MD5",23,"Message Digest 5 (MD5)"},
218 {CALG_SSL3_SHAMD5,288,288,288,0, 12,"SSL3 SHAMD5",12,"SSL3 SHAMD5"},
219 {CALG_MAC, 0, 0, 0,0, 4,"MAC", 28,"Message Authentication Code"},
220 {CALG_RSA_SIGN,1024,384,16384,CRYPT_FLAG_SIGNING|RSAENH_PCT1_SSL2_SSL3_TLS1,9,"RSA_SIGN",14,"RSA Signature"},
221 {CALG_RSA_KEYX,1024,384,16384,CRYPT_FLAG_SIGNING|RSAENH_PCT1_SSL2_SSL3_TLS1,9,"RSA_KEYX",17,"RSA Key Exchange"},
222 {CALG_HMAC, 0, 0, 0,0, 5,"HMAC", 18,"Hugo's MAC (HMAC)"},
223 {CALG_PCT1_MASTER,128,128,128,CRYPT_FLAG_PCT1, 12,"PCT1 MASTER",12,"PCT1 Master"},
224 {CALG_SSL2_MASTER,40,40, 192,CRYPT_FLAG_SSL2, 12,"SSL2 MASTER",12,"SSL2 Master"},
225 {CALG_SSL3_MASTER,384,384,384,CRYPT_FLAG_SSL3, 12,"SSL3 MASTER",12,"SSL3 Master"},
226 {CALG_TLS1_MASTER,384,384,384,CRYPT_FLAG_TLS1, 12,"TLS1 MASTER",12,"TLS1 Master"},
227 {CALG_SCHANNEL_MASTER_HASH,0,0,-1,0, 16,"SCH MASTER HASH",21,"SChannel Master Hash"},
228 {CALG_SCHANNEL_MAC_KEY,0,0,-1,0, 12,"SCH MAC KEY",17,"SChannel MAC Key"},
229 {CALG_SCHANNEL_ENC_KEY,0,0,-1,0, 12,"SCH ENC KEY",24,"SChannel Encryption Key"},
230 {CALG_TLS1PRF, 0, 0, -1,0, 9,"TLS1 PRF", 28,"TLS1 Pseudo Random Function"},
231 {0, 0, 0, 0,0, 1,"", 1,""}
232 },
233 {
234 {CALG_RC2, 128, 40, 128,0, 4,"RC2", 24,"RSA Data Security's RC2"},
235 {CALG_RC4, 128, 40, 128,0, 4,"RC4", 24,"RSA Data Security's RC4"},
236 {CALG_DES, 56, 56, 56,0, 4,"DES", 31,"Data Encryption Standard (DES)"},
237 {CALG_3DES_112, 112,112, 112,0, 13,"3DES TWO KEY",19,"Two Key Triple DES"},
238 {CALG_3DES, 168,168, 168,0, 5,"3DES", 21,"Three Key Triple DES"},
239 {CALG_AES, 128,128, 128,0, 4,"AES", 35,"Advanced Encryption Standard (AES)"},
240 {CALG_AES_128, 128,128, 128,0, 8,"AES-128", 39,"Advanced Encryption Standard (AES-128)"},
241 {CALG_AES_192, 192,192, 192,0, 8,"AES-192", 39,"Advanced Encryption Standard (AES-192)"},
242 {CALG_AES_256, 256,256, 256,0, 8,"AES-256", 39,"Advanced Encryption Standard (AES-256)"},
243 {CALG_SHA, 160,160, 160,CRYPT_FLAG_SIGNING, 6,"SHA-1", 30,"Secure Hash Algorithm (SHA-1)"},
244 {CALG_MD2, 128,128, 128,CRYPT_FLAG_SIGNING, 4,"MD2", 23,"Message Digest 2 (MD2)"},
245 {CALG_MD4, 128,128, 128,CRYPT_FLAG_SIGNING, 4,"MD4", 23,"Message Digest 4 (MD4)"},
246 {CALG_MD5, 128,128, 128,CRYPT_FLAG_SIGNING, 4,"MD5", 23,"Message Digest 5 (MD5)"},
247 {CALG_SSL3_SHAMD5,288,288,288,0, 12,"SSL3 SHAMD5",12,"SSL3 SHAMD5"},
248 {CALG_MAC, 0, 0, 0,0, 4,"MAC", 28,"Message Authentication Code"},
249 {CALG_RSA_SIGN,1024,384,16384,CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC,9,"RSA_SIGN",14,"RSA Signature"},
250 {CALG_RSA_KEYX,1024,384,16384,CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC,9,"RSA_KEYX",17,"RSA Key Exchange"},
251 {CALG_HMAC, 0, 0, 0,0, 5,"HMAC", 18,"Hugo's MAC (HMAC)"},
252 {0, 0, 0, 0,0, 1,"", 1,""}
253 }
254 };
255
256 /******************************************************************************
257 * API forward declarations
258 */
259 BOOL WINAPI
260 RSAENH_CPGetKeyParam(
261 HCRYPTPROV hProv,
262 HCRYPTKEY hKey,
263 DWORD dwParam,
264 BYTE *pbData,
265 DWORD *pdwDataLen,
266 DWORD dwFlags
267 );
268
269 BOOL WINAPI
270 RSAENH_CPEncrypt(
271 HCRYPTPROV hProv,
272 HCRYPTKEY hKey,
273 HCRYPTHASH hHash,
274 BOOL Final,
275 DWORD dwFlags,
276 BYTE *pbData,
277 DWORD *pdwDataLen,
278 DWORD dwBufLen
279 );
280
281 BOOL WINAPI
282 RSAENH_CPCreateHash(
283 HCRYPTPROV hProv,
284 ALG_ID Algid,
285 HCRYPTKEY hKey,
286 DWORD dwFlags,
287 HCRYPTHASH *phHash
288 );
289
290 BOOL WINAPI
291 RSAENH_CPSetHashParam(
292 HCRYPTPROV hProv,
293 HCRYPTHASH hHash,
294 DWORD dwParam,
295 BYTE *pbData, DWORD dwFlags
296 );
297
298 BOOL WINAPI
299 RSAENH_CPGetHashParam(
300 HCRYPTPROV hProv,
301 HCRYPTHASH hHash,
302 DWORD dwParam,
303 BYTE *pbData,
304 DWORD *pdwDataLen,
305 DWORD dwFlags
306 );
307
308 BOOL WINAPI
309 RSAENH_CPDestroyHash(
310 HCRYPTPROV hProv,
311 HCRYPTHASH hHash
312 );
313
314 static BOOL crypt_export_key(
315 CRYPTKEY *pCryptKey,
316 HCRYPTKEY hPubKey,
317 DWORD dwBlobType,
318 DWORD dwFlags,
319 BOOL force,
320 BYTE *pbData,
321 DWORD *pdwDataLen
322 );
323
324 static BOOL import_key(
325 HCRYPTPROV hProv,
326 CONST BYTE *pbData,
327 DWORD dwDataLen,
328 HCRYPTKEY hPubKey,
329 DWORD dwFlags,
330 BOOL fStoreKey,
331 HCRYPTKEY *phKey
332 );
333
334 BOOL WINAPI
335 RSAENH_CPHashData(
336 HCRYPTPROV hProv,
337 HCRYPTHASH hHash,
338 CONST BYTE *pbData,
339 DWORD dwDataLen,
340 DWORD dwFlags
341 );
342
343 /******************************************************************************
344 * CSP's handle table (used by all acquired key containers)
345 */
346 static struct handle_table handle_table;
347
348 /******************************************************************************
349 * DllMain (RSAENH.@)
350 *
351 * Initializes and destroys the handle table for the CSP's handles.
352 */
353 int WINAPI DllMain(HINSTANCE hInstance, DWORD fdwReason, PVOID pvReserved)
354 {
355 switch (fdwReason)
356 {
357 case DLL_PROCESS_ATTACH:
358 DisableThreadLibraryCalls(hInstance);
359 init_handle_table(&handle_table);
360 break;
361
362 case DLL_PROCESS_DETACH:
363 destroy_handle_table(&handle_table);
364 break;
365 }
366 return 1;
367 }
368
369 /******************************************************************************
370 * copy_param [Internal]
371 *
372 * Helper function that supports the standard WINAPI protocol for querying data
373 * of dynamic size.
374 *
375 * PARAMS
376 * pbBuffer [O] Buffer where the queried parameter is copied to, if it is large enough.
377 * May be NUL if the required buffer size is to be queried only.
378 * pdwBufferSize [I/O] In: Size of the buffer at pbBuffer
379 * Out: Size of parameter pbParam
380 * pbParam [I] Parameter value.
381 * dwParamSize [I] Size of pbParam
382 *
383 * RETURN
384 * Success: TRUE (pbParam was copied into pbBuffer or pbBuffer is NULL)
385 * Failure: FALSE (pbBuffer is not large enough to hold pbParam). Last error: ERROR_MORE_DATA
386 */
387 static inline BOOL copy_param(
388 BYTE *pbBuffer, DWORD *pdwBufferSize, CONST BYTE *pbParam, DWORD dwParamSize)
389 {
390 if (pbBuffer)
391 {
392 if (dwParamSize > *pdwBufferSize)
393 {
394 SetLastError(ERROR_MORE_DATA);
395 *pdwBufferSize = dwParamSize;
396 return FALSE;
397 }
398 memcpy(pbBuffer, pbParam, dwParamSize);
399 }
400 *pdwBufferSize = dwParamSize;
401 return TRUE;
402 }
403
404 /******************************************************************************
405 * get_algid_info [Internal]
406 *
407 * Query CSP capabilities for a given crypto algorithm.
408 *
409 * PARAMS
410 * hProv [I] Handle to a key container of the CSP whose capabilities are to be queried.
411 * algid [I] Identifier of the crypto algorithm about which information is requested.
412 *
413 * RETURNS
414 * Success: Pointer to a PROV_ENUMALGS_EX struct containing information about the crypto algorithm.
415 * Failure: NULL (algid not supported)
416 */
417 static inline const PROV_ENUMALGS_EX* get_algid_info(HCRYPTPROV hProv, ALG_ID algid) {
418 const PROV_ENUMALGS_EX *iterator;
419 KEYCONTAINER *pKeyContainer;
420
421 if (!lookup_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER, (OBJECTHDR**)&pKeyContainer)) {
422 SetLastError(NTE_BAD_UID);
423 return NULL;
424 }
425
426 for (iterator = aProvEnumAlgsEx[pKeyContainer->dwPersonality]; iterator->aiAlgid; iterator++) {
427 if (iterator->aiAlgid == algid) return iterator;
428 }
429
430 SetLastError(NTE_BAD_ALGID);
431 return NULL;
432 }
433
434 /******************************************************************************
435 * copy_data_blob [Internal]
436 *
437 * deeply copies a DATA_BLOB
438 *
439 * PARAMS
440 * dst [O] That's where the blob will be copied to
441 * src [I] Source blob
442 *
443 * RETURNS
444 * Success: TRUE
445 * Failure: FALSE (GetLastError() == NTE_NO_MEMORY
446 *
447 * NOTES
448 * Use free_data_blob to release resources occupied by copy_data_blob.
449 */
450 static inline BOOL copy_data_blob(PCRYPT_DATA_BLOB dst, CONST PCRYPT_DATA_BLOB src) {
451 dst->pbData = HeapAlloc(GetProcessHeap(), 0, src->cbData);
452 if (!dst->pbData) {
453 SetLastError(NTE_NO_MEMORY);
454 return FALSE;
455 }
456 dst->cbData = src->cbData;
457 memcpy(dst->pbData, src->pbData, src->cbData);
458 return TRUE;
459 }
460
461 /******************************************************************************
462 * concat_data_blobs [Internal]
463 *
464 * Concatenates two blobs
465 *
466 * PARAMS
467 * dst [O] The new blob will be copied here
468 * src1 [I] Prefix blob
469 * src2 [I] Appendix blob
470 *
471 * RETURNS
472 * Success: TRUE
473 * Failure: FALSE (GetLastError() == NTE_NO_MEMORY)
474 *
475 * NOTES
476 * Release resources occupied by concat_data_blobs with free_data_blobs
477 */
478 static inline BOOL concat_data_blobs(PCRYPT_DATA_BLOB dst, CONST PCRYPT_DATA_BLOB src1,
479 CONST PCRYPT_DATA_BLOB src2)
480 {
481 dst->cbData = src1->cbData + src2->cbData;
482 dst->pbData = HeapAlloc(GetProcessHeap(), 0, dst->cbData);
483 if (!dst->pbData) {
484 SetLastError(NTE_NO_MEMORY);
485 return FALSE;
486 }
487 memcpy(dst->pbData, src1->pbData, src1->cbData);
488 memcpy(dst->pbData + src1->cbData, src2->pbData, src2->cbData);
489 return TRUE;
490 }
491
492 /******************************************************************************
493 * free_data_blob [Internal]
494 *
495 * releases resource occupied by a dynamically allocated CRYPT_DATA_BLOB
496 *
497 * PARAMS
498 * pBlob [I] Heap space occupied by pBlob->pbData is released
499 */
500 static inline void free_data_blob(PCRYPT_DATA_BLOB pBlob) {
501 HeapFree(GetProcessHeap(), 0, pBlob->pbData);
502 }
503
504 /******************************************************************************
505 * init_data_blob [Internal]
506 */
507 static inline void init_data_blob(PCRYPT_DATA_BLOB pBlob) {
508 pBlob->pbData = NULL;
509 pBlob->cbData = 0;
510 }
511
512 /******************************************************************************
513 * free_hmac_info [Internal]
514 *
515 * Deeply free an HMAC_INFO struct.
516 *
517 * PARAMS
518 * hmac_info [I] Pointer to the HMAC_INFO struct to be freed.
519 *
520 * NOTES
521 * See Internet RFC 2104 for details on the HMAC algorithm.
522 */
523 static inline void free_hmac_info(PHMAC_INFO hmac_info) {
524 if (!hmac_info) return;
525 HeapFree(GetProcessHeap(), 0, hmac_info->pbInnerString);
526 HeapFree(GetProcessHeap(), 0, hmac_info->pbOuterString);
527 HeapFree(GetProcessHeap(), 0, hmac_info);
528 }
529
530 /******************************************************************************
531 * copy_hmac_info [Internal]
532 *
533 * Deeply copy an HMAC_INFO struct
534 *
535 * PARAMS
536 * dst [O] Pointer to a location where the pointer to the HMAC_INFO copy will be stored.
537 * src [I] Pointer to the HMAC_INFO struct to be copied.
538 *
539 * RETURNS
540 * Success: TRUE
541 * Failure: FALSE
542 *
543 * NOTES
544 * See Internet RFC 2104 for details on the HMAC algorithm.
545 */
546 static BOOL copy_hmac_info(PHMAC_INFO *dst, const HMAC_INFO *src) {
547 if (!src) return FALSE;
548 *dst = HeapAlloc(GetProcessHeap(), 0, sizeof(HMAC_INFO));
549 if (!*dst) return FALSE;
550 **dst = *src;
551 (*dst)->pbInnerString = NULL;
552 (*dst)->pbOuterString = NULL;
553 if ((*dst)->cbInnerString == 0) (*dst)->cbInnerString = RSAENH_HMAC_DEF_PAD_LEN;
554 (*dst)->pbInnerString = HeapAlloc(GetProcessHeap(), 0, (*dst)->cbInnerString);
555 if (!(*dst)->pbInnerString) {
556 free_hmac_info(*dst);
557 return FALSE;
558 }
559 if (src->cbInnerString)
560 memcpy((*dst)->pbInnerString, src->pbInnerString, src->cbInnerString);
561 else
562 memset((*dst)->pbInnerString, RSAENH_HMAC_DEF_IPAD_CHAR, RSAENH_HMAC_DEF_PAD_LEN);
563 if ((*dst)->cbOuterString == 0) (*dst)->cbOuterString = RSAENH_HMAC_DEF_PAD_LEN;
564 (*dst)->pbOuterString = HeapAlloc(GetProcessHeap(), 0, (*dst)->cbOuterString);
565 if (!(*dst)->pbOuterString) {
566 free_hmac_info(*dst);
567 return FALSE;
568 }
569 if (src->cbOuterString)
570 memcpy((*dst)->pbOuterString, src->pbOuterString, src->cbOuterString);
571 else
572 memset((*dst)->pbOuterString, RSAENH_HMAC_DEF_OPAD_CHAR, RSAENH_HMAC_DEF_PAD_LEN);
573 return TRUE;
574 }
575
576 /******************************************************************************
577 * destroy_hash [Internal]
578 *
579 * Destructor for hash objects
580 *
581 * PARAMS
582 * pCryptHash [I] Pointer to the hash object to be destroyed.
583 * Will be invalid after function returns!
584 */
585 static void destroy_hash(OBJECTHDR *pObject)
586 {
587 CRYPTHASH *pCryptHash = (CRYPTHASH*)pObject;
588
589 free_hmac_info(pCryptHash->pHMACInfo);
590 free_data_blob(&pCryptHash->tpPRFParams.blobLabel);
591 free_data_blob(&pCryptHash->tpPRFParams.blobSeed);
592 HeapFree(GetProcessHeap(), 0, pCryptHash);
593 }
594
595 /******************************************************************************
596 * init_hash [Internal]
597 *
598 * Initialize (or reset) a hash object
599 *
600 * PARAMS
601 * pCryptHash [I] The hash object to be initialized.
602 */
603 static inline BOOL init_hash(CRYPTHASH *pCryptHash) {
604 DWORD dwLen;
605
606 switch (pCryptHash->aiAlgid)
607 {
608 case CALG_HMAC:
609 if (pCryptHash->pHMACInfo) {
610 const PROV_ENUMALGS_EX *pAlgInfo;
611
612 pAlgInfo = get_algid_info(pCryptHash->hProv, pCryptHash->pHMACInfo->HashAlgid);
613 if (!pAlgInfo) return FALSE;
614 pCryptHash->dwHashSize = pAlgInfo->dwDefaultLen >> 3;
615 init_hash_impl(pCryptHash->pHMACInfo->HashAlgid, &pCryptHash->context);
616 update_hash_impl(pCryptHash->pHMACInfo->HashAlgid, &pCryptHash->context,
617 pCryptHash->pHMACInfo->pbInnerString,
618 pCryptHash->pHMACInfo->cbInnerString);
619 }
620 return TRUE;
621
622 case CALG_MAC:
623 dwLen = sizeof(DWORD);
624 RSAENH_CPGetKeyParam(pCryptHash->hProv, pCryptHash->hKey, KP_BLOCKLEN,
625 (BYTE*)&pCryptHash->dwHashSize, &dwLen, 0);
626 pCryptHash->dwHashSize >>= 3;
627 return TRUE;
628
629 default:
630 return init_hash_impl(pCryptHash->aiAlgid, &pCryptHash->context);
631 }
632 }
633
634 /******************************************************************************
635 * update_hash [Internal]
636 *
637 * Hashes the given data and updates the hash object's state accordingly
638 *
639 * PARAMS
640 * pCryptHash [I] Hash object to be updated.
641 * pbData [I] Pointer to data stream to be hashed.
642 * dwDataLen [I] Length of data stream.
643 */
644 static inline void update_hash(CRYPTHASH *pCryptHash, CONST BYTE *pbData, DWORD dwDataLen) {
645 BYTE *pbTemp;
646
647 switch (pCryptHash->aiAlgid)
648 {
649 case CALG_HMAC:
650 if (pCryptHash->pHMACInfo)
651 update_hash_impl(pCryptHash->pHMACInfo->HashAlgid, &pCryptHash->context,
652 pbData, dwDataLen);
653 break;
654
655 case CALG_MAC:
656 pbTemp = HeapAlloc(GetProcessHeap(), 0, dwDataLen);
657 if (!pbTemp) return;
658 memcpy(pbTemp, pbData, dwDataLen);
659 RSAENH_CPEncrypt(pCryptHash->hProv, pCryptHash->hKey, 0, FALSE, 0,
660 pbTemp, &dwDataLen, dwDataLen);
661 HeapFree(GetProcessHeap(), 0, pbTemp);
662 break;
663
664 default:
665 update_hash_impl(pCryptHash->aiAlgid, &pCryptHash->context, pbData, dwDataLen);
666 }
667 }
668
669 /******************************************************************************
670 * finalize_hash [Internal]
671 *
672 * Finalizes the hash, after all data has been hashed with update_hash.
673 * No additional data can be hashed afterwards until the hash gets initialized again.
674 *
675 * PARAMS
676 * pCryptHash [I] Hash object to be finalized.
677 */
678 static inline void finalize_hash(CRYPTHASH *pCryptHash) {
679 DWORD dwDataLen;
680
681 switch (pCryptHash->aiAlgid)
682 {
683 case CALG_HMAC:
684 if (pCryptHash->pHMACInfo) {
685 BYTE abHashValue[RSAENH_MAX_HASH_SIZE];
686
687 finalize_hash_impl(pCryptHash->pHMACInfo->HashAlgid, &pCryptHash->context,
688 pCryptHash->abHashValue);
689 memcpy(abHashValue, pCryptHash->abHashValue, pCryptHash->dwHashSize);
690 init_hash_impl(pCryptHash->pHMACInfo->HashAlgid, &pCryptHash->context);
691 update_hash_impl(pCryptHash->pHMACInfo->HashAlgid, &pCryptHash->context,
692 pCryptHash->pHMACInfo->pbOuterString,
693 pCryptHash->pHMACInfo->cbOuterString);
694 update_hash_impl(pCryptHash->pHMACInfo->HashAlgid, &pCryptHash->context,
695 abHashValue, pCryptHash->dwHashSize);
696 finalize_hash_impl(pCryptHash->pHMACInfo->HashAlgid, &pCryptHash->context,
697 pCryptHash->abHashValue);
698 }
699 break;
700
701 case CALG_MAC:
702 dwDataLen = 0;
703 RSAENH_CPEncrypt(pCryptHash->hProv, pCryptHash->hKey, 0, TRUE, 0,
704 pCryptHash->abHashValue, &dwDataLen, pCryptHash->dwHashSize);
705 break;
706
707 default:
708 finalize_hash_impl(pCryptHash->aiAlgid, &pCryptHash->context, pCryptHash->abHashValue);
709 }
710 }
711
712 /******************************************************************************
713 * destroy_key [Internal]
714 *
715 * Destructor for key objects
716 *
717 * PARAMS
718 * pCryptKey [I] Pointer to the key object to be destroyed.
719 * Will be invalid after function returns!
720 */
721 static void destroy_key(OBJECTHDR *pObject)
722 {
723 CRYPTKEY *pCryptKey = (CRYPTKEY*)pObject;
724
725 free_key_impl(pCryptKey->aiAlgid, &pCryptKey->context);
726 free_data_blob(&pCryptKey->siSChannelInfo.blobClientRandom);
727 free_data_blob(&pCryptKey->siSChannelInfo.blobServerRandom);
728 HeapFree(GetProcessHeap(), 0, pCryptKey);
729 }
730
731 /******************************************************************************
732 * setup_key [Internal]
733 *
734 * Initialize (or reset) a key object
735 *
736 * PARAMS
737 * pCryptKey [I] The key object to be initialized.
738 */
739 static inline void setup_key(CRYPTKEY *pCryptKey) {
740 pCryptKey->dwState = RSAENH_KEYSTATE_IDLE;
741 memcpy(pCryptKey->abChainVector, pCryptKey->abInitVector, sizeof(pCryptKey->abChainVector));
742 setup_key_impl(pCryptKey->aiAlgid, &pCryptKey->context, pCryptKey->dwKeyLen,
743 pCryptKey->dwEffectiveKeyLen, pCryptKey->dwSaltLen,
744 pCryptKey->abKeyValue);
745 }
746
747 /******************************************************************************
748 * new_key [Internal]
749 *
750 * Creates a new key object without assigning the actual binary key value.
751 * This is done by CPDeriveKey, CPGenKey or CPImportKey, which call this function.
752 *
753 * PARAMS
754 * hProv [I] Handle to the provider to which the created key will belong.
755 * aiAlgid [I] The new key shall use the crypto algorithm idenfied by aiAlgid.
756 * dwFlags [I] Upper 16 bits give the key length.
757 * Lower 16 bits: CRYPT_EXPORTABLE, CRYPT_CREATE_SALT,
758 * CRYPT_NO_SALT
759 * ppCryptKey [O] Pointer to the created key
760 *
761 * RETURNS
762 * Success: Handle to the created key.
763 * Failure: INVALID_HANDLE_VALUE
764 */
765 static HCRYPTKEY new_key(HCRYPTPROV hProv, ALG_ID aiAlgid, DWORD dwFlags, CRYPTKEY **ppCryptKey)
766 {
767 HCRYPTKEY hCryptKey;
768 CRYPTKEY *pCryptKey;
769 DWORD dwKeyLen = HIWORD(dwFlags);
770 const PROV_ENUMALGS_EX *peaAlgidInfo;
771
772 *ppCryptKey = NULL;
773
774 /*
775 * Retrieve the CSP's capabilities for the given ALG_ID value
776 */
777 peaAlgidInfo = get_algid_info(hProv, aiAlgid);
778 if (!peaAlgidInfo) return (HCRYPTKEY)INVALID_HANDLE_VALUE;
779
780 TRACE("alg = %s, dwKeyLen = %d\n", debugstr_a(peaAlgidInfo->szName),
781 dwKeyLen);
782 /*
783 * Assume the default key length, if none is specified explicitly
784 */
785 if (dwKeyLen == 0) dwKeyLen = peaAlgidInfo->dwDefaultLen;
786
787 /*
788 * Check if the requested key length is supported by the current CSP.
789 * Adjust key length's for DES algorithms.
790 */
791 switch (aiAlgid) {
792 case CALG_DES:
793 if (dwKeyLen == RSAENH_DES_EFFECTIVE_KEYLEN) {
794 dwKeyLen = RSAENH_DES_STORAGE_KEYLEN;
795 }
796 if (dwKeyLen != RSAENH_DES_STORAGE_KEYLEN) {
797 SetLastError(NTE_BAD_FLAGS);
798 return (HCRYPTKEY)INVALID_HANDLE_VALUE;
799 }
800 break;
801
802 case CALG_3DES_112:
803 if (dwKeyLen == RSAENH_3DES112_EFFECTIVE_KEYLEN) {
804 dwKeyLen = RSAENH_3DES112_STORAGE_KEYLEN;
805 }
806 if (dwKeyLen != RSAENH_3DES112_STORAGE_KEYLEN) {
807 SetLastError(NTE_BAD_FLAGS);
808 return (HCRYPTKEY)INVALID_HANDLE_VALUE;
809 }
810 break;
811
812 case CALG_3DES:
813 if (dwKeyLen == RSAENH_3DES_EFFECTIVE_KEYLEN) {
814 dwKeyLen = RSAENH_3DES_STORAGE_KEYLEN;
815 }
816 if (dwKeyLen != RSAENH_3DES_STORAGE_KEYLEN) {
817 SetLastError(NTE_BAD_FLAGS);
818 return (HCRYPTKEY)INVALID_HANDLE_VALUE;
819 }
820 break;
821
822 default:
823 if (dwKeyLen % 8 ||
824 dwKeyLen > peaAlgidInfo->dwMaxLen ||
825 dwKeyLen < peaAlgidInfo->dwMinLen)
826 {
827 TRACE("key len %d out of bounds (%d, %d)\n", dwKeyLen,
828 peaAlgidInfo->dwMinLen, peaAlgidInfo->dwMaxLen);
829 SetLastError(NTE_BAD_DATA);
830 return (HCRYPTKEY)INVALID_HANDLE_VALUE;
831 }
832 }
833
834 hCryptKey = new_object(&handle_table, sizeof(CRYPTKEY), RSAENH_MAGIC_KEY,
835 destroy_key, (OBJECTHDR**)&pCryptKey);
836 if (hCryptKey != (HCRYPTKEY)INVALID_HANDLE_VALUE)
837 {
838 pCryptKey->aiAlgid = aiAlgid;
839 pCryptKey->hProv = hProv;
840 pCryptKey->dwModeBits = 0;
841 pCryptKey->dwPermissions = CRYPT_ENCRYPT | CRYPT_DECRYPT | CRYPT_READ | CRYPT_WRITE |
842 CRYPT_MAC;
843 if (dwFlags & CRYPT_EXPORTABLE)
844 pCryptKey->dwPermissions |= CRYPT_EXPORT;
845 pCryptKey->dwKeyLen = dwKeyLen >> 3;
846 pCryptKey->dwEffectiveKeyLen = 0;
847 if ((dwFlags & CRYPT_CREATE_SALT) || (dwKeyLen == 40 && !(dwFlags & CRYPT_NO_SALT)))
848 pCryptKey->dwSaltLen = 16 /*FIXME*/ - pCryptKey->dwKeyLen;
849 else
850 pCryptKey->dwSaltLen = 0;
851 memset(pCryptKey->abKeyValue, 0, sizeof(pCryptKey->abKeyValue));
852 memset(pCryptKey->abInitVector, 0, sizeof(pCryptKey->abInitVector));
853 init_data_blob(&pCryptKey->siSChannelInfo.blobClientRandom);
854 init_data_blob(&pCryptKey->siSChannelInfo.blobServerRandom);
855
856 switch(aiAlgid)
857 {
858 case CALG_PCT1_MASTER:
859 case CALG_SSL2_MASTER:
860 case CALG_SSL3_MASTER:
861 case CALG_TLS1_MASTER:
862 case CALG_RC4:
863 pCryptKey->dwBlockLen = 0;
864 pCryptKey->dwMode = 0;
865 break;
866
867 case CALG_RC2:
868 case CALG_DES:
869 case CALG_3DES_112:
870 case CALG_3DES:
871 pCryptKey->dwBlockLen = 8;
872 pCryptKey->dwMode = CRYPT_MODE_CBC;
873 break;
874
875 case CALG_AES:
876 case CALG_AES_128:
877 case CALG_AES_192:
878 case CALG_AES_256:
879 pCryptKey->dwBlockLen = 16;
880 pCryptKey->dwMode = CRYPT_MODE_ECB;
881 break;
882
883 case CALG_RSA_KEYX:
884 case CALG_RSA_SIGN:
885 pCryptKey->dwBlockLen = dwKeyLen >> 3;
886 pCryptKey->dwMode = 0;
887 break;
888 }
889
890 *ppCryptKey = pCryptKey;
891 }
892
893 return hCryptKey;
894 }
895
896 /******************************************************************************
897 * map_key_spec_to_key_pair_name [Internal]
898 *
899 * Returns the name of the registry value associated with a key spec.
900 *
901 * PARAMS
902 * dwKeySpec [I] AT_KEYEXCHANGE or AT_SIGNATURE
903 *
904 * RETURNS
905 * Success: Name of registry value.
906 * Failure: NULL
907 */
908 static LPCSTR map_key_spec_to_key_pair_name(DWORD dwKeySpec)
909 {
910 LPCSTR szValueName;
911
912 switch (dwKeySpec)
913 {
914 case AT_KEYEXCHANGE:
915 szValueName = "KeyExchangeKeyPair";
916 break;
917 case AT_SIGNATURE:
918 szValueName = "SignatureKeyPair";
919 break;
920 default:
921 WARN("invalid key spec %d\n", dwKeySpec);
922 szValueName = NULL;
923 }
924 return szValueName;
925 }
926
927 /******************************************************************************
928 * store_key_pair [Internal]
929 *
930 * Stores a key pair to the registry
931 *
932 * PARAMS
933 * hCryptKey [I] Handle to the key to be stored
934 * hKey [I] Registry key where the key pair is to be stored
935 * dwKeySpec [I] AT_KEYEXCHANGE or AT_SIGNATURE
936 * dwFlags [I] Flags for protecting the key
937 */
938 static void store_key_pair(HCRYPTKEY hCryptKey, HKEY hKey, DWORD dwKeySpec, DWORD dwFlags)
939 {
940 LPCSTR szValueName;
941 DATA_BLOB blobIn, blobOut;
942 CRYPTKEY *pKey;
943 DWORD dwLen;
944 BYTE *pbKey;
945
946 if (!(szValueName = map_key_spec_to_key_pair_name(dwKeySpec)))
947 return;
948 if (lookup_handle(&handle_table, hCryptKey, RSAENH_MAGIC_KEY,
949 (OBJECTHDR**)&pKey))
950 {
951 if (crypt_export_key(pKey, 0, PRIVATEKEYBLOB, 0, TRUE, 0, &dwLen))
952 {
953 pbKey = HeapAlloc(GetProcessHeap(), 0, dwLen);
954 if (pbKey)
955 {
956 if (crypt_export_key(pKey, 0, PRIVATEKEYBLOB, 0, TRUE, pbKey,
957 &dwLen))
958 {
959 blobIn.pbData = pbKey;
960 blobIn.cbData = dwLen;
961
962 if (CryptProtectData(&blobIn, NULL, NULL, NULL, NULL,
963 dwFlags, &blobOut))
964 {
965 RegSetValueExA(hKey, szValueName, 0, REG_BINARY,
966 blobOut.pbData, blobOut.cbData);
967 LocalFree(blobOut.pbData);
968 }
969 }
970 HeapFree(GetProcessHeap(), 0, pbKey);
971 }
972 }
973 }
974 }
975
976 /******************************************************************************
977 * map_key_spec_to_permissions_name [Internal]
978 *
979 * Returns the name of the registry value associated with the permissions for
980 * a key spec.
981 *
982 * PARAMS
983 * dwKeySpec [I] AT_KEYEXCHANGE or AT_SIGNATURE
984 *
985 * RETURNS
986 * Success: Name of registry value.
987 * Failure: NULL
988 */
989 static LPCSTR map_key_spec_to_permissions_name(DWORD dwKeySpec)
990 {
991 LPCSTR szValueName;
992
993 switch (dwKeySpec)
994 {
995 case AT_KEYEXCHANGE:
996 szValueName = "KeyExchangePermissions";
997 break;
998 case AT_SIGNATURE:
999 szValueName = "SignaturePermissions";
1000 break;
1001 default:
1002 WARN("invalid key spec %d\n", dwKeySpec);
1003 szValueName = NULL;
1004 }
1005 return szValueName;
1006 }
1007
1008 /******************************************************************************
1009 * store_key_permissions [Internal]
1010 *
1011 * Stores a key's permissions to the registry
1012 *
1013 * PARAMS
1014 * hCryptKey [I] Handle to the key whose permissions are to be stored
1015 * hKey [I] Registry key where the key permissions are to be stored
1016 * dwKeySpec [I] AT_KEYEXCHANGE or AT_SIGNATURE
1017 */
1018 static void store_key_permissions(HCRYPTKEY hCryptKey, HKEY hKey, DWORD dwKeySpec)
1019 {
1020 LPCSTR szValueName;
1021 CRYPTKEY *pKey;
1022
1023 if (!(szValueName = map_key_spec_to_permissions_name(dwKeySpec)))
1024 return;
1025 if (lookup_handle(&handle_table, hCryptKey, RSAENH_MAGIC_KEY,
1026 (OBJECTHDR**)&pKey))
1027 RegSetValueExA(hKey, szValueName, 0, REG_DWORD,
1028 (BYTE *)&pKey->dwPermissions,
1029 sizeof(pKey->dwPermissions));
1030 }
1031
1032 /******************************************************************************
1033 * create_container_key [Internal]
1034 *
1035 * Creates the registry key for a key container's persistent storage.
1036 *
1037 * PARAMS
1038 * pKeyContainer [I] Pointer to the key container
1039 * sam [I] Desired registry access
1040 * phKey [O] Returned key
1041 */
1042 static BOOL create_container_key(KEYCONTAINER *pKeyContainer, REGSAM sam, HKEY *phKey)
1043 {
1044 CHAR szRSABase[MAX_PATH];
1045 HKEY hRootKey;
1046
1047 sprintf(szRSABase, RSAENH_REGKEY, pKeyContainer->szName);
1048
1049 if (pKeyContainer->dwFlags & CRYPT_MACHINE_KEYSET)
1050 hRootKey = HKEY_LOCAL_MACHINE;
1051 else
1052 hRootKey = HKEY_CURRENT_USER;
1053
1054 /* @@ Wine registry key: HKLM\Software\Wine\Crypto\RSA */
1055 /* @@ Wine registry key: HKCU\Software\Wine\Crypto\RSA */
1056 return RegCreateKeyExA(hRootKey, szRSABase, 0, NULL,
1057 REG_OPTION_NON_VOLATILE, sam, NULL, phKey, NULL)
1058 == ERROR_SUCCESS;
1059 }
1060
1061 /******************************************************************************
1062 * open_container_key [Internal]
1063 *
1064 * Opens a key container's persistent storage for reading.
1065 *
1066 * PARAMS
1067 * pszContainerName [I] Name of the container to be opened. May be the empty
1068 * string if the parent key of all containers is to be
1069 * opened.
1070 * dwFlags [I] Flags indicating which keyset to be opened.
1071 * phKey [O] Returned key
1072 */
1073 static BOOL open_container_key(LPCSTR pszContainerName, DWORD dwFlags, HKEY *phKey)
1074 {
1075 CHAR szRSABase[MAX_PATH];
1076 HKEY hRootKey;
1077
1078 sprintf(szRSABase, RSAENH_REGKEY, pszContainerName);
1079
1080 if (dwFlags & CRYPT_MACHINE_KEYSET)
1081 hRootKey = HKEY_LOCAL_MACHINE;
1082 else
1083 hRootKey = HKEY_CURRENT_USER;
1084
1085 /* @@ Wine registry key: HKLM\Software\Wine\Crypto\RSA */
1086 /* @@ Wine registry key: HKCU\Software\Wine\Crypto\RSA */
1087 return RegOpenKeyExA(hRootKey, szRSABase, 0, KEY_READ, phKey) ==
1088 ERROR_SUCCESS;
1089 }
1090
1091 /******************************************************************************
1092 * delete_container_key [Internal]
1093 *
1094 * Deletes a key container's persistent storage.
1095 *
1096 * PARAMS
1097 * pszContainerName [I] Name of the container to be opened.
1098 * dwFlags [I] Flags indicating which keyset to be opened.
1099 */
1100 static BOOL delete_container_key(LPCSTR pszContainerName, DWORD dwFlags)
1101 {
1102 CHAR szRegKey[MAX_PATH];
1103
1104 if (snprintf(szRegKey, MAX_PATH, RSAENH_REGKEY, pszContainerName) >= MAX_PATH) {
1105 SetLastError(NTE_BAD_KEYSET_PARAM);
1106 return FALSE;
1107 } else {
1108 HKEY hRootKey;
1109 if (dwFlags & CRYPT_MACHINE_KEYSET)
1110 hRootKey = HKEY_LOCAL_MACHINE;
1111 else
1112 hRootKey = HKEY_CURRENT_USER;
1113 if (!RegDeleteKeyA(hRootKey, szRegKey)) {
1114 SetLastError(ERROR_SUCCESS);
1115 return TRUE;
1116 } else {
1117 SetLastError(NTE_BAD_KEYSET);
1118 return FALSE;
1119 }
1120 }
1121 }
1122
1123 /******************************************************************************
1124 * store_key_container_keys [Internal]
1125 *
1126 * Stores key container's keys in a persistent location.
1127 *
1128 * PARAMS
1129 * pKeyContainer [I] Pointer to the key container whose keys are to be saved
1130 */
1131 static void store_key_container_keys(KEYCONTAINER *pKeyContainer)
1132 {
1133 HKEY hKey;
1134 DWORD dwFlags;
1135
1136 /* On WinXP, persistent keys are stored in a file located at:
1137 * $AppData$\\Microsoft\\Crypto\\RSA\\$SID$\\some_hex_string
1138 */
1139
1140 if (pKeyContainer->dwFlags & CRYPT_MACHINE_KEYSET)
1141 dwFlags = CRYPTPROTECT_LOCAL_MACHINE;
1142 else
1143 dwFlags = 0;
1144
1145 if (create_container_key(pKeyContainer, KEY_WRITE, &hKey))
1146 {
1147 store_key_pair(pKeyContainer->hKeyExchangeKeyPair, hKey,
1148 AT_KEYEXCHANGE, dwFlags);
1149 store_key_pair(pKeyContainer->hSignatureKeyPair, hKey,
1150 AT_SIGNATURE, dwFlags);
1151 RegCloseKey(hKey);
1152 }
1153 }
1154
1155 /******************************************************************************
1156 * store_key_container_permissions [Internal]
1157 *
1158 * Stores key container's key permissions in a persistent location.
1159 *
1160 * PARAMS
1161 * pKeyContainer [I] Pointer to the key container whose key permissions are to
1162 * be saved
1163 */
1164 static void store_key_container_permissions(KEYCONTAINER *pKeyContainer)
1165 {
1166 HKEY hKey;
1167 DWORD dwFlags;
1168
1169 /* On WinXP, persistent keys are stored in a file located at:
1170 * $AppData$\\Microsoft\\Crypto\\RSA\\$SID$\\some_hex_string
1171 */
1172
1173 if (pKeyContainer->dwFlags & CRYPT_MACHINE_KEYSET)
1174 dwFlags = CRYPTPROTECT_LOCAL_MACHINE;
1175 else
1176 dwFlags = 0;
1177
1178 if (create_container_key(pKeyContainer, KEY_WRITE, &hKey))
1179 {
1180 store_key_permissions(pKeyContainer->hKeyExchangeKeyPair, hKey,
1181 AT_KEYEXCHANGE);
1182 store_key_permissions(pKeyContainer->hSignatureKeyPair, hKey,
1183 AT_SIGNATURE);
1184 RegCloseKey(hKey);
1185 }
1186 }
1187
1188 /******************************************************************************
1189 * release_key_container_keys [Internal]
1190 *
1191 * Releases key container's keys.
1192 *
1193 * PARAMS
1194 * pKeyContainer [I] Pointer to the key container whose keys are to be released.
1195 */
1196 static void release_key_container_keys(KEYCONTAINER *pKeyContainer)
1197 {
1198 release_handle(&handle_table, pKeyContainer->hKeyExchangeKeyPair,
1199 RSAENH_MAGIC_KEY);
1200 release_handle(&handle_table, pKeyContainer->hSignatureKeyPair,
1201 RSAENH_MAGIC_KEY);
1202 }
1203
1204 /******************************************************************************
1205 * destroy_key_container [Internal]
1206 *
1207 * Destructor for key containers.
1208 *
1209 * PARAMS
1210 * pObjectHdr [I] Pointer to the key container to be destroyed.
1211 */
1212 static void destroy_key_container(OBJECTHDR *pObjectHdr)
1213 {
1214 KEYCONTAINER *pKeyContainer = (KEYCONTAINER*)pObjectHdr;
1215
1216 if (!(pKeyContainer->dwFlags & CRYPT_VERIFYCONTEXT))
1217 {
1218 store_key_container_keys(pKeyContainer);
1219 store_key_container_permissions(pKeyContainer);
1220 release_key_container_keys(pKeyContainer);
1221 }
1222 else
1223 release_key_container_keys(pKeyContainer);
1224 HeapFree( GetProcessHeap(), 0, pKeyContainer );
1225 }
1226
1227 /******************************************************************************
1228 * new_key_container [Internal]
1229 *
1230 * Create a new key container. The personality (RSA Base, Strong or Enhanced CP)
1231 * of the CSP is determined via the pVTable->pszProvName string.
1232 *
1233 * PARAMS
1234 * pszContainerName [I] Name of the key container.
1235 * pVTable [I] Callback functions and context info provided by the OS
1236 *
1237 * RETURNS
1238 * Success: Handle to the new key container.
1239 * Failure: INVALID_HANDLE_VALUE
1240 */
1241 static HCRYPTPROV new_key_container(PCCH pszContainerName, DWORD dwFlags, const VTableProvStruc *pVTable)
1242 {
1243 KEYCONTAINER *pKeyContainer;
1244 HCRYPTPROV hKeyContainer;
1245
1246 hKeyContainer = new_object(&handle_table, sizeof(KEYCONTAINER), RSAENH_MAGIC_CONTAINER,
1247 destroy_key_container, (OBJECTHDR**)&pKeyContainer);
1248 if (hKeyContainer != (HCRYPTPROV)INVALID_HANDLE_VALUE)
1249 {
1250 lstrcpynA(pKeyContainer->szName, pszContainerName, MAX_PATH);
1251 pKeyContainer->dwFlags = dwFlags;
1252 pKeyContainer->dwEnumAlgsCtr = 0;
1253 pKeyContainer->hKeyExchangeKeyPair = (HCRYPTKEY)INVALID_HANDLE_VALUE;
1254 pKeyContainer->hSignatureKeyPair = (HCRYPTKEY)INVALID_HANDLE_VALUE;
1255 if (pVTable && pVTable->pszProvName) {
1256 lstrcpynA(pKeyContainer->szProvName, pVTable->pszProvName, MAX_PATH);
1257 if (!strcmp(pVTable->pszProvName, MS_DEF_PROV_A)) {
1258 pKeyContainer->dwPersonality = RSAENH_PERSONALITY_BASE;
1259 } else if (!strcmp(pVTable->pszProvName, MS_ENHANCED_PROV_A)) {
1260 pKeyContainer->dwPersonality = RSAENH_PERSONALITY_ENHANCED;
1261 } else if (!strcmp(pVTable->pszProvName, MS_DEF_RSA_SCHANNEL_PROV_A)) {
1262 pKeyContainer->dwPersonality = RSAENH_PERSONALITY_SCHANNEL;
1263 } else if (!strcmp(pVTable->pszProvName, MS_ENH_RSA_AES_PROV_A)) {
1264 pKeyContainer->dwPersonality = RSAENH_PERSONALITY_AES;
1265 } else {
1266 pKeyContainer->dwPersonality = RSAENH_PERSONALITY_STRONG;
1267 }
1268 }
1269
1270 /* The new key container has to be inserted into the CSP immediately
1271 * after creation to be available for CPGetProvParam's PP_ENUMCONTAINERS. */
1272 if (!(dwFlags & CRYPT_VERIFYCONTEXT)) {
1273 HKEY hKey;
1274
1275 if (create_container_key(pKeyContainer, KEY_WRITE, &hKey))
1276 RegCloseKey(hKey);
1277 }
1278 }
1279
1280 return hKeyContainer;
1281 }
1282
1283 /******************************************************************************
1284 * read_key_value [Internal]
1285 *
1286 * Reads a key pair value from the registry
1287 *
1288 * PARAMS
1289 * hKeyContainer [I] Crypt provider to use to import the key
1290 * hKey [I] Registry key from which to read the key pair
1291 * dwKeySpec [I] AT_KEYEXCHANGE or AT_SIGNATURE
1292 * dwFlags [I] Flags for unprotecting the key
1293 * phCryptKey [O] Returned key
1294 */
1295 static BOOL read_key_value(HCRYPTPROV hKeyContainer, HKEY hKey, DWORD dwKeySpec, DWORD dwFlags, HCRYPTKEY *phCryptKey)
1296 {
1297 LPCSTR szValueName;
1298 DWORD dwValueType, dwLen;
1299 BYTE *pbKey;
1300 DATA_BLOB blobIn, blobOut;
1301 BOOL ret = FALSE;
1302
1303 if (!(szValueName = map_key_spec_to_key_pair_name(dwKeySpec)))
1304 return FALSE;
1305 if (RegQueryValueExA(hKey, szValueName, 0, &dwValueType, NULL, &dwLen) ==
1306 ERROR_SUCCESS)
1307 {
1308 pbKey = HeapAlloc(GetProcessHeap(), 0, dwLen);
1309 if (pbKey)
1310 {
1311 if (RegQueryValueExA(hKey, szValueName, 0, &dwValueType, pbKey, &dwLen) ==
1312 ERROR_SUCCESS)
1313 {
1314 blobIn.pbData = pbKey;
1315 blobIn.cbData = dwLen;
1316
1317 if (CryptUnprotectData(&blobIn, NULL, NULL, NULL, NULL,
1318 dwFlags, &blobOut))
1319 {
1320 ret = import_key(hKeyContainer, blobOut.pbData, blobOut.cbData, 0, 0,
1321 FALSE, phCryptKey);
1322 LocalFree(blobOut.pbData);
1323 }
1324 }
1325 HeapFree(GetProcessHeap(), 0, pbKey);
1326 }
1327 }
1328 if (ret)
1329 {
1330 CRYPTKEY *pKey;
1331
1332 if (lookup_handle(&handle_table, *phCryptKey, RSAENH_MAGIC_KEY,
1333 (OBJECTHDR**)&pKey))
1334 {
1335 if ((szValueName = map_key_spec_to_permissions_name(dwKeySpec)))
1336 {
1337 dwLen = sizeof(pKey->dwPermissions);
1338 RegQueryValueExA(hKey, szValueName, 0, NULL,
1339 (BYTE *)&pKey->dwPermissions, &dwLen);
1340 }
1341 }
1342 }
1343 return ret;
1344 }
1345
1346 /******************************************************************************
1347 * read_key_container [Internal]
1348 *
1349 * Tries to read the persistent state of the key container (mainly the signature
1350 * and key exchange private keys) given by pszContainerName.
1351 *
1352 * PARAMS
1353 * pszContainerName [I] Name of the key container to read from the registry
1354 * pVTable [I] Pointer to context data provided by the operating system
1355 *
1356 * RETURNS
1357 * Success: Handle to the key container read from the registry
1358 * Failure: INVALID_HANDLE_VALUE
1359 */
1360 static HCRYPTPROV read_key_container(PCHAR pszContainerName, DWORD dwFlags, const VTableProvStruc *pVTable)
1361 {
1362 HKEY hKey;
1363 KEYCONTAINER *pKeyContainer;
1364 HCRYPTPROV hKeyContainer;
1365 HCRYPTKEY hCryptKey;
1366
1367 if (!open_container_key(pszContainerName, dwFlags, &hKey))
1368 {
1369 SetLastError(NTE_BAD_KEYSET);
1370 return (HCRYPTPROV)INVALID_HANDLE_VALUE;
1371 }
1372
1373 hKeyContainer = new_key_container(pszContainerName, dwFlags, pVTable);
1374 if (hKeyContainer != (HCRYPTPROV)INVALID_HANDLE_VALUE)
1375 {
1376 DWORD dwProtectFlags = (dwFlags & CRYPT_MACHINE_KEYSET) ?
1377 CRYPTPROTECT_LOCAL_MACHINE : 0;
1378
1379 if (!lookup_handle(&handle_table, hKeyContainer, RSAENH_MAGIC_CONTAINER,
1380 (OBJECTHDR**)&pKeyContainer))
1381 return (HCRYPTPROV)INVALID_HANDLE_VALUE;
1382
1383 /* read_key_value calls import_key, which calls import_private_key,
1384 * which implicitly installs the key value into the appropriate key
1385 * container key. Thus the ref count is incremented twice, once for
1386 * the output key value, and once for the implicit install, and needs
1387 * to be decremented to balance the two.
1388 */
1389 if (read_key_value(hKeyContainer, hKey, AT_KEYEXCHANGE,
1390 dwProtectFlags, &hCryptKey))
1391 release_handle(&handle_table, hCryptKey, RSAENH_MAGIC_KEY);
1392 if (read_key_value(hKeyContainer, hKey, AT_SIGNATURE,
1393 dwProtectFlags, &hCryptKey))
1394 release_handle(&handle_table, hCryptKey, RSAENH_MAGIC_KEY);
1395 }
1396
1397 return hKeyContainer;
1398 }
1399
1400 /******************************************************************************
1401 * build_hash_signature [Internal]
1402 *
1403 * Builds a padded version of a hash to match the length of the RSA key modulus.
1404 *
1405 * PARAMS
1406 * pbSignature [O] The padded hash object is stored here.
1407 * dwLen [I] Length of the pbSignature buffer.
1408 * aiAlgid [I] Algorithm identifier of the hash to be padded.
1409 * abHashValue [I] The value of the hash object.
1410 * dwHashLen [I] Length of the hash value.
1411 * dwFlags [I] Selection of padding algorithm.
1412 *
1413 * RETURNS
1414 * Success: TRUE
1415 * Failure: FALSE (NTE_BAD_ALGID)
1416 */
1417 static BOOL build_hash_signature(BYTE *pbSignature, DWORD dwLen, ALG_ID aiAlgid,
1418 CONST BYTE *abHashValue, DWORD dwHashLen, DWORD dwFlags)
1419 {
1420 /* These prefixes are meant to be concatenated with hash values of the
1421 * respective kind to form a PKCS #7 DigestInfo. */
1422 static const struct tagOIDDescriptor {
1423 ALG_ID aiAlgid;
1424 DWORD dwLen;
1425 CONST BYTE abOID[18];
1426 } aOIDDescriptor[5] = {
1427 { CALG_MD2, 18, { 0x30, 0x20, 0x30, 0x0c, 0x06, 0x08, 0x2a, 0x86, 0x48,
1428 0x86, 0xf7, 0x0d, 0x02, 0x02, 0x05, 0x00, 0x04, 0x10 } },
1429 { CALG_MD4, 18, { 0x30, 0x20, 0x30, 0x0c, 0x06, 0x08, 0x2a, 0x86, 0x48,
1430 0x86, 0xf7, 0x0d, 0x02, 0x04, 0x05, 0x00, 0x04, 0x10 } },
1431 { CALG_MD5, 18, { 0x30, 0x20, 0x30, 0x0c, 0x06, 0x08, 0x2a, 0x86, 0x48,
1432 0x86, 0xf7, 0x0d, 0x02, 0x05, 0x05, 0x00, 0x04, 0x10 } },
1433 { CALG_SHA, 15, { 0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2b, 0x0e, 0x03,
1434 0x02, 0x1a, 0x05, 0x00, 0x04, 0x14 } },
1435 { 0, 0, { 0 } }
1436 };
1437 DWORD dwIdxOID, i, j;
1438
1439 for (dwIdxOID = 0; aOIDDescriptor[dwIdxOID].aiAlgid; dwIdxOID++) {
1440 if (aOIDDescriptor[dwIdxOID].aiAlgid == aiAlgid) break;
1441 }
1442
1443 if (!aOIDDescriptor[dwIdxOID].aiAlgid) {
1444 SetLastError(NTE_BAD_ALGID);
1445 return FALSE;
1446 }
1447
1448 /* Build the padded signature */
1449 if (dwFlags & CRYPT_X931_FORMAT) {
1450 pbSignature[0] = 0x6b;
1451 for (i=1; i < dwLen - dwHashLen - 3; i++) {
1452 pbSignature[i] = 0xbb;
1453 }
1454 pbSignature[i++] = 0xba;
1455 for (j=0; j < dwHashLen; j++, i++) {
1456 pbSignature[i] = abHashValue[j];
1457 }
1458 pbSignature[i++] = 0x33;
1459 pbSignature[i++] = 0xcc;
1460 } else {
1461 pbSignature[0] = 0x00;
1462 pbSignature[1] = 0x01;
1463 if (dwFlags & CRYPT_NOHASHOID) {
1464 for (i=2; i < dwLen - 1 - dwHashLen; i++) {
1465 pbSignature[i] = 0xff;
1466 }
1467 pbSignature[i++] = 0x00;
1468 } else {
1469 for (i=2; i < dwLen - 1 - aOIDDescriptor[dwIdxOID].dwLen - dwHashLen; i++) {
1470 pbSignature[i] = 0xff;
1471 }
1472 pbSignature[i++] = 0x00;
1473 for (j=0; j < aOIDDescriptor[dwIdxOID].dwLen; j++) {
1474 pbSignature[i++] = aOIDDescriptor[dwIdxOID].abOID[j];
1475 }
1476 }
1477 for (j=0; j < dwHashLen; j++) {
1478 pbSignature[i++] = abHashValue[j];
1479 }
1480 }
1481
1482 return TRUE;
1483 }
1484
1485 /******************************************************************************
1486 * tls1_p [Internal]
1487 *
1488 * This is an implementation of the 'P_hash' helper function for TLS1's PRF.
1489 * It is used exclusively by tls1_prf. For details see RFC 2246, chapter 5.
1490 * The pseudo random stream generated by this function is exclusive or'ed with
1491 * the data in pbBuffer.
1492 *
1493 * PARAMS
1494 * hHMAC [I] HMAC object, which will be used in pseudo random generation
1495 * pblobSeed [I] Seed value
1496 * pbBuffer [I/O] Pseudo random stream will be xor'ed to the provided data
1497 * dwBufferLen [I] Number of pseudo random bytes desired
1498 *
1499 * RETURNS
1500 * Success: TRUE
1501 * Failure: FALSE
1502 */
1503 static BOOL tls1_p(HCRYPTHASH hHMAC, CONST PCRYPT_DATA_BLOB pblobSeed, PBYTE pbBuffer, DWORD dwBufferLen)
1504 {
1505 CRYPTHASH *pHMAC;
1506 BYTE abAi[RSAENH_MAX_HASH_SIZE];
1507 DWORD i = 0;
1508
1509 if (!lookup_handle(&handle_table, hHMAC, RSAENH_MAGIC_HASH, (OBJECTHDR**)&pHMAC)) {
1510 SetLastError(NTE_BAD_HASH);
1511 return FALSE;
1512 }
1513
1514 /* compute A_1 = HMAC(seed) */
1515 init_hash(pHMAC);
1516 update_hash(pHMAC, pblobSeed->pbData, pblobSeed->cbData);
1517 finalize_hash(pHMAC);
1518 memcpy(abAi, pHMAC->abHashValue, pHMAC->dwHashSize);
1519
1520 do {
1521 /* compute HMAC(A_i + seed) */
1522 init_hash(pHMAC);
1523 update_hash(pHMAC, abAi, pHMAC->dwHashSize);
1524 update_hash(pHMAC, pblobSeed->pbData, pblobSeed->cbData);
1525 finalize_hash(pHMAC);
1526
1527 /* pseudo random stream := CONCAT_{i=1..n} ( HMAC(A_i + seed) ) */
1528 do {
1529 if (i >= dwBufferLen) break;
1530 pbBuffer[i] ^= pHMAC->abHashValue[i % pHMAC->dwHashSize];
1531 i++;
1532 } while (i % pHMAC->dwHashSize);
1533
1534 /* compute A_{i+1} = HMAC(A_i) */
1535 init_hash(pHMAC);
1536 update_hash(pHMAC, abAi, pHMAC->dwHashSize);
1537 finalize_hash(pHMAC);
1538 memcpy(abAi, pHMAC->abHashValue, pHMAC->dwHashSize);
1539 } while (i < dwBufferLen);
1540
1541 return TRUE;
1542 }
1543
1544 /******************************************************************************
1545 * tls1_prf [Internal]
1546 *
1547 * TLS1 pseudo random function as specified in RFC 2246, chapter 5
1548 *
1549 * PARAMS
1550 * hProv [I] Key container used to compute the pseudo random stream
1551 * hSecret [I] Key that holds the (pre-)master secret
1552 * pblobLabel [I] Descriptive label
1553 * pblobSeed [I] Seed value
1554 * pbBuffer [O] Pseudo random numbers will be stored here
1555 * dwBufferLen [I] Number of pseudo random bytes desired
1556 *
1557 * RETURNS
1558 * Success: TRUE
1559 * Failure: FALSE
1560 */
1561 static BOOL tls1_prf(HCRYPTPROV hProv, HCRYPTPROV hSecret, CONST PCRYPT_DATA_BLOB pblobLabel,
1562 CONST PCRYPT_DATA_BLOB pblobSeed, PBYTE pbBuffer, DWORD dwBufferLen)
1563 {
1564 HMAC_INFO hmacInfo = { 0, NULL, 0, NULL, 0 };
1565 HCRYPTHASH hHMAC = (HCRYPTHASH)INVALID_HANDLE_VALUE;
1566 HCRYPTKEY hHalfSecret = (HCRYPTKEY)INVALID_HANDLE_VALUE;
1567 CRYPTKEY *pHalfSecret, *pSecret;
1568 DWORD dwHalfSecretLen;
1569 BOOL result = FALSE;
1570 CRYPT_DATA_BLOB blobLabelSeed;
1571
1572 TRACE("(hProv=%08lx, hSecret=%08lx, pblobLabel=%p, pblobSeed=%p, pbBuffer=%p, dwBufferLen=%d)\n",
1573 hProv, hSecret, pblobLabel, pblobSeed, pbBuffer, dwBufferLen);
1574
1575 if (!lookup_handle(&handle_table, hSecret, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pSecret)) {
1576 SetLastError(NTE_FAIL);
1577 return FALSE;
1578 }
1579
1580 dwHalfSecretLen = (pSecret->dwKeyLen+1)/2;
1581
1582 /* concatenation of the label and the seed */
1583 if (!concat_data_blobs(&blobLabelSeed, pblobLabel, pblobSeed)) goto exit;
1584
1585 /* zero out the buffer, since two random streams will be xor'ed into it. */
1586 memset(pbBuffer, 0, dwBufferLen);
1587
1588 /* build a 'fake' key, to hold the secret. CALG_SSL2_MASTER is used since it provides
1589 * the biggest range of valid key lengths. */
1590 hHalfSecret = new_key(hProv, CALG_SSL2_MASTER, MAKELONG(0,dwHalfSecretLen*8), &pHalfSecret);
1591 if (hHalfSecret == (HCRYPTKEY)INVALID_HANDLE_VALUE) goto exit;
1592
1593 /* Derive an HMAC_MD5 hash and call the helper function. */
1594 memcpy(pHalfSecret->abKeyValue, pSecret->abKeyValue, dwHalfSecretLen);
1595 if (!RSAENH_CPCreateHash(hProv, CALG_HMAC, hHalfSecret, 0, &hHMAC)) goto exit;
1596 hmacInfo.HashAlgid = CALG_MD5;
1597 if (!RSAENH_CPSetHashParam(hProv, hHMAC, HP_HMAC_INFO, (BYTE*)&hmacInfo, 0)) goto exit;
1598 if (!tls1_p(hHMAC, &blobLabelSeed, pbBuffer, dwBufferLen)) goto exit;
1599
1600 /* Reconfigure to HMAC_SHA hash and call helper function again. */
1601 memcpy(pHalfSecret->abKeyValue, pSecret->abKeyValue + (pSecret->dwKeyLen/2), dwHalfSecretLen);
1602 hmacInfo.HashAlgid = CALG_SHA;
1603 if (!RSAENH_CPSetHashParam(hProv, hHMAC, HP_HMAC_INFO, (BYTE*)&hmacInfo, 0)) goto exit;
1604 if (!tls1_p(hHMAC, &blobLabelSeed, pbBuffer, dwBufferLen)) goto exit;
1605
1606 result = TRUE;
1607 exit:
1608 release_handle(&handle_table, hHalfSecret, RSAENH_MAGIC_KEY);
1609 if (hHMAC != (HCRYPTHASH)INVALID_HANDLE_VALUE) RSAENH_CPDestroyHash(hProv, hHMAC);
1610 free_data_blob(&blobLabelSeed);
1611 return result;
1612 }
1613
1614 /******************************************************************************
1615 * pad_data [Internal]
1616 *
1617 * Helper function for data padding according to PKCS1 #2
1618 *
1619 * PARAMS
1620 * abData [I] The data to be padded
1621 * dwDataLen [I] Length of the data
1622 * abBuffer [O] Padded data will be stored here
1623 * dwBufferLen [I] Length of the buffer (also length of padded data)
1624 * dwFlags [I] Padding format (CRYPT_SSL2_FALLBACK)
1625 *
1626 * RETURN
1627 * Success: TRUE
1628 * Failure: FALSE (NTE_BAD_LEN, too much data to pad)
1629 */
1630 static BOOL pad_data(CONST BYTE *abData, DWORD dwDataLen, BYTE *abBuffer, DWORD dwBufferLen,
1631 DWORD dwFlags)
1632 {
1633 DWORD i;
1634
1635 /* Ensure there is enough space for PKCS1 #2 padding */
1636 if (dwDataLen > dwBufferLen-11) {
1637 SetLastError(NTE_BAD_LEN);
1638 return FALSE;
1639 }
1640
1641 memmove(abBuffer + dwBufferLen - dwDataLen, abData, dwDataLen);
1642
1643 abBuffer[0] = 0x00;
1644 abBuffer[1] = RSAENH_PKC_BLOCKTYPE;
1645 for (i=2; i < dwBufferLen - dwDataLen - 1; i++)
1646 do gen_rand_impl(&abBuffer[i], 1); while (!abBuffer[i]);
1647 if (dwFlags & CRYPT_SSL2_FALLBACK)
1648 for (i-=8; i < dwBufferLen - dwDataLen - 1; i++)
1649 abBuffer[i] = 0x03;
1650 abBuffer[i] = 0x00;
1651
1652 return TRUE;
1653 }
1654
1655 /******************************************************************************
1656 * unpad_data [Internal]
1657 *
1658 * Remove the PKCS1 padding from RSA decrypted data
1659 *
1660 * PARAMS
1661 * abData [I] The padded data
1662 * dwDataLen [I] Length of the padded data
1663 * abBuffer [O] Data without padding will be stored here
1664 * dwBufferLen [I/O] I: Length of the buffer, O: Length of unpadded data
1665 * dwFlags [I] Currently none defined
1666 *
1667 * RETURNS
1668 * Success: TRUE
1669 * Failure: FALSE, (NTE_BAD_DATA, no valid PKCS1 padding or buffer too small)
1670 */
1671 static BOOL unpad_data(CONST BYTE *abData, DWORD dwDataLen, BYTE *abBuffer, DWORD *dwBufferLen,
1672 DWORD dwFlags)
1673 {
1674 DWORD i;
1675
1676 for (i=2; i<dwDataLen; i++)
1677 if (!abData[i])
1678 break;
1679
1680 if ((i == dwDataLen) || (*dwBufferLen < dwDataLen - i - 1) ||
1681 (abData[0] != 0x00) || (abData[1] != RSAENH_PKC_BLOCKTYPE))
1682 {
1683 SetLastError(NTE_BAD_DATA);
1684 return FALSE;
1685 }
1686
1687 *dwBufferLen = dwDataLen - i - 1;
1688 memmove(abBuffer, abData + i + 1, *dwBufferLen);
1689 return TRUE;
1690 }
1691
1692 /******************************************************************************
1693 * CPAcquireContext (RSAENH.@)
1694 *
1695 * Acquire a handle to the key container specified by pszContainer
1696 *
1697 * PARAMS
1698 * phProv [O] Pointer to the location the acquired handle will be written to.
1699 * pszContainer [I] Name of the desired key container. See Notes
1700 * dwFlags [I] Flags. See Notes.
1701 * pVTable [I] Pointer to a PVTableProvStruct containing callbacks.
1702 *
1703 * RETURNS
1704 * Success: TRUE
1705 * Failure: FALSE
1706 *
1707 * NOTES
1708 * If pszContainer is NULL or points to a zero length string the user's login
1709 * name will be used as the key container name.
1710 *
1711 * If the CRYPT_NEW_KEYSET flag is set in dwFlags a new keyset will be created.
1712 * If a keyset with the given name already exists, the function fails and sets
1713 * last error to NTE_EXISTS. If CRYPT_NEW_KEYSET is not set and the specified
1714 * key container does not exist, function fails and sets last error to
1715 * NTE_BAD_KEYSET.
1716 */
1717 BOOL WINAPI RSAENH_CPAcquireContext(HCRYPTPROV *phProv, LPSTR pszContainer,
1718 DWORD dwFlags, PVTableProvStruc pVTable)
1719 {
1720 CHAR szKeyContainerName[MAX_PATH];
1721
1722 TRACE("(phProv=%p, pszContainer=%s, dwFlags=%08x, pVTable=%p)\n", phProv,
1723 debugstr_a(pszContainer), dwFlags, pVTable);
1724
1725 if (pszContainer && *pszContainer)
1726 {
1727 lstrcpynA(szKeyContainerName, pszContainer, MAX_PATH);
1728 }
1729 else
1730 {
1731 DWORD dwLen = sizeof(szKeyContainerName);
1732 if (!GetUserNameA(szKeyContainerName, &dwLen)) return FALSE;
1733 }
1734
1735 switch (dwFlags & (CRYPT_NEWKEYSET|CRYPT_VERIFYCONTEXT|CRYPT_DELETEKEYSET))
1736 {
1737 case 0:
1738 *phProv = read_key_container(szKeyContainerName, dwFlags, pVTable);
1739 break;
1740
1741 case CRYPT_DELETEKEYSET:
1742 return delete_container_key(szKeyContainerName, dwFlags);
1743
1744 case CRYPT_NEWKEYSET:
1745 *phProv = read_key_container(szKeyContainerName, dwFlags, pVTable);
1746 if (*phProv != (HCRYPTPROV)INVALID_HANDLE_VALUE)
1747 {
1748 release_handle(&handle_table, *phProv, RSAENH_MAGIC_CONTAINER);
1749 TRACE("Can't create new keyset, already exists\n");
1750 SetLastError(NTE_EXISTS);
1751 return FALSE;
1752 }
1753 *phProv = new_key_container(szKeyContainerName, dwFlags, pVTable);
1754 break;
1755
1756 case CRYPT_VERIFYCONTEXT|CRYPT_NEWKEYSET:
1757 case CRYPT_VERIFYCONTEXT:
1758 if (pszContainer && *pszContainer) {
1759 TRACE("pszContainer should be empty\n");
1760 SetLastError(NTE_BAD_FLAGS);
1761 return FALSE;
1762 }
1763 *phProv = new_key_container("", dwFlags, pVTable);
1764 break;
1765
1766 default:
1767 *phProv = (HCRYPTPROV)INVALID_HANDLE_VALUE;
1768 SetLastError(NTE_BAD_FLAGS);
1769 return FALSE;
1770 }
1771
1772 if (*phProv != (HCRYPTPROV)INVALID_HANDLE_VALUE) {
1773 SetLastError(ERROR_SUCCESS);
1774 return TRUE;
1775 } else {
1776 return FALSE;
1777 }
1778 }
1779
1780 /******************************************************************************
1781 * CPCreateHash (RSAENH.@)
1782 *
1783 * CPCreateHash creates and initalizes a new hash object.
1784 *
1785 * PARAMS
1786 * hProv [I] Handle to the key container to which the new hash will belong.
1787 * Algid [I] Identifies the hash algorithm, which will be used for the hash.
1788 * hKey [I] Handle to a session key applied for keyed hashes.
1789 * dwFlags [I] Currently no flags defined. Must be zero.
1790 * phHash [O] Points to the location where a handle to the new hash will be stored.
1791 *
1792 * RETURNS
1793 * Success: TRUE
1794 * Failure: FALSE
1795 *
1796 * NOTES
1797 * hKey is a handle to a session key applied in keyed hashes like MAC and HMAC.
1798 * If a normal hash object is to be created (like e.g. MD2 or SHA1) hKey must be zero.
1799 */
1800 BOOL WINAPI RSAENH_CPCreateHash(HCRYPTPROV hProv, ALG_ID Algid, HCRYPTKEY hKey, DWORD dwFlags,
1801 HCRYPTHASH *phHash)
1802 {
1803 CRYPTKEY *pCryptKey;
1804 CRYPTHASH *pCryptHash;
1805 const PROV_ENUMALGS_EX *peaAlgidInfo;
1806
1807 TRACE("(hProv=%08lx, Algid=%08x, hKey=%08lx, dwFlags=%08x, phHash=%p)\n", hProv, Algid, hKey,
1808 dwFlags, phHash);
1809
1810 peaAlgidInfo = get_algid_info(hProv, Algid);
1811 if (!peaAlgidInfo) return FALSE;
1812
1813 if (dwFlags)
1814 {
1815 SetLastError(NTE_BAD_FLAGS);
1816 return FALSE;
1817 }
1818
1819 if (Algid == CALG_MAC || Algid == CALG_HMAC || Algid == CALG_SCHANNEL_MASTER_HASH ||
1820 Algid == CALG_TLS1PRF)
1821 {
1822 if (!lookup_handle(&handle_table, hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pCryptKey)) {
1823 SetLastError(NTE_BAD_KEY);
1824 return FALSE;
1825 }
1826
1827 if ((Algid == CALG_MAC) && (GET_ALG_TYPE(pCryptKey->aiAlgid) != ALG_TYPE_BLOCK)) {
1828 SetLastError(NTE_BAD_KEY);
1829 return FALSE;
1830 }
1831
1832 if ((Algid == CALG_SCHANNEL_MASTER_HASH || Algid == CALG_TLS1PRF) &&
1833 (pCryptKey->aiAlgid != CALG_TLS1_MASTER))
1834 {
1835 SetLastError(NTE_BAD_KEY);
1836 return FALSE;
1837 }
1838
1839 if ((Algid == CALG_TLS1PRF) && (pCryptKey->dwState != RSAENH_KEYSTATE_MASTERKEY)) {
1840 SetLastError(NTE_BAD_KEY_STATE);
1841 return FALSE;
1842 }
1843 }
1844
1845 *phHash = new_object(&handle_table, sizeof(CRYPTHASH), RSAENH_MAGIC_HASH,
1846 destroy_hash, (OBJECTHDR**)&pCryptHash);
1847 if (!pCryptHash) return FALSE;
1848
1849 pCryptHash->aiAlgid = Algid;
1850 pCryptHash->hKey = hKey;
1851 pCryptHash->hProv = hProv;
1852 pCryptHash->dwState = RSAENH_HASHSTATE_HASHING;
1853 pCryptHash->pHMACInfo = NULL;
1854 pCryptHash->dwHashSize = peaAlgidInfo->dwDefaultLen >> 3;
1855 init_data_blob(&pCryptHash->tpPRFParams.blobLabel);
1856 init_data_blob(&pCryptHash->tpPRFParams.blobSeed);
1857
1858 if (Algid == CALG_SCHANNEL_MASTER_HASH) {
1859 static const char keyex[] = "key expansion";
1860 BYTE key_expansion[sizeof keyex];
1861 CRYPT_DATA_BLOB blobRandom, blobKeyExpansion = { 13, key_expansion };
1862
1863 memcpy( key_expansion, keyex, sizeof keyex );
1864
1865 if (pCryptKey->dwState != RSAENH_KEYSTATE_MASTERKEY) {
1866 static const char msec[] = "master secret";
1867 BYTE master_secret[sizeof msec];
1868 CRYPT_DATA_BLOB blobLabel = { 13, master_secret };
1869 BYTE abKeyValue[48];
1870
1871 memcpy( master_secret, msec, sizeof msec );
1872
1873 /* See RFC 2246, chapter 8.1 */
1874 if (!concat_data_blobs(&blobRandom,
1875 &pCryptKey->siSChannelInfo.blobClientRandom,
1876 &pCryptKey->siSChannelInfo.blobServerRandom))
1877 {
1878 return FALSE;
1879 }
1880 tls1_prf(hProv, hKey, &blobLabel, &blobRandom, abKeyValue, 48);
1881 pCryptKey->dwState = RSAENH_KEYSTATE_MASTERKEY;
1882 memcpy(pCryptKey->abKeyValue, abKeyValue, 48);
1883 free_data_blob(&blobRandom);
1884 }
1885
1886 /* See RFC 2246, chapter 6.3 */
1887 if (!concat_data_blobs(&blobRandom,
1888 &pCryptKey->siSChannelInfo.blobServerRandom,
1889 &pCryptKey->siSChannelInfo.blobClientRandom))
1890 {
1891 return FALSE;
1892 }
1893 tls1_prf(hProv, hKey, &blobKeyExpansion, &blobRandom, pCryptHash->abHashValue,
1894 RSAENH_MAX_HASH_SIZE);
1895 free_data_blob(&blobRandom);
1896 }
1897
1898 return init_hash(pCryptHash);
1899 }
1900
1901 /******************************************************************************
1902 * CPDestroyHash (RSAENH.@)
1903 *
1904 * Releases the handle to a hash object. The object is destroyed if it's reference
1905 * count reaches zero.
1906 *
1907 * PARAMS
1908 * hProv [I] Handle to the key container to which the hash object belongs.
1909 * hHash [I] Handle to the hash object to be released.
1910 *
1911 * RETURNS
1912 * Success: TRUE
1913 * Failure: FALSE
1914 */
1915 BOOL WINAPI RSAENH_CPDestroyHash(HCRYPTPROV hProv, HCRYPTHASH hHash)
1916 {
1917 TRACE("(hProv=%08lx, hHash=%08lx)\n", hProv, hHash);
1918
1919 if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
1920 {
1921 SetLastError(NTE_BAD_UID);
1922 return FALSE;
1923 }
1924
1925 if (!release_handle(&handle_table, hHash, RSAENH_MAGIC_HASH))
1926 {
1927 SetLastError(NTE_BAD_HASH);
1928 return FALSE;
1929 }
1930
1931 return TRUE;
1932 }
1933
1934 /******************************************************************************
1935 * CPDestroyKey (RSAENH.@)
1936 *
1937 * Releases the handle to a key object. The object is destroyed if it's reference
1938 * count reaches zero.
1939 *
1940 * PARAMS
1941 * hProv [I] Handle to the key container to which the key object belongs.
1942 * hKey [I] Handle to the key object to be released.
1943 *
1944 * RETURNS
1945 * Success: TRUE
1946 * Failure: FALSE
1947 */
1948 BOOL WINAPI RSAENH_CPDestroyKey(HCRYPTPROV hProv, HCRYPTKEY hKey)
1949 {
1950 TRACE("(hProv=%08lx, hKey=%08lx)\n", hProv, hKey);
1951
1952 if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
1953 {
1954 SetLastError(NTE_BAD_UID);
1955 return FALSE;
1956 }
1957
1958 if (!release_handle(&handle_table, hKey, RSAENH_MAGIC_KEY))
1959 {
1960 SetLastError(NTE_BAD_KEY);
1961 return FALSE;
1962 }
1963
1964 return TRUE;
1965 }
1966
1967 /******************************************************************************
1968 * CPDuplicateHash (RSAENH.@)
1969 *
1970 * Clones a hash object including it's current state.
1971 *
1972 * PARAMS
1973 * hUID [I] Handle to the key container the hash belongs to.
1974 * hHash [I] Handle to the hash object to be cloned.
1975 * pdwReserved [I] Reserved. Must be NULL.
1976 * dwFlags [I] No flags are currently defined. Must be 0.
1977 * phHash [O] Handle to the cloned hash object.
1978 *
1979 * RETURNS
1980 * Success: TRUE.
1981 * Failure: FALSE.
1982 */
1983 BOOL WINAPI RSAENH_CPDuplicateHash(HCRYPTPROV hUID, HCRYPTHASH hHash, DWORD *pdwReserved,
1984 DWORD dwFlags, HCRYPTHASH *phHash)
1985 {
1986 CRYPTHASH *pSrcHash, *pDestHash;
1987
1988 TRACE("(hUID=%08lx, hHash=%08lx, pdwReserved=%p, dwFlags=%08x, phHash=%p)\n", hUID, hHash,
1989 pdwReserved, dwFlags, phHash);
1990
1991 if (!is_valid_handle(&handle_table, hUID, RSAENH_MAGIC_CONTAINER))
1992 {
1993 SetLastError(NTE_BAD_UID);
1994 return FALSE;
1995 }
1996
1997 if (!lookup_handle(&handle_table, hHash, RSAENH_MAGIC_HASH, (OBJECTHDR**)&pSrcHash))
1998 {
1999 SetLastError(NTE_BAD_HASH);
2000 return FALSE;
2001 }
2002
2003 if (!phHash || pdwReserved || dwFlags)
2004 {
2005 SetLastError(ERROR_INVALID_PARAMETER);
2006 return FALSE;
2007 }
2008
2009 *phHash = new_object(&handle_table, sizeof(CRYPTHASH), RSAENH_MAGIC_HASH,
2010 destroy_hash, (OBJECTHDR**)&pDestHash);
2011 if (*phHash != (HCRYPTHASH)INVALID_HANDLE_VALUE)
2012 {
2013 *pDestHash = *pSrcHash;
2014 duplicate_hash_impl(pSrcHash->aiAlgid, &pSrcHash->context, &pDestHash->context);
2015 copy_hmac_info(&pDestHash->pHMACInfo, pSrcHash->pHMACInfo);
2016 copy_data_blob(&pDestHash->tpPRFParams.blobLabel, &pSrcHash->tpPRFParams.blobLabel);
2017 copy_data_blob(&pDestHash->tpPRFParams.blobSeed, &pSrcHash->tpPRFParams.blobSeed);
2018 }
2019
2020 return *phHash != (HCRYPTHASH)INVALID_HANDLE_VALUE;
2021 }
2022
2023 /******************************************************************************
2024 * CPDuplicateKey (RSAENH.@)
2025 *
2026 * Clones a key object including it's current state.
2027 *
2028 * PARAMS
2029 * hUID [I] Handle to the key container the hash belongs to.
2030 * hKey [I] Handle to the key object to be cloned.
2031 * pdwReserved [I] Reserved. Must be NULL.
2032 * dwFlags [I] No flags are currently defined. Must be 0.
2033 * phHash [O] Handle to the cloned key object.
2034 *
2035 * RETURNS
2036 * Success: TRUE.
2037 * Failure: FALSE.
2038 */
2039 BOOL WINAPI RSAENH_CPDuplicateKey(HCRYPTPROV hUID, HCRYPTKEY hKey, DWORD *pdwReserved,
2040 DWORD dwFlags, HCRYPTKEY *phKey)
2041 {
2042 CRYPTKEY *pSrcKey, *pDestKey;
2043
2044 TRACE("(hUID=%08lx, hKey=%08lx, pdwReserved=%p, dwFlags=%08x, phKey=%p)\n", hUID, hKey,
2045 pdwReserved, dwFlags, phKey);
2046
2047 if (!is_valid_handle(&handle_table, hUID, RSAENH_MAGIC_CONTAINER))
2048 {
2049 SetLastError(NTE_BAD_UID);
2050 return FALSE;
2051 }
2052
2053 if (!lookup_handle(&handle_table, hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pSrcKey))
2054 {
2055 SetLastError(NTE_BAD_KEY);
2056 return FALSE;
2057 }
2058
2059 if (!phKey || pdwReserved || dwFlags)
2060 {
2061 SetLastError(ERROR_INVALID_PARAMETER);
2062 return FALSE;
2063 }
2064
2065 *phKey = new_object(&handle_table, sizeof(CRYPTKEY), RSAENH_MAGIC_KEY, destroy_key,
2066 (OBJECTHDR**)&pDestKey);
2067 if (*phKey != (HCRYPTKEY)INVALID_HANDLE_VALUE)
2068 {
2069 *pDestKey = *pSrcKey;
2070 copy_data_blob(&pDestKey->siSChannelInfo.blobServerRandom,
2071 &pSrcKey->siSChannelInfo.blobServerRandom);
2072 copy_data_blob(&pDestKey->siSChannelInfo.blobClientRandom,
2073 &pSrcKey->siSChannelInfo.blobClientRandom);
2074 duplicate_key_impl(pSrcKey->aiAlgid, &pSrcKey->context, &pDestKey->context);
2075 return TRUE;
2076 }
2077 else
2078 {
2079 return FALSE;
2080 }
2081 }
2082
2083 /******************************************************************************
2084 * CPEncrypt (RSAENH.@)
2085 *
2086 * Encrypt data.
2087 *
2088 * PARAMS
2089 * hProv [I] The key container hKey and hHash belong to.
2090 * hKey [I] The key used to encrypt the data.
2091 * hHash [I] An optional hash object for parallel hashing. See notes.
2092 * Final [I] Indicates if this is the last block of data to encrypt.
2093 * dwFlags [I] Currently no flags defined. Must be zero.
2094 * pbData [I/O] Pointer to the data to encrypt. Encrypted data will also be stored there.
2095 * pdwDataLen [I/O] I: Length of data to encrypt, O: Length of encrypted data.
2096 * dwBufLen [I] Size of the buffer at pbData.
2097 *
2098 * RETURNS
2099 * Success: TRUE.
2100 * Failure: FALSE.
2101 *
2102 * NOTES
2103 * If a hash object handle is provided in hHash, it will be updated with the plaintext.
2104 * This is useful for message signatures.
2105 *
2106 * This function uses the standard WINAPI protocol for querying data of dynamic length.
2107 */
2108 BOOL WINAPI RSAENH_CPEncrypt(HCRYPTPROV hProv, HCRYPTKEY hKey, HCRYPTHASH hHash, BOOL Final,
2109 DWORD dwFlags, BYTE *pbData, DWORD *pdwDataLen, DWORD dwBufLen)
2110 {
2111 CRYPTKEY *pCryptKey;
2112 BYTE *in, out[RSAENH_MAX_BLOCK_SIZE], o[RSAENH_MAX_BLOCK_SIZE];
2113 DWORD dwEncryptedLen, i, j, k;
2114
2115 TRACE("(hProv=%08lx, hKey=%08lx, hHash=%08lx, Final=%d, dwFlags=%08x, pbData=%p, "
2116 "pdwDataLen=%p, dwBufLen=%d)\n", hProv, hKey, hHash, Final, dwFlags, pbData, pdwDataLen,
2117 dwBufLen);
2118
2119 if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
2120 {
2121 SetLastError(NTE_BAD_UID);
2122 return FALSE;
2123 }
2124
2125 if (dwFlags)
2126 {
2127 SetLastError(NTE_BAD_FLAGS);
2128 return FALSE;
2129 }
2130
2131 if (!lookup_handle(&handle_table, hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pCryptKey))
2132 {
2133 SetLastError(NTE_BAD_KEY);
2134 return FALSE;
2135 }
2136
2137 if (pCryptKey->dwState == RSAENH_KEYSTATE_IDLE)
2138 pCryptKey->dwState = RSAENH_KEYSTATE_ENCRYPTING;
2139
2140 if (pCryptKey->dwState != RSAENH_KEYSTATE_ENCRYPTING)
2141 {
2142 SetLastError(NTE_BAD_DATA);
2143 return FALSE;
2144 }
2145
2146 if (is_valid_handle(&handle_table, hHash, RSAENH_MAGIC_HASH)) {
2147 if (!RSAENH_CPHashData(hProv, hHash, pbData, *pdwDataLen, 0)) return FALSE;
2148 }
2149
2150 if (GET_ALG_TYPE(pCryptKey->aiAlgid) == ALG_TYPE_BLOCK) {
2151 if (!Final && (*pdwDataLen % pCryptKey->dwBlockLen)) {
2152 SetLastError(NTE_BAD_DATA);
2153 return FALSE;
2154 }
2155
2156 dwEncryptedLen = (*pdwDataLen/pCryptKey->dwBlockLen+(Final?1:0))*pCryptKey->dwBlockLen;
2157
2158 if (pbData == NULL) {
2159 *pdwDataLen = dwEncryptedLen;
2160 return TRUE;
2161 }
2162 else if (dwEncryptedLen > dwBufLen) {
2163 *pdwDataLen = dwEncryptedLen;
2164 SetLastError(ERROR_MORE_DATA);
2165 return FALSE;
2166 }
2167
2168 /* Pad final block with length bytes */
2169 for (i=*pdwDataLen; i<dwEncryptedLen; i++) pbData[i] = dwEncryptedLen - *pdwDataLen;
2170 *pdwDataLen = dwEncryptedLen;
2171
2172 for (i=0, in=pbData; i<*pdwDataLen; i+=pCryptKey->dwBlockLen, in+=pCryptKey->dwBlockLen) {
2173 switch (pCryptKey->dwMode) {
2174 case CRYPT_MODE_ECB:
2175 encrypt_block_impl(pCryptKey->aiAlgid, 0, &pCryptKey->context, in, out,
2176 RSAENH_ENCRYPT);
2177 break;
2178
2179 case CRYPT_MODE_CBC:
2180 for (j=0; j<pCryptKey->dwBlockLen; j++) in[j] ^= pCryptKey->abChainVector[j];
2181 encrypt_block_impl(pCryptKey->aiAlgid, 0, &pCryptKey->context, in, out,
2182 RSAENH_ENCRYPT);
2183 memcpy(pCryptKey->abChainVector, out, pCryptKey->dwBlockLen);
2184 break;
2185
2186 case CRYPT_MODE_CFB:
2187 for (j=0; j<pCryptKey->dwBlockLen; j++) {
2188 encrypt_block_impl(pCryptKey->aiAlgid, 0, &pCryptKey->context,
2189 pCryptKey->abChainVector, o, RSAENH_ENCRYPT);
2190 out[j] = in[j] ^ o[0];
2191 for (k=0; k<pCryptKey->dwBlockLen-1; k++)
2192 pCryptKey->abChainVector[k] = pCryptKey->abChainVector[k+1];
2193 pCryptKey->abChainVector[k] = out[j];
2194 }
2195 break;
2196
2197 default:
2198 SetLastError(NTE_BAD_ALGID);
2199 return FALSE;
2200 }
2201 memcpy(in, out, pCryptKey->dwBlockLen);
2202 }
2203 } else if (GET_ALG_TYPE(pCryptKey->aiAlgid) == ALG_TYPE_STREAM) {
2204 if (pbData == NULL) {
2205 *pdwDataLen = dwBufLen;
2206 return TRUE;
2207 }
2208 encrypt_stream_impl(pCryptKey->aiAlgid, &pCryptKey->context, pbData, *pdwDataLen);
2209 } else if (GET_ALG_TYPE(pCryptKey->aiAlgid) == ALG_TYPE_RSA) {
2210 if (pCryptKey->aiAlgid == CALG_RSA_SIGN) {
2211 SetLastError(NTE_BAD_KEY);
2212 return FALSE;
2213 }
2214 if (!pbData) {
2215 *pdwDataLen = pCryptKey->dwBlockLen;
2216 return TRUE;
2217 }
2218 if (dwBufLen < pCryptKey->dwBlockLen) {
2219 SetLastError(ERROR_MORE_DATA);
2220 return FALSE;
2221 }
2222 if (!pad_data(pbData, *pdwDataLen, pbData, pCryptKey->dwBlockLen, dwFlags)) return FALSE;
2223 encrypt_block_impl(pCryptKey->aiAlgid, PK_PUBLIC, &pCryptKey->context, pbData, pbData, RSAENH_ENCRYPT);
2224 *pdwDataLen = pCryptKey->dwBlockLen;
2225 Final = TRUE;
2226 } else {
2227 SetLastError(NTE_BAD_TYPE);
2228 return FALSE;
2229 }
2230
2231 if (Final) setup_key(pCryptKey);
2232
2233 return TRUE;
2234 }
2235
2236 /******************************************************************************
2237 * CPDecrypt (RSAENH.@)
2238 *
2239 * Decrypt data.
2240 *
2241 * PARAMS
2242 * hProv [I] The key container hKey and hHash belong to.
2243 * hKey [I] The key used to decrypt the data.
2244 * hHash [I] An optional hash object for parallel hashing. See notes.
2245 * Final [I] Indicates if this is the last block of data to decrypt.
2246 * dwFlags [I] Currently no flags defined. Must be zero.
2247 * pbData [I/O] Pointer to the data to decrypt. Plaintext will also be stored there.
2248 * pdwDataLen [I/O] I: Length of ciphertext, O: Length of plaintext.
2249 *
2250 * RETURNS
2251 * Success: TRUE.
2252 * Failure: FALSE.
2253 *
2254 * NOTES
2255 * If a hash object handle is provided in hHash, it will be updated with the plaintext.
2256 * This is useful for message signatures.
2257 *
2258 * This function uses the standard WINAPI protocol for querying data of dynamic length.
2259 */
2260 BOOL WINAPI RSAENH_CPDecrypt(HCRYPTPROV hProv, HCRYPTKEY hKey, HCRYPTHASH hHash, BOOL Final,
2261 DWORD dwFlags, BYTE *pbData, DWORD *pdwDataLen)
2262 {
2263 CRYPTKEY *pCryptKey;
2264 BYTE *in, out[RSAENH_MAX_BLOCK_SIZE], o[RSAENH_MAX_BLOCK_SIZE];
2265 DWORD i, j, k;
2266 DWORD dwMax;
2267
2268 TRACE("(hProv=%08lx, hKey=%08lx, hHash=%08lx, Final=%d, dwFlags=%08x, pbData=%p, "
2269 "pdwDataLen=%p)\n", hProv, hKey, hHash, Final, dwFlags, pbData, pdwDataLen);
2270
2271 if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
2272 {
2273 SetLastError(NTE_BAD_UID);
2274 return FALSE;
2275 }
2276
2277 if (dwFlags)
2278 {
2279 SetLastError(NTE_BAD_FLAGS);
2280 return FALSE;
2281 }
2282
2283 if (!lookup_handle(&handle_table, hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pCryptKey))
2284 {
2285 SetLastError(NTE_BAD_KEY);
2286 return FALSE;
2287 }
2288
2289 if (pCryptKey->dwState == RSAENH_KEYSTATE_IDLE)
2290 pCryptKey->dwState = RSAENH_KEYSTATE_ENCRYPTING;
2291
2292 if (pCryptKey->dwState != RSAENH_KEYSTATE_ENCRYPTING)
2293 {
2294 SetLastError(NTE_BAD_DATA);
2295 return FALSE;
2296 }
2297
2298 dwMax=*pdwDataLen;
2299
2300 if (GET_ALG_TYPE(pCryptKey->aiAlgid) == ALG_TYPE_BLOCK) {
2301 for (i=0, in=pbData; i<*pdwDataLen; i+=pCryptKey->dwBlockLen, in+=pCryptKey->dwBlockLen) {
2302 switch (pCryptKey->dwMode) {
2303 case CRYPT_MODE_ECB:
2304 encrypt_block_impl(pCryptKey->aiAlgid, 0, &pCryptKey->context, in, out,
2305 RSAENH_DECRYPT);
2306 break;
2307
2308 case CRYPT_MODE_CBC:
2309 encrypt_block_impl(pCryptKey->aiAlgid, 0, &pCryptKey->context, in, out,
2310 RSAENH_DECRYPT);
2311 for (j=0; j<pCryptKey->dwBlockLen; j++) out[j] ^= pCryptKey->abChainVector[j];
2312 memcpy(pCryptKey->abChainVector, in, pCryptKey->dwBlockLen);
2313 break;
2314
2315 case CRYPT_MODE_CFB:
2316 for (j=0; j<pCryptKey->dwBlockLen; j++) {
2317 encrypt_block_impl(pCryptKey->aiAlgid, 0, &pCryptKey->context,
2318 pCryptKey->abChainVector, o, RSAENH_ENCRYPT);
2319 out[j] = in[j] ^ o[0];
2320 for (k=0; k<pCryptKey->dwBlockLen-1; k++)
2321 pCryptKey->abChainVector[k] = pCryptKey->abChainVector[k+1];
2322 pCryptKey->abChainVector[k] = in[j];
2323 }
2324 break;
2325
2326 default:
2327 SetLastError(NTE_BAD_ALGID);
2328 return FALSE;
2329 }
2330 memcpy(in, out, pCryptKey->dwBlockLen);
2331 }
2332 if (Final) {
2333 if (pbData[*pdwDataLen-1] &&
2334 pbData[*pdwDataLen-1] <= pCryptKey->dwBlockLen &&
2335 pbData[*pdwDataLen-1] <= *pdwDataLen) {
2336 BOOL padOkay = TRUE;
2337
2338 /* check that every bad byte has the same value */
2339 for (i = 1; padOkay && i < pbData[*pdwDataLen-1]; i++)
2340 if (pbData[*pdwDataLen - i - 1] != pbData[*pdwDataLen - 1])
2341 padOkay = FALSE;
2342 if (padOkay)
2343 *pdwDataLen -= pbData[*pdwDataLen-1];
2344 else {
2345 SetLastError(NTE_BAD_DATA);
2346 return FALSE;
2347 }
2348 }
2349 else {
2350 SetLastError(NTE_BAD_DATA);
2351 return FALSE;
2352 }
2353 }
2354
2355 } else if (GET_ALG_TYPE(pCryptKey->aiAlgid) == ALG_TYPE_STREAM) {
2356 encrypt_stream_impl(pCryptKey->aiAlgid, &pCryptKey->context, pbData, *pdwDataLen);
2357 } else if (GET_ALG_TYPE(pCryptKey->aiAlgid) == ALG_TYPE_RSA) {
2358 if (pCryptKey->aiAlgid == CALG_RSA_SIGN) {
2359 SetLastError(NTE_BAD_KEY);
2360 return FALSE;
2361 }
2362 encrypt_block_impl(pCryptKey->aiAlgid, PK_PRIVATE, &pCryptKey->context, pbData, pbData, RSAENH_DECRYPT);
2363 if (!unpad_data(pbData, pCryptKey->dwBlockLen, pbData, pdwDataLen, dwFlags)) return FALSE;
2364 Final = TRUE;
2365 } else {
2366 SetLastError(NTE_BAD_TYPE);
2367 return FALSE;
2368 }
2369
2370 if (Final) setup_key(pCryptKey);
2371
2372 if (is_valid_handle(&handle_table, hHash, RSAENH_MAGIC_HASH)) {
2373 if (*pdwDataLen>dwMax ||
2374 !RSAENH_CPHashData(hProv, hHash, pbData, *pdwDataLen, 0)) return FALSE;
2375 }
2376
2377 return TRUE;
2378 }
2379
2380 static BOOL crypt_export_simple(CRYPTKEY *pCryptKey, CRYPTKEY *pPubKey,
2381 DWORD dwFlags, BYTE *pbData, DWORD *pdwDataLen)
2382 {
2383 BLOBHEADER *pBlobHeader = (BLOBHEADER*)pbData;
2384 ALG_ID *pAlgid = (ALG_ID*)(pBlobHeader+1);
2385 DWORD dwDataLen;
2386
2387 if (!(GET_ALG_CLASS(pCryptKey->aiAlgid)&(ALG_CLASS_DATA_ENCRYPT|ALG_CLASS_MSG_ENCRYPT))) {
2388 SetLastError(NTE_BAD_KEY); /* FIXME: error code? */
2389 return FALSE;
2390 }
2391
2392 dwDataLen = sizeof(BLOBHEADER) + sizeof(ALG_ID) + pPubKey->dwBlockLen;
2393 if (pbData) {
2394 if (*pdwDataLen < dwDataLen) {
2395 SetLastError(ERROR_MORE_DATA);
2396 *pdwDataLen = dwDataLen;
2397 return FALSE;
2398 }
2399
2400 pBlobHeader->bType = SIMPLEBLOB;
2401 pBlobHeader->bVersion = CUR_BLOB_VERSION;
2402 pBlobHeader->reserved = 0;
2403 pBlobHeader->aiKeyAlg = pCryptKey->aiAlgid;
2404
2405 *pAlgid = pPubKey->aiAlgid;
2406
2407 if (!pad_data(pCryptKey->abKeyValue, pCryptKey->dwKeyLen, (BYTE*)(pAlgid+1),
2408 pPubKey->dwBlockLen, dwFlags))
2409 {
2410 return FALSE;
2411 }
2412
2413 encrypt_block_impl(pPubKey->aiAlgid, PK_PUBLIC, &pPubKey->context, (BYTE*)(pAlgid+1),
2414 (BYTE*)(pAlgid+1), RSAENH_ENCRYPT);
2415 }
2416 *pdwDataLen = dwDataLen;
2417 return TRUE;
2418 }
2419
2420 static BOOL crypt_export_public_key(CRYPTKEY *pCryptKey, BYTE *pbData,
2421 DWORD *pdwDataLen)
2422 {
2423 BLOBHEADER *pBlobHeader = (BLOBHEADER*)pbData;
2424 RSAPUBKEY *pRSAPubKey = (RSAPUBKEY*)(pBlobHeader+1);
2425 DWORD dwDataLen;
2426
2427 if ((pCryptKey->aiAlgid != CALG_RSA_KEYX) && (pCryptKey->aiAlgid != CALG_RSA_SIGN)) {
2428 SetLastError(NTE_BAD_KEY);
2429 return FALSE;
2430 }
2431
2432 dwDataLen = sizeof(BLOBHEADER) + sizeof(RSAPUBKEY) + pCryptKey->dwKeyLen;
2433 if (pbData) {
2434 if (*pdwDataLen < dwDataLen) {
2435 SetLastError(ERROR_MORE_DATA);
2436 *pdwDataLen = dwDataLen;
2437 return FALSE;
2438 }
2439
2440 pBlobHeader->bType = PUBLICKEYBLOB;
2441 pBlobHeader->bVersion = CUR_BLOB_VERSION;
2442 pBlobHeader->reserved = 0;
2443 pBlobHeader->aiKeyAlg = pCryptKey->aiAlgid;
2444
2445 pRSAPubKey->magic = RSAENH_MAGIC_RSA1;
2446 pRSAPubKey->bitlen = pCryptKey->dwKeyLen << 3;
2447
2448 export_public_key_impl((BYTE*)(pRSAPubKey+1), &pCryptKey->context,
2449 pCryptKey->dwKeyLen, &pRSAPubKey->pubexp);
2450 }
2451 *pdwDataLen = dwDataLen;
2452 return TRUE;
2453 }
2454
2455 static BOOL crypt_export_private_key(CRYPTKEY *pCryptKey, BOOL force,
2456 BYTE *pbData, DWORD *pdwDataLen)
2457 {
2458 BLOBHEADER *pBlobHeader = (BLOBHEADER*)pbData;
2459 RSAPUBKEY *pRSAPubKey = (RSAPUBKEY*)(pBlobHeader+1);
2460 DWORD dwDataLen;
2461
2462 if ((pCryptKey->aiAlgid != CALG_RSA_KEYX) && (pCryptKey->aiAlgid != CALG_RSA_SIGN)) {
2463 SetLastError(NTE_BAD_KEY);
2464 return FALSE;
2465 }
2466 if (!force && !(pCryptKey->dwPermissions & CRYPT_EXPORT))
2467 {
2468 SetLastError(NTE_BAD_KEY_STATE);
2469 return FALSE;
2470 }
2471
2472 dwDataLen = sizeof(BLOBHEADER) + sizeof(RSAPUBKEY) +
2473 2 * pCryptKey->dwKeyLen + 5 * ((pCryptKey->dwKeyLen + 1) >> 1);
2474 if (pbData) {
2475 if (*pdwDataLen < dwDataLen) {
2476 SetLastError(ERROR_MORE_DATA);
2477 *pdwDataLen = dwDataLen;
2478 return FALSE;
2479 }
2480
2481 pBlobHeader->bType = PRIVATEKEYBLOB;
2482 pBlobHeader->bVersion = CUR_BLOB_VERSION;
2483 pBlobHeader->reserved = 0;
2484 pBlobHeader->aiKeyAlg = pCryptKey->aiAlgid;
2485
2486 pRSAPubKey->magic = RSAENH_MAGIC_RSA2;
2487 pRSAPubKey->bitlen = pCryptKey->dwKeyLen << 3;
2488
2489 export_private_key_impl((BYTE*)(pRSAPubKey+1), &pCryptKey->context,
2490 pCryptKey->dwKeyLen, &pRSAPubKey->pubexp);
2491 }
2492 *pdwDataLen = dwDataLen;
2493 return TRUE;
2494 }
2495
2496 static BOOL crypt_export_plaintext_key(CRYPTKEY *pCryptKey, BYTE *pbData,
2497 DWORD *pdwDataLen)
2498 {
2499 BLOBHEADER *pBlobHeader = (BLOBHEADER*)pbData;
2500 DWORD *pKeyLen = (DWORD*)(pBlobHeader+1);
2501 BYTE *pbKey = (BYTE*)(pKeyLen+1);
2502 DWORD dwDataLen;
2503
2504 dwDataLen = sizeof(BLOBHEADER) + sizeof(DWORD) + pCryptKey->dwKeyLen;
2505 if (pbData) {
2506 if (*pdwDataLen < dwDataLen) {
2507 SetLastError(ERROR_MORE_DATA);
2508 *pdwDataLen = dwDataLen;
2509 return FALSE;
2510 }
2511
2512 pBlobHeader->bType = PLAINTEXTKEYBLOB;
2513 pBlobHeader->bVersion = CUR_BLOB_VERSION;
2514 pBlobHeader->reserved = 0;
2515 pBlobHeader->aiKeyAlg = pCryptKey->aiAlgid;
2516
2517 *pKeyLen = pCryptKey->dwKeyLen;
2518 memcpy(pbKey, &pCryptKey->abKeyValue, pCryptKey->dwKeyLen);
2519 }
2520 *pdwDataLen = dwDataLen;
2521 return TRUE;
2522 }
2523 /******************************************************************************
2524 * crypt_export_key [Internal]
2525 *
2526 * Export a key into a binary large object (BLOB). Called by CPExportKey and
2527 * by store_key_pair.
2528 *
2529 * PARAMS
2530 * pCryptKey [I] Key to be exported.
2531 * hPubKey [I] Key used to encrypt sensitive BLOB data.
2532 * dwBlobType [I] SIMPLEBLOB, PUBLICKEYBLOB or PRIVATEKEYBLOB.
2533 * dwFlags [I] Currently none defined.
2534 * force [I] If TRUE, the key is written no matter what the key's
2535 * permissions are. Otherwise the key's permissions are
2536 * checked before exporting.
2537 * pbData [O] Pointer to a buffer where the BLOB will be written to.
2538 * pdwDataLen [I/O] I: Size of buffer at pbData, O: Size of BLOB
2539 *
2540 * RETURNS
2541 * Success: TRUE.
2542 * Failure: FALSE.
2543 */
2544 static BOOL crypt_export_key(CRYPTKEY *pCryptKey, HCRYPTKEY hPubKey,
2545 DWORD dwBlobType, DWORD dwFlags, BOOL force,
2546 BYTE *pbData, DWORD *pdwDataLen)
2547 {
2548 CRYPTKEY *pPubKey;
2549
2550 if (dwFlags & CRYPT_SSL2_FALLBACK) {
2551 if (pCryptKey->aiAlgid != CALG_SSL2_MASTER) {
2552 SetLastError(NTE_BAD_KEY);
2553 return FALSE;
2554 }
2555 }
2556
2557 switch ((BYTE)dwBlobType)
2558 {
2559 case SIMPLEBLOB:
2560 if (!lookup_handle(&handle_table, hPubKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pPubKey)){
2561 SetLastError(NTE_BAD_PUBLIC_KEY); /* FIXME: error_code? */
2562 return FALSE;
2563 }
2564 return crypt_export_simple(pCryptKey, pPubKey, dwFlags, pbData,
2565 pdwDataLen);
2566
2567 case PUBLICKEYBLOB:
2568 if (is_valid_handle(&handle_table, hPubKey, RSAENH_MAGIC_KEY)) {
2569 SetLastError(NTE_BAD_KEY); /* FIXME: error code? */
2570 return FALSE;
2571 }
2572
2573 return crypt_export_public_key(pCryptKey, pbData, pdwDataLen);
2574
2575 case PRIVATEKEYBLOB:
2576 return crypt_export_private_key(pCryptKey, force, pbData, pdwDataLen);
2577
2578 case PLAINTEXTKEYBLOB:
2579 return crypt_export_plaintext_key(pCryptKey, pbData, pdwDataLen);
2580
2581 default:
2582 SetLastError(NTE_BAD_TYPE); /* FIXME: error code? */
2583 return FALSE;
2584 }
2585 }
2586
2587 /******************************************************************************
2588 * CPExportKey (RSAENH.@)
2589 *
2590 * Export a key into a binary large object (BLOB).
2591 *
2592 * PARAMS
2593 * hProv [I] Key container from which a key is to be exported.
2594 * hKey [I] Key to be exported.
2595 * hPubKey [I] Key used to encrypt sensitive BLOB data.
2596 * dwBlobType [I] SIMPLEBLOB, PUBLICKEYBLOB or PRIVATEKEYBLOB.
2597 * dwFlags [I] Currently none defined.
2598 * pbData [O] Pointer to a buffer where the BLOB will be written to.
2599 * pdwDataLen [I/O] I: Size of buffer at pbData, O: Size of BLOB
2600 *
2601 * RETURNS
2602 * Success: TRUE.
2603 * Failure: FALSE.
2604 */
2605 BOOL WINAPI RSAENH_CPExportKey(HCRYPTPROV hProv, HCRYPTKEY hKey, HCRYPTKEY hPubKey,
2606 DWORD dwBlobType, DWORD dwFlags, BYTE *pbData, DWORD *pdwDataLen)
2607 {
2608 CRYPTKEY *pCryptKey;
2609
2610 TRACE("(hProv=%08lx, hKey=%08lx, hPubKey=%08lx, dwBlobType=%08x, dwFlags=%08x, pbData=%p,"
2611 "pdwDataLen=%p)\n", hProv, hKey, hPubKey, dwBlobType, dwFlags, pbData, pdwDataLen);
2612
2613 if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
2614 {
2615 SetLastError(NTE_BAD_UID);
2616 return FALSE;
2617 }
2618
2619 if (!lookup_handle(&handle_table, hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pCryptKey))
2620 {
2621 SetLastError(NTE_BAD_KEY);
2622 return FALSE;
2623 }
2624
2625 return crypt_export_key(pCryptKey, hPubKey, dwBlobType, dwFlags, FALSE,
2626 pbData, pdwDataLen);
2627 }
2628
2629 /******************************************************************************
2630 * release_and_install_key [Internal]
2631 *
2632 * Release an existing key, if present, and replaces it with a new one.
2633 *
2634 * PARAMS
2635 * hProv [I] Key container into which the key is to be imported.
2636 * src [I] Key which will replace *dest
2637 * dest [I] Points to key to be released and replaced with src
2638 * fStoreKey [I] If TRUE, the newly installed key is stored to the registry.
2639 */
2640 static void release_and_install_key(HCRYPTPROV hProv, HCRYPTKEY src,
2641 HCRYPTKEY *dest, DWORD fStoreKey)
2642 {
2643 RSAENH_CPDestroyKey(hProv, *dest);
2644 copy_handle(&handle_table, src, RSAENH_MAGIC_KEY, dest);
2645 if (fStoreKey)
2646 {
2647 KEYCONTAINER *pKeyContainer;
2648
2649 if (lookup_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER,
2650 (OBJECTHDR**)&pKeyContainer))
2651 {
2652 store_key_container_keys(pKeyContainer);
2653 store_key_container_permissions(pKeyContainer);
2654 }
2655 }
2656 }
2657
2658 /******************************************************************************
2659 * import_private_key [Internal]
2660 *
2661 * Import a BLOB'ed private key into a key container.
2662 *
2663 * PARAMS
2664 * hProv [I] Key container into which the private key is to be imported.
2665 * pbData [I] Pointer to a buffer which holds the private key BLOB.
2666 * dwDataLen [I] Length of data in buffer at pbData.
2667 * dwFlags [I] One of:
2668 * CRYPT_EXPORTABLE: the imported key is marked exportable
2669 * fStoreKey [I] If TRUE, the imported key is stored to the registry.
2670 * phKey [O] Handle to the imported key.
2671 *
2672 *
2673 * NOTES
2674 * Assumes the caller has already checked the BLOBHEADER at pbData to ensure
2675 * it's a PRIVATEKEYBLOB.
2676 *
2677 * RETURNS
2678 * Success: TRUE.
2679 * Failure: FALSE.
2680 */
2681 static BOOL import_private_key(HCRYPTPROV hProv, CONST BYTE *pbData, DWORD dwDataLen,
2682 DWORD dwFlags, BOOL fStoreKey, HCRYPTKEY *phKey)
2683 {
2684 KEYCONTAINER *pKeyContainer;
2685 CRYPTKEY *pCryptKey;
2686 CONST BLOBHEADER *pBlobHeader = (CONST BLOBHEADER*)pbData;
2687 CONST RSAPUBKEY *pRSAPubKey = (CONST RSAPUBKEY*)(pBlobHeader+1);
2688 BOOL ret;
2689
2690 if (!lookup_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER,
2691 (OBJECTHDR**)&pKeyContainer))
2692 {
2693 SetLastError(NTE_BAD_UID);
2694 return FALSE;
2695 }
2696
2697 if ((dwDataLen < sizeof(BLOBHEADER) + sizeof(RSAPUBKEY)) ||
2698 (pRSAPubKey->magic != RSAENH_MAGIC_RSA2) ||
2699 (dwDataLen < sizeof(BLOBHEADER) + sizeof(RSAPUBKEY) +
2700 (2 * pRSAPubKey->bitlen >> 3) + (5 * ((pRSAPubKey->bitlen+8)>>4))))
2701 {
2702 SetLastError(NTE_BAD_DATA);
2703 return FALSE;
2704 }
2705
2706 *phKey = new_key(hProv, pBlobHeader->aiKeyAlg, MAKELONG(0,pRSAPubKey->bitlen), &pCryptKey);
2707 if (*phKey == (HCRYPTKEY)INVALID_HANDLE_VALUE) return FALSE;
2708 setup_key(pCryptKey);
2709 ret = import_private_key_impl((CONST BYTE*)(pRSAPubKey+1), &pCryptKey->context,
2710 pRSAPubKey->bitlen/8, pRSAPubKey->pubexp);
2711 if (ret) {
2712 if (dwFlags & CRYPT_EXPORTABLE)
2713 pCryptKey->dwPermissions |= CRYPT_EXPORT;
2714 switch (pBlobHeader->aiKeyAlg)
2715 {
2716 case AT_SIGNATURE:
2717 case CALG_RSA_SIGN:
2718 TRACE("installing signing key\n");
2719 release_and_install_key(hProv, *phKey, &pKeyContainer->hSignatureKeyPair,
2720 fStoreKey);
2721 break;
2722 case AT_KEYEXCHANGE:
2723 case CALG_RSA_KEYX:
2724 TRACE("installing key exchange key\n");
2725 release_and_install_key(hProv, *phKey, &pKeyContainer->hKeyExchangeKeyPair,
2726 fStoreKey);
2727 break;
2728 }
2729 }
2730 return ret;
2731 }
2732
2733 /******************************************************************************
2734 * import_public_key [Internal]
2735 *
2736 * Import a BLOB'ed public key into a key container.
2737 *
2738 * PARAMS
2739 * hProv [I] Key container into which the public key is to be imported.
2740 * pbData [I] Pointer to a buffer which holds the public key BLOB.
2741 * dwDataLen [I] Length of data in buffer at pbData.
2742 * dwFlags [I] One of:
2743 * CRYPT_EXPORTABLE: the imported key is marked exportable
2744 * fStoreKey [I] If TRUE, the imported key is stored to the registry.
2745 * phKey [O] Handle to the imported key.
2746 *
2747 *
2748 * NOTES
2749 * Assumes the caller has already checked the BLOBHEADER at pbData to ensure
2750 * it's a PUBLICKEYBLOB.
2751 *
2752 * RETURNS
2753 * Success: TRUE.
2754 * Failure: FALSE.
2755 */
2756 static BOOL import_public_key(HCRYPTPROV hProv, CONST BYTE *pbData, DWORD dwDataLen,
2757 DWORD dwFlags, BOOL fStoreKey, HCRYPTKEY *phKey)
2758 {
2759 KEYCONTAINER *pKeyContainer;
2760 CRYPTKEY *pCryptKey;
2761 CONST BLOBHEADER *pBlobHeader = (CONST BLOBHEADER*)pbData;
2762 CONST RSAPUBKEY *pRSAPubKey = (CONST RSAPUBKEY*)(pBlobHeader+1);
2763 ALG_ID algID;
2764 BOOL ret;
2765
2766 if (!lookup_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER,
2767 (OBJECTHDR**)&pKeyContainer))
2768 {
2769 SetLastError(NTE_BAD_UID);
2770 return FALSE;
2771 }
2772
2773 if ((dwDataLen < sizeof(BLOBHEADER) + sizeof(RSAPUBKEY)) ||
2774 (pRSAPubKey->magic != RSAENH_MAGIC_RSA1) ||
2775 (dwDataLen < sizeof(BLOBHEADER) + sizeof(RSAPUBKEY) + (pRSAPubKey->bitlen >> 3)))
2776 {
2777 SetLastError(NTE_BAD_DATA);
2778 return FALSE;
2779 }
2780
2781 /* Since this is a public key blob, only the public key is
2782 * available, so only signature verification is possible.
2783 */
2784 algID = pBlobHeader->aiKeyAlg;
2785 *phKey = new_key(hProv, algID, MAKELONG(0,pRSAPubKey->bitlen), &pCryptKey);
2786 if (*phKey == (HCRYPTKEY)INVALID_HANDLE_VALUE) return FALSE;
2787 setup_key(pCryptKey);
2788 ret = import_public_key_impl((CONST BYTE*)(pRSAPubKey+1), &pCryptKey->context,
2789 pRSAPubKey->bitlen >> 3, pRSAPubKey->pubexp);
2790 if (ret) {
2791 if (dwFlags & CRYPT_EXPORTABLE)
2792 pCryptKey->dwPermissions |= CRYPT_EXPORT;
2793 switch (pBlobHeader->aiKeyAlg)
2794 {
2795 case AT_KEYEXCHANGE:
2796 case CALG_RSA_KEYX:
2797 TRACE("installing public key\n");
2798 release_and_install_key(hProv, *phKey, &pKeyContainer->hKeyExchangeKeyPair,
2799 fStoreKey);
2800 break;
2801 }
2802 }
2803 return ret;
2804 }
2805
2806 /******************************************************************************
2807 * import_symmetric_key [Internal]
2808 *
2809 * Import a BLOB'ed symmetric key into a key container.
2810 *
2811 * PARAMS
2812 * hProv [I] Key container into which the symmetric key is to be imported.
2813 * pbData [I] Pointer to a buffer which holds the symmetric key BLOB.
2814 * dwDataLen [I] Length of data in buffer at pbData.
2815 * hPubKey [I] Key used to decrypt sensitive BLOB data.
2816 * dwFlags [I] One of:
2817 * CRYPT_EXPORTABLE: the imported key is marked exportable
2818 * phKey [O] Handle to the imported key.
2819 *
2820 *
2821 * NOTES
2822 * Assumes the caller has already checked the BLOBHEADER at pbData to ensure
2823 * it's a SIMPLEBLOB.
2824 *
2825 * RETURNS
2826 * Success: TRUE.
2827 * Failure: FALSE.
2828 */
2829 static BOOL import_symmetric_key(HCRYPTPROV hProv, CONST BYTE *pbData,
2830 DWORD dwDataLen, HCRYPTKEY hPubKey,
2831 DWORD dwFlags, HCRYPTKEY *phKey)
2832 {
2833 CRYPTKEY *pCryptKey, *pPubKey;
2834 CONST BLOBHEADER *pBlobHeader = (CONST BLOBHEADER*)pbData;
2835 CONST ALG_ID *pAlgid = (CONST ALG_ID*)(pBlobHeader+1);
2836 CONST BYTE *pbKeyStream = (CONST BYTE*)(pAlgid + 1);
2837 BYTE *pbDecrypted;
2838 DWORD dwKeyLen;
2839
2840 if (!lookup_handle(&handle_table, hPubKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pPubKey) ||
2841 pPubKey->aiAlgid != CALG_RSA_KEYX)
2842 {
2843 SetLastError(NTE_BAD_PUBLIC_KEY); /* FIXME: error code? */
2844 return FALSE;
2845 }
2846
2847 if (dwDataLen < sizeof(BLOBHEADER)+sizeof(ALG_ID)+pPubKey->dwBlockLen)
2848 {
2849 SetLastError(NTE_BAD_DATA); /* FIXME: error code */
2850 return FALSE;
2851 }
2852
2853 pbDecrypted = HeapAlloc(GetProcessHeap(), 0, pPubKey->dwBlockLen);
2854 if (!pbDecrypted) return FALSE;
2855 encrypt_block_impl(pPubKey->aiAlgid, PK_PRIVATE, &pPubKey->context, pbKeyStream, pbDecrypted,
2856 RSAENH_DECRYPT);
2857
2858 dwKeyLen = RSAENH_MAX_KEY_SIZE;
2859 if (!unpad_data(pbDecrypted, pPubKey->dwBlockLen, pbDecrypted, &dwKeyLen, dwFlags)) {
2860 HeapFree(GetProcessHeap(), 0, pbDecrypted);
2861 return FALSE;
2862 }
2863
2864 *phKey = new_key(hProv, pBlobHeader->aiKeyAlg, dwKeyLen<<19, &pCryptKey);
2865 if (*phKey == (HCRYPTKEY)INVALID_HANDLE_VALUE)
2866 {
2867 HeapFree(GetProcessHeap(), 0, pbDecrypted);
2868 return FALSE;
2869 }
2870 memcpy(pCryptKey->abKeyValue, pbDecrypted, dwKeyLen);
2871 HeapFree(GetProcessHeap(), 0, pbDecrypted);
2872 setup_key(pCryptKey);
2873 if (dwFlags & CRYPT_EXPORTABLE)
2874 pCryptKey->dwPermissions |= CRYPT_EXPORT;
2875 return TRUE;
2876 }
2877
2878 /******************************************************************************
2879 * import_plaintext_key [Internal]
2880 *
2881 * Import a plaintext key into a key container.
2882 *
2883 * PARAMS
2884 * hProv [I] Key container into which the symmetric key is to be imported.
2885 * pbData [I] Pointer to a buffer which holds the plaintext key BLOB.
2886 * dwDataLen [I] Length of data in buffer at pbData.
2887 * dwFlags [I] One of:
2888 * CRYPT_EXPORTABLE: the imported key is marked exportable
2889 * phKey [O] Handle to the imported key.
2890 *
2891 *
2892 * NOTES
2893 * Assumes the caller has already checked the BLOBHEADER at pbData to ensure
2894 * it's a PLAINTEXTKEYBLOB.
2895 *
2896 * RETURNS
2897 * Success: TRUE.
2898 * Failure: FALSE.
2899 */
2900 static BOOL import_plaintext_key(HCRYPTPROV hProv, CONST BYTE *pbData,
2901 DWORD dwDataLen, DWORD dwFlags,
2902 HCRYPTKEY *phKey)
2903 {
2904 CRYPTKEY *pCryptKey;
2905 CONST BLOBHEADER *pBlobHeader = (CONST BLOBHEADER*)pbData;
2906 CONST DWORD *pKeyLen = (CONST DWORD *)(pBlobHeader + 1);
2907 CONST BYTE *pbKeyStream = (CONST BYTE*)(pKeyLen + 1);
2908
2909 if (dwDataLen < sizeof(BLOBHEADER)+sizeof(DWORD)+*pKeyLen)
2910 {
2911 SetLastError(NTE_BAD_DATA); /* FIXME: error code */
2912 return FALSE;
2913 }
2914
2915 *phKey = new_key(hProv, pBlobHeader->aiKeyAlg, *pKeyLen<<19, &pCryptKey);
2916 if (*phKey == (HCRYPTKEY)INVALID_HANDLE_VALUE)
2917 return FALSE;
2918 memcpy(pCryptKey->abKeyValue, pbKeyStream, *pKeyLen);
2919 setup_key(pCryptKey);
2920 if (dwFlags & CRYPT_EXPORTABLE)
2921 pCryptKey->dwPermissions |= CRYPT_EXPORT;
2922 return TRUE;
2923 }
2924
2925 /******************************************************************************
2926 * import_key [Internal]
2927 *
2928 * Import a BLOB'ed key into a key container, optionally storing the key's
2929 * value to the registry.
2930 *
2931 * PARAMS
2932 * hProv [I] Key container into which the key is to be imported.
2933 * pbData [I] Pointer to a buffer which holds the BLOB.
2934 * dwDataLen [I] Length of data in buffer at pbData.
2935 * hPubKey [I] Key used to decrypt sensitive BLOB data.
2936 * dwFlags [I] One of:
2937 * CRYPT_EXPORTABLE: the imported key is marked exportable
2938 * fStoreKey [I] If TRUE, the imported key is stored to the registry.
2939 * phKey [O] Handle to the imported key.
2940 *
2941 * RETURNS
2942 * Success: TRUE.
2943 * Failure: FALSE.
2944 */
2945 static BOOL import_key(HCRYPTPROV hProv, CONST BYTE *pbData, DWORD dwDataLen,
2946 HCRYPTKEY hPubKey, DWORD dwFlags, BOOL fStoreKey,
2947 HCRYPTKEY *phKey)
2948 {
2949 KEYCONTAINER *pKeyContainer;
2950 CONST BLOBHEADER *pBlobHeader = (CONST BLOBHEADER*)pbData;
2951
2952 if (!lookup_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER,
2953 (OBJECTHDR**)&pKeyContainer))
2954 {
2955 SetLastError(NTE_BAD_UID);
2956 return FALSE;
2957 }
2958
2959 if (dwDataLen < sizeof(BLOBHEADER) ||
2960 pBlobHeader->bVersion != CUR_BLOB_VERSION ||
2961 pBlobHeader->reserved != 0)
2962 {
2963 TRACE("bVersion = %d, reserved = %d\n", pBlobHeader->bVersion,
2964 pBlobHeader->reserved);
2965 SetLastError(NTE_BAD_DATA);
2966 return FALSE;
2967 }
2968
2969 /* If this is a verify-only context, the key is not persisted regardless of
2970 * fStoreKey's original value.
2971 */
2972 fStoreKey = fStoreKey && !(dwFlags & CRYPT_VERIFYCONTEXT);
2973 TRACE("blob type: %x\n", pBlobHeader->bType);
2974 switch (pBlobHeader->bType)
2975 {
2976 case PRIVATEKEYBLOB:
2977 return import_private_key(hProv, pbData, dwDataLen, dwFlags,
2978 fStoreKey, phKey);
2979
2980 case PUBLICKEYBLOB:
2981 return import_public_key(hProv, pbData, dwDataLen, dwFlags,
2982 fStoreKey, phKey);
2983
2984 case SIMPLEBLOB:
2985 return import_symmetric_key(hProv, pbData, dwDataLen, hPubKey,
2986 dwFlags, phKey);
2987
2988 case PLAINTEXTKEYBLOB:
2989 return import_plaintext_key(hProv, pbData, dwDataLen, dwFlags,
2990 phKey);
2991
2992 default:
2993 SetLastError(NTE_BAD_TYPE); /* FIXME: error code? */
2994 return FALSE;
2995 }
2996 }
2997
2998 /******************************************************************************
2999 * CPImportKey (RSAENH.@)
3000 *
3001 * Import a BLOB'ed key into a key container.
3002 *
3003 * PARAMS
3004 * hProv [I] Key container into which the key is to be imported.
3005 * pbData [I] Pointer to a buffer which holds the BLOB.
3006 * dwDataLen [I] Length of data in buffer at pbData.
3007 * hPubKey [I] Key used to decrypt sensitive BLOB data.
3008 * dwFlags [I] One of:
3009 * CRYPT_EXPORTABLE: the imported key is marked exportable
3010 * phKey [O] Handle to the imported key.
3011 *
3012 * RETURNS
3013 * Success: TRUE.
3014 * Failure: FALSE.
3015 */
3016 BOOL WINAPI RSAENH_CPImportKey(HCRYPTPROV hProv, CONST BYTE *pbData, DWORD dwDataLen,
3017 HCRYPTKEY hPubKey, DWORD dwFlags, HCRYPTKEY *phKey)
3018 {
3019 TRACE("(hProv=%08lx, pbData=%p, dwDataLen=%d, hPubKey=%08lx, dwFlags=%08x, phKey=%p)\n",
3020 hProv, pbData, dwDataLen, hPubKey, dwFlags, phKey);
3021
3022 if (dwFlags & CRYPT_IPSEC_HMAC_KEY)
3023 {
3024 FIXME("unimplemented for CRYPT_IPSEC_HMAC_KEY\n");
3025 SetLastError(NTE_BAD_FLAGS);
3026 return FALSE;
3027 }
3028 return import_key(hProv, pbData, dwDataLen, hPubKey, dwFlags, TRUE, phKey);
3029 }
3030
3031 /******************************************************************************
3032 * CPGenKey (RSAENH.@)
3033 *
3034 * Generate a key in the key container
3035 *
3036 * PARAMS
3037 * hProv [I] Key container for which a key is to be generated.
3038 * Algid [I] Crypto algorithm identifier for the key to be generated.
3039 * dwFlags [I] Upper 16 bits: Binary length of key. Lower 16 bits: Flags. See Notes
3040 * phKey [O] Handle to the generated key.
3041 *
3042 * RETURNS
3043 * Success: TRUE.
3044 * Failure: FALSE.
3045 *
3046 * FIXME
3047 * Flags currently not considered.
3048 *
3049 * NOTES
3050 * Private key-exchange- and signature-keys can be generated with Algid AT_KEYEXCHANGE
3051 * and AT_SIGNATURE values.
3052 */
3053 BOOL WINAPI RSAENH_CPGenKey(HCRYPTPROV hProv, ALG_ID Algid, DWORD dwFlags, HCRYPTKEY *phKey)
3054 {
3055 KEYCONTAINER *pKeyContainer;
3056 CRYPTKEY *pCryptKey;
3057
3058 TRACE("(hProv=%08lx, aiAlgid=%d, dwFlags=%08x, phKey=%p)\n", hProv, Algid, dwFlags, phKey);
3059
3060 if (!lookup_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER,
3061 (OBJECTHDR**)&pKeyContainer))
3062 {
3063 /* MSDN: hProv not containing valid context handle */
3064 SetLastError(NTE_BAD_UID);
3065 return FALSE;
3066 }
3067
3068 switch (Algid)
3069 {
3070 case AT_SIGNATURE:
3071 case CALG_RSA_SIGN:
3072 *phKey = new_key(hProv, CALG_RSA_SIGN, dwFlags, &pCryptKey);
3073 if (pCryptKey) {
3074 new_key_impl(pCryptKey->aiAlgid, &pCryptKey->context, pCryptKey->dwKeyLen);
3075 setup_key(pCryptKey);
3076 release_and_install_key(hProv, *phKey,
3077 &pKeyContainer->hSignatureKeyPair,
3078 FALSE);
3079 }
3080 break;
3081
3082 case AT_KEYEXCHANGE:
3083 case CALG_RSA_KEYX:
3084 *phKey = new_key(hProv, CALG_RSA_KEYX, dwFlags, &pCryptKey);
3085 if (pCryptKey) {
3086 new_key_impl(pCryptKey->aiAlgid, &pCryptKey->context, pCryptKey->dwKeyLen);
3087 setup_key(pCryptKey);
3088 release_and_install_key(hProv, *phKey,
3089 &pKeyContainer->hKeyExchangeKeyPair,
3090 FALSE);
3091 }
3092 break;
3093
3094 case CALG_RC2:
3095 case CALG_RC4:
3096 case CALG_DES:
3097 case CALG_3DES_112:
3098 case CALG_3DES:
3099 case CALG_AES:
3100 case CALG_AES_128:
3101 case CALG_AES_192:
3102 case CALG_AES_256:
3103 case CALG_PCT1_MASTER:
3104 case CALG_SSL2_MASTER:
3105 case CALG_SSL3_MASTER:
3106 case CALG_TLS1_MASTER:
3107 *phKey = new_key(hProv, Algid, dwFlags, &pCryptKey);