merge 37282 from amd64-branch:
[reactos.git] / reactos / dll / win32 / rsaenh / rsaenh.c
1 /*
2 * dlls/rsaenh/rsaenh.c
3 * RSAENH - RSA encryption for Wine
4 *
5 * Copyright 2002 TransGaming Technologies (David Hammerton)
6 * Copyright 2004 Mike McCormack for CodeWeavers
7 * Copyright 2004, 2005 Michael Jung
8 * Copyright 2007 Vijay Kiran Kamuju
9 *
10 * This library is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU Lesser General Public
12 * License as published by the Free Software Foundation; either
13 * version 2.1 of the License, or (at your option) any later version.
14 *
15 * This library is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * Lesser General Public License for more details.
19 *
20 * You should have received a copy of the GNU Lesser General Public
21 * License along with this library; if not, write to the Free Software
22 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
23 */
24
25 #include "config.h"
26 #include "wine/port.h"
27 #include "wine/library.h"
28 #include "wine/debug.h"
29
30 #include <stdarg.h>
31 #include <stdio.h>
32
33 #include "windef.h"
34 #include "winbase.h"
35 #include "winreg.h"
36 #include "wincrypt.h"
37 #include "handle.h"
38 #include "implglue.h"
39 #include "objbase.h"
40
41 WINE_DEFAULT_DEBUG_CHANNEL(crypt);
42
43 /******************************************************************************
44 * CRYPTHASH - hash objects
45 */
46 #define RSAENH_MAGIC_HASH 0x85938417u
47 #define RSAENH_MAX_HASH_SIZE 104
48 #define RSAENH_HASHSTATE_HASHING 1
49 #define RSAENH_HASHSTATE_FINISHED 2
50 typedef struct _RSAENH_TLS1PRF_PARAMS
51 {
52 CRYPT_DATA_BLOB blobLabel;
53 CRYPT_DATA_BLOB blobSeed;
54 } RSAENH_TLS1PRF_PARAMS;
55
56 typedef struct tagCRYPTHASH
57 {
58 OBJECTHDR header;
59 ALG_ID aiAlgid;
60 HCRYPTKEY hKey;
61 HCRYPTPROV hProv;
62 DWORD dwHashSize;
63 DWORD dwState;
64 HASH_CONTEXT context;
65 BYTE abHashValue[RSAENH_MAX_HASH_SIZE];
66 PHMAC_INFO pHMACInfo;
67 RSAENH_TLS1PRF_PARAMS tpPRFParams;
68 } CRYPTHASH;
69
70 /******************************************************************************
71 * CRYPTKEY - key objects
72 */
73 #define RSAENH_MAGIC_KEY 0x73620457u
74 #define RSAENH_MAX_KEY_SIZE 48
75 #define RSAENH_MAX_BLOCK_SIZE 24
76 #define RSAENH_KEYSTATE_IDLE 0
77 #define RSAENH_KEYSTATE_ENCRYPTING 1
78 #define RSAENH_KEYSTATE_MASTERKEY 2
79 typedef struct _RSAENH_SCHANNEL_INFO
80 {
81 SCHANNEL_ALG saEncAlg;
82 SCHANNEL_ALG saMACAlg;
83 CRYPT_DATA_BLOB blobClientRandom;
84 CRYPT_DATA_BLOB blobServerRandom;
85 } RSAENH_SCHANNEL_INFO;
86
87 typedef struct tagCRYPTKEY
88 {
89 OBJECTHDR header;
90 ALG_ID aiAlgid;
91 HCRYPTPROV hProv;
92 DWORD dwMode;
93 DWORD dwModeBits;
94 DWORD dwPermissions;
95 DWORD dwKeyLen;
96 DWORD dwEffectiveKeyLen;
97 DWORD dwSaltLen;
98 DWORD dwBlockLen;
99 DWORD dwState;
100 KEY_CONTEXT context;
101 BYTE abKeyValue[RSAENH_MAX_KEY_SIZE];
102 BYTE abInitVector[RSAENH_MAX_BLOCK_SIZE];
103 BYTE abChainVector[RSAENH_MAX_BLOCK_SIZE];
104 RSAENH_SCHANNEL_INFO siSChannelInfo;
105 } CRYPTKEY;
106
107 /******************************************************************************
108 * KEYCONTAINER - key containers
109 */
110 #define RSAENH_PERSONALITY_BASE 0u
111 #define RSAENH_PERSONALITY_STRONG 1u
112 #define RSAENH_PERSONALITY_ENHANCED 2u
113 #define RSAENH_PERSONALITY_SCHANNEL 3u
114 #define RSAENH_PERSONALITY_AES 4u
115
116 #define RSAENH_MAGIC_CONTAINER 0x26384993u
117 typedef struct tagKEYCONTAINER
118 {
119 OBJECTHDR header;
120 DWORD dwFlags;
121 DWORD dwPersonality;
122 DWORD dwEnumAlgsCtr;
123 DWORD dwEnumContainersCtr;
124 CHAR szName[MAX_PATH];
125 CHAR szProvName[MAX_PATH];
126 HCRYPTKEY hKeyExchangeKeyPair;
127 HCRYPTKEY hSignatureKeyPair;
128 } KEYCONTAINER;
129
130 /******************************************************************************
131 * Some magic constants
132 */
133 #define RSAENH_ENCRYPT 1
134 #define RSAENH_DECRYPT 0
135 #define RSAENH_HMAC_DEF_IPAD_CHAR 0x36
136 #define RSAENH_HMAC_DEF_OPAD_CHAR 0x5c
137 #define RSAENH_HMAC_DEF_PAD_LEN 64
138 #define RSAENH_DES_EFFECTIVE_KEYLEN 56
139 #define RSAENH_DES_STORAGE_KEYLEN 64
140 #define RSAENH_3DES112_EFFECTIVE_KEYLEN 112
141 #define RSAENH_3DES112_STORAGE_KEYLEN 128
142 #define RSAENH_3DES_EFFECTIVE_KEYLEN 168
143 #define RSAENH_3DES_STORAGE_KEYLEN 192
144 #define RSAENH_MAGIC_RSA2 0x32415352
145 #define RSAENH_MAGIC_RSA1 0x31415352
146 #define RSAENH_PKC_BLOCKTYPE 0x02
147 #define RSAENH_SSL3_VERSION_MAJOR 3
148 #define RSAENH_SSL3_VERSION_MINOR 0
149 #define RSAENH_TLS1_VERSION_MAJOR 3
150 #define RSAENH_TLS1_VERSION_MINOR 1
151 #define RSAENH_REGKEY "Software\\Wine\\Crypto\\RSA\\%s"
152
153 #define RSAENH_MIN(a,b) ((a)<(b)?(a):(b))
154 /******************************************************************************
155 * aProvEnumAlgsEx - Defines the capabilities of the CSP personalities.
156 */
157 #define RSAENH_MAX_ENUMALGS 24
158 #define RSAENH_PCT1_SSL2_SSL3_TLS1 (CRYPT_FLAG_PCT1|CRYPT_FLAG_SSL2|CRYPT_FLAG_SSL3|CRYPT_FLAG_TLS1)
159 static const PROV_ENUMALGS_EX aProvEnumAlgsEx[5][RSAENH_MAX_ENUMALGS+1] =
160 {
161 {
162 {CALG_RC2, 40, 40, 56,0, 4,"RC2", 24,"RSA Data Security's RC2"},
163 {CALG_RC4, 40, 40, 56,0, 4,"RC4", 24,"RSA Data Security's RC4"},
164 {CALG_DES, 56, 56, 56,0, 4,"DES", 31,"Data Encryption Standard (DES)"},
165 {CALG_SHA, 160,160, 160,CRYPT_FLAG_SIGNING, 6,"SHA-1", 30,"Secure Hash Algorithm (SHA-1)"},
166 {CALG_MD2, 128,128, 128,CRYPT_FLAG_SIGNING, 4,"MD2", 23,"Message Digest 2 (MD2)"},
167 {CALG_MD4, 128,128, 128,CRYPT_FLAG_SIGNING, 4,"MD4", 23,"Message Digest 4 (MD4)"},
168 {CALG_MD5, 128,128, 128,CRYPT_FLAG_SIGNING, 4,"MD5", 23,"Message Digest 5 (MD5)"},
169 {CALG_SSL3_SHAMD5,288,288,288,0, 12,"SSL3 SHAMD5",12,"SSL3 SHAMD5"},
170 {CALG_MAC, 0, 0, 0,0, 4,"MAC", 28,"Message Authentication Code"},
171 {CALG_RSA_SIGN, 512,384,16384,CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC,9,"RSA_SIGN",14,"RSA Signature"},
172 {CALG_RSA_KEYX, 512,384, 1024,CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC,9,"RSA_KEYX",17,"RSA Key Exchange"},
173 {CALG_HMAC, 0, 0, 0,0, 5,"HMAC", 18,"Hugo's MAC (HMAC)"},
174 {0, 0, 0, 0,0, 1,"", 1,""}
175 },
176 {
177 {CALG_RC2, 128, 40, 128,0, 4,"RC2", 24,"RSA Data Security's RC2"},
178 {CALG_RC4, 128, 40, 128,0, 4,"RC4", 24,"RSA Data Security's RC4"},
179 {CALG_DES, 56, 56, 56,0, 4,"DES", 31,"Data Encryption Standard (DES)"},
180 {CALG_3DES_112, 112,112, 112,0, 13,"3DES TWO KEY",19,"Two Key Triple DES"},
181 {CALG_3DES, 168,168, 168,0, 5,"3DES", 21,"Three Key Triple DES"},
182 {CALG_SHA, 160,160, 160,CRYPT_FLAG_SIGNING, 6,"SHA-1", 30,"Secure Hash Algorithm (SHA-1)"},
183 {CALG_MD2, 128,128, 128,CRYPT_FLAG_SIGNING, 4,"MD2", 23,"Message Digest 2 (MD2)"},
184 {CALG_MD4, 128,128, 128,CRYPT_FLAG_SIGNING, 4,"MD4", 23,"Message Digest 4 (MD4)"},
185 {CALG_MD5, 128,128, 128,CRYPT_FLAG_SIGNING, 4,"MD5", 23,"Message Digest 5 (MD5)"},
186 {CALG_SSL3_SHAMD5,288,288,288,0, 12,"SSL3 SHAMD5",12,"SSL3 SHAMD5"},
187 {CALG_MAC, 0, 0, 0,0, 4,"MAC", 28,"Message Authentication Code"},
188 {CALG_RSA_SIGN,1024,384,16384,CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC,9,"RSA_SIGN",14,"RSA Signature"},
189 {CALG_RSA_KEYX,1024,384,16384,CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC,9,"RSA_KEYX",17,"RSA Key Exchange"},
190 {CALG_HMAC, 0, 0, 0,0, 5,"HMAC", 18,"Hugo's MAC (HMAC)"},
191 {0, 0, 0, 0,0, 1,"", 1,""}
192 },
193 {
194 {CALG_RC2, 128, 40, 128,0, 4,"RC2", 24,"RSA Data Security's RC2"},
195 {CALG_RC4, 128, 40, 128,0, 4,"RC4", 24,"RSA Data Security's RC4"},
196 {CALG_DES, 56, 56, 56,0, 4,"DES", 31,"Data Encryption Standard (DES)"},
197 {CALG_3DES_112, 112,112, 112,0, 13,"3DES TWO KEY",19,"Two Key Triple DES"},
198 {CALG_3DES, 168,168, 168,0, 5,"3DES", 21,"Three Key Triple DES"},
199 {CALG_SHA, 160,160, 160,CRYPT_FLAG_SIGNING, 6,"SHA-1", 30,"Secure Hash Algorithm (SHA-1)"},
200 {CALG_MD2, 128,128, 128,CRYPT_FLAG_SIGNING, 4,"MD2", 23,"Message Digest 2 (MD2)"},
201 {CALG_MD4, 128,128, 128,CRYPT_FLAG_SIGNING, 4,"MD4", 23,"Message Digest 4 (MD4)"},
202 {CALG_MD5, 128,128, 128,CRYPT_FLAG_SIGNING, 4,"MD5", 23,"Message Digest 5 (MD5)"},
203 {CALG_SSL3_SHAMD5,288,288,288,0, 12,"SSL3 SHAMD5",12,"SSL3 SHAMD5"},
204 {CALG_MAC, 0, 0, 0,0, 4,"MAC", 28,"Message Authentication Code"},
205 {CALG_RSA_SIGN,1024,384,16384,CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC,9,"RSA_SIGN",14,"RSA Signature"},
206 {CALG_RSA_KEYX,1024,384,16384,CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC,9,"RSA_KEYX",17,"RSA Key Exchange"},
207 {CALG_HMAC, 0, 0, 0,0, 5,"HMAC", 18,"Hugo's MAC (HMAC)"},
208 {0, 0, 0, 0,0, 1,"", 1,""}
209 },
210 {
211 {CALG_RC2, 128, 40, 128,RSAENH_PCT1_SSL2_SSL3_TLS1, 4,"RC2", 24,"RSA Data Security's RC2"},
212 {CALG_RC4, 128, 40, 128,RSAENH_PCT1_SSL2_SSL3_TLS1, 4,"RC4", 24,"RSA Data Security's RC4"},
213 {CALG_DES, 56, 56, 56,RSAENH_PCT1_SSL2_SSL3_TLS1, 4,"DES", 31,"Data Encryption Standard (DES)"},
214 {CALG_3DES_112, 112,112, 112,RSAENH_PCT1_SSL2_SSL3_TLS1,13,"3DES TWO KEY",19,"Two Key Triple DES"},
215 {CALG_3DES, 168,168, 168,RSAENH_PCT1_SSL2_SSL3_TLS1, 5,"3DES", 21,"Three Key Triple DES"},
216 {CALG_SHA,160,160,160,CRYPT_FLAG_SIGNING|RSAENH_PCT1_SSL2_SSL3_TLS1,6,"SHA-1",30,"Secure Hash Algorithm (SHA-1)"},
217 {CALG_MD5,128,128,128,CRYPT_FLAG_SIGNING|RSAENH_PCT1_SSL2_SSL3_TLS1,4,"MD5",23,"Message Digest 5 (MD5)"},
218 {CALG_SSL3_SHAMD5,288,288,288,0, 12,"SSL3 SHAMD5",12,"SSL3 SHAMD5"},
219 {CALG_MAC, 0, 0, 0,0, 4,"MAC", 28,"Message Authentication Code"},
220 {CALG_RSA_SIGN,1024,384,16384,CRYPT_FLAG_SIGNING|RSAENH_PCT1_SSL2_SSL3_TLS1,9,"RSA_SIGN",14,"RSA Signature"},
221 {CALG_RSA_KEYX,1024,384,16384,CRYPT_FLAG_SIGNING|RSAENH_PCT1_SSL2_SSL3_TLS1,9,"RSA_KEYX",17,"RSA Key Exchange"},
222 {CALG_HMAC, 0, 0, 0,0, 5,"HMAC", 18,"Hugo's MAC (HMAC)"},
223 {CALG_PCT1_MASTER,128,128,128,CRYPT_FLAG_PCT1, 12,"PCT1 MASTER",12,"PCT1 Master"},
224 {CALG_SSL2_MASTER,40,40, 192,CRYPT_FLAG_SSL2, 12,"SSL2 MASTER",12,"SSL2 Master"},
225 {CALG_SSL3_MASTER,384,384,384,CRYPT_FLAG_SSL3, 12,"SSL3 MASTER",12,"SSL3 Master"},
226 {CALG_TLS1_MASTER,384,384,384,CRYPT_FLAG_TLS1, 12,"TLS1 MASTER",12,"TLS1 Master"},
227 {CALG_SCHANNEL_MASTER_HASH,0,0,-1,0, 16,"SCH MASTER HASH",21,"SChannel Master Hash"},
228 {CALG_SCHANNEL_MAC_KEY,0,0,-1,0, 12,"SCH MAC KEY",17,"SChannel MAC Key"},
229 {CALG_SCHANNEL_ENC_KEY,0,0,-1,0, 12,"SCH ENC KEY",24,"SChannel Encryption Key"},
230 {CALG_TLS1PRF, 0, 0, -1,0, 9,"TLS1 PRF", 28,"TLS1 Pseudo Random Function"},
231 {0, 0, 0, 0,0, 1,"", 1,""}
232 },
233 {
234 {CALG_RC2, 128, 40, 128,0, 4,"RC2", 24,"RSA Data Security's RC2"},
235 {CALG_RC4, 128, 40, 128,0, 4,"RC4", 24,"RSA Data Security's RC4"},
236 {CALG_DES, 56, 56, 56,0, 4,"DES", 31,"Data Encryption Standard (DES)"},
237 {CALG_3DES_112, 112,112, 112,0, 13,"3DES TWO KEY",19,"Two Key Triple DES"},
238 {CALG_3DES, 168,168, 168,0, 5,"3DES", 21,"Three Key Triple DES"},
239 {CALG_AES, 128,128, 128,0, 4,"AES", 35,"Advanced Encryption Standard (AES)"},
240 {CALG_AES_128, 128,128, 128,0, 8,"AES-128", 39,"Advanced Encryption Standard (AES-128)"},
241 {CALG_AES_192, 192,192, 192,0, 8,"AES-192", 39,"Advanced Encryption Standard (AES-192)"},
242 {CALG_AES_256, 256,256, 256,0, 8,"AES-256", 39,"Advanced Encryption Standard (AES-256)"},
243 {CALG_SHA, 160,160, 160,CRYPT_FLAG_SIGNING, 6,"SHA-1", 30,"Secure Hash Algorithm (SHA-1)"},
244 {CALG_MD2, 128,128, 128,CRYPT_FLAG_SIGNING, 4,"MD2", 23,"Message Digest 2 (MD2)"},
245 {CALG_MD4, 128,128, 128,CRYPT_FLAG_SIGNING, 4,"MD4", 23,"Message Digest 4 (MD4)"},
246 {CALG_MD5, 128,128, 128,CRYPT_FLAG_SIGNING, 4,"MD5", 23,"Message Digest 5 (MD5)"},
247 {CALG_SSL3_SHAMD5,288,288,288,0, 12,"SSL3 SHAMD5",12,"SSL3 SHAMD5"},
248 {CALG_MAC, 0, 0, 0,0, 4,"MAC", 28,"Message Authentication Code"},
249 {CALG_RSA_SIGN,1024,384,16384,CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC,9,"RSA_SIGN",14,"RSA Signature"},
250 {CALG_RSA_KEYX,1024,384,16384,CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC,9,"RSA_KEYX",17,"RSA Key Exchange"},
251 {CALG_HMAC, 0, 0, 0,0, 5,"HMAC", 18,"Hugo's MAC (HMAC)"},
252 {0, 0, 0, 0,0, 1,"", 1,""}
253 }
254 };
255
256 /******************************************************************************
257 * API forward declarations
258 */
259 BOOL WINAPI
260 RSAENH_CPGetKeyParam(
261 HCRYPTPROV hProv,
262 HCRYPTKEY hKey,
263 DWORD dwParam,
264 BYTE *pbData,
265 DWORD *pdwDataLen,
266 DWORD dwFlags
267 );
268
269 BOOL WINAPI
270 RSAENH_CPEncrypt(
271 HCRYPTPROV hProv,
272 HCRYPTKEY hKey,
273 HCRYPTHASH hHash,
274 BOOL Final,
275 DWORD dwFlags,
276 BYTE *pbData,
277 DWORD *pdwDataLen,
278 DWORD dwBufLen
279 );
280
281 BOOL WINAPI
282 RSAENH_CPCreateHash(
283 HCRYPTPROV hProv,
284 ALG_ID Algid,
285 HCRYPTKEY hKey,
286 DWORD dwFlags,
287 HCRYPTHASH *phHash
288 );
289
290 BOOL WINAPI
291 RSAENH_CPSetHashParam(
292 HCRYPTPROV hProv,
293 HCRYPTHASH hHash,
294 DWORD dwParam,
295 BYTE *pbData, DWORD dwFlags
296 );
297
298 BOOL WINAPI
299 RSAENH_CPGetHashParam(
300 HCRYPTPROV hProv,
301 HCRYPTHASH hHash,
302 DWORD dwParam,
303 BYTE *pbData,
304 DWORD *pdwDataLen,
305 DWORD dwFlags
306 );
307
308 BOOL WINAPI
309 RSAENH_CPDestroyHash(
310 HCRYPTPROV hProv,
311 HCRYPTHASH hHash
312 );
313
314 static BOOL crypt_export_key(
315 CRYPTKEY *pCryptKey,
316 HCRYPTKEY hPubKey,
317 DWORD dwBlobType,
318 DWORD dwFlags,
319 BOOL force,
320 BYTE *pbData,
321 DWORD *pdwDataLen
322 );
323
324 static BOOL import_key(
325 HCRYPTPROV hProv,
326 CONST BYTE *pbData,
327 DWORD dwDataLen,
328 HCRYPTKEY hPubKey,
329 DWORD dwFlags,
330 BOOL fStoreKey,
331 HCRYPTKEY *phKey
332 );
333
334 BOOL WINAPI
335 RSAENH_CPHashData(
336 HCRYPTPROV hProv,
337 HCRYPTHASH hHash,
338 CONST BYTE *pbData,
339 DWORD dwDataLen,
340 DWORD dwFlags
341 );
342
343 /******************************************************************************
344 * CSP's handle table (used by all acquired key containers)
345 */
346 static struct handle_table handle_table;
347
348 /******************************************************************************
349 * DllMain (RSAENH.@)
350 *
351 * Initializes and destroys the handle table for the CSP's handles.
352 */
353 int WINAPI DllMain(HINSTANCE hInstance, DWORD fdwReason, PVOID pvReserved)
354 {
355 switch (fdwReason)
356 {
357 case DLL_PROCESS_ATTACH:
358 DisableThreadLibraryCalls(hInstance);
359 init_handle_table(&handle_table);
360 break;
361
362 case DLL_PROCESS_DETACH:
363 destroy_handle_table(&handle_table);
364 break;
365 }
366 return 1;
367 }
368
369 /******************************************************************************
370 * copy_param [Internal]
371 *
372 * Helper function that supports the standard WINAPI protocol for querying data
373 * of dynamic size.
374 *
375 * PARAMS
376 * pbBuffer [O] Buffer where the queried parameter is copied to, if it is large enough.
377 * May be NUL if the required buffer size is to be queried only.
378 * pdwBufferSize [I/O] In: Size of the buffer at pbBuffer
379 * Out: Size of parameter pbParam
380 * pbParam [I] Parameter value.
381 * dwParamSize [I] Size of pbParam
382 *
383 * RETURN
384 * Success: TRUE (pbParam was copied into pbBuffer or pbBuffer is NULL)
385 * Failure: FALSE (pbBuffer is not large enough to hold pbParam). Last error: ERROR_MORE_DATA
386 */
387 static inline BOOL copy_param(
388 BYTE *pbBuffer, DWORD *pdwBufferSize, CONST BYTE *pbParam, DWORD dwParamSize)
389 {
390 if (pbBuffer)
391 {
392 if (dwParamSize > *pdwBufferSize)
393 {
394 SetLastError(ERROR_MORE_DATA);
395 *pdwBufferSize = dwParamSize;
396 return FALSE;
397 }
398 memcpy(pbBuffer, pbParam, dwParamSize);
399 }
400 *pdwBufferSize = dwParamSize;
401 return TRUE;
402 }
403
404 /******************************************************************************
405 * get_algid_info [Internal]
406 *
407 * Query CSP capabilities for a given crypto algorithm.
408 *
409 * PARAMS
410 * hProv [I] Handle to a key container of the CSP whose capabilities are to be queried.
411 * algid [I] Identifier of the crypto algorithm about which information is requested.
412 *
413 * RETURNS
414 * Success: Pointer to a PROV_ENUMALGS_EX struct containing information about the crypto algorithm.
415 * Failure: NULL (algid not supported)
416 */
417 static inline const PROV_ENUMALGS_EX* get_algid_info(HCRYPTPROV hProv, ALG_ID algid) {
418 const PROV_ENUMALGS_EX *iterator;
419 KEYCONTAINER *pKeyContainer;
420
421 if (!lookup_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER, (OBJECTHDR**)&pKeyContainer)) {
422 SetLastError(NTE_BAD_UID);
423 return NULL;
424 }
425
426 for (iterator = aProvEnumAlgsEx[pKeyContainer->dwPersonality]; iterator->aiAlgid; iterator++) {
427 if (iterator->aiAlgid == algid) return iterator;
428 }
429
430 SetLastError(NTE_BAD_ALGID);
431 return NULL;
432 }
433
434 /******************************************************************************
435 * copy_data_blob [Internal]
436 *
437 * deeply copies a DATA_BLOB
438 *
439 * PARAMS
440 * dst [O] That's where the blob will be copied to
441 * src [I] Source blob
442 *
443 * RETURNS
444 * Success: TRUE
445 * Failure: FALSE (GetLastError() == NTE_NO_MEMORY
446 *
447 * NOTES
448 * Use free_data_blob to release resources occupied by copy_data_blob.
449 */
450 static inline BOOL copy_data_blob(PCRYPT_DATA_BLOB dst, CONST PCRYPT_DATA_BLOB src) {
451 dst->pbData = HeapAlloc(GetProcessHeap(), 0, src->cbData);
452 if (!dst->pbData) {
453 SetLastError(NTE_NO_MEMORY);
454 return FALSE;
455 }
456 dst->cbData = src->cbData;
457 memcpy(dst->pbData, src->pbData, src->cbData);
458 return TRUE;
459 }
460
461 /******************************************************************************
462 * concat_data_blobs [Internal]
463 *
464 * Concatenates two blobs
465 *
466 * PARAMS
467 * dst [O] The new blob will be copied here
468 * src1 [I] Prefix blob
469 * src2 [I] Appendix blob
470 *
471 * RETURNS
472 * Success: TRUE
473 * Failure: FALSE (GetLastError() == NTE_NO_MEMORY)
474 *
475 * NOTES
476 * Release resources occupied by concat_data_blobs with free_data_blobs
477 */
478 static inline BOOL concat_data_blobs(PCRYPT_DATA_BLOB dst, CONST PCRYPT_DATA_BLOB src1,
479 CONST PCRYPT_DATA_BLOB src2)
480 {
481 dst->cbData = src1->cbData + src2->cbData;
482 dst->pbData = HeapAlloc(GetProcessHeap(), 0, dst->cbData);
483 if (!dst->pbData) {
484 SetLastError(NTE_NO_MEMORY);
485 return FALSE;
486 }
487 memcpy(dst->pbData, src1->pbData, src1->cbData);
488 memcpy(dst->pbData + src1->cbData, src2->pbData, src2->cbData);
489 return TRUE;
490 }
491
492 /******************************************************************************
493 * free_data_blob [Internal]
494 *
495 * releases resource occupied by a dynamically allocated CRYPT_DATA_BLOB
496 *
497 * PARAMS
498 * pBlob [I] Heap space occupied by pBlob->pbData is released
499 */
500 static inline void free_data_blob(PCRYPT_DATA_BLOB pBlob) {
501 HeapFree(GetProcessHeap(), 0, pBlob->pbData);
502 }
503
504 /******************************************************************************
505 * init_data_blob [Internal]
506 */
507 static inline void init_data_blob(PCRYPT_DATA_BLOB pBlob) {
508 pBlob->pbData = NULL;
509 pBlob->cbData = 0;
510 }
511
512 /******************************************************************************
513 * free_hmac_info [Internal]
514 *
515 * Deeply free an HMAC_INFO struct.
516 *
517 * PARAMS
518 * hmac_info [I] Pointer to the HMAC_INFO struct to be freed.
519 *
520 * NOTES
521 * See Internet RFC 2104 for details on the HMAC algorithm.
522 */
523 static inline void free_hmac_info(PHMAC_INFO hmac_info) {
524 if (!hmac_info) return;
525 HeapFree(GetProcessHeap(), 0, hmac_info->pbInnerString);
526 HeapFree(GetProcessHeap(), 0, hmac_info->pbOuterString);
527 HeapFree(GetProcessHeap(), 0, hmac_info);
528 }
529
530 /******************************************************************************
531 * copy_hmac_info [Internal]
532 *
533 * Deeply copy an HMAC_INFO struct
534 *
535 * PARAMS
536 * dst [O] Pointer to a location where the pointer to the HMAC_INFO copy will be stored.
537 * src [I] Pointer to the HMAC_INFO struct to be copied.
538 *
539 * RETURNS
540 * Success: TRUE
541 * Failure: FALSE
542 *
543 * NOTES
544 * See Internet RFC 2104 for details on the HMAC algorithm.
545 */
546 static BOOL copy_hmac_info(PHMAC_INFO *dst, const HMAC_INFO *src) {
547 if (!src) return FALSE;
548 *dst = HeapAlloc(GetProcessHeap(), 0, sizeof(HMAC_INFO));
549 if (!*dst) return FALSE;
550 **dst = *src;
551 (*dst)->pbInnerString = NULL;
552 (*dst)->pbOuterString = NULL;
553 if ((*dst)->cbInnerString == 0) (*dst)->cbInnerString = RSAENH_HMAC_DEF_PAD_LEN;
554 (*dst)->pbInnerString = HeapAlloc(GetProcessHeap(), 0, (*dst)->cbInnerString);
555 if (!(*dst)->pbInnerString) {
556 free_hmac_info(*dst);
557 return FALSE;
558 }
559 if (src->cbInnerString)
560 memcpy((*dst)->pbInnerString, src->pbInnerString, src->cbInnerString);
561 else
562 memset((*dst)->pbInnerString, RSAENH_HMAC_DEF_IPAD_CHAR, RSAENH_HMAC_DEF_PAD_LEN);
563 if ((*dst)->cbOuterString == 0) (*dst)->cbOuterString = RSAENH_HMAC_DEF_PAD_LEN;
564 (*dst)->pbOuterString = HeapAlloc(GetProcessHeap(), 0, (*dst)->cbOuterString);
565 if (!(*dst)->pbOuterString) {
566 free_hmac_info(*dst);
567 return FALSE;
568 }
569 if (src->cbOuterString)
570 memcpy((*dst)->pbOuterString, src->pbOuterString, src->cbOuterString);
571 else
572 memset((*dst)->pbOuterString, RSAENH_HMAC_DEF_OPAD_CHAR, RSAENH_HMAC_DEF_PAD_LEN);
573 return TRUE;
574 }
575
576 /******************************************************************************
577 * destroy_hash [Internal]
578 *
579 * Destructor for hash objects
580 *
581 * PARAMS
582 * pCryptHash [I] Pointer to the hash object to be destroyed.
583 * Will be invalid after function returns!
584 */
585 static void destroy_hash(OBJECTHDR *pObject)
586 {
587 CRYPTHASH *pCryptHash = (CRYPTHASH*)pObject;
588
589 free_hmac_info(pCryptHash->pHMACInfo);
590 free_data_blob(&pCryptHash->tpPRFParams.blobLabel);
591 free_data_blob(&pCryptHash->tpPRFParams.blobSeed);
592 HeapFree(GetProcessHeap(), 0, pCryptHash);
593 }
594
595 /******************************************************************************
596 * init_hash [Internal]
597 *
598 * Initialize (or reset) a hash object
599 *
600 * PARAMS
601 * pCryptHash [I] The hash object to be initialized.
602 */
603 static inline BOOL init_hash(CRYPTHASH *pCryptHash) {
604 DWORD dwLen;
605
606 switch (pCryptHash->aiAlgid)
607 {
608 case CALG_HMAC:
609 if (pCryptHash->pHMACInfo) {
610 const PROV_ENUMALGS_EX *pAlgInfo;
611
612 pAlgInfo = get_algid_info(pCryptHash->hProv, pCryptHash->pHMACInfo->HashAlgid);
613 if (!pAlgInfo) return FALSE;
614 pCryptHash->dwHashSize = pAlgInfo->dwDefaultLen >> 3;
615 init_hash_impl(pCryptHash->pHMACInfo->HashAlgid, &pCryptHash->context);
616 update_hash_impl(pCryptHash->pHMACInfo->HashAlgid, &pCryptHash->context,
617 pCryptHash->pHMACInfo->pbInnerString,
618 pCryptHash->pHMACInfo->cbInnerString);
619 }
620 return TRUE;
621
622 case CALG_MAC:
623 dwLen = sizeof(DWORD);
624 RSAENH_CPGetKeyParam(pCryptHash->hProv, pCryptHash->hKey, KP_BLOCKLEN,
625 (BYTE*)&pCryptHash->dwHashSize, &dwLen, 0);
626 pCryptHash->dwHashSize >>= 3;
627 return TRUE;
628
629 default:
630 return init_hash_impl(pCryptHash->aiAlgid, &pCryptHash->context);
631 }
632 }
633
634 /******************************************************************************
635 * update_hash [Internal]
636 *
637 * Hashes the given data and updates the hash object's state accordingly
638 *
639 * PARAMS
640 * pCryptHash [I] Hash object to be updated.
641 * pbData [I] Pointer to data stream to be hashed.
642 * dwDataLen [I] Length of data stream.
643 */
644 static inline void update_hash(CRYPTHASH *pCryptHash, CONST BYTE *pbData, DWORD dwDataLen) {
645 BYTE *pbTemp;
646
647 switch (pCryptHash->aiAlgid)
648 {
649 case CALG_HMAC:
650 if (pCryptHash->pHMACInfo)
651 update_hash_impl(pCryptHash->pHMACInfo->HashAlgid, &pCryptHash->context,
652 pbData, dwDataLen);
653 break;
654
655 case CALG_MAC:
656 pbTemp = HeapAlloc(GetProcessHeap(), 0, dwDataLen);
657 if (!pbTemp) return;
658 memcpy(pbTemp, pbData, dwDataLen);
659 RSAENH_CPEncrypt(pCryptHash->hProv, pCryptHash->hKey, 0, FALSE, 0,
660 pbTemp, &dwDataLen, dwDataLen);
661 HeapFree(GetProcessHeap(), 0, pbTemp);
662 break;
663
664 default:
665 update_hash_impl(pCryptHash->aiAlgid, &pCryptHash->context, pbData, dwDataLen);
666 }
667 }
668
669 /******************************************************************************
670 * finalize_hash [Internal]
671 *
672 * Finalizes the hash, after all data has been hashed with update_hash.
673 * No additional data can be hashed afterwards until the hash gets initialized again.
674 *
675 * PARAMS
676 * pCryptHash [I] Hash object to be finalized.
677 */
678 static inline void finalize_hash(CRYPTHASH *pCryptHash) {
679 DWORD dwDataLen;
680
681 switch (pCryptHash->aiAlgid)
682 {
683 case CALG_HMAC:
684 if (pCryptHash->pHMACInfo) {
685 BYTE abHashValue[RSAENH_MAX_HASH_SIZE];
686
687 finalize_hash_impl(pCryptHash->pHMACInfo->HashAlgid, &pCryptHash->context,
688 pCryptHash->abHashValue);
689 memcpy(abHashValue, pCryptHash->abHashValue, pCryptHash->dwHashSize);
690 init_hash_impl(pCryptHash->pHMACInfo->HashAlgid, &pCryptHash->context);
691 update_hash_impl(pCryptHash->pHMACInfo->HashAlgid, &pCryptHash->context,
692 pCryptHash->pHMACInfo->pbOuterString,
693 pCryptHash->pHMACInfo->cbOuterString);
694 update_hash_impl(pCryptHash->pHMACInfo->HashAlgid, &pCryptHash->context,
695 abHashValue, pCryptHash->dwHashSize);
696 finalize_hash_impl(pCryptHash->pHMACInfo->HashAlgid, &pCryptHash->context,
697 pCryptHash->abHashValue);
698 }
699 break;
700
701 case CALG_MAC:
702 dwDataLen = 0;
703 RSAENH_CPEncrypt(pCryptHash->hProv, pCryptHash->hKey, 0, TRUE, 0,
704 pCryptHash->abHashValue, &dwDataLen, pCryptHash->dwHashSize);
705 break;
706
707 default:
708 finalize_hash_impl(pCryptHash->aiAlgid, &pCryptHash->context, pCryptHash->abHashValue);
709 }
710 }
711
712 /******************************************************************************
713 * destroy_key [Internal]
714 *
715 * Destructor for key objects
716 *
717 * PARAMS
718 * pCryptKey [I] Pointer to the key object to be destroyed.
719 * Will be invalid after function returns!
720 */
721 static void destroy_key(OBJECTHDR *pObject)
722 {
723 CRYPTKEY *pCryptKey = (CRYPTKEY*)pObject;
724
725 free_key_impl(pCryptKey->aiAlgid, &pCryptKey->context);
726 free_data_blob(&pCryptKey->siSChannelInfo.blobClientRandom);
727 free_data_blob(&pCryptKey->siSChannelInfo.blobServerRandom);
728 HeapFree(GetProcessHeap(), 0, pCryptKey);
729 }
730
731 /******************************************************************************
732 * setup_key [Internal]
733 *
734 * Initialize (or reset) a key object
735 *
736 * PARAMS
737 * pCryptKey [I] The key object to be initialized.
738 */
739 static inline void setup_key(CRYPTKEY *pCryptKey) {
740 pCryptKey->dwState = RSAENH_KEYSTATE_IDLE;
741 memcpy(pCryptKey->abChainVector, pCryptKey->abInitVector, sizeof(pCryptKey->abChainVector));
742 setup_key_impl(pCryptKey->aiAlgid, &pCryptKey->context, pCryptKey->dwKeyLen,
743 pCryptKey->dwEffectiveKeyLen, pCryptKey->dwSaltLen,
744 pCryptKey->abKeyValue);
745 }
746
747 /******************************************************************************
748 * new_key [Internal]
749 *
750 * Creates a new key object without assigning the actual binary key value.
751 * This is done by CPDeriveKey, CPGenKey or CPImportKey, which call this function.
752 *
753 * PARAMS
754 * hProv [I] Handle to the provider to which the created key will belong.
755 * aiAlgid [I] The new key shall use the crypto algorithm idenfied by aiAlgid.
756 * dwFlags [I] Upper 16 bits give the key length.
757 * Lower 16 bits: CRYPT_EXPORTABLE, CRYPT_CREATE_SALT,
758 * CRYPT_NO_SALT
759 * ppCryptKey [O] Pointer to the created key
760 *
761 * RETURNS
762 * Success: Handle to the created key.
763 * Failure: INVALID_HANDLE_VALUE
764 */
765 static HCRYPTKEY new_key(HCRYPTPROV hProv, ALG_ID aiAlgid, DWORD dwFlags, CRYPTKEY **ppCryptKey)
766 {
767 HCRYPTKEY hCryptKey;
768 CRYPTKEY *pCryptKey;
769 DWORD dwKeyLen = HIWORD(dwFlags);
770 const PROV_ENUMALGS_EX *peaAlgidInfo;
771
772 *ppCryptKey = NULL;
773
774 /*
775 * Retrieve the CSP's capabilities for the given ALG_ID value
776 */
777 peaAlgidInfo = get_algid_info(hProv, aiAlgid);
778 if (!peaAlgidInfo) return (HCRYPTKEY)INVALID_HANDLE_VALUE;
779
780 /*
781 * Assume the default key length, if none is specified explicitly
782 */
783 if (dwKeyLen == 0) dwKeyLen = peaAlgidInfo->dwDefaultLen;
784
785 /*
786 * Check if the requested key length is supported by the current CSP.
787 * Adjust key length's for DES algorithms.
788 */
789 switch (aiAlgid) {
790 case CALG_DES:
791 if (dwKeyLen == RSAENH_DES_EFFECTIVE_KEYLEN) {
792 dwKeyLen = RSAENH_DES_STORAGE_KEYLEN;
793 }
794 if (dwKeyLen != RSAENH_DES_STORAGE_KEYLEN) {
795 SetLastError(NTE_BAD_FLAGS);
796 return (HCRYPTKEY)INVALID_HANDLE_VALUE;
797 }
798 break;
799
800 case CALG_3DES_112:
801 if (dwKeyLen == RSAENH_3DES112_EFFECTIVE_KEYLEN) {
802 dwKeyLen = RSAENH_3DES112_STORAGE_KEYLEN;
803 }
804 if (dwKeyLen != RSAENH_3DES112_STORAGE_KEYLEN) {
805 SetLastError(NTE_BAD_FLAGS);
806 return (HCRYPTKEY)INVALID_HANDLE_VALUE;
807 }
808 break;
809
810 case CALG_3DES:
811 if (dwKeyLen == RSAENH_3DES_EFFECTIVE_KEYLEN) {
812 dwKeyLen = RSAENH_3DES_STORAGE_KEYLEN;
813 }
814 if (dwKeyLen != RSAENH_3DES_STORAGE_KEYLEN) {
815 SetLastError(NTE_BAD_FLAGS);
816 return (HCRYPTKEY)INVALID_HANDLE_VALUE;
817 }
818 break;
819
820 default:
821 if (dwKeyLen % 8 ||
822 dwKeyLen > peaAlgidInfo->dwMaxLen ||
823 dwKeyLen < peaAlgidInfo->dwMinLen)
824 {
825 SetLastError(NTE_BAD_FLAGS);
826 return (HCRYPTKEY)INVALID_HANDLE_VALUE;
827 }
828 }
829
830 hCryptKey = new_object(&handle_table, sizeof(CRYPTKEY), RSAENH_MAGIC_KEY,
831 destroy_key, (OBJECTHDR**)&pCryptKey);
832 if (hCryptKey != (HCRYPTKEY)INVALID_HANDLE_VALUE)
833 {
834 pCryptKey->aiAlgid = aiAlgid;
835 pCryptKey->hProv = hProv;
836 pCryptKey->dwModeBits = 0;
837 pCryptKey->dwPermissions = CRYPT_ENCRYPT | CRYPT_DECRYPT | CRYPT_READ | CRYPT_WRITE |
838 CRYPT_MAC;
839 if (dwFlags & CRYPT_EXPORTABLE)
840 pCryptKey->dwPermissions |= CRYPT_EXPORT;
841 pCryptKey->dwKeyLen = dwKeyLen >> 3;
842 pCryptKey->dwEffectiveKeyLen = 0;
843 if ((dwFlags & CRYPT_CREATE_SALT) || (dwKeyLen == 40 && !(dwFlags & CRYPT_NO_SALT)))
844 pCryptKey->dwSaltLen = 16 /*FIXME*/ - pCryptKey->dwKeyLen;
845 else
846 pCryptKey->dwSaltLen = 0;
847 memset(pCryptKey->abKeyValue, 0, sizeof(pCryptKey->abKeyValue));
848 memset(pCryptKey->abInitVector, 0, sizeof(pCryptKey->abInitVector));
849 init_data_blob(&pCryptKey->siSChannelInfo.blobClientRandom);
850 init_data_blob(&pCryptKey->siSChannelInfo.blobServerRandom);
851
852 switch(aiAlgid)
853 {
854 case CALG_PCT1_MASTER:
855 case CALG_SSL2_MASTER:
856 case CALG_SSL3_MASTER:
857 case CALG_TLS1_MASTER:
858 case CALG_RC4:
859 pCryptKey->dwBlockLen = 0;
860 pCryptKey->dwMode = 0;
861 break;
862
863 case CALG_RC2:
864 case CALG_DES:
865 case CALG_3DES_112:
866 case CALG_3DES:
867 pCryptKey->dwBlockLen = 8;
868 pCryptKey->dwMode = CRYPT_MODE_CBC;
869 break;
870
871 case CALG_AES:
872 case CALG_AES_128:
873 case CALG_AES_192:
874 case CALG_AES_256:
875 pCryptKey->dwBlockLen = 16;
876 pCryptKey->dwMode = CRYPT_MODE_ECB;
877 break;
878
879 case CALG_RSA_KEYX:
880 case CALG_RSA_SIGN:
881 pCryptKey->dwBlockLen = dwKeyLen >> 3;
882 pCryptKey->dwMode = 0;
883 break;
884 }
885
886 *ppCryptKey = pCryptKey;
887 }
888
889 return hCryptKey;
890 }
891
892 /******************************************************************************
893 * map_key_spec_to_key_pair_name [Internal]
894 *
895 * Returns the name of the registry value associated with a key spec.
896 *
897 * PARAMS
898 * dwKeySpec [I] AT_KEYEXCHANGE or AT_SIGNATURE
899 *
900 * RETURNS
901 * Success: Name of registry value.
902 * Failure: NULL
903 */
904 static LPCSTR map_key_spec_to_key_pair_name(DWORD dwKeySpec)
905 {
906 LPCSTR szValueName;
907
908 switch (dwKeySpec)
909 {
910 case AT_KEYEXCHANGE:
911 szValueName = "KeyExchangeKeyPair";
912 break;
913 case AT_SIGNATURE:
914 szValueName = "SignatureKeyPair";
915 break;
916 default:
917 WARN("invalid key spec %d\n", dwKeySpec);
918 szValueName = NULL;
919 }
920 return szValueName;
921 }
922
923 /******************************************************************************
924 * store_key_pair [Internal]
925 *
926 * Stores a key pair to the registry
927 *
928 * PARAMS
929 * hCryptKey [I] Handle to the key to be stored
930 * hKey [I] Registry key where the key pair is to be stored
931 * dwKeySpec [I] AT_KEYEXCHANGE or AT_SIGNATURE
932 * dwFlags [I] Flags for protecting the key
933 */
934 static void store_key_pair(HCRYPTKEY hCryptKey, HKEY hKey, DWORD dwKeySpec, DWORD dwFlags)
935 {
936 LPCSTR szValueName;
937 DATA_BLOB blobIn, blobOut;
938 CRYPTKEY *pKey;
939 DWORD dwLen;
940 BYTE *pbKey;
941
942 if (!(szValueName = map_key_spec_to_key_pair_name(dwKeySpec)))
943 return;
944 if (lookup_handle(&handle_table, hCryptKey, RSAENH_MAGIC_KEY,
945 (OBJECTHDR**)&pKey))
946 {
947 if (crypt_export_key(pKey, 0, PRIVATEKEYBLOB, 0, TRUE, 0, &dwLen))
948 {
949 pbKey = HeapAlloc(GetProcessHeap(), 0, dwLen);
950 if (pbKey)
951 {
952 if (crypt_export_key(pKey, 0, PRIVATEKEYBLOB, 0, TRUE, pbKey,
953 &dwLen))
954 {
955 blobIn.pbData = pbKey;
956 blobIn.cbData = dwLen;
957
958 if (CryptProtectData(&blobIn, NULL, NULL, NULL, NULL,
959 dwFlags, &blobOut))
960 {
961 RegSetValueExA(hKey, szValueName, 0, REG_BINARY,
962 blobOut.pbData, blobOut.cbData);
963 LocalFree(blobOut.pbData);
964 }
965 }
966 HeapFree(GetProcessHeap(), 0, pbKey);
967 }
968 }
969 }
970 }
971
972 /******************************************************************************
973 * map_key_spec_to_permissions_name [Internal]
974 *
975 * Returns the name of the registry value associated with the permissions for
976 * a key spec.
977 *
978 * PARAMS
979 * dwKeySpec [I] AT_KEYEXCHANGE or AT_SIGNATURE
980 *
981 * RETURNS
982 * Success: Name of registry value.
983 * Failure: NULL
984 */
985 static LPCSTR map_key_spec_to_permissions_name(DWORD dwKeySpec)
986 {
987 LPCSTR szValueName;
988
989 switch (dwKeySpec)
990 {
991 case AT_KEYEXCHANGE:
992 szValueName = "KeyExchangePermissions";
993 break;
994 case AT_SIGNATURE:
995 szValueName = "SignaturePermissions";
996 break;
997 default:
998 WARN("invalid key spec %d\n", dwKeySpec);
999 szValueName = NULL;
1000 }
1001 return szValueName;
1002 }
1003
1004 /******************************************************************************
1005 * store_key_permissions [Internal]
1006 *
1007 * Stores a key's permissions to the registry
1008 *
1009 * PARAMS
1010 * hCryptKey [I] Handle to the key whose permissions are to be stored
1011 * hKey [I] Registry key where the key permissions are to be stored
1012 * dwKeySpec [I] AT_KEYEXCHANGE or AT_SIGNATURE
1013 */
1014 static void store_key_permissions(HCRYPTKEY hCryptKey, HKEY hKey, DWORD dwKeySpec)
1015 {
1016 LPCSTR szValueName;
1017 CRYPTKEY *pKey;
1018
1019 if (!(szValueName = map_key_spec_to_permissions_name(dwKeySpec)))
1020 return;
1021 if (lookup_handle(&handle_table, hCryptKey, RSAENH_MAGIC_KEY,
1022 (OBJECTHDR**)&pKey))
1023 RegSetValueExA(hKey, szValueName, 0, REG_DWORD,
1024 (BYTE *)&pKey->dwPermissions,
1025 sizeof(pKey->dwPermissions));
1026 }
1027
1028 /******************************************************************************
1029 * create_container_key [Internal]
1030 *
1031 * Creates the registry key for a key container's persistent storage.
1032 *
1033 * PARAMS
1034 * pKeyContainer [I] Pointer to the key container
1035 * sam [I] Desired registry access
1036 * phKey [O] Returned key
1037 */
1038 static BOOL create_container_key(KEYCONTAINER *pKeyContainer, REGSAM sam, HKEY *phKey)
1039 {
1040 CHAR szRSABase[MAX_PATH];
1041 HKEY hRootKey;
1042
1043 sprintf(szRSABase, RSAENH_REGKEY, pKeyContainer->szName);
1044
1045 if (pKeyContainer->dwFlags & CRYPT_MACHINE_KEYSET)
1046 hRootKey = HKEY_LOCAL_MACHINE;
1047 else
1048 hRootKey = HKEY_CURRENT_USER;
1049
1050 /* @@ Wine registry key: HKLM\Software\Wine\Crypto\RSA */
1051 /* @@ Wine registry key: HKCU\Software\Wine\Crypto\RSA */
1052 return RegCreateKeyExA(hRootKey, szRSABase, 0, NULL,
1053 REG_OPTION_NON_VOLATILE, sam, NULL, phKey, NULL)
1054 == ERROR_SUCCESS;
1055 }
1056
1057 /******************************************************************************
1058 * open_container_key [Internal]
1059 *
1060 * Opens a key container's persistent storage for reading.
1061 *
1062 * PARAMS
1063 * pszContainerName [I] Name of the container to be opened. May be the empty
1064 * string if the parent key of all containers is to be
1065 * opened.
1066 * dwFlags [I] Flags indicating which keyset to be opened.
1067 * phKey [O] Returned key
1068 */
1069 static BOOL open_container_key(LPCSTR pszContainerName, DWORD dwFlags, HKEY *phKey)
1070 {
1071 CHAR szRSABase[MAX_PATH];
1072 HKEY hRootKey;
1073
1074 sprintf(szRSABase, RSAENH_REGKEY, pszContainerName);
1075
1076 if (dwFlags & CRYPT_MACHINE_KEYSET)
1077 hRootKey = HKEY_LOCAL_MACHINE;
1078 else
1079 hRootKey = HKEY_CURRENT_USER;
1080
1081 /* @@ Wine registry key: HKLM\Software\Wine\Crypto\RSA */
1082 /* @@ Wine registry key: HKCU\Software\Wine\Crypto\RSA */
1083 return RegOpenKeyExA(hRootKey, szRSABase, 0, KEY_READ, phKey) ==
1084 ERROR_SUCCESS;
1085 }
1086
1087 /******************************************************************************
1088 * delete_container_key [Internal]
1089 *
1090 * Deletes a key container's persistent storage.
1091 *
1092 * PARAMS
1093 * pszContainerName [I] Name of the container to be opened.
1094 * dwFlags [I] Flags indicating which keyset to be opened.
1095 */
1096 static BOOL delete_container_key(LPCSTR pszContainerName, DWORD dwFlags)
1097 {
1098 CHAR szRegKey[MAX_PATH];
1099
1100 if (snprintf(szRegKey, MAX_PATH, RSAENH_REGKEY, pszContainerName) >= MAX_PATH) {
1101 SetLastError(NTE_BAD_KEYSET_PARAM);
1102 return FALSE;
1103 } else {
1104 HKEY hRootKey;
1105 if (dwFlags & CRYPT_MACHINE_KEYSET)
1106 hRootKey = HKEY_LOCAL_MACHINE;
1107 else
1108 hRootKey = HKEY_CURRENT_USER;
1109 if (!RegDeleteKeyA(hRootKey, szRegKey)) {
1110 SetLastError(ERROR_SUCCESS);
1111 return TRUE;
1112 } else {
1113 SetLastError(NTE_BAD_KEYSET);
1114 return FALSE;
1115 }
1116 }
1117 }
1118
1119 /******************************************************************************
1120 * store_key_container_keys [Internal]
1121 *
1122 * Stores key container's keys in a persistent location.
1123 *
1124 * PARAMS
1125 * pKeyContainer [I] Pointer to the key container whose keys are to be saved
1126 */
1127 static void store_key_container_keys(KEYCONTAINER *pKeyContainer)
1128 {
1129 HKEY hKey;
1130 DWORD dwFlags;
1131
1132 /* On WinXP, persistent keys are stored in a file located at:
1133 * $AppData$\\Microsoft\\Crypto\\RSA\\$SID$\\some_hex_string
1134 */
1135
1136 if (pKeyContainer->dwFlags & CRYPT_MACHINE_KEYSET)
1137 dwFlags = CRYPTPROTECT_LOCAL_MACHINE;
1138 else
1139 dwFlags = 0;
1140
1141 if (create_container_key(pKeyContainer, KEY_WRITE, &hKey))
1142 {
1143 store_key_pair(pKeyContainer->hKeyExchangeKeyPair, hKey,
1144 AT_KEYEXCHANGE, dwFlags);
1145 store_key_pair(pKeyContainer->hSignatureKeyPair, hKey,
1146 AT_SIGNATURE, dwFlags);
1147 RegCloseKey(hKey);
1148 }
1149 }
1150
1151 /******************************************************************************
1152 * store_key_container_permissions [Internal]
1153 *
1154 * Stores key container's key permissions in a persistent location.
1155 *
1156 * PARAMS
1157 * pKeyContainer [I] Pointer to the key container whose key permissions are to
1158 * be saved
1159 */
1160 static void store_key_container_permissions(KEYCONTAINER *pKeyContainer)
1161 {
1162 HKEY hKey;
1163 DWORD dwFlags;
1164
1165 /* On WinXP, persistent keys are stored in a file located at:
1166 * $AppData$\\Microsoft\\Crypto\\RSA\\$SID$\\some_hex_string
1167 */
1168
1169 if (pKeyContainer->dwFlags & CRYPT_MACHINE_KEYSET)
1170 dwFlags = CRYPTPROTECT_LOCAL_MACHINE;
1171 else
1172 dwFlags = 0;
1173
1174 if (create_container_key(pKeyContainer, KEY_WRITE, &hKey))
1175 {
1176 store_key_permissions(pKeyContainer->hKeyExchangeKeyPair, hKey,
1177 AT_KEYEXCHANGE);
1178 store_key_permissions(pKeyContainer->hSignatureKeyPair, hKey,
1179 AT_SIGNATURE);
1180 RegCloseKey(hKey);
1181 }
1182 }
1183
1184 /******************************************************************************
1185 * release_key_container_keys [Internal]
1186 *
1187 * Releases key container's keys.
1188 *
1189 * PARAMS
1190 * pKeyContainer [I] Pointer to the key container whose keys are to be released.
1191 */
1192 static void release_key_container_keys(KEYCONTAINER *pKeyContainer)
1193 {
1194 release_handle(&handle_table, pKeyContainer->hKeyExchangeKeyPair,
1195 RSAENH_MAGIC_KEY);
1196 release_handle(&handle_table, pKeyContainer->hSignatureKeyPair,
1197 RSAENH_MAGIC_KEY);
1198 }
1199
1200 /******************************************************************************
1201 * destroy_key_container [Internal]
1202 *
1203 * Destructor for key containers.
1204 *
1205 * PARAMS
1206 * pObjectHdr [I] Pointer to the key container to be destroyed.
1207 */
1208 static void destroy_key_container(OBJECTHDR *pObjectHdr)
1209 {
1210 KEYCONTAINER *pKeyContainer = (KEYCONTAINER*)pObjectHdr;
1211
1212 if (!(pKeyContainer->dwFlags & CRYPT_VERIFYCONTEXT))
1213 {
1214 store_key_container_keys(pKeyContainer);
1215 store_key_container_permissions(pKeyContainer);
1216 release_key_container_keys(pKeyContainer);
1217 }
1218 HeapFree( GetProcessHeap(), 0, pKeyContainer );
1219 }
1220
1221 /******************************************************************************
1222 * new_key_container [Internal]
1223 *
1224 * Create a new key container. The personality (RSA Base, Strong or Enhanced CP)
1225 * of the CSP is determined via the pVTable->pszProvName string.
1226 *
1227 * PARAMS
1228 * pszContainerName [I] Name of the key container.
1229 * pVTable [I] Callback functions and context info provided by the OS
1230 *
1231 * RETURNS
1232 * Success: Handle to the new key container.
1233 * Failure: INVALID_HANDLE_VALUE
1234 */
1235 static HCRYPTPROV new_key_container(PCCH pszContainerName, DWORD dwFlags, const VTableProvStruc *pVTable)
1236 {
1237 KEYCONTAINER *pKeyContainer;
1238 HCRYPTPROV hKeyContainer;
1239
1240 hKeyContainer = new_object(&handle_table, sizeof(KEYCONTAINER), RSAENH_MAGIC_CONTAINER,
1241 destroy_key_container, (OBJECTHDR**)&pKeyContainer);
1242 if (hKeyContainer != (HCRYPTPROV)INVALID_HANDLE_VALUE)
1243 {
1244 lstrcpynA(pKeyContainer->szName, pszContainerName, MAX_PATH);
1245 pKeyContainer->dwFlags = dwFlags;
1246 pKeyContainer->dwEnumAlgsCtr = 0;
1247 pKeyContainer->hKeyExchangeKeyPair = (HCRYPTKEY)INVALID_HANDLE_VALUE;
1248 pKeyContainer->hSignatureKeyPair = (HCRYPTKEY)INVALID_HANDLE_VALUE;
1249 if (pVTable && pVTable->pszProvName) {
1250 lstrcpynA(pKeyContainer->szProvName, pVTable->pszProvName, MAX_PATH);
1251 if (!strcmp(pVTable->pszProvName, MS_DEF_PROV_A)) {
1252 pKeyContainer->dwPersonality = RSAENH_PERSONALITY_BASE;
1253 } else if (!strcmp(pVTable->pszProvName, MS_ENHANCED_PROV_A)) {
1254 pKeyContainer->dwPersonality = RSAENH_PERSONALITY_ENHANCED;
1255 } else if (!strcmp(pVTable->pszProvName, MS_DEF_RSA_SCHANNEL_PROV_A)) {
1256 pKeyContainer->dwPersonality = RSAENH_PERSONALITY_SCHANNEL;
1257 } else if (!strcmp(pVTable->pszProvName, MS_ENH_RSA_AES_PROV_A)) {
1258 pKeyContainer->dwPersonality = RSAENH_PERSONALITY_AES;
1259 } else {
1260 pKeyContainer->dwPersonality = RSAENH_PERSONALITY_STRONG;
1261 }
1262 }
1263
1264 /* The new key container has to be inserted into the CSP immediately
1265 * after creation to be available for CPGetProvParam's PP_ENUMCONTAINERS. */
1266 if (!(dwFlags & CRYPT_VERIFYCONTEXT)) {
1267 HKEY hKey;
1268
1269 if (create_container_key(pKeyContainer, KEY_WRITE, &hKey))
1270 RegCloseKey(hKey);
1271 }
1272 }
1273
1274 return hKeyContainer;
1275 }
1276
1277 /******************************************************************************
1278 * read_key_value [Internal]
1279 *
1280 * Reads a key pair value from the registry
1281 *
1282 * PARAMS
1283 * hKeyContainer [I] Crypt provider to use to import the key
1284 * hKey [I] Registry key from which to read the key pair
1285 * dwKeySpec [I] AT_KEYEXCHANGE or AT_SIGNATURE
1286 * dwFlags [I] Flags for unprotecting the key
1287 * phCryptKey [O] Returned key
1288 */
1289 static BOOL read_key_value(HCRYPTPROV hKeyContainer, HKEY hKey, DWORD dwKeySpec, DWORD dwFlags, HCRYPTKEY *phCryptKey)
1290 {
1291 LPCSTR szValueName;
1292 DWORD dwValueType, dwLen;
1293 BYTE *pbKey;
1294 DATA_BLOB blobIn, blobOut;
1295 BOOL ret = FALSE;
1296
1297 if (!(szValueName = map_key_spec_to_key_pair_name(dwKeySpec)))
1298 return FALSE;
1299 if (RegQueryValueExA(hKey, szValueName, 0, &dwValueType, NULL, &dwLen) ==
1300 ERROR_SUCCESS)
1301 {
1302 pbKey = HeapAlloc(GetProcessHeap(), 0, dwLen);
1303 if (pbKey)
1304 {
1305 if (RegQueryValueExA(hKey, szValueName, 0, &dwValueType, pbKey, &dwLen) ==
1306 ERROR_SUCCESS)
1307 {
1308 blobIn.pbData = pbKey;
1309 blobIn.cbData = dwLen;
1310
1311 if (CryptUnprotectData(&blobIn, NULL, NULL, NULL, NULL,
1312 dwFlags, &blobOut))
1313 {
1314 ret = import_key(hKeyContainer, blobOut.pbData, blobOut.cbData, 0, 0,
1315 FALSE, phCryptKey);
1316 LocalFree(blobOut.pbData);
1317 }
1318 }
1319 HeapFree(GetProcessHeap(), 0, pbKey);
1320 }
1321 }
1322 if (ret)
1323 {
1324 CRYPTKEY *pKey;
1325
1326 if (lookup_handle(&handle_table, *phCryptKey, RSAENH_MAGIC_KEY,
1327 (OBJECTHDR**)&pKey))
1328 {
1329 if ((szValueName = map_key_spec_to_permissions_name(dwKeySpec)))
1330 {
1331 dwLen = sizeof(pKey->dwPermissions);
1332 RegQueryValueExA(hKey, szValueName, 0, NULL,
1333 (BYTE *)&pKey->dwPermissions, &dwLen);
1334 }
1335 }
1336 }
1337 return ret;
1338 }
1339
1340 /******************************************************************************
1341 * read_key_container [Internal]
1342 *
1343 * Tries to read the persistent state of the key container (mainly the signature
1344 * and key exchange private keys) given by pszContainerName.
1345 *
1346 * PARAMS
1347 * pszContainerName [I] Name of the key container to read from the registry
1348 * pVTable [I] Pointer to context data provided by the operating system
1349 *
1350 * RETURNS
1351 * Success: Handle to the key container read from the registry
1352 * Failure: INVALID_HANDLE_VALUE
1353 */
1354 static HCRYPTPROV read_key_container(PCHAR pszContainerName, DWORD dwFlags, const VTableProvStruc *pVTable)
1355 {
1356 HKEY hKey;
1357 KEYCONTAINER *pKeyContainer;
1358 HCRYPTPROV hKeyContainer;
1359 HCRYPTKEY hCryptKey;
1360
1361 if (!open_container_key(pszContainerName, dwFlags, &hKey))
1362 {
1363 SetLastError(NTE_BAD_KEYSET);
1364 return (HCRYPTPROV)INVALID_HANDLE_VALUE;
1365 }
1366
1367 hKeyContainer = new_key_container(pszContainerName, dwFlags, pVTable);
1368 if (hKeyContainer != (HCRYPTPROV)INVALID_HANDLE_VALUE)
1369 {
1370 DWORD dwProtectFlags = (dwFlags & CRYPT_MACHINE_KEYSET) ?
1371 CRYPTPROTECT_LOCAL_MACHINE : 0;
1372
1373 if (!lookup_handle(&handle_table, hKeyContainer, RSAENH_MAGIC_CONTAINER,
1374 (OBJECTHDR**)&pKeyContainer))
1375 return (HCRYPTPROV)INVALID_HANDLE_VALUE;
1376
1377 if (read_key_value(hKeyContainer, hKey, AT_KEYEXCHANGE,
1378 dwProtectFlags, &hCryptKey))
1379 pKeyContainer->hKeyExchangeKeyPair = hCryptKey;
1380 if (read_key_value(hKeyContainer, hKey, AT_SIGNATURE,
1381 dwProtectFlags, &hCryptKey))
1382 pKeyContainer->hSignatureKeyPair = hCryptKey;
1383 }
1384
1385 return hKeyContainer;
1386 }
1387
1388 /******************************************************************************
1389 * build_hash_signature [Internal]
1390 *
1391 * Builds a padded version of a hash to match the length of the RSA key modulus.
1392 *
1393 * PARAMS
1394 * pbSignature [O] The padded hash object is stored here.
1395 * dwLen [I] Length of the pbSignature buffer.
1396 * aiAlgid [I] Algorithm identifier of the hash to be padded.
1397 * abHashValue [I] The value of the hash object.
1398 * dwHashLen [I] Length of the hash value.
1399 * dwFlags [I] Selection of padding algorithm.
1400 *
1401 * RETURNS
1402 * Success: TRUE
1403 * Failure: FALSE (NTE_BAD_ALGID)
1404 */
1405 static BOOL build_hash_signature(BYTE *pbSignature, DWORD dwLen, ALG_ID aiAlgid,
1406 CONST BYTE *abHashValue, DWORD dwHashLen, DWORD dwFlags)
1407 {
1408 /* These prefixes are meant to be concatenated with hash values of the
1409 * respective kind to form a PKCS #7 DigestInfo. */
1410 static const struct tagOIDDescriptor {
1411 ALG_ID aiAlgid;
1412 DWORD dwLen;
1413 CONST BYTE abOID[18];
1414 } aOIDDescriptor[5] = {
1415 { CALG_MD2, 18, { 0x30, 0x20, 0x30, 0x0c, 0x06, 0x08, 0x2a, 0x86, 0x48,
1416 0x86, 0xf7, 0x0d, 0x02, 0x02, 0x05, 0x00, 0x04, 0x10 } },
1417 { CALG_MD4, 18, { 0x30, 0x20, 0x30, 0x0c, 0x06, 0x08, 0x2a, 0x86, 0x48,
1418 0x86, 0xf7, 0x0d, 0x02, 0x04, 0x05, 0x00, 0x04, 0x10 } },
1419 { CALG_MD5, 18, { 0x30, 0x20, 0x30, 0x0c, 0x06, 0x08, 0x2a, 0x86, 0x48,
1420 0x86, 0xf7, 0x0d, 0x02, 0x05, 0x05, 0x00, 0x04, 0x10 } },
1421 { CALG_SHA, 15, { 0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2b, 0x0e, 0x03,
1422 0x02, 0x1a, 0x05, 0x00, 0x04, 0x14 } },
1423 { 0, 0, { 0 } }
1424 };
1425 DWORD dwIdxOID, i, j;
1426
1427 for (dwIdxOID = 0; aOIDDescriptor[dwIdxOID].aiAlgid; dwIdxOID++) {
1428 if (aOIDDescriptor[dwIdxOID].aiAlgid == aiAlgid) break;
1429 }
1430
1431 if (!aOIDDescriptor[dwIdxOID].aiAlgid) {
1432 SetLastError(NTE_BAD_ALGID);
1433 return FALSE;
1434 }
1435
1436 /* Build the padded signature */
1437 if (dwFlags & CRYPT_X931_FORMAT) {
1438 pbSignature[0] = 0x6b;
1439 for (i=1; i < dwLen - dwHashLen - 3; i++) {
1440 pbSignature[i] = 0xbb;
1441 }
1442 pbSignature[i++] = 0xba;
1443 for (j=0; j < dwHashLen; j++, i++) {
1444 pbSignature[i] = abHashValue[j];
1445 }
1446 pbSignature[i++] = 0x33;
1447 pbSignature[i++] = 0xcc;
1448 } else {
1449 pbSignature[0] = 0x00;
1450 pbSignature[1] = 0x01;
1451 if (dwFlags & CRYPT_NOHASHOID) {
1452 for (i=2; i < dwLen - 1 - dwHashLen; i++) {
1453 pbSignature[i] = 0xff;
1454 }
1455 pbSignature[i++] = 0x00;
1456 } else {
1457 for (i=2; i < dwLen - 1 - aOIDDescriptor[dwIdxOID].dwLen - dwHashLen; i++) {
1458 pbSignature[i] = 0xff;
1459 }
1460 pbSignature[i++] = 0x00;
1461 for (j=0; j < aOIDDescriptor[dwIdxOID].dwLen; j++) {
1462 pbSignature[i++] = aOIDDescriptor[dwIdxOID].abOID[j];
1463 }
1464 }
1465 for (j=0; j < dwHashLen; j++) {
1466 pbSignature[i++] = abHashValue[j];
1467 }
1468 }
1469
1470 return TRUE;
1471 }
1472
1473 /******************************************************************************
1474 * tls1_p [Internal]
1475 *
1476 * This is an implementation of the 'P_hash' helper function for TLS1's PRF.
1477 * It is used exclusively by tls1_prf. For details see RFC 2246, chapter 5.
1478 * The pseudo random stream generated by this function is exclusive or'ed with
1479 * the data in pbBuffer.
1480 *
1481 * PARAMS
1482 * hHMAC [I] HMAC object, which will be used in pseudo random generation
1483 * pblobSeed [I] Seed value
1484 * pbBuffer [I/O] Pseudo random stream will be xor'ed to the provided data
1485 * dwBufferLen [I] Number of pseudo random bytes desired
1486 *
1487 * RETURNS
1488 * Success: TRUE
1489 * Failure: FALSE
1490 */
1491 static BOOL tls1_p(HCRYPTHASH hHMAC, CONST PCRYPT_DATA_BLOB pblobSeed, PBYTE pbBuffer, DWORD dwBufferLen)
1492 {
1493 CRYPTHASH *pHMAC;
1494 BYTE abAi[RSAENH_MAX_HASH_SIZE];
1495 DWORD i = 0;
1496
1497 if (!lookup_handle(&handle_table, hHMAC, RSAENH_MAGIC_HASH, (OBJECTHDR**)&pHMAC)) {
1498 SetLastError(NTE_BAD_HASH);
1499 return FALSE;
1500 }
1501
1502 /* compute A_1 = HMAC(seed) */
1503 init_hash(pHMAC);
1504 update_hash(pHMAC, pblobSeed->pbData, pblobSeed->cbData);
1505 finalize_hash(pHMAC);
1506 memcpy(abAi, pHMAC->abHashValue, pHMAC->dwHashSize);
1507
1508 do {
1509 /* compute HMAC(A_i + seed) */
1510 init_hash(pHMAC);
1511 update_hash(pHMAC, abAi, pHMAC->dwHashSize);
1512 update_hash(pHMAC, pblobSeed->pbData, pblobSeed->cbData);
1513 finalize_hash(pHMAC);
1514
1515 /* pseudo random stream := CONCAT_{i=1..n} ( HMAC(A_i + seed) ) */
1516 do {
1517 if (i >= dwBufferLen) break;
1518 pbBuffer[i] ^= pHMAC->abHashValue[i % pHMAC->dwHashSize];
1519 i++;
1520 } while (i % pHMAC->dwHashSize);
1521
1522 /* compute A_{i+1} = HMAC(A_i) */
1523 init_hash(pHMAC);
1524 update_hash(pHMAC, abAi, pHMAC->dwHashSize);
1525 finalize_hash(pHMAC);
1526 memcpy(abAi, pHMAC->abHashValue, pHMAC->dwHashSize);
1527 } while (i < dwBufferLen);
1528
1529 return TRUE;
1530 }
1531
1532 /******************************************************************************
1533 * tls1_prf [Internal]
1534 *
1535 * TLS1 pseudo random function as specified in RFC 2246, chapter 5
1536 *
1537 * PARAMS
1538 * hProv [I] Key container used to compute the pseudo random stream
1539 * hSecret [I] Key that holds the (pre-)master secret
1540 * pblobLabel [I] Descriptive label
1541 * pblobSeed [I] Seed value
1542 * pbBuffer [O] Pseudo random numbers will be stored here
1543 * dwBufferLen [I] Number of pseudo random bytes desired
1544 *
1545 * RETURNS
1546 * Success: TRUE
1547 * Failure: FALSE
1548 */
1549 static BOOL tls1_prf(HCRYPTPROV hProv, HCRYPTPROV hSecret, CONST PCRYPT_DATA_BLOB pblobLabel,
1550 CONST PCRYPT_DATA_BLOB pblobSeed, PBYTE pbBuffer, DWORD dwBufferLen)
1551 {
1552 HMAC_INFO hmacInfo = { 0, NULL, 0, NULL, 0 };
1553 HCRYPTHASH hHMAC = (HCRYPTHASH)INVALID_HANDLE_VALUE;
1554 HCRYPTKEY hHalfSecret = (HCRYPTKEY)INVALID_HANDLE_VALUE;
1555 CRYPTKEY *pHalfSecret, *pSecret;
1556 DWORD dwHalfSecretLen;
1557 BOOL result = FALSE;
1558 CRYPT_DATA_BLOB blobLabelSeed;
1559
1560 TRACE("(hProv=%08lx, hSecret=%08lx, pblobLabel=%p, pblobSeed=%p, pbBuffer=%p, dwBufferLen=%d)\n",
1561 hProv, hSecret, pblobLabel, pblobSeed, pbBuffer, dwBufferLen);
1562
1563 if (!lookup_handle(&handle_table, hSecret, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pSecret)) {
1564 SetLastError(NTE_FAIL);
1565 return FALSE;
1566 }
1567
1568 dwHalfSecretLen = (pSecret->dwKeyLen+1)/2;
1569
1570 /* concatenation of the label and the seed */
1571 if (!concat_data_blobs(&blobLabelSeed, pblobLabel, pblobSeed)) goto exit;
1572
1573 /* zero out the buffer, since two random streams will be xor'ed into it. */
1574 memset(pbBuffer, 0, dwBufferLen);
1575
1576 /* build a 'fake' key, to hold the secret. CALG_SSL2_MASTER is used since it provides
1577 * the biggest range of valid key lengths. */
1578 hHalfSecret = new_key(hProv, CALG_SSL2_MASTER, MAKELONG(0,dwHalfSecretLen*8), &pHalfSecret);
1579 if (hHalfSecret == (HCRYPTKEY)INVALID_HANDLE_VALUE) goto exit;
1580
1581 /* Derive an HMAC_MD5 hash and call the helper function. */
1582 memcpy(pHalfSecret->abKeyValue, pSecret->abKeyValue, dwHalfSecretLen);
1583 if (!RSAENH_CPCreateHash(hProv, CALG_HMAC, hHalfSecret, 0, &hHMAC)) goto exit;
1584 hmacInfo.HashAlgid = CALG_MD5;
1585 if (!RSAENH_CPSetHashParam(hProv, hHMAC, HP_HMAC_INFO, (BYTE*)&hmacInfo, 0)) goto exit;
1586 if (!tls1_p(hHMAC, &blobLabelSeed, pbBuffer, dwBufferLen)) goto exit;
1587
1588 /* Reconfigure to HMAC_SHA hash and call helper function again. */
1589 memcpy(pHalfSecret->abKeyValue, pSecret->abKeyValue + (pSecret->dwKeyLen/2), dwHalfSecretLen);
1590 hmacInfo.HashAlgid = CALG_SHA;
1591 if (!RSAENH_CPSetHashParam(hProv, hHMAC, HP_HMAC_INFO, (BYTE*)&hmacInfo, 0)) goto exit;
1592 if (!tls1_p(hHMAC, &blobLabelSeed, pbBuffer, dwBufferLen)) goto exit;
1593
1594 result = TRUE;
1595 exit:
1596 release_handle(&handle_table, hHalfSecret, RSAENH_MAGIC_KEY);
1597 if (hHMAC != (HCRYPTHASH)INVALID_HANDLE_VALUE) RSAENH_CPDestroyHash(hProv, hHMAC);
1598 free_data_blob(&blobLabelSeed);
1599 return result;
1600 }
1601
1602 /******************************************************************************
1603 * pad_data [Internal]
1604 *
1605 * Helper function for data padding according to PKCS1 #2
1606 *
1607 * PARAMS
1608 * abData [I] The data to be padded
1609 * dwDataLen [I] Length of the data
1610 * abBuffer [O] Padded data will be stored here
1611 * dwBufferLen [I] Length of the buffer (also length of padded data)
1612 * dwFlags [I] Padding format (CRYPT_SSL2_FALLBACK)
1613 *
1614 * RETURN
1615 * Success: TRUE
1616 * Failure: FALSE (NTE_BAD_LEN, too much data to pad)
1617 */
1618 static BOOL pad_data(CONST BYTE *abData, DWORD dwDataLen, BYTE *abBuffer, DWORD dwBufferLen,
1619 DWORD dwFlags)
1620 {
1621 DWORD i;
1622
1623 /* Ensure there is enough space for PKCS1 #2 padding */
1624 if (dwDataLen > dwBufferLen-11) {
1625 SetLastError(NTE_BAD_LEN);
1626 return FALSE;
1627 }
1628
1629 memmove(abBuffer + dwBufferLen - dwDataLen, abData, dwDataLen);
1630
1631 abBuffer[0] = 0x00;
1632 abBuffer[1] = RSAENH_PKC_BLOCKTYPE;
1633 for (i=2; i < dwBufferLen - dwDataLen - 1; i++)
1634 do gen_rand_impl(&abBuffer[i], 1); while (!abBuffer[i]);
1635 if (dwFlags & CRYPT_SSL2_FALLBACK)
1636 for (i-=8; i < dwBufferLen - dwDataLen - 1; i++)
1637 abBuffer[i] = 0x03;
1638 abBuffer[i] = 0x00;
1639
1640 return TRUE;
1641 }
1642
1643 /******************************************************************************
1644 * unpad_data [Internal]
1645 *
1646 * Remove the PKCS1 padding from RSA decrypted data
1647 *
1648 * PARAMS
1649 * abData [I] The padded data
1650 * dwDataLen [I] Length of the padded data
1651 * abBuffer [O] Data without padding will be stored here
1652 * dwBufferLen [I/O] I: Length of the buffer, O: Length of unpadded data
1653 * dwFlags [I] Currently none defined
1654 *
1655 * RETURNS
1656 * Success: TRUE
1657 * Failure: FALSE, (NTE_BAD_DATA, no valid PKCS1 padding or buffer too small)
1658 */
1659 static BOOL unpad_data(CONST BYTE *abData, DWORD dwDataLen, BYTE *abBuffer, DWORD *dwBufferLen,
1660 DWORD dwFlags)
1661 {
1662 DWORD i;
1663
1664 for (i=2; i<dwDataLen; i++)
1665 if (!abData[i])
1666 break;
1667
1668 if ((i == dwDataLen) || (*dwBufferLen < dwDataLen - i - 1) ||
1669 (abData[0] != 0x00) || (abData[1] != RSAENH_PKC_BLOCKTYPE))
1670 {
1671 SetLastError(NTE_BAD_DATA);
1672 return FALSE;
1673 }
1674
1675 *dwBufferLen = dwDataLen - i - 1;
1676 memmove(abBuffer, abData + i + 1, *dwBufferLen);
1677 return TRUE;
1678 }
1679
1680 /******************************************************************************
1681 * CPAcquireContext (RSAENH.@)
1682 *
1683 * Acquire a handle to the key container specified by pszContainer
1684 *
1685 * PARAMS
1686 * phProv [O] Pointer to the location the acquired handle will be written to.
1687 * pszContainer [I] Name of the desired key container. See Notes
1688 * dwFlags [I] Flags. See Notes.
1689 * pVTable [I] Pointer to a PVTableProvStruct containing callbacks.
1690 *
1691 * RETURNS
1692 * Success: TRUE
1693 * Failure: FALSE
1694 *
1695 * NOTES
1696 * If pszContainer is NULL or points to a zero length string the user's login
1697 * name will be used as the key container name.
1698 *
1699 * If the CRYPT_NEW_KEYSET flag is set in dwFlags a new keyset will be created.
1700 * If a keyset with the given name already exists, the function fails and sets
1701 * last error to NTE_EXISTS. If CRYPT_NEW_KEYSET is not set and the specified
1702 * key container does not exist, function fails and sets last error to
1703 * NTE_BAD_KEYSET.
1704 */
1705 BOOL WINAPI RSAENH_CPAcquireContext(HCRYPTPROV *phProv, LPSTR pszContainer,
1706 DWORD dwFlags, PVTableProvStruc pVTable)
1707 {
1708 CHAR szKeyContainerName[MAX_PATH];
1709
1710 TRACE("(phProv=%p, pszContainer=%s, dwFlags=%08x, pVTable=%p)\n", phProv,
1711 debugstr_a(pszContainer), dwFlags, pVTable);
1712
1713 if (pszContainer && *pszContainer)
1714 {
1715 lstrcpynA(szKeyContainerName, pszContainer, MAX_PATH);
1716 }
1717 else
1718 {
1719 DWORD dwLen = sizeof(szKeyContainerName);
1720 if (!GetUserNameA(szKeyContainerName, &dwLen)) return FALSE;
1721 }
1722
1723 switch (dwFlags & (CRYPT_NEWKEYSET|CRYPT_VERIFYCONTEXT|CRYPT_DELETEKEYSET))
1724 {
1725 case 0:
1726 *phProv = read_key_container(szKeyContainerName, dwFlags, pVTable);
1727 break;
1728
1729 case CRYPT_DELETEKEYSET:
1730 return delete_container_key(szKeyContainerName, dwFlags);
1731
1732 case CRYPT_NEWKEYSET:
1733 *phProv = read_key_container(szKeyContainerName, dwFlags, pVTable);
1734 if (*phProv != (HCRYPTPROV)INVALID_HANDLE_VALUE)
1735 {
1736 release_handle(&handle_table, *phProv, RSAENH_MAGIC_CONTAINER);
1737 TRACE("Can't create new keyset, already exists\n");
1738 SetLastError(NTE_EXISTS);
1739 return FALSE;
1740 }
1741 *phProv = new_key_container(szKeyContainerName, dwFlags, pVTable);
1742 break;
1743
1744 case CRYPT_VERIFYCONTEXT|CRYPT_NEWKEYSET:
1745 case CRYPT_VERIFYCONTEXT:
1746 if (pszContainer && *pszContainer) {
1747 TRACE("pszContainer should be empty\n");
1748 SetLastError(NTE_BAD_FLAGS);
1749 return FALSE;
1750 }
1751 *phProv = new_key_container("", dwFlags, pVTable);
1752 break;
1753
1754 default:
1755 *phProv = (HCRYPTPROV)INVALID_HANDLE_VALUE;
1756 SetLastError(NTE_BAD_FLAGS);
1757 return FALSE;
1758 }
1759
1760 if (*phProv != (HCRYPTPROV)INVALID_HANDLE_VALUE) {
1761 SetLastError(ERROR_SUCCESS);
1762 return TRUE;
1763 } else {
1764 return FALSE;
1765 }
1766 }
1767
1768 /******************************************************************************
1769 * CPCreateHash (RSAENH.@)
1770 *
1771 * CPCreateHash creates and initalizes a new hash object.
1772 *
1773 * PARAMS
1774 * hProv [I] Handle to the key container to which the new hash will belong.
1775 * Algid [I] Identifies the hash algorithm, which will be used for the hash.
1776 * hKey [I] Handle to a session key applied for keyed hashes.
1777 * dwFlags [I] Currently no flags defined. Must be zero.
1778 * phHash [O] Points to the location where a handle to the new hash will be stored.
1779 *
1780 * RETURNS
1781 * Success: TRUE
1782 * Failure: FALSE
1783 *
1784 * NOTES
1785 * hKey is a handle to a session key applied in keyed hashes like MAC and HMAC.
1786 * If a normal hash object is to be created (like e.g. MD2 or SHA1) hKey must be zero.
1787 */
1788 BOOL WINAPI RSAENH_CPCreateHash(HCRYPTPROV hProv, ALG_ID Algid, HCRYPTKEY hKey, DWORD dwFlags,
1789 HCRYPTHASH *phHash)
1790 {
1791 CRYPTKEY *pCryptKey;
1792 CRYPTHASH *pCryptHash;
1793 const PROV_ENUMALGS_EX *peaAlgidInfo;
1794
1795 TRACE("(hProv=%08lx, Algid=%08x, hKey=%08lx, dwFlags=%08x, phHash=%p)\n", hProv, Algid, hKey,
1796 dwFlags, phHash);
1797
1798 peaAlgidInfo = get_algid_info(hProv, Algid);
1799 if (!peaAlgidInfo) return FALSE;
1800
1801 if (dwFlags)
1802 {
1803 SetLastError(NTE_BAD_FLAGS);
1804 return FALSE;
1805 }
1806
1807 if (Algid == CALG_MAC || Algid == CALG_HMAC || Algid == CALG_SCHANNEL_MASTER_HASH ||
1808 Algid == CALG_TLS1PRF)
1809 {
1810 if (!lookup_handle(&handle_table, hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pCryptKey)) {
1811 SetLastError(NTE_BAD_KEY);
1812 return FALSE;
1813 }
1814
1815 if ((Algid == CALG_MAC) && (GET_ALG_TYPE(pCryptKey->aiAlgid) != ALG_TYPE_BLOCK)) {
1816 SetLastError(NTE_BAD_KEY);
1817 return FALSE;
1818 }
1819
1820 if ((Algid == CALG_SCHANNEL_MASTER_HASH || Algid == CALG_TLS1PRF) &&
1821 (pCryptKey->aiAlgid != CALG_TLS1_MASTER))
1822 {
1823 SetLastError(NTE_BAD_KEY);
1824 return FALSE;
1825 }
1826
1827 if ((Algid == CALG_TLS1PRF) && (pCryptKey->dwState != RSAENH_KEYSTATE_MASTERKEY)) {
1828 SetLastError(NTE_BAD_KEY_STATE);
1829 return FALSE;
1830 }
1831 }
1832
1833 *phHash = new_object(&handle_table, sizeof(CRYPTHASH), RSAENH_MAGIC_HASH,
1834 destroy_hash, (OBJECTHDR**)&pCryptHash);
1835 if (!pCryptHash) return FALSE;
1836
1837 pCryptHash->aiAlgid = Algid;
1838 pCryptHash->hKey = hKey;
1839 pCryptHash->hProv = hProv;
1840 pCryptHash->dwState = RSAENH_HASHSTATE_HASHING;
1841 pCryptHash->pHMACInfo = NULL;
1842 pCryptHash->dwHashSize = peaAlgidInfo->dwDefaultLen >> 3;
1843 init_data_blob(&pCryptHash->tpPRFParams.blobLabel);
1844 init_data_blob(&pCryptHash->tpPRFParams.blobSeed);
1845
1846 if (Algid == CALG_SCHANNEL_MASTER_HASH) {
1847 static const char keyex[] = "key expansion";
1848 BYTE key_expansion[sizeof keyex];
1849 CRYPT_DATA_BLOB blobRandom, blobKeyExpansion = { 13, key_expansion };
1850
1851 memcpy( key_expansion, keyex, sizeof keyex );
1852
1853 if (pCryptKey->dwState != RSAENH_KEYSTATE_MASTERKEY) {
1854 static const char msec[] = "master secret";
1855 BYTE master_secret[sizeof msec];
1856 CRYPT_DATA_BLOB blobLabel = { 13, master_secret };
1857 BYTE abKeyValue[48];
1858
1859 memcpy( master_secret, msec, sizeof msec );
1860
1861 /* See RFC 2246, chapter 8.1 */
1862 if (!concat_data_blobs(&blobRandom,
1863 &pCryptKey->siSChannelInfo.blobClientRandom,
1864 &pCryptKey->siSChannelInfo.blobServerRandom))
1865 {
1866 return FALSE;
1867 }
1868 tls1_prf(hProv, hKey, &blobLabel, &blobRandom, abKeyValue, 48);
1869 pCryptKey->dwState = RSAENH_KEYSTATE_MASTERKEY;
1870 memcpy(pCryptKey->abKeyValue, abKeyValue, 48);
1871 free_data_blob(&blobRandom);
1872 }
1873
1874 /* See RFC 2246, chapter 6.3 */
1875 if (!concat_data_blobs(&blobRandom,
1876 &pCryptKey->siSChannelInfo.blobServerRandom,
1877 &pCryptKey->siSChannelInfo.blobClientRandom))
1878 {
1879 return FALSE;
1880 }
1881 tls1_prf(hProv, hKey, &blobKeyExpansion, &blobRandom, pCryptHash->abHashValue,
1882 RSAENH_MAX_HASH_SIZE);
1883 free_data_blob(&blobRandom);
1884 }
1885
1886 return init_hash(pCryptHash);
1887 }
1888
1889 /******************************************************************************
1890 * CPDestroyHash (RSAENH.@)
1891 *
1892 * Releases the handle to a hash object. The object is destroyed if it's reference
1893 * count reaches zero.
1894 *
1895 * PARAMS
1896 * hProv [I] Handle to the key container to which the hash object belongs.
1897 * hHash [I] Handle to the hash object to be released.
1898 *
1899 * RETURNS
1900 * Success: TRUE
1901 * Failure: FALSE
1902 */
1903 BOOL WINAPI RSAENH_CPDestroyHash(HCRYPTPROV hProv, HCRYPTHASH hHash)
1904 {
1905 TRACE("(hProv=%08lx, hHash=%08lx)\n", hProv, hHash);
1906
1907 if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
1908 {
1909 SetLastError(NTE_BAD_UID);
1910 return FALSE;
1911 }
1912
1913 if (!release_handle(&handle_table, hHash, RSAENH_MAGIC_HASH))
1914 {
1915 SetLastError(NTE_BAD_HASH);
1916 return FALSE;
1917 }
1918
1919 return TRUE;
1920 }
1921
1922 /******************************************************************************
1923 * CPDestroyKey (RSAENH.@)
1924 *
1925 * Releases the handle to a key object. The object is destroyed if it's reference
1926 * count reaches zero.
1927 *
1928 * PARAMS
1929 * hProv [I] Handle to the key container to which the key object belongs.
1930 * hKey [I] Handle to the key object to be released.
1931 *
1932 * RETURNS
1933 * Success: TRUE
1934 * Failure: FALSE
1935 */
1936 BOOL WINAPI RSAENH_CPDestroyKey(HCRYPTPROV hProv, HCRYPTKEY hKey)
1937 {
1938 TRACE("(hProv=%08lx, hKey=%08lx)\n", hProv, hKey);
1939
1940 if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
1941 {
1942 SetLastError(NTE_BAD_UID);
1943 return FALSE;
1944 }
1945
1946 if (!release_handle(&handle_table, hKey, RSAENH_MAGIC_KEY))
1947 {
1948 SetLastError(NTE_BAD_KEY);
1949 return FALSE;
1950 }
1951
1952 return TRUE;
1953 }
1954
1955 /******************************************************************************
1956 * CPDuplicateHash (RSAENH.@)
1957 *
1958 * Clones a hash object including it's current state.
1959 *
1960 * PARAMS
1961 * hUID [I] Handle to the key container the hash belongs to.
1962 * hHash [I] Handle to the hash object to be cloned.
1963 * pdwReserved [I] Reserved. Must be NULL.
1964 * dwFlags [I] No flags are currently defined. Must be 0.
1965 * phHash [O] Handle to the cloned hash object.
1966 *
1967 * RETURNS
1968 * Success: TRUE.
1969 * Failure: FALSE.
1970 */
1971 BOOL WINAPI RSAENH_CPDuplicateHash(HCRYPTPROV hUID, HCRYPTHASH hHash, DWORD *pdwReserved,
1972 DWORD dwFlags, HCRYPTHASH *phHash)
1973 {
1974 CRYPTHASH *pSrcHash, *pDestHash;
1975
1976 TRACE("(hUID=%08lx, hHash=%08lx, pdwReserved=%p, dwFlags=%08x, phHash=%p)\n", hUID, hHash,
1977 pdwReserved, dwFlags, phHash);
1978
1979 if (!is_valid_handle(&handle_table, hUID, RSAENH_MAGIC_CONTAINER))
1980 {
1981 SetLastError(NTE_BAD_UID);
1982 return FALSE;
1983 }
1984
1985 if (!lookup_handle(&handle_table, hHash, RSAENH_MAGIC_HASH, (OBJECTHDR**)&pSrcHash))
1986 {
1987 SetLastError(NTE_BAD_HASH);
1988 return FALSE;
1989 }
1990
1991 if (!phHash || pdwReserved || dwFlags)
1992 {
1993 SetLastError(ERROR_INVALID_PARAMETER);
1994 return FALSE;
1995 }
1996
1997 *phHash = new_object(&handle_table, sizeof(CRYPTHASH), RSAENH_MAGIC_HASH,
1998 destroy_hash, (OBJECTHDR**)&pDestHash);
1999 if (*phHash != (HCRYPTHASH)INVALID_HANDLE_VALUE)
2000 {
2001 *pDestHash = *pSrcHash;
2002 duplicate_hash_impl(pSrcHash->aiAlgid, &pSrcHash->context, &pDestHash->context);
2003 copy_hmac_info(&pDestHash->pHMACInfo, pSrcHash->pHMACInfo);
2004 copy_data_blob(&pDestHash->tpPRFParams.blobLabel, &pSrcHash->tpPRFParams.blobLabel);
2005 copy_data_blob(&pDestHash->tpPRFParams.blobSeed, &pSrcHash->tpPRFParams.blobSeed);
2006 }
2007
2008 return *phHash != (HCRYPTHASH)INVALID_HANDLE_VALUE;
2009 }
2010
2011 /******************************************************************************
2012 * CPDuplicateKey (RSAENH.@)
2013 *
2014 * Clones a key object including it's current state.
2015 *
2016 * PARAMS
2017 * hUID [I] Handle to the key container the hash belongs to.
2018 * hKey [I] Handle to the key object to be cloned.
2019 * pdwReserved [I] Reserved. Must be NULL.
2020 * dwFlags [I] No flags are currently defined. Must be 0.
2021 * phHash [O] Handle to the cloned key object.
2022 *
2023 * RETURNS
2024 * Success: TRUE.
2025 * Failure: FALSE.
2026 */
2027 BOOL WINAPI RSAENH_CPDuplicateKey(HCRYPTPROV hUID, HCRYPTKEY hKey, DWORD *pdwReserved,
2028 DWORD dwFlags, HCRYPTKEY *phKey)
2029 {
2030 CRYPTKEY *pSrcKey, *pDestKey;
2031
2032 TRACE("(hUID=%08lx, hKey=%08lx, pdwReserved=%p, dwFlags=%08x, phKey=%p)\n", hUID, hKey,
2033 pdwReserved, dwFlags, phKey);
2034
2035 if (!is_valid_handle(&handle_table, hUID, RSAENH_MAGIC_CONTAINER))
2036 {
2037 SetLastError(NTE_BAD_UID);
2038 return FALSE;
2039 }
2040
2041 if (!lookup_handle(&handle_table, hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pSrcKey))
2042 {
2043 SetLastError(NTE_BAD_KEY);
2044 return FALSE;
2045 }
2046
2047 if (!phKey || pdwReserved || dwFlags)
2048 {
2049 SetLastError(ERROR_INVALID_PARAMETER);
2050 return FALSE;
2051 }
2052
2053 *phKey = new_object(&handle_table, sizeof(CRYPTKEY), RSAENH_MAGIC_KEY, destroy_key,
2054 (OBJECTHDR**)&pDestKey);
2055 if (*phKey != (HCRYPTKEY)INVALID_HANDLE_VALUE)
2056 {
2057 *pDestKey = *pSrcKey;
2058 copy_data_blob(&pDestKey->siSChannelInfo.blobServerRandom,
2059 &pSrcKey->siSChannelInfo.blobServerRandom);
2060 copy_data_blob(&pDestKey->siSChannelInfo.blobClientRandom,
2061 &pSrcKey->siSChannelInfo.blobClientRandom);
2062 duplicate_key_impl(pSrcKey->aiAlgid, &pSrcKey->context, &pDestKey->context);
2063 return TRUE;
2064 }
2065 else
2066 {
2067 return FALSE;
2068 }
2069 }
2070
2071 /******************************************************************************
2072 * CPEncrypt (RSAENH.@)
2073 *
2074 * Encrypt data.
2075 *
2076 * PARAMS
2077 * hProv [I] The key container hKey and hHash belong to.
2078 * hKey [I] The key used to encrypt the data.
2079 * hHash [I] An optional hash object for parallel hashing. See notes.
2080 * Final [I] Indicates if this is the last block of data to encrypt.
2081 * dwFlags [I] Currently no flags defined. Must be zero.
2082 * pbData [I/O] Pointer to the data to encrypt. Encrypted data will also be stored there.
2083 * pdwDataLen [I/O] I: Length of data to encrypt, O: Length of encrypted data.
2084 * dwBufLen [I] Size of the buffer at pbData.
2085 *
2086 * RETURNS
2087 * Success: TRUE.
2088 * Failure: FALSE.
2089 *
2090 * NOTES
2091 * If a hash object handle is provided in hHash, it will be updated with the plaintext.
2092 * This is useful for message signatures.
2093 *
2094 * This function uses the standard WINAPI protocol for querying data of dynamic length.
2095 */
2096 BOOL WINAPI RSAENH_CPEncrypt(HCRYPTPROV hProv, HCRYPTKEY hKey, HCRYPTHASH hHash, BOOL Final,
2097 DWORD dwFlags, BYTE *pbData, DWORD *pdwDataLen, DWORD dwBufLen)
2098 {
2099 CRYPTKEY *pCryptKey;
2100 BYTE *in, out[RSAENH_MAX_BLOCK_SIZE], o[RSAENH_MAX_BLOCK_SIZE];
2101 DWORD dwEncryptedLen, i, j, k;
2102
2103 TRACE("(hProv=%08lx, hKey=%08lx, hHash=%08lx, Final=%d, dwFlags=%08x, pbData=%p, "
2104 "pdwDataLen=%p, dwBufLen=%d)\n", hProv, hKey, hHash, Final, dwFlags, pbData, pdwDataLen,
2105 dwBufLen);
2106
2107 if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
2108 {
2109 SetLastError(NTE_BAD_UID);
2110 return FALSE;
2111 }
2112
2113 if (dwFlags)
2114 {
2115 SetLastError(NTE_BAD_FLAGS);
2116 return FALSE;
2117 }
2118
2119 if (!lookup_handle(&handle_table, hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pCryptKey))
2120 {
2121 SetLastError(NTE_BAD_KEY);
2122 return FALSE;
2123 }
2124
2125 if (pCryptKey->dwState == RSAENH_KEYSTATE_IDLE)
2126 pCryptKey->dwState = RSAENH_KEYSTATE_ENCRYPTING;
2127
2128 if (pCryptKey->dwState != RSAENH_KEYSTATE_ENCRYPTING)
2129 {
2130 SetLastError(NTE_BAD_DATA);
2131 return FALSE;
2132 }
2133
2134 if (is_valid_handle(&handle_table, hHash, RSAENH_MAGIC_HASH)) {
2135 if (!RSAENH_CPHashData(hProv, hHash, pbData, *pdwDataLen, 0)) return FALSE;
2136 }
2137
2138 if (GET_ALG_TYPE(pCryptKey->aiAlgid) == ALG_TYPE_BLOCK) {
2139 if (!Final && (*pdwDataLen % pCryptKey->dwBlockLen)) {
2140 SetLastError(NTE_BAD_DATA);
2141 return FALSE;
2142 }
2143
2144 dwEncryptedLen = (*pdwDataLen/pCryptKey->dwBlockLen+(Final?1:0))*pCryptKey->dwBlockLen;
2145
2146 if (pbData == NULL) {
2147 *pdwDataLen = dwEncryptedLen;
2148 return TRUE;
2149 }
2150 else if (dwEncryptedLen > dwBufLen) {
2151 *pdwDataLen = dwEncryptedLen;
2152 SetLastError(ERROR_MORE_DATA);
2153 return FALSE;
2154 }
2155
2156 /* Pad final block with length bytes */
2157 for (i=*pdwDataLen; i<dwEncryptedLen; i++) pbData[i] = dwEncryptedLen - *pdwDataLen;
2158 *pdwDataLen = dwEncryptedLen;
2159
2160 for (i=0, in=pbData; i<*pdwDataLen; i+=pCryptKey->dwBlockLen, in+=pCryptKey->dwBlockLen) {
2161 switch (pCryptKey->dwMode) {
2162 case CRYPT_MODE_ECB:
2163 encrypt_block_impl(pCryptKey->aiAlgid, 0, &pCryptKey->context, in, out,
2164 RSAENH_ENCRYPT);
2165 break;
2166
2167 case CRYPT_MODE_CBC:
2168 for (j=0; j<pCryptKey->dwBlockLen; j++) in[j] ^= pCryptKey->abChainVector[j];
2169 encrypt_block_impl(pCryptKey->aiAlgid, 0, &pCryptKey->context, in, out,
2170 RSAENH_ENCRYPT);
2171 memcpy(pCryptKey->abChainVector, out, pCryptKey->dwBlockLen);
2172 break;
2173
2174 case CRYPT_MODE_CFB:
2175 for (j=0; j<pCryptKey->dwBlockLen; j++) {
2176 encrypt_block_impl(pCryptKey->aiAlgid, 0, &pCryptKey->context,
2177 pCryptKey->abChainVector, o, RSAENH_ENCRYPT);
2178 out[j] = in[j] ^ o[0];
2179 for (k=0; k<pCryptKey->dwBlockLen-1; k++)
2180 pCryptKey->abChainVector[k] = pCryptKey->abChainVector[k+1];
2181 pCryptKey->abChainVector[k] = out[j];
2182 }
2183 break;
2184
2185 default:
2186 SetLastError(NTE_BAD_ALGID);
2187 return FALSE;
2188 }
2189 memcpy(in, out, pCryptKey->dwBlockLen);
2190 }
2191 } else if (GET_ALG_TYPE(pCryptKey->aiAlgid) == ALG_TYPE_STREAM) {
2192 if (pbData == NULL) {
2193 *pdwDataLen = dwBufLen;
2194 return TRUE;
2195 }
2196 encrypt_stream_impl(pCryptKey->aiAlgid, &pCryptKey->context, pbData, *pdwDataLen);
2197 } else if (GET_ALG_TYPE(pCryptKey->aiAlgid) == ALG_TYPE_RSA) {
2198 if (pCryptKey->aiAlgid == CALG_RSA_SIGN) {
2199 SetLastError(NTE_BAD_KEY);
2200 return FALSE;
2201 }
2202 if (!pbData) {
2203 *pdwDataLen = pCryptKey->dwBlockLen;
2204 return TRUE;
2205 }
2206 if (dwBufLen < pCryptKey->dwBlockLen) {
2207 SetLastError(ERROR_MORE_DATA);
2208 return FALSE;
2209 }
2210 if (!pad_data(pbData, *pdwDataLen, pbData, pCryptKey->dwBlockLen, dwFlags)) return FALSE;
2211 encrypt_block_impl(pCryptKey->aiAlgid, PK_PUBLIC, &pCryptKey->context, pbData, pbData, RSAENH_ENCRYPT);
2212 *pdwDataLen = pCryptKey->dwBlockLen;
2213 Final = TRUE;
2214 } else {
2215 SetLastError(NTE_BAD_TYPE);
2216 return FALSE;
2217 }
2218
2219 if (Final) setup_key(pCryptKey);
2220
2221 return TRUE;
2222 }
2223
2224 /******************************************************************************
2225 * CPDecrypt (RSAENH.@)
2226 *
2227 * Decrypt data.
2228 *
2229 * PARAMS
2230 * hProv [I] The key container hKey and hHash belong to.
2231 * hKey [I] The key used to decrypt the data.
2232 * hHash [I] An optional hash object for parallel hashing. See notes.
2233 * Final [I] Indicates if this is the last block of data to decrypt.
2234 * dwFlags [I] Currently no flags defined. Must be zero.
2235 * pbData [I/O] Pointer to the data to decrypt. Plaintext will also be stored there.
2236 * pdwDataLen [I/O] I: Length of ciphertext, O: Length of plaintext.
2237 *
2238 * RETURNS
2239 * Success: TRUE.
2240 * Failure: FALSE.
2241 *
2242 * NOTES
2243 * If a hash object handle is provided in hHash, it will be updated with the plaintext.
2244 * This is useful for message signatures.
2245 *
2246 * This function uses the standard WINAPI protocol for querying data of dynamic length.
2247 */
2248 BOOL WINAPI RSAENH_CPDecrypt(HCRYPTPROV hProv, HCRYPTKEY hKey, HCRYPTHASH hHash, BOOL Final,
2249 DWORD dwFlags, BYTE *pbData, DWORD *pdwDataLen)
2250 {
2251 CRYPTKEY *pCryptKey;
2252 BYTE *in, out[RSAENH_MAX_BLOCK_SIZE], o[RSAENH_MAX_BLOCK_SIZE];
2253 DWORD i, j, k;
2254 DWORD dwMax;
2255
2256 TRACE("(hProv=%08lx, hKey=%08lx, hHash=%08lx, Final=%d, dwFlags=%08x, pbData=%p, "
2257 "pdwDataLen=%p)\n", hProv, hKey, hHash, Final, dwFlags, pbData, pdwDataLen);
2258
2259 if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
2260 {
2261 SetLastError(NTE_BAD_UID);
2262 return FALSE;
2263 }
2264
2265 if (dwFlags)
2266 {
2267 SetLastError(NTE_BAD_FLAGS);
2268 return FALSE;
2269 }
2270
2271 if (!lookup_handle(&handle_table, hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pCryptKey))
2272 {
2273 SetLastError(NTE_BAD_KEY);
2274 return FALSE;
2275 }
2276
2277 if (pCryptKey->dwState == RSAENH_KEYSTATE_IDLE)
2278 pCryptKey->dwState = RSAENH_KEYSTATE_ENCRYPTING;
2279
2280 if (pCryptKey->dwState != RSAENH_KEYSTATE_ENCRYPTING)
2281 {
2282 SetLastError(NTE_BAD_DATA);
2283 return FALSE;
2284 }
2285
2286 dwMax=*pdwDataLen;
2287
2288 if (GET_ALG_TYPE(pCryptKey->aiAlgid) == ALG_TYPE_BLOCK) {
2289 for (i=0, in=pbData; i<*pdwDataLen; i+=pCryptKey->dwBlockLen, in+=pCryptKey->dwBlockLen) {
2290 switch (pCryptKey->dwMode) {
2291 case CRYPT_MODE_ECB:
2292 encrypt_block_impl(pCryptKey->aiAlgid, 0, &pCryptKey->context, in, out,
2293 RSAENH_DECRYPT);
2294 break;
2295
2296 case CRYPT_MODE_CBC:
2297 encrypt_block_impl(pCryptKey->aiAlgid, 0, &pCryptKey->context, in, out,
2298 RSAENH_DECRYPT);
2299 for (j=0; j<pCryptKey->dwBlockLen; j++) out[j] ^= pCryptKey->abChainVector[j];
2300 memcpy(pCryptKey->abChainVector, in, pCryptKey->dwBlockLen);
2301 break;
2302
2303 case CRYPT_MODE_CFB:
2304 for (j=0; j<pCryptKey->dwBlockLen; j++) {
2305 encrypt_block_impl(pCryptKey->aiAlgid, 0, &pCryptKey->context,
2306 pCryptKey->abChainVector, o, RSAENH_ENCRYPT);
2307 out[j] = in[j] ^ o[0];
2308 for (k=0; k<pCryptKey->dwBlockLen-1; k++)
2309 pCryptKey->abChainVector[k] = pCryptKey->abChainVector[k+1];
2310 pCryptKey->abChainVector[k] = in[j];
2311 }
2312 break;
2313
2314 default:
2315 SetLastError(NTE_BAD_ALGID);
2316 return FALSE;
2317 }
2318 memcpy(in, out, pCryptKey->dwBlockLen);
2319 }
2320 if (Final) {
2321 if (pbData[*pdwDataLen-1] &&
2322 pbData[*pdwDataLen-1] <= pCryptKey->dwBlockLen &&
2323 pbData[*pdwDataLen-1] < *pdwDataLen) {
2324 BOOL padOkay = TRUE;
2325
2326 /* check that every bad byte has the same value */
2327 for (i = 1; padOkay && i < pbData[*pdwDataLen-1]; i++)
2328 if (pbData[*pdwDataLen - i - 1] != pbData[*pdwDataLen - 1])
2329 padOkay = FALSE;
2330 if (padOkay)
2331 *pdwDataLen -= pbData[*pdwDataLen-1];
2332 else {
2333 SetLastError(NTE_BAD_DATA);
2334 return FALSE;
2335 }
2336 }
2337 else {
2338 SetLastError(NTE_BAD_DATA);
2339 return FALSE;
2340 }
2341 }
2342
2343 } else if (GET_ALG_TYPE(pCryptKey->aiAlgid) == ALG_TYPE_STREAM) {
2344 encrypt_stream_impl(pCryptKey->aiAlgid, &pCryptKey->context, pbData, *pdwDataLen);
2345 } else if (GET_ALG_TYPE(pCryptKey->aiAlgid) == ALG_TYPE_RSA) {
2346 if (pCryptKey->aiAlgid == CALG_RSA_SIGN) {
2347 SetLastError(NTE_BAD_KEY);
2348 return FALSE;
2349 }
2350 encrypt_block_impl(pCryptKey->aiAlgid, PK_PRIVATE, &pCryptKey->context, pbData, pbData, RSAENH_DECRYPT);
2351 if (!unpad_data(pbData, pCryptKey->dwBlockLen, pbData, pdwDataLen, dwFlags)) return FALSE;
2352 Final = TRUE;
2353 } else {
2354 SetLastError(NTE_BAD_TYPE);
2355 return FALSE;
2356 }
2357
2358 if (Final) setup_key(pCryptKey);
2359
2360 if (is_valid_handle(&handle_table, hHash, RSAENH_MAGIC_HASH)) {
2361 if (*pdwDataLen>dwMax ||
2362 !RSAENH_CPHashData(hProv, hHash, pbData, *pdwDataLen, 0)) return FALSE;
2363 }
2364
2365 return TRUE;
2366 }
2367
2368 static BOOL crypt_export_simple(CRYPTKEY *pCryptKey, CRYPTKEY *pPubKey,
2369 DWORD dwFlags, BYTE *pbData, DWORD *pdwDataLen)
2370 {
2371 BLOBHEADER *pBlobHeader = (BLOBHEADER*)pbData;
2372 ALG_ID *pAlgid = (ALG_ID*)(pBlobHeader+1);
2373 DWORD dwDataLen;
2374
2375 if (!(GET_ALG_CLASS(pCryptKey->aiAlgid)&(ALG_CLASS_DATA_ENCRYPT|ALG_CLASS_MSG_ENCRYPT))) {
2376 SetLastError(NTE_BAD_KEY); /* FIXME: error code? */
2377 return FALSE;
2378 }
2379
2380 dwDataLen = sizeof(BLOBHEADER) + sizeof(ALG_ID) + pPubKey->dwBlockLen;
2381 if (pbData) {
2382 if (*pdwDataLen < dwDataLen) {
2383 SetLastError(ERROR_MORE_DATA);
2384 *pdwDataLen = dwDataLen;
2385 return FALSE;
2386 }
2387
2388 pBlobHeader->bType = SIMPLEBLOB;
2389 pBlobHeader->bVersion = CUR_BLOB_VERSION;
2390 pBlobHeader->reserved = 0;
2391 pBlobHeader->aiKeyAlg = pCryptKey->aiAlgid;
2392
2393 *pAlgid = pPubKey->aiAlgid;
2394
2395 if (!pad_data(pCryptKey->abKeyValue, pCryptKey->dwKeyLen, (BYTE*)(pAlgid+1),
2396 pPubKey->dwBlockLen, dwFlags))
2397 {
2398 return FALSE;
2399 }
2400
2401 encrypt_block_impl(pPubKey->aiAlgid, PK_PUBLIC, &pPubKey->context, (BYTE*)(pAlgid+1),
2402 (BYTE*)(pAlgid+1), RSAENH_ENCRYPT);
2403 }
2404 *pdwDataLen = dwDataLen;
2405 return TRUE;
2406 }
2407
2408 static BOOL crypt_export_public_key(CRYPTKEY *pCryptKey, BYTE *pbData,
2409 DWORD *pdwDataLen)
2410 {
2411 BLOBHEADER *pBlobHeader = (BLOBHEADER*)pbData;
2412 RSAPUBKEY *pRSAPubKey = (RSAPUBKEY*)(pBlobHeader+1);
2413 DWORD dwDataLen;
2414
2415 if ((pCryptKey->aiAlgid != CALG_RSA_KEYX) && (pCryptKey->aiAlgid != CALG_RSA_SIGN)) {
2416 SetLastError(NTE_BAD_KEY);
2417 return FALSE;
2418 }
2419
2420 dwDataLen = sizeof(BLOBHEADER) + sizeof(RSAPUBKEY) + pCryptKey->dwKeyLen;
2421 if (pbData) {
2422 if (*pdwDataLen < dwDataLen) {
2423 SetLastError(ERROR_MORE_DATA);
2424 *pdwDataLen = dwDataLen;
2425 return FALSE;
2426 }
2427
2428 pBlobHeader->bType = PUBLICKEYBLOB;
2429 pBlobHeader->bVersion = CUR_BLOB_VERSION;
2430 pBlobHeader->reserved = 0;
2431 pBlobHeader->aiKeyAlg = pCryptKey->aiAlgid;
2432
2433 pRSAPubKey->magic = RSAENH_MAGIC_RSA1;
2434 pRSAPubKey->bitlen = pCryptKey->dwKeyLen << 3;
2435
2436 export_public_key_impl((BYTE*)(pRSAPubKey+1), &pCryptKey->context,
2437 pCryptKey->dwKeyLen, &pRSAPubKey->pubexp);
2438 }
2439 *pdwDataLen = dwDataLen;
2440 return TRUE;
2441 }
2442
2443 static BOOL crypt_export_private_key(CRYPTKEY *pCryptKey, BOOL force,
2444 BYTE *pbData, DWORD *pdwDataLen)
2445 {
2446 BLOBHEADER *pBlobHeader = (BLOBHEADER*)pbData;
2447 RSAPUBKEY *pRSAPubKey = (RSAPUBKEY*)(pBlobHeader+1);
2448 DWORD dwDataLen;
2449
2450 if ((pCryptKey->aiAlgid != CALG_RSA_KEYX) && (pCryptKey->aiAlgid != CALG_RSA_SIGN)) {
2451 SetLastError(NTE_BAD_KEY);
2452 return FALSE;
2453 }
2454 if (!force && !(pCryptKey->dwPermissions & CRYPT_EXPORT))
2455 {
2456 SetLastError(NTE_BAD_KEY_STATE);
2457 return FALSE;
2458 }
2459
2460 dwDataLen = sizeof(BLOBHEADER) + sizeof(RSAPUBKEY) +
2461 2 * pCryptKey->dwKeyLen + 5 * ((pCryptKey->dwKeyLen + 1) >> 1);
2462 if (pbData) {
2463 if (*pdwDataLen < dwDataLen) {
2464 SetLastError(ERROR_MORE_DATA);
2465 *pdwDataLen = dwDataLen;
2466 return FALSE;
2467 }
2468
2469 pBlobHeader->bType = PRIVATEKEYBLOB;
2470 pBlobHeader->bVersion = CUR_BLOB_VERSION;
2471 pBlobHeader->reserved = 0;
2472 pBlobHeader->aiKeyAlg = pCryptKey->aiAlgid;
2473
2474 pRSAPubKey->magic = RSAENH_MAGIC_RSA2;
2475 pRSAPubKey->bitlen = pCryptKey->dwKeyLen << 3;
2476
2477 export_private_key_impl((BYTE*)(pRSAPubKey+1), &pCryptKey->context,
2478 pCryptKey->dwKeyLen, &pRSAPubKey->pubexp);
2479 }
2480 *pdwDataLen = dwDataLen;
2481 return TRUE;
2482 }
2483
2484 /******************************************************************************
2485 * crypt_export_key [Internal]
2486 *
2487 * Export a key into a binary large object (BLOB). Called by CPExportKey and
2488 * by store_key_pair.
2489 *
2490 * PARAMS
2491 * pCryptKey [I] Key to be exported.
2492 * hPubKey [I] Key used to encrypt sensitive BLOB data.
2493 * dwBlobType [I] SIMPLEBLOB, PUBLICKEYBLOB or PRIVATEKEYBLOB.
2494 * dwFlags [I] Currently none defined.
2495 * force [I] If TRUE, the key is written no matter what the key's
2496 * permissions are. Otherwise the key's permissions are
2497 * checked before exporting.
2498 * pbData [O] Pointer to a buffer where the BLOB will be written to.
2499 * pdwDataLen [I/O] I: Size of buffer at pbData, O: Size of BLOB
2500 *
2501 * RETURNS
2502 * Success: TRUE.
2503 * Failure: FALSE.
2504 */
2505 static BOOL crypt_export_key(CRYPTKEY *pCryptKey, HCRYPTKEY hPubKey,
2506 DWORD dwBlobType, DWORD dwFlags, BOOL force,
2507 BYTE *pbData, DWORD *pdwDataLen)
2508 {
2509 CRYPTKEY *pPubKey;
2510
2511 if (dwFlags & CRYPT_SSL2_FALLBACK) {
2512 if (pCryptKey->aiAlgid != CALG_SSL2_MASTER) {
2513 SetLastError(NTE_BAD_KEY);
2514 return FALSE;
2515 }
2516 }
2517
2518 switch ((BYTE)dwBlobType)
2519 {
2520 case SIMPLEBLOB:
2521 if (!lookup_handle(&handle_table, hPubKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pPubKey)){
2522 SetLastError(NTE_BAD_PUBLIC_KEY); /* FIXME: error_code? */
2523 return FALSE;
2524 }
2525 return crypt_export_simple(pCryptKey, pPubKey, dwFlags, pbData,
2526 pdwDataLen);
2527
2528 case PUBLICKEYBLOB:
2529 if (is_valid_handle(&handle_table, hPubKey, RSAENH_MAGIC_KEY)) {
2530 SetLastError(NTE_BAD_KEY); /* FIXME: error code? */
2531 return FALSE;
2532 }
2533
2534 return crypt_export_public_key(pCryptKey, pbData, pdwDataLen);
2535
2536 case PRIVATEKEYBLOB:
2537 return crypt_export_private_key(pCryptKey, force, pbData, pdwDataLen);
2538
2539 default:
2540 SetLastError(NTE_BAD_TYPE); /* FIXME: error code? */
2541 return FALSE;
2542 }
2543 }
2544
2545 /******************************************************************************
2546 * CPExportKey (RSAENH.@)
2547 *
2548 * Export a key into a binary large object (BLOB).
2549 *
2550 * PARAMS
2551 * hProv [I] Key container from which a key is to be exported.
2552 * hKey [I] Key to be exported.
2553 * hPubKey [I] Key used to encrypt sensitive BLOB data.
2554 * dwBlobType [I] SIMPLEBLOB, PUBLICKEYBLOB or PRIVATEKEYBLOB.
2555 * dwFlags [I] Currently none defined.
2556 * pbData [O] Pointer to a buffer where the BLOB will be written to.
2557 * pdwDataLen [I/O] I: Size of buffer at pbData, O: Size of BLOB
2558 *
2559 * RETURNS
2560 * Success: TRUE.
2561 * Failure: FALSE.
2562 */
2563 BOOL WINAPI RSAENH_CPExportKey(HCRYPTPROV hProv, HCRYPTKEY hKey, HCRYPTKEY hPubKey,
2564 DWORD dwBlobType, DWORD dwFlags, BYTE *pbData, DWORD *pdwDataLen)
2565 {
2566 CRYPTKEY *pCryptKey;
2567
2568 TRACE("(hProv=%08lx, hKey=%08lx, hPubKey=%08lx, dwBlobType=%08x, dwFlags=%08x, pbData=%p,"
2569 "pdwDataLen=%p)\n", hProv, hKey, hPubKey, dwBlobType, dwFlags, pbData, pdwDataLen);
2570
2571 if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
2572 {
2573 SetLastError(NTE_BAD_UID);
2574 return FALSE;
2575 }
2576
2577 if (!lookup_handle(&handle_table, hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pCryptKey))
2578 {
2579 SetLastError(NTE_BAD_KEY);
2580 return FALSE;
2581 }
2582
2583 return crypt_export_key(pCryptKey, hPubKey, dwBlobType, dwFlags, FALSE,
2584 pbData, pdwDataLen);
2585 }
2586
2587 /******************************************************************************
2588 * release_and_install_key [Internal]
2589 *
2590 * Release an existing key, if present, and replaces it with a new one.
2591 *
2592 * PARAMS
2593 * hProv [I] Key container into which the key is to be imported.
2594 * src [I] Key which will replace *dest
2595 * dest [I] Points to key to be released and replaced with src
2596 * fStoreKey [I] If TRUE, the newly installed key is stored to the registry.
2597 */
2598 static void release_and_install_key(HCRYPTPROV hProv, HCRYPTKEY src,
2599 HCRYPTKEY *dest, DWORD fStoreKey)
2600 {
2601 RSAENH_CPDestroyKey(hProv, *dest);
2602 copy_handle(&handle_table, src, RSAENH_MAGIC_KEY, dest);
2603 if (fStoreKey)
2604 {
2605 KEYCONTAINER *pKeyContainer;
2606
2607 if (lookup_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER,
2608 (OBJECTHDR**)&pKeyContainer))
2609 {
2610 store_key_container_keys(pKeyContainer);
2611 store_key_container_permissions(pKeyContainer);
2612 }
2613 }
2614 }
2615
2616 /******************************************************************************
2617 * import_private_key [Internal]
2618 *
2619 * Import a BLOB'ed private key into a key container.
2620 *
2621 * PARAMS
2622 * hProv [I] Key container into which the private key is to be imported.
2623 * pbData [I] Pointer to a buffer which holds the private key BLOB.
2624 * dwDataLen [I] Length of data in buffer at pbData.
2625 * dwFlags [I] One of:
2626 * CRYPT_EXPORTABLE: the imported key is marked exportable
2627 * fStoreKey [I] If TRUE, the imported key is stored to the registry.
2628 * phKey [O] Handle to the imported key.
2629 *
2630 *
2631 * NOTES
2632 * Assumes the caller has already checked the BLOBHEADER at pbData to ensure
2633 * it's a PRIVATEKEYBLOB.
2634 *
2635 * RETURNS
2636 * Success: TRUE.
2637 * Failure: FALSE.
2638 */
2639 static BOOL import_private_key(HCRYPTPROV hProv, CONST BYTE *pbData, DWORD dwDataLen,
2640 DWORD dwFlags, BOOL fStoreKey, HCRYPTKEY *phKey)
2641 {
2642 KEYCONTAINER *pKeyContainer;
2643 CRYPTKEY *pCryptKey;
2644 CONST BLOBHEADER *pBlobHeader = (CONST BLOBHEADER*)pbData;
2645 CONST RSAPUBKEY *pRSAPubKey = (CONST RSAPUBKEY*)(pBlobHeader+1);
2646 BOOL ret;
2647
2648 if (!lookup_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER,
2649 (OBJECTHDR**)&pKeyContainer))
2650 {
2651 SetLastError(NTE_BAD_UID);
2652 return FALSE;
2653 }
2654
2655 if ((dwDataLen < sizeof(BLOBHEADER) + sizeof(RSAPUBKEY)) ||
2656 (pRSAPubKey->magic != RSAENH_MAGIC_RSA2) ||
2657 (dwDataLen < sizeof(BLOBHEADER) + sizeof(RSAPUBKEY) +
2658 (2 * pRSAPubKey->bitlen >> 3) + (5 * ((pRSAPubKey->bitlen+8)>>4))))
2659 {
2660 SetLastError(NTE_BAD_DATA);
2661 return FALSE;
2662 }
2663
2664 *phKey = new_key(hProv, pBlobHeader->aiKeyAlg, MAKELONG(0,pRSAPubKey->bitlen), &pCryptKey);
2665 if (*phKey == (HCRYPTKEY)INVALID_HANDLE_VALUE) return FALSE;
2666 setup_key(pCryptKey);
2667 ret = import_private_key_impl((CONST BYTE*)(pRSAPubKey+1), &pCryptKey->context,
2668 pRSAPubKey->bitlen/8, pRSAPubKey->pubexp);
2669 if (ret) {
2670 if (dwFlags & CRYPT_EXPORTABLE)
2671 pCryptKey->dwPermissions |= CRYPT_EXPORT;
2672 switch (pBlobHeader->aiKeyAlg)
2673 {
2674 case AT_SIGNATURE:
2675 case CALG_RSA_SIGN:
2676 TRACE("installing signing key\n");
2677 release_and_install_key(hProv, *phKey, &pKeyContainer->hSignatureKeyPair,
2678 fStoreKey);
2679 break;
2680 case AT_KEYEXCHANGE:
2681 case CALG_RSA_KEYX:
2682 TRACE("installing key exchange key\n");
2683 release_and_install_key(hProv, *phKey, &pKeyContainer->hKeyExchangeKeyPair,
2684 fStoreKey);
2685 break;
2686 }
2687 }
2688 return ret;
2689 }
2690
2691 /******************************************************************************
2692 * import_public_key [Internal]
2693 *
2694 * Import a BLOB'ed public key into a key container.
2695 *
2696 * PARAMS
2697 * hProv [I] Key container into which the public key is to be imported.
2698 * pbData [I] Pointer to a buffer which holds the public key BLOB.
2699 * dwDataLen [I] Length of data in buffer at pbData.
2700 * dwFlags [I] One of:
2701 * CRYPT_EXPORTABLE: the imported key is marked exportable
2702 * fStoreKey [I] If TRUE, the imported key is stored to the registry.
2703 * phKey [O] Handle to the imported key.
2704 *
2705 *
2706 * NOTES
2707 * Assumes the caller has already checked the BLOBHEADER at pbData to ensure
2708 * it's a PUBLICKEYBLOB.
2709 *
2710 * RETURNS
2711 * Success: TRUE.
2712 * Failure: FALSE.
2713 */
2714 static BOOL import_public_key(HCRYPTPROV hProv, CONST BYTE *pbData, DWORD dwDataLen,
2715 DWORD dwFlags, BOOL fStoreKey, HCRYPTKEY *phKey)
2716 {
2717 KEYCONTAINER *pKeyContainer;
2718 CRYPTKEY *pCryptKey;
2719 CONST BLOBHEADER *pBlobHeader = (CONST BLOBHEADER*)pbData;
2720 CONST RSAPUBKEY *pRSAPubKey = (CONST RSAPUBKEY*)(pBlobHeader+1);
2721 ALG_ID algID;
2722 BOOL ret;
2723
2724 if (!lookup_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER,
2725 (OBJECTHDR**)&pKeyContainer))
2726 {
2727 SetLastError(NTE_BAD_UID);
2728 return FALSE;
2729 }
2730
2731 if ((dwDataLen < sizeof(BLOBHEADER) + sizeof(RSAPUBKEY)) ||
2732 (pRSAPubKey->magic != RSAENH_MAGIC_RSA1) ||
2733 (dwDataLen < sizeof(BLOBHEADER) + sizeof(RSAPUBKEY) + (pRSAPubKey->bitlen >> 3)))
2734 {
2735 SetLastError(NTE_BAD_DATA);
2736 return FALSE;
2737 }
2738
2739 /* Since this is a public key blob, only the public key is
2740 * available, so only signature verification is possible.
2741 */
2742 algID = pBlobHeader->aiKeyAlg;
2743 *phKey = new_key(hProv, algID, MAKELONG(0,pRSAPubKey->bitlen), &pCryptKey);
2744 if (*phKey == (HCRYPTKEY)INVALID_HANDLE_VALUE) return FALSE;
2745 setup_key(pCryptKey);
2746 ret = import_public_key_impl((CONST BYTE*)(pRSAPubKey+1), &pCryptKey->context,
2747 pRSAPubKey->bitlen >> 3, pRSAPubKey->pubexp);
2748 if (ret) {
2749 if (dwFlags & CRYPT_EXPORTABLE)
2750 pCryptKey->dwPermissions |= CRYPT_EXPORT;
2751 switch (pBlobHeader->aiKeyAlg)
2752 {
2753 case AT_KEYEXCHANGE:
2754 case CALG_RSA_KEYX:
2755 TRACE("installing public key\n");
2756 release_and_install_key(hProv, *phKey, &pKeyContainer->hKeyExchangeKeyPair,
2757 fStoreKey);
2758 break;
2759 }
2760 }
2761 return ret;
2762 }
2763
2764 /******************************************************************************
2765 * import_symmetric_key [Internal]
2766 *
2767 * Import a BLOB'ed symmetric key into a key container.
2768 *
2769 * PARAMS
2770 * hProv [I] Key container into which the symmetric key is to be imported.
2771 * pbData [I] Pointer to a buffer which holds the symmetric key BLOB.
2772 * dwDataLen [I] Length of data in buffer at pbData.
2773 * hPubKey [I] Key used to decrypt sensitive BLOB data.
2774 * dwFlags [I] One of:
2775 * CRYPT_EXPORTABLE: the imported key is marked exportable
2776 * phKey [O] Handle to the imported key.
2777 *
2778 *
2779 * NOTES
2780 * Assumes the caller has already checked the BLOBHEADER at pbData to ensure
2781 * it's a SIMPLEBLOB.
2782 *
2783 * RETURNS
2784 * Success: TRUE.
2785 * Failure: FALSE.
2786 */
2787 static BOOL import_symmetric_key(HCRYPTPROV hProv, CONST BYTE *pbData,
2788 DWORD dwDataLen, HCRYPTKEY hPubKey,
2789 DWORD dwFlags, HCRYPTKEY *phKey)
2790 {
2791 CRYPTKEY *pCryptKey, *pPubKey;
2792 CONST BLOBHEADER *pBlobHeader = (CONST BLOBHEADER*)pbData;
2793 CONST ALG_ID *pAlgid = (CONST ALG_ID*)(pBlobHeader+1);
2794 CONST BYTE *pbKeyStream = (CONST BYTE*)(pAlgid + 1);
2795 BYTE *pbDecrypted;
2796 DWORD dwKeyLen;
2797
2798 if (!lookup_handle(&handle_table, hPubKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pPubKey) ||
2799 pPubKey->aiAlgid != CALG_RSA_KEYX)
2800 {
2801 SetLastError(NTE_BAD_PUBLIC_KEY); /* FIXME: error code? */
2802 return FALSE;
2803 }
2804
2805 if (dwDataLen < sizeof(BLOBHEADER)+sizeof(ALG_ID)+pPubKey->dwBlockLen)
2806 {
2807 SetLastError(NTE_BAD_DATA); /* FIXME: error code */
2808 return FALSE;
2809 }
2810
2811 pbDecrypted = HeapAlloc(GetProcessHeap(), 0, pPubKey->dwBlockLen);
2812 if (!pbDecrypted) return FALSE;
2813 encrypt_block_impl(pPubKey->aiAlgid, PK_PRIVATE, &pPubKey->context, pbKeyStream, pbDecrypted,
2814 RSAENH_DECRYPT);
2815
2816 dwKeyLen = RSAENH_MAX_KEY_SIZE;
2817 if (!unpad_data(pbDecrypted, pPubKey->dwBlockLen, pbDecrypted, &dwKeyLen, dwFlags)) {
2818 HeapFree(GetProcessHeap(), 0, pbDecrypted);
2819 return FALSE;
2820 }
2821
2822 *phKey = new_key(hProv, pBlobHeader->aiKeyAlg, dwKeyLen<<19, &pCryptKey);
2823 if (*phKey == (HCRYPTKEY)INVALID_HANDLE_VALUE)
2824 {
2825 HeapFree(GetProcessHeap(), 0, pbDecrypted);
2826 return FALSE;
2827 }
2828 memcpy(pCryptKey->abKeyValue, pbDecrypted, dwKeyLen);
2829 HeapFree(GetProcessHeap(), 0, pbDecrypted);
2830 setup_key(pCryptKey);
2831 if (dwFlags & CRYPT_EXPORTABLE)
2832 pCryptKey->dwPermissions |= CRYPT_EXPORT;
2833 return TRUE;
2834 }
2835
2836 /******************************************************************************
2837 * import_key [Internal]
2838 *
2839 * Import a BLOB'ed key into a key container, optionally storing the key's
2840 * value to the registry.
2841 *
2842 * PARAMS
2843 * hProv [I] Key container into which the key is to be imported.
2844 * pbData [I] Pointer to a buffer which holds the BLOB.
2845 * dwDataLen [I] Length of data in buffer at pbData.
2846 * hPubKey [I] Key used to decrypt sensitive BLOB data.
2847 * dwFlags [I] One of:
2848 * CRYPT_EXPORTABLE: the imported key is marked exportable
2849 * fStoreKey [I] If TRUE, the imported key is stored to the registry.
2850 * phKey [O] Handle to the imported key.
2851 *
2852 * RETURNS
2853 * Success: TRUE.
2854 * Failure: FALSE.
2855 */
2856 static BOOL import_key(HCRYPTPROV hProv, CONST BYTE *pbData, DWORD dwDataLen,
2857 HCRYPTKEY hPubKey, DWORD dwFlags, BOOL fStoreKey,
2858 HCRYPTKEY *phKey)
2859 {
2860 KEYCONTAINER *pKeyContainer;
2861 CONST BLOBHEADER *pBlobHeader = (CONST BLOBHEADER*)pbData;
2862
2863 if (!lookup_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER,
2864 (OBJECTHDR**)&pKeyContainer))
2865 {
2866 SetLastError(NTE_BAD_UID);
2867 return FALSE;
2868 }
2869
2870 if (dwDataLen < sizeof(BLOBHEADER) ||
2871 pBlobHeader->bVersion != CUR_BLOB_VERSION ||
2872 pBlobHeader->reserved != 0)
2873 {
2874 SetLastError(NTE_BAD_DATA);
2875 return FALSE;
2876 }
2877
2878 /* If this is a verify-only context, the key is not persisted regardless of
2879 * fStoreKey's original value.
2880 */
2881 fStoreKey = fStoreKey && !(dwFlags & CRYPT_VERIFYCONTEXT);
2882 switch (pBlobHeader->bType)
2883 {
2884 case PRIVATEKEYBLOB:
2885 return import_private_key(hProv, pbData, dwDataLen, dwFlags,
2886 fStoreKey, phKey);
2887
2888 case PUBLICKEYBLOB:
2889 return import_public_key(hProv, pbData, dwDataLen, dwFlags,
2890 fStoreKey, phKey);
2891
2892 case SIMPLEBLOB:
2893 return import_symmetric_key(hProv, pbData, dwDataLen, hPubKey,
2894 dwFlags, phKey);
2895
2896 default:
2897 SetLastError(NTE_BAD_TYPE); /* FIXME: error code? */
2898 return FALSE;
2899 }
2900 }
2901
2902 /******************************************************************************
2903 * CPImportKey (RSAENH.@)
2904 *
2905 * Import a BLOB'ed key into a key container.
2906 *
2907 * PARAMS
2908 * hProv [I] Key container into which the key is to be imported.
2909 * pbData [I] Pointer to a buffer which holds the BLOB.
2910 * dwDataLen [I] Length of data in buffer at pbData.
2911 * hPubKey [I] Key used to decrypt sensitive BLOB data.
2912 * dwFlags [I] One of:
2913 * CRYPT_EXPORTABLE: the imported key is marked exportable
2914 * phKey [O] Handle to the imported key.
2915 *
2916 * RETURNS
2917 * Success: TRUE.
2918 * Failure: FALSE.
2919 */
2920 BOOL WINAPI RSAENH_CPImportKey(HCRYPTPROV hProv, CONST BYTE *pbData, DWORD dwDataLen,
2921 HCRYPTKEY hPubKey, DWORD dwFlags, HCRYPTKEY *phKey)
2922 {
2923 TRACE("(hProv=%08lx, pbData=%p, dwDataLen=%d, hPubKey=%08lx, dwFlags=%08x, phKey=%p)\n",
2924 hProv, pbData, dwDataLen, hPubKey, dwFlags, phKey);
2925
2926 return import_key(hProv, pbData, dwDataLen, hPubKey, dwFlags, TRUE, phKey);
2927 }
2928
2929 /******************************************************************************
2930 * CPGenKey (RSAENH.@)
2931 *
2932 * Generate a key in the key container
2933 *
2934 * PARAMS
2935 * hProv [I] Key container for which a key is to be generated.
2936 * Algid [I] Crypto algorithm identifier for the key to be generated.
2937 * dwFlags [I] Upper 16 bits: Binary length of key. Lower 16 bits: Flags. See Notes
2938 * phKey [O] Handle to the generated key.
2939 *
2940 * RETURNS
2941 * Success: TRUE.
2942 * Failure: FALSE.
2943 *
2944 * FIXME
2945 * Flags currently not considered.
2946 *
2947 * NOTES
2948 * Private key-exchange- and signature-keys can be generated with Algid AT_KEYEXCHANGE
2949 * and AT_SIGNATURE values.
2950 */
2951 BOOL WINAPI RSAENH_CPGenKey(HCRYPTPROV hProv, ALG_ID Algid, DWORD dwFlags, HCRYPTKEY *phKey)
2952 {
2953 KEYCONTAINER *pKeyContainer;
2954 CRYPTKEY *pCryptKey;
2955
2956 TRACE("(hProv=%08lx, aiAlgid=%d, dwFlags=%08x, phKey=%p)\n", hProv, Algid, dwFlags, phKey);
2957
2958 if (!lookup_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER,
2959 (OBJECTHDR**)&pKeyContainer))
2960 {
2961 /* MSDN: hProv not containing valid context handle */
2962 SetLastError(NTE_BAD_UID);
2963 return FALSE;
2964 }
2965
2966 switch (Algid)
2967 {
2968 case AT_SIGNATURE:
2969 case CALG_RSA_SIGN:
2970 *phKey = new_key(hProv, CALG_RSA_SIGN, dwFlags, &pCryptKey);
2971 if (pCryptKey) {
2972 new_key_impl(pCryptKey->aiAlgid, &pCryptKey->context, pCryptKey->dwKeyLen);
2973 setup_key(pCryptKey);
2974 if (Algid == AT_SIGNATURE) {
2975 RSAENH_CPDestroyKey(hProv, pKeyContainer->hSignatureKeyPair);
2976 copy_handle(&handle_table, *phKey, RSAENH_MAGIC_KEY,
2977 &pKeyContainer->hSignatureKeyPair);
2978 }
2979 }
2980 break;
2981
2982 case AT_KEYEXCHANGE:
2983 case CALG_RSA_KEYX:
2984 *phKey = new_key(hProv, CALG_RSA_KEYX, dwFlags, &pCryptKey);
2985 if (pCryptKey) {
2986 new_key_impl(pCryptKey->aiAlgid, &pCryptKey->context, pCryptKey->dwKeyLen);
2987 setup_key(pCryptKey);
2988 if (Algid == AT_KEYEXCHANGE) {
2989 RSAENH_CPDestroyKey(hProv, pKeyContainer->hKeyExchangeKeyPair);
2990 copy_handle(&handle_table, *phKey, RSAENH_MAGIC_KEY,
2991 &pKeyContainer->hKeyExchangeKeyPair);
2992 }
2993 }
2994 break;
2995
2996 case CALG_RC2:
2997 case CALG_RC4:
2998 case CALG_DES:
2999 case CALG_3DES_112:
3000 case CALG_3DES:
3001 case CALG_AES:
3002 case CALG_AES_128:
3003 case CALG_AES_192:
3004 case CALG_AES_256:
3005 case CALG_PCT1_MASTER:
3006 case CALG_SSL2_MASTER:
3007 case CALG_SSL3_MASTER:
3008 case CALG_TLS1_MASTER:
3009 *phKey = new_key(hProv, Algid, dwFlags, &pCryptKey);
3010 if (pCryptKey) {
3011 gen_rand_impl(pCryptKey->abKeyValue, RSAENH_MAX_KEY_SIZE);
3012 switch (Algid) {
3013 case CALG_SSL3_MASTER:
3014 pCryptKey->abKeyValue[0] = RSAENH_SSL3_VERSION_MAJOR;
3015 pCryptKey->abKeyValue[1] = RSAENH_SSL3_VERSION_MINOR;
3016 break;
3017
3018 case CALG_TLS1_MASTER:
3019 pCryptKey->abKeyValue[0] = RSAENH_TLS1_VERSION_MAJOR;
3020 pCryptKey->abKeyValue[1] = RSAENH_TLS1_VERSION_MINOR;
3021 break;
3022 }
3023 setup_key(pCryptKey);
3024 }
3025 break;
3026
3027 default:
3028 /* MSDN: Algorithm not supported specified by Algid */
3029 SetLastError(NTE_BAD_ALGID);
3030 return FALSE;
3031 }
3032
3033 return *phKey != (HCRYPTKEY)INVALID_HANDLE_VALUE;
3034 }
3035
3036 /******************************************************************************
3037 * CPGenRandom (RSAENH.@)
3038 *
3039 * Generate a random byte stream.
3040 *
3041 * PARAMS
3042 * hProv [I] Key container that is used to generate random bytes.
3043 * dwLen [I] Specifies the number of requested random data bytes.
3044 * pbBuffer [O] Random bytes will be stored here.
3045 *
3046 * RETURNS
3047 * Success: TRUE
3048 * Failure: FALSE
3049 */
3050 BOOL WINAPI RSAENH_CPGenRandom(HCRYPTPROV hProv, DWORD dwLen, BYTE *pbBuffer)
3051 {
3052 TRACE("(hProv=%08lx, dwLen=%d, pbBuffer=%p)\n", hProv, dwLen, pbBuffer);
3053
3054 if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
3055 {
3056 /* MSDN: hProv not containing valid context handle */
3057 SetLastError(NTE_BAD_UID);
3058 return FALSE;
3059 }
3060
3061 return gen_rand_impl(pbBuffer, dwLen);
3062 }
3063
3064 /******************************************************************************
3065 * CPGetHashParam (RSAENH.@)
3066 *
3067 * Query parameters of an hash object.
3068 *
3069 * PARAMS
3070 * hProv [I] The kea container, which the hash belongs to.
3071 * hHash [I] The hash object that is to be queried.
3072 * dwParam [I] Specifies the parameter that is to be queried.
3073 * pbData [I] Pointer to the buffer where the parameter value will be stored.
3074 * pdwDataLen [I/O] I: Buffer length at pbData, O: Length of the parameter value.
3075 * dwFlags [I] None currently defined.
3076 *
3077 * RETURNS
3078 * Success: TRUE
3079 * Failure: FALSE
3080 *
3081 * NOTES
3082 * Valid dwParams are: HP_ALGID, HP_HASHSIZE, HP_HASHVALUE. The hash will be
3083 * finalized if HP_HASHVALUE is queried.
3084 */
3085 BOOL WINAPI RSAENH_CPGetHashParam(HCRYPTPROV hProv, HCRYPTHASH hHash, DWORD dwParam, BYTE *pbData,
3086 DWORD *pdwDataLen, DWORD dwFlags)
3087 {
3088 CRYPTHASH *pCryptHash;
3089
3090 TRACE("(hProv=%08lx, hHash=%08lx, dwParam=%08x, pbData=%p, pdwDataLen=%p, dwFlags=%08x)\n",
3091 hProv, hHash, dwParam, pbData, pdwDataLen, dwFlags);
3092
3093 if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
3094 {
3095 SetLastError(NTE_BAD_UID);
3096 return FALSE;
3097 }
3098
3099 if (dwFlags)
3100 {
3101 SetLastError(NTE_BAD_FLAGS);
3102 return FALSE;
3103 }
3104
3105 if (!lookup_handle(&handle_table, hHash, RSAENH_MAGIC_HASH,
3106 (OBJECTHDR**)&pCryptHash))
3107 {
3108 SetLastError(NTE_BAD_HASH);
3109 return FALSE;
3110 }
3111
3112 if (!pdwDataLen)
3113 {
3114 SetLastError(ERROR_INVALID_PARAMETER);
3115 return FALSE;
3116 }
3117
3118 switch (dwParam)
3119 {
3120 case HP_ALGID:
3121 return copy_param(pbData, pdwDataLen, (CONST BYTE*)&pCryptHash->aiAlgid,
3122 sizeof(ALG_ID));
3123
3124 case HP_HASHSIZE:
3125 return copy_param(pbData, pdwDataLen, (CONST BYTE*)&pCryptHash->dwHashSize,
3126 sizeof(DWORD));
3127
3128 case HP_HASHVAL:
3129 if (pCryptHash->aiAlgid == CALG_TLS1PRF) {
3130 return tls1_prf(hProv, pCryptHash->hKey, &pCryptHash->tpPRFParams.blobLabel,
3131 &pCryptHash->tpPRFParams.blobSeed, pbData, *pdwDataLen);
3132 }
3133
3134 if ( pbData == NULL ) {
3135 *pdwDataLen = pCryptHash->dwHashSize;
3136 return TRUE;
3137 }
3138
3139 if (pbData && (pCryptHash->dwState != RSAENH_HASHSTATE_FINISHED))
3140 {
3141 finalize_hash(pCryptHash);
3142 pCryptHash->dwState = RSAENH_HASHSTATE_FINISHED;
3143 }
3144
3145 return copy_param(pbData, pdwDataLen, pCryptHash->abHashValue,
3146 pCryptHash->dwHashSize);
3147
3148 default:
3149 SetLastError(NTE_BAD_TYPE);
3150 return FALSE;
3151 }
3152 }
3153
3154 /******************************************************************************
3155 * CPSetKeyParam (RSAENH.@)
3156 *
3157 * Set a parameter of a key object
3158 *
3159 * PARAMS
3160 * hProv [I] The key container to which the key belongs.
3161 * hKey [I] The key for which a parameter is to be set.
3162 * dwParam [I] Parameter type. See Notes.
3163 * pbData [I] Pointer to the parameter value.
3164 * dwFlags [I] Currently none defined.
3165 *
3166 * RETURNS
3167 * Success: TRUE.
3168 * Failure: FALSE.
3169 *
3170 * NOTES:
3171 * Defined dwParam types are:
3172 * - KP_MODE: Values MODE_CBC, MODE_ECB, MODE_CFB.
3173 * - KP_MODE_BITS: Shift width for cipher feedback mode. (Currently ignored by MS CSP's)
3174 * - KP_PERMISSIONS: Or'ed combination of CRYPT_ENCRYPT, CRYPT_DECRYPT,
3175 * CRYPT_EXPORT, CRYPT_READ, CRYPT_WRITE, CRYPT_MAC
3176 * - KP_IV: Initialization vector
3177 */
3178 BOOL WINAPI RSAENH_CPSetKeyParam(HCRYPTPROV hProv, HCRYPTKEY hKey, DWORD dwParam, BYTE *pbData,
3179 DWORD dwFlags)
3180 {
3181 CRYPTKEY *pCryptKey;
3182
3183 TRACE("(hProv=%08lx, hKey=%08lx, dwParam=%08x, pbData=%p, dwFlags=%08x)\n", hProv, hKey,
3184 dwParam, pbData, dwFlags);
3185
3186 if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
3187 {
3188 SetLastError(NTE_BAD_UID);
3189 return FALSE;
3190 }
3191
3192 if (dwFlags) {
3193 SetLastError(NTE_BAD_FLAGS);
3194 return FALSE;
3195 }
3196
3197 if (!lookup_handle(&handle_table, hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pCryptKey))
3198 {
3199 SetLastError(NTE_BAD_KEY);
3200 return FALSE;
3201 }
3202
3203 switch (dwParam) {
3204 case KP_PADDING:
3205 /* The MS providers only support PKCS5_PADDING */
3206 if (*(DWORD *)pbData != PKCS5_PADDING) {
3207 SetLastError(NTE_BAD_DATA);
3208 return FALSE;
3209 }
3210 return TRUE;
3211
3212 case KP_MODE:
3213 pCryptKey->dwMode = *(DWORD*)pbData;
3214 return TRUE;
3215
3216 case KP_MODE_BITS:
3217 pCryptKey->dwModeBits = *(DWORD*)pbData;
3218 return TRUE;
3219
3220 case KP_PERMISSIONS:
3221 {
3222 DWORD perms = *(DWORD *)pbData;
3223
3224 if ((perms & CRYPT_EXPORT) &&
3225 !(pCryptKey->dwPermissions & CRYPT_EXPORT))
3226 {
3227 SetLastError(NTE_BAD_DATA);
3228 return FALSE;
3229 }
3230 else if (!(perms & CRYPT_EXPORT) &&
3231 (pCryptKey->dwPermissions & CRYPT_EXPORT))
3232 {
3233 /* Clearing the export permission appears to be ignored,
3234 * see tests.
3235 */
3236 perms |= CRYPT_EXPORT;
3237 }
3238 pCryptKey->dwPermissions = perms;
3239 return TRUE;
3240 }
3241
3242 case KP_IV:
3243 memcpy(pCryptKey->abInitVector, pbData, pCryptKey->dwBlockLen);
3244 setup_key(pCryptKey);
3245 return TRUE;
3246
3247 case KP_SALT_EX:
3248 {
3249 CRYPT_INTEGER_BLOB *blob = (CRYPT_INTEGER_BLOB *)pbData;
3250
3251 /* salt length can't be greater than 184 bits = 24 bytes */
3252 if (blob->cbData > 24)
3253 {
3254 SetLastError(NTE_BAD_DATA);
3255 return FALSE;
3256 }
3257 memcpy(pCryptKey->abKeyValue + pCryptKey->dwKeyLen, blob->pbData,
3258 blob->cbData);
3259 pCryptKey->dwSaltLen = blob->cbData;
3260 setup_key(pCryptKey);
3261 return TRUE;
3262 }
3263
3264 case KP_EFFECTIVE_KEYLEN:
3265 switch (pCryptKey->aiAlgid) {
3266 case CALG_RC2:
3267 if (!pbData)
3268 {
3269 SetLastError(ERROR_INVALID_PARAMETER);
3270 return FALSE;
3271 }
3272 else if (!*(DWORD *)pbData || *(DWORD *)pbData > 1024)
3273 {
3274 SetLastError(NTE_BAD_DATA);
3275 return FALSE;
3276 }
3277 else
3278 {
3279 pCryptKey->dwEffectiveKeyLen = *(DWORD *)pbData;
3280 setup_key(pCryptKey);
3281 }
3282 break;
3283 default:
3284 SetLastError(NTE_BAD_TYPE);
3285 return FALSE;
3286 }
3287 return TRUE;
3288
3289 case KP_SCHANNEL_ALG:
3290 switch (((PSCHANNEL_ALG)pbData)->dwUse) {
3291 case SCHANNEL_ENC_KEY:
3292 memcpy(&pCryptKey->siSChannelInfo.saEncAlg, pbData, sizeof(SCHANNEL_ALG));
3293 break;
3294
3295 case SCHANNEL_MAC_KEY:
3296 memcpy(&pCryptKey->siSChannelInfo.saMACAlg, pbData, sizeof(SCHANNEL_ALG));
3297 break;
3298
3299 default:
3300 SetLastError(NTE_FAIL); /* FIXME: error code */
3301 return FALSE;
3302 }
3303 return TRUE;
3304
3305 case KP_CLIENT_RANDOM:
3306 return copy_data_blob(&pCryptKey->siSChannelInfo.blobClientRandom, (PCRYPT_DATA_BLOB)pbData);
3307
3308 case KP_SERVER_RANDOM:
3309 return copy_data_blob(&pCryptKey->siSChannelInfo.blobServerRandom, (PCRYPT_DATA_BLOB)pbData);
3310
3311 default:
3312 SetLastError(NTE_BAD_TYPE);
3313 return FALSE;
3314 }
3315 }
3316
3317 /******************************************************************************
3318 * CPGetKeyParam (RSAENH.@)
3319 *
3320 * Query a key parameter.
3321 *
3322 * PARAMS
3323 * hProv [I] The key container, which the key belongs to.
3324 * hHash [I] The key object that is to be queried.
3325 * dwParam [I] Specifies the parameter that is to be queried.
3326 * pbData [I] Pointer to the buffer where the parameter value will be stored.
3327 * pdwDataLen [I/O] I: Buffer length at pbData, O: Length of the parameter value.
3328 * dwFlags [I] None currently defined.
3329 *
3330 * RETURNS
3331 * Success: TRUE
3332 * Failure: FALSE
3333 *
3334 * NOTES
3335 * Defined dwParam types are:
3336 * - KP_MODE: Values MODE_CBC, MODE_ECB, MODE_CFB.
3337 * - KP_MODE_BITS: Shift width for cipher feedback mode.
3338 * (Currently ignored by MS CSP's - always eight)
3339 * - KP_PERMISSIONS: Or'ed combination of CRYPT_ENCRYPT, CRYPT_DECRYPT,
3340 * CRYPT_EXPORT, CRYPT_READ, CRYPT_WRITE, CRYPT_MAC
3341 * - KP_IV: Initialization vector.
3342 * - KP_KEYLEN: Bitwidth of the key.
3343 * - KP_BLOCKLEN: Size of a block cipher block.
3344 * - KP_SALT: Salt value.
3345 */
3346 BOOL WINAPI RSAENH_CPGetKeyParam(HCRYPTPROV hProv, HCRYPTKEY hKey, DWORD dwParam, BYTE *pbData,
3347 DWORD *pdwDataLen, DWORD dwFlags)
3348 {
3349 CRYPTKEY *pCryptKey;
3350 DWORD dwValue;
3351
3352 TRACE("(hProv=%08lx, hKey=%08lx, dwParam=%08x, pbData=%p, pdwDataLen=%p dwFlags=%08x)\n",
3353 hProv, hKey, dwParam, pbData, pdwDataLen, dwFlags);
3354
3355 if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
3356 {
3357 SetLastError(NTE_BAD_UID);
3358 return FALSE;
3359 }
3360
3361 if (dwFlags) {
3362 SetLastError(NTE_BAD_FLAGS);
3363 return FALSE;
3364 }
3365
3366 if (!lookup_handle(&handle_table, hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pCryptKey))
3367 {
3368 SetLastError(NTE_BAD_KEY);
3369 return FALSE;
3370 }
3371
3372 switch (dwParam)
3373 {
3374 case KP_IV:
3375 return copy_param(pbData, pdwDataLen, pCryptKey->abInitVector,
3376 pCryptKey->dwBlockLen);
3377
3378 case KP_SALT:
3379 return copy_param(pbData, pdwDataLen,
3380 &pCryptKey->abKeyValue[pCryptKey->dwKeyLen], pCryptKey->dwSaltLen);
3381
3382 case KP_PADDING:
3383 dwValue = PKCS5_PADDING;
3384 return copy_param(pbData, pdwDataLen, (CONST BYTE*)&dwValue, sizeof(DWORD));
3385
3386 case KP_KEYLEN:
3387 dwValue = pCryptKey->dwKeyLen << 3;
3388 return copy_param(pbData, pdwDataLen, (CONST BYTE*)&dwValue, sizeof(DWORD));
3389
3390 case KP_EFFECTIVE_KEYLEN:
3391 if (pCryptKey->dwEffectiveKeyLen)
3392 dwValue = pCryptKey->dwEffectiveKeyLen;
3393 else
3394 dwValue = pCryptKey->dwKeyLen << 3;
3395 return copy_param(pbData, pdwDataLen, (CONST BYTE*)&dwValue, sizeof(DWORD));
3396
3397 case KP_BLOCKLEN:
3398 dwValue = pCryptKey->dwBlockLen << 3;
3399 return copy_param(pbData, pdwDataLen, (CONST BYTE*)&dwValue, sizeof(DWORD));
3400
3401 case KP_MODE:
3402 return copy_param(pbData, pdwDataLen, (CONST BYTE*)&pCryptKey->dwMode, sizeof(DWORD));
3403
3404 case KP_MODE_BITS:
3405 return copy_param(pbData, pdwDataLen, (CONST BYTE*)&pCryptKey->dwModeBits,
3406 sizeof(DWORD));
3407
3408 case KP_PERMISSIONS:
3409 return copy_param(pbData, pdwDataLen, (CONST BYTE*)&pCryptKey->dwPermissions,
3410 sizeof(DWORD));
3411
3412 case KP_ALGID:
3413 return copy_param(pbData, pdwDataLen, (CONST BYTE*)&pCryptKey->aiAlgid, sizeof(DWORD));
3414
3415 default:
3416 SetLastError(NTE_BAD_TYPE);
3417 return FALSE;
3418 }
3419 }
3420
3421 /******************************************************************************
3422 * CPGetProvParam (RSAENH.@)
3423 *
3424 * Query a CSP parameter.
3425 *
3426 * PARAMS
3427 * hProv [I] The key container that is to be queried.
3428 * dwParam [I] Specifies the parameter that is to be queried.
3429 * pbData [I] Pointer to the buffer where the parameter value will be stored.
3430 * pdwDataLen [I/O] I: Buffer length at pbData, O: Length of the parameter value.
3431 * dwFlags [I] CRYPT_FIRST: Start enumeration (for PP_ENUMALGS{_EX}).
3432 *
3433 * RETURNS
3434 * Success: TRUE
3435 * Failure: FALSE
3436 * NOTES:
3437 * Defined dwParam types:
3438 * - PP_CONTAINER: Name of the key container.
3439 * - PP_NAME: Name of the cryptographic service provider.
3440 * - PP_SIG_KEYSIZE_INC: RSA signature keywidth granularity in bits.
3441 * - PP_KEYX_KEYSIZE_INC: RSA key-exchange keywidth granularity in bits.
3442 * - PP_ENUMALGS{_EX}: Query provider capabilities.
3443 */
3444 BOOL WINAPI RSAENH_CPGetProvParam(HCRYPTPROV hProv, DWORD dwParam, BYTE *pbData,
3445 DWORD *pdwDataLen, DWORD dwFlags)
3446 {
3447 KEYCONTAINER *pKeyContainer;
3448 PROV_ENUMALGS provEnumalgs;
3449 DWORD dwTemp;
3450 HKEY hKey;
3451
3452 /* This is for dwParam PP_CRYPT_COUNT_KEY_USE.
3453 * IE6 SP1 asks for it in the 'About' dialog.
3454 * Returning this BLOB seems to satisfy IE. The marked 0x00 seem
3455 * to be 'don't care's. If you know anything more specific about
3456 * this provider parameter, please report to wine-devel@winehq.org */
3457 static CONST BYTE abWTF[96] = {
3458 0xb0, 0x25, 0x63, 0x86, 0x9c, 0xab, 0xb6, 0x37,
3459 0xe8, 0x82, /**/0x00,/**/ 0x72, 0x06, 0xb2, /**/0x00,/**/ 0x3b,
3460 0x60, 0x35, /**/0x00,/**/ 0x3b, 0x88, 0xce, /**/0x00,/**/ 0x82,
3461 0xbc, 0x7a, /**/0x00,/**/ 0xb7, 0x4f, 0x7e, /**/0x00,/**/ 0xde,
3462 0x92, 0xf1, /**/0x00,/**/ 0x83, 0xea, 0x5e, /**/0x00,/**/ 0xc8,
3463 0x12, 0x1e, 0xd4, 0x06, 0xf7, 0x66, /**/0x00,/**/ 0x01,
3464 0x29, 0xa4, /**/0x00,/**/ 0xf8, 0x24, 0x0c, /**/0x00,/**/ 0x33,
3465 0x06, 0x80, /**/0x00,/**/ 0x02, 0x46, 0x0b, /**/0x00,/**/ 0x6d,
3466 0x5b, 0xca, /**/0x00,/**/ 0x9a, 0x10, 0xf0, /**/0x00,/**/ 0x05,
3467 0x19, 0xd0, /**/0x00,/**/ 0x2c, 0xf6, 0x27, /**/0x00,/**/ 0xaa,
3468 0x7c, 0x6f, /**/0x00,/**/ 0xb9, 0xd8, 0x72, /**/0x00,/**/ 0x03,
3469 0xf3, 0x81, /**/0x00,/**/ 0xfa, 0xe8, 0x26, /**/0x00,/**/ 0xca
3470 };
3471
3472 TRACE("(hProv=%08lx, dwParam=%08x, pbData=%p, pdwDataLen=%p, dwFlags=%08x)\n",
3473 hProv, dwParam, pbData, pdwDataLen, dwFlags);
3474
3475 if (!pdwDataLen) {
3476 SetLastError(ERROR_INVALID_PARAMETER);
3477 return FALSE;
3478 }
3479
3480 if (!lookup_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER,
3481 (OBJECTHDR**)&pKeyContainer))
3482 {
3483 /* MSDN: hProv not containing valid context handle */
3484 SetLastError(NTE_BAD_UID);
3485 return FALSE;
3486 }
3487
3488 switch (dwParam)
3489 {
3490 case PP_CONTAINER:
3491 case PP_UNIQUE_CONTAINER:/* MSDN says we can return the same value as PP_CONTAINER */
3492 return copy_param(pbData, pdwDataLen, (CONST BYTE*)pKeyContainer->szName,
3493 strlen(pKeyContainer->szName)+1);
3494
3495 case PP_NAME:
3496 return copy_param(pbData, pdwDataLen, (CONST BYTE*)pKeyContainer->szProvName,
3497 strlen(pKeyContainer->szProvName)+1);
3498
3499 case PP_PROVTYPE:
3500 dwTemp = PROV_RSA_FULL;
3501 return copy_param(pbData, pdwDataLen, (CONST BYTE*)&dwTemp, sizeof(dwTemp));
3502
3503 case PP_KEYSPEC:
3504 dwTemp = AT_SIGNATURE | AT_KEYEXCHANGE;
3505 return copy_param(pbData, pdwDataLen, (CONST BYTE*)&dwTemp, sizeof(dwTemp));
3506
3507 case PP_KEYSET_TYPE:
3508 dwTemp = pKeyContainer->dwFlags & CRYPT_MACHINE_KEYSET;
3509 return copy_param(pbData, pdwDataLen, (CONST BYTE*)&dwTemp, sizeof(dwTemp));
3510
3511 case PP_KEYSTORAGE:
3512 dwTemp = CRYPT_SEC_DESCR;
3513 return copy_param(pbData, pdwDataLen, (CONST BYTE*)&dwTemp, sizeof(dwTemp));
3514
3515 case PP_SIG_KEYSIZE_INC:
3516 case PP_KEYX_KEYSIZE_INC:
3517 dwTemp = 8;
3518 return copy_param(pbData, pdwDataLen, (CONST BYTE*)&dwTemp, sizeof(dwTemp));
3519
3520 case PP_IMPTYPE:
3521 dwTemp = CRYPT_IMPL_SOFTWARE;
3522 return copy_param(pbData, pdwDataLen, (CONST BYTE*)&dwTemp, sizeof(dwTemp));
3523
3524 case PP_VERSION:
3525 dwTemp = 0x00000200;
3526 return copy_param(pbData, pdwDataLen, (CONST BYTE*)&dwTemp, sizeof(dwTemp));
3527
3528 case PP_ENUMCONTAINERS:
3529 if ((dwFlags & CRYPT_FIRST) == CRYPT_FIRST) pKeyContainer->dwEnumContainersCtr = 0;
3530
3531 if (!pbData) {
3532 *pdwDataLen = (DWORD)MAX_PATH + 1;
3533 return TRUE;
3534 }
3535
3536 if (!open_container_key("", dwFlags, &hKey))
3537 {
3538 SetLastError(ERROR_NO_MORE_ITEMS);
3539 return FALSE;
3540 }
3541
3542 dwTemp = *pdwDataLen;
3543 switch (RegEnumKeyExA(hKey, pKeyContainer->dwEnumContainersCtr, (LPSTR)pbData, &dwTemp,
3544 NULL, NULL, NULL, NULL))
3545 {
3546 case ERROR_MORE_DATA:
3547 *pdwDataLen = (DWORD)MAX_PATH + 1;
3548
3549 case ERROR_SUCCESS:
3550 pKeyContainer->dwEnumContainersCtr++;
3551 RegCloseKey(hKey);
3552 return TRUE;
3553
3554 case ERROR_NO_MORE_ITEMS:
3555 default:
3556 SetLastError(ERROR_NO_MORE_ITEMS);
3557 RegCloseKey(hKey);
3558 return FALSE;
3559 }
3560
3561 case PP_ENUMALGS:
3562 case PP_ENUMALGS_EX:
3563 if (((pKeyContainer->dwEnumAlgsCtr >= RSAENH_MAX_ENUMALGS-1) ||
3564 (!aProvEnumAlgsEx[pKeyContainer->dwPersonality]
3565 [pKeyContainer->dwEnumAlgsCtr+1].aiAlgid)) &&
3566 ((dwFlags & CRYPT_FIRST) != CRYPT_FIRST))
3567 {
3568 SetLastError(ERROR_NO_MORE_ITEMS);
3569 return FALSE;
3570 }
3571
3572 if (dwParam == PP_ENUMALGS) {
3573 if (pbData && (*pdwDataLen >= sizeof(PROV_ENUMALGS)))
3574 pKeyContainer->dwEnumAlgsCtr = ((dwFlags & CRYPT_FIRST) == CRYPT_FIRST) ?
3575 0 : pKeyContainer->dwEnumAlgsCtr+1;
3576
3577 provEnumalgs.aiAlgid = aProvEnumAlgsEx
3578 [pKeyContainer->dwPersonality][pKeyContainer->dwEnumAlgsCtr].aiAlgid;
3579 provEnumalgs.dwBitLen = aProvEnumAlgsEx
3580 [pKeyContainer->dwPersonality][pKeyContainer->dwEnumAlgsCtr].dwDefaultLen;
3581 provEnumalgs.dwNameLen = aProvEnumAlgsEx
3582 [pKeyContainer->dwPersonality][pKeyContainer->dwEnumAlgsCtr].dwNameLen;
3583 memcpy(provEnumalgs.szName, aProvEnumAlgsEx
3584 [pKeyContainer->dwPersonality][pKeyContainer->dwEnumAlgsCtr].szName,
3585 20*sizeof(CHAR));
3586
3587 return copy_param(pbData, pdwDataLen, (CONST BYTE*)&provEnumalgs,
3588 sizeof(PROV_ENUMALGS));
3589 } else {
3590 if (pbData && (*pdwDataLen >= sizeof(PROV_ENUMALGS_EX)))
3591 pKeyContainer->dwEnumAlgsCtr = ((dwFlags & CRYPT_FIRST) == CRYPT_FIRST) ?
3592 0 : pKeyContainer->dwEnumAlgsCtr+1;
3593
3594 return copy_param(pbData, pdwDataLen,
3595 (CONST BYTE*)&aProvEnumAlgsEx
3596 [pKeyContainer->dwPersonality][pKeyContainer->dwEnumAlgsCtr],
3597 sizeof(PROV_ENUMALGS_EX));
3598 }
3599
3600 case PP_CRYPT_COUNT_KEY_USE: /* Asked for by IE About dialog */
3601 return copy_param(pbData, pdwDataLen, abWTF, sizeof(abWTF));
3602
3603 default:
3604 /* MSDN: Unknown parameter number in dwParam */
3605 SetLastError(NTE_BAD_TYPE);
3606 return FALSE;
3607 }
3608 }
3609
3610 /******************************************************************************
3611 * CPDeriveKey (RSAENH.@)
3612 *
3613 * Derives a key from a hash value.
3614 *
3615 * PARAMS
3616 * hProv [I] Key container for which a key is to be generated.
3617 * Algid [I] Crypto algorithm identifier for the key to be generated.
3618 * hBaseData [I] Hash from whose value the key will be derived.
3619 * dwFlags [I] See Notes.
3620 * phKey [O] The generated key.
3621 *
3622 * RETURNS
3623 * Success: TRUE
3624 * Failure: FALSE
3625 *
3626 * NOTES
3627 * Defined flags:
3628 * - CRYPT_EXPORTABLE: Key can be exported.
3629 * - CRYPT_NO_SALT: No salt is used for 40 bit keys.
3630 * - CRYPT_CREATE_SALT: Use remaining bits as salt value.
3631 */
3632 BOOL WINAPI RSAENH_CPDeriveKey(HCRYPTPROV hProv, ALG_ID Algid, HCRYPTHASH hBaseData,
3633 DWORD dwFlags, HCRYPTKEY *phKey)
3634 {
3635 CRYPTKEY *pCryptKey, *pMasterKey;
3636 CRYPTHASH *pCryptHash;
3637 BYTE abHashValue[RSAENH_MAX_HASH_SIZE*2];
3638 DWORD dwLen;
3639
3640 TRACE("(hProv=%08lx, Algid=%d, hBaseData=%08lx, dwFlags=%08x phKey=%p)\n", hProv, Algid,
3641 hBaseData, dwFlags, phKey);
3642
3643 if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
3644 {
3645 SetLastError(NTE_BAD_UID);
3646 return FALSE;
3647 }
3648
3649 if (!lookup_handle(&handle_table, hBaseData, RSAENH_MAGIC_HASH,
3650 (OBJECTHDR**)&pCryptHash))
3651 {
3652 SetLastError(NTE_BAD_HASH);
3653 return FALSE;
3654 }
3655
3656 if (!phKey)
3657 {
3658 SetLastError(ERROR_INVALID_PARAMETER);
3659 return FALSE;
3660 }
3661
3662 switch (GET_ALG_CLASS(Algid))
3663 {
3664 case ALG_CLASS_DATA_ENCRYPT:
3665 *phKey = new_key(hProv, Algid, dwFlags, &pCryptKey);
3666 if (*phKey == (HCRYPTKEY)INVALID_HANDLE_VALUE) return FALSE;
3667
3668 /*
3669 * We derive the key material from the hash.
3670 * If the hash value is not large enough for the claimed key, we have to construct
3671 * a larger binary value based on the hash. This is documented in MSDN: CryptDeriveKey.
3672 */
3673 dwLen = RSAENH_MAX_HASH_SIZE;
3674 RSAENH_CPGetHashParam(pCryptHash->hProv, hBaseData, HP_HASHVAL, abHashValue, &dwLen, 0);
3675
3676 if (dwLen < pCryptKey->dwKeyLen) {
3677 BYTE pad1[RSAENH_HMAC_DEF_PAD_LEN], pad2[RSAENH_HMAC_DEF_PAD_LEN];
3678 BYTE old_hashval[RSAENH_MAX_HASH_SIZE];
3679 DWORD i;
3680
3681 memcpy(old_hashval, pCryptHash->abHashValue, RSAENH_MAX_HASH_SIZE);
3682
3683 for (i=0; i<RSAENH_HMAC_DEF_PAD_LEN; i++) {
3684 pad1[i] = RSAENH_HMAC_DEF_IPAD_CHAR ^ (i<dwLen ? abHashValue[i] : 0);
3685 pad2[i] = RSAENH_HMAC_DEF_OPAD_CHAR ^ (i<dwLen ? abHashValue[i] : 0);
3686 }
3687
3688 init_hash(pCryptHash);
3689 update_hash(pCryptHash, pad1, RSAENH_HMAC_DEF_PAD_LEN);
3690 finalize_hash(pCryptHash);
3691 memcpy(abHashValue, pCryptHash->abHashValue, pCryptHash->dwHashSize);
3692
3693 init_hash(pCryptHash);
3694 update_hash(pCryptHash, pad2, RSAENH_HMAC_DEF_PAD_LEN);
3695 finalize_hash(pCryptHash);
3696 memcpy(abHashValue+pCryptHash->dwHashSize, pCryptHash->abHashValue,
3697 pCryptHash->dwHashSize);
3698
3699 memcpy(pCryptHash->abHashValue, old_hashval, RSAENH_MAX_HASH_SIZE);
3700 }
3701
3702 memcpy(pCryptKey->abKeyValue, abHashValue,
3703 RSAENH_MIN(pCryptKey->dwKeyLen, sizeof(pCryptKey->abKeyValue)));
3704 break;
3705
3706 case ALG_CLASS_MSG_ENCRYPT:
3707 if (!lookup_handle(&handle_table, pCryptHash->hKey, RSAENH_MAGIC_KEY,
3708 (OBJECTHDR**)&pMasterKey))
3709 {
3710 SetLastError(NTE_FAIL); /* FIXME error code */
3711 return FALSE;
3712 }
3713
3714 switch (Algid)
3715 {
3716 /* See RFC 2246, chapter 6.3 Key calculation */
3717 case CALG_SCHANNEL_ENC_KEY:
3718 *phKey = new_key(hProv, pMasterKey->siSChannelInfo.saEncAlg.Algid,
3719 MAKELONG(LOWORD(dwFlags),pMasterKey->siSChannelInfo.saEncAlg.cBits),
3720 &pCryptKey);
3721 if (*phKey == (HCRYPTKEY)INVALID_HANDLE_VALUE) return FALSE;
3722 memcpy(pCryptKey->abKeyValue,
3723 pCryptHash->abHashValue + (
3724 2 * (pMasterKey->siSChannelInfo.saMACAlg.cBits / 8) +
3725 ((dwFlags & CRYPT_SERVER) ?
3726 (pMasterKey->siSChannelInfo.saEncAlg.cBits / 8) : 0)),
3727 pMasterKey->siSChannelInfo.saEncAlg.cBits / 8);
3728 memcpy(pCryptKey->abInitVector,
3729 pCryptHash->abHashValue + (
3730 2 * (pMasterKey->siSChannelInfo.saMACAlg.cBits / 8) +
3731 2 * (pMasterKey->siSChannelInfo.saEncAlg.cBits / 8) +
3732 ((dwFlags & CRYPT_SERVER) ? pCryptKey->dwBlockLen : 0)),
3733 pCryptKey->dwBlockLen);
3734 break;
3735
3736 case CALG_SCHANNEL_MAC_KEY:
3737 *phKey = new_key(hProv, Algid,
3738 MAKELONG(LOWORD(dwFlags),pMasterKey->siSChannelInfo.saMACAlg.cBits),
3739 &pCryptKey);
3740 if (*phKey == (HCRYPTKEY)INVALID_HANDLE_VALUE) return FALSE;
3741 memcpy(pCryptKey->abKeyValue,
3742 pCryptHash->abHashValue + ((dwFlags & CRYPT_SERVER) ?
3743 pMasterKey->siSChannelInfo.saMACAlg.cBits / 8 : 0),
3744 pMasterKey->siSChannelInfo.saMACAlg.cBits / 8);
3745 break;
3746
3747 default:
3748 SetLastError(NTE_BAD_ALGID);
3749 return FALSE;
3750 }
3751 break;
3752
3753 default:
3754 SetLastError(NTE_BAD_ALGID);
3755 return FALSE;
3756 }
3757
3758 setup_key(pCryptKey);
3759 return TRUE;
3760 }
3761
3762 /******************************************************************************
3763 * CPGetUserKey (RSAENH.@)
3764 *
3765 * Returns a handle to the user's private key-exchange- or signature-key.
3766 *
3767 * PARAMS
3768 * hProv [I] The key container from which a user key is requested.
3769 * dwKeySpec [I] AT_KEYEXCHANGE or AT_SIGNATURE
3770 * phUserKey [O] Handle to the requested key or INVALID_HANDLE_VALUE in case of failure.
3771 *
3772 * RETURNS
3773 * Success: TRUE.
3774 * Failure: FALSE.
3775 *
3776 * NOTE
3777 * A newly created key container does not contain private user key. Create them with CPGenKey.
3778 */
3779 BOOL WINAPI RSAENH_CPGetUserKey(HCRYPTPROV hProv, DWORD dwKeySpec, HCRYPTKEY *phUserKey)
3780 {
3781 KEYCONTAINER *pKeyContainer;
3782
3783 TRACE("(hProv=%08lx, dwKeySpec=%08x, phUserKey=%p)\n", hProv, dwKeySpec, phUserKey);
3784
3785 if (!lookup_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER,
3786 (OBJECTHDR**)&pKeyContainer))
3787 {
3788 /* MSDN: hProv not containing valid context handle */
3789 SetLastError(NTE_BAD_UID);
3790 return FALSE;
3791 }
3792
3793 switch (dwKeySpec)
3794 {
3795 case AT_KEYEXCHANGE:
3796 copy_handle(&handle_table, pKeyContainer->hKeyExchangeKeyPair, RSAENH_MAGIC_KEY,
3797 phUserKey);
3798 break;
3799
3800 case AT_SIGNATURE:
3801 copy_handle(&handle_table, pKeyContainer->hSignatureKeyPair, RSAENH_MAGIC_KEY,
3802 phUserKey);
3803 break;
3804
3805 default:
3806 *phUserKey = (HCRYPTKEY)INVALID_HANDLE_VALUE;
3807 }
3808
3809 if (*phUserKey == (HCRYPTKEY)INVALID_HANDLE_VALUE)
3810 {
3811 /* MSDN: dwKeySpec parameter specifies nonexistent key */
3812 SetLastError(NTE_NO_KEY);
3813 return FALSE;
3814 }
3815
3816 return TRUE;
3817 }
3818
3819 /******************************************************************************
3820 * CPHashData (RSAENH.@)
3821 *
3822 * Updates a hash object with the given data.
3823 *
3824 * PARAMS
3825 * hProv [I] Key container to which the hash object belongs.
3826 * hHash [I] Hash object which is to be updated.
3827 * pbData [I] Pointer to data with which the hash object is to be updated.
3828 * dwDataLen [I] Length of the data.
3829 * dwFlags [I] Currently none defined.
3830 *
3831 * RETURNS
3832 * Success: TRUE.
3833 * Failure: FALSE.
3834 *
3835 * NOTES
3836 * The actual hash value is queried with CPGetHashParam, which will finalize
3837 * the hash. Updating a finalized hash will fail with a last error NTE_BAD_HASH_STATE.
3838 */
3839 BOOL WINAPI RSAENH_CPHashData(HCRYPTPROV hProv, HCRYPTHASH hHash, CONST BYTE *pbData,
3840 DWORD dwDataLen, DWORD dwFlags)
3841 {
3842 CRYPTHASH *pCryptHash;
3843
3844 TRACE("(hProv=%08lx, hHash=%08lx, pbData=%p, dwDataLen=%d, dwFlags=%08x)\n",
3845 hProv, hHash, pbData, dwDataLen, dwFlags);
3846
3847 if (dwFlags)
3848 {
3849 SetLastError(NTE_BAD_FLAGS);
3850 return FALSE;
3851 }
3852
3853 if (!lookup_handle(&handle_table, hHash, RSAENH_MAGIC_HASH,
3854 (OBJECTHDR**)&pCryptHash))
3855 {
3856 SetLastError(NTE_BAD_HASH);
3857 return FALSE;
3858 }
3859
3860 if (!get_algid_info(hProv, pCryptHash->aiAlgid) || pCryptHash->aiAlgid == CALG_SSL3_SHAMD5)
3861 {
3862 SetLastError(NTE_BAD_ALGID);
3863 return FALSE;
3864 }
3865
3866 if (pCryptHash->dwState != RSAENH_HASHSTATE_HASHING)
3867 {
3868 SetLastError(NTE_BAD_HASH_STATE);
3869 return FALSE;
3870 }
3871
3872 update_hash(pCryptHash, pbData, dwDataLen);
3873 return TRUE;
3874 }
3875
3876 /******************************************************************************
3877 * CPHashSessionKey (RSAENH.@)
3878 *
3879 * Updates a hash object with the binary representation of a symmetric key.
3880 *
3881 * PARAMS
3882 * hProv [I] Key container to which the hash object belongs.
3883 * hHash [I] Hash object which is to be updated.
3884 * hKey [I] The symmetric key, whose binary value will be added to the hash.
3885 * dwFlags [I] CRYPT_LITTLE_ENDIAN, if the binary key value shall be interpreted as little endian.
3886 *
3887 * RETURNS
3888 * Success: TRUE.
3889 * Failure: FALSE.
3890 */
3891 BOOL WINAPI RSAENH_CPHashSessionKey(HCRYPTPROV hProv, HCRYPTHASH hHash, HCRYPTKEY hKey,
3892 DWORD dwFlags)
3893 {
3894 BYTE abKeyValue[RSAENH_MAX_KEY_SIZE], bTemp;
3895 CRYPTKEY *pKey;
3896 DWORD i;
3897
3898 TRACE("(hProv=%08lx, hHash=%08lx, hKey=%08lx, dwFlags=%08x)\n", hProv, hHash, hKey, dwFlags);
3899
3900 if (!lookup_handle(&handle_table, hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pKey) ||
3901 (GET_ALG_CLASS(pKey->aiAlgid) != ALG_CLASS_DATA_ENCRYPT))
3902 {
3903 SetLastError(NTE_BAD_KEY);
3904 return FALSE;
3905 }
3906
3907 if (dwFlags & ~CRYPT_LITTLE_ENDIAN) {
3908 SetLastError(NTE_BAD_FLAGS);
3909 return FALSE;
3910 }
3911
3912 memcpy(abKeyValue, pKey->abKeyValue, pKey->dwKeyLen);
3913 if (!(dwFlags & CRYPT_LITTLE_ENDIAN)) {
3914 for (i=0; i<pKey->dwKeyLen/2; i++) {
3915 bTemp = abKeyValue[i];
3916 abKeyValue[i] = abKeyValue[pKey->dwKeyLen-i-1];
3917 abKeyValue[pKey->dwKeyLen-i-1] = bTemp;
3918 }
3919 }
3920
3921 return RSAENH_CPHashData(hProv, hHash, abKeyValue, pKey->dwKeyLen, 0);
3922 }
3923
3924 /******************************************************************************
3925 * CPReleaseContext (RSAENH.@)
3926 *
3927 * Release a key container.
3928 *
3929 * PARAMS
3930 * hProv [I] Key container to be released.
3931 * dwFlags [I] Currently none defined.
3932 *
3933 * RETURNS
3934 * Success: TRUE
3935 * Failure: FALSE
3936 */
3937 BOOL WINAPI RSAENH_CPReleaseContext(HCRYPTPROV hProv, DWORD dwFlags)
3938 {
3939 TRACE("(hProv=%08lx, dwFlags=%08x)\n", hProv, dwFlags);
3940
3941 if (!release_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
3942 {
3943 /* MSDN: hProv not containing valid context handle */
3944 SetLastError(NTE_BAD_UID);
3945 return FALSE;
3946 }
3947
3948 if (dwFlags) {
3949 SetLastError(NTE_BAD_FLAGS);
3950 return FALSE;
3951 }
3952
3953 return TRUE;
3954 }
3955
3956 /******************************************************************************
3957 * CPSetHashParam (RSAENH.@)
3958 *
3959 * Set a parameter of a hash object
3960 *
3961 * PARAMS
3962 * hProv [I] The key container to which the key belongs.
3963 * hHash [I] The hash object for which a parameter is to be set.
3964 * dwParam [I] Parameter type. See Notes.
3965 * pbData [I] Pointer to the parameter value.
3966 * dwFlags [I] Currently none defined.
3967 *
3968 * RETURNS
3969 * Success: TRUE.
3970 * Failure: FALSE.
3971 *
3972 * NOTES
3973 * Currently only the HP_HMAC_INFO dwParam type is defined.
3974 * The HMAC_INFO struct will be deep copied into the hash object.
3975 * See Internet RFC 2104 for details on the HMAC algorithm.
3976 */
3977 BOOL WINAPI RSAENH_CPSetHashParam(HCRYPTPROV hProv, HCRYPTHASH hHash, DWORD dwParam,
3978 BYTE *pbData, DWORD dwFlags)
3979 {
3980 CRYPTHASH *pCryptHash;
3981 CRYPTKEY *pCryptKey;
3982 DWORD i;
3983
3984 TRACE("(hProv=%08lx, hHash=%08lx, dwParam=%08x, pbData=%p, dwFlags=%08x)\n",
3985 hProv, hHash, dwParam, pbData, dwFlags);
3986
3987 if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
3988 {
3989 SetLastError(NTE_BAD_UID);
3990 return FALSE;
3991 }
3992
3993 if (dwFlags) {
3994 SetLastError(NTE_BAD_FLAGS);
3995 return FALSE;
3996 }
3997
3998 if (!lookup_handle(&handle_table, hHash, RSAENH_MAGIC_HASH,
3999 (OBJECTHDR**)&pCryptHash))
4000 {
4001 SetLastError(NTE_BAD_HASH);
4002 return FALSE;
4003 }
4004
4005 switch (dwParam) {
4006 case HP_HMAC_INFO:
4007 free_hmac_info(pCryptHash->pHMACInfo);
4008 if (!copy_hmac_info(&pCryptHash->pHMACInfo, (PHMAC_INFO)pbData)) return FALSE;
4009
4010 if (!lookup_handle(&handle_table, pCryptHash->hKey, RSAENH_MAGIC_KEY,
4011 (OBJECTHDR**)&pCryptKey))
4012 {
4013 SetLastError(NTE_FAIL); /* FIXME: correct error code? */
4014 return FALSE;
4015 }
4016
4017 for (i=0; i<RSAENH_MIN(pCryptKey->dwKeyLen,pCryptHash->pHMACInfo->cbInnerString); i++) {
4018 pCryptHash->pHMACInfo->pbInnerString[i] ^= pCryptKey->abKeyValue[i];
4019 }
4020 for (i=0; i<RSAENH_MIN(pCryptKey->dwKeyLen,pCryptHash->pHMACInfo->cbOuterString); i++) {
4021 pCryptHash->pHMACInfo->pbOuterString[i] ^= pCryptKey->abKeyValue[i];
4022 }
4023
4024 init_hash(pCryptHash);
4025 return TRUE;
4026
4027 case HP_HASHVAL:
4028 memcpy(pCryptHash->abHashValue, pbData, pCryptHash->dwHashSize);
4029 pCryptHash->dwState = RSAENH_HASHSTATE_FINISHED;
4030 return TRUE;
4031
4032 case HP_TLS1PRF_SEED:
4033 return copy_data_blob(&pCryptHash->tpPRFParams.blobSeed, (PCRYPT_DATA_BLOB)pbData);
4034
4035 case HP_TLS1PRF_LABEL:
4036 return copy_data_blob(&pCryptHash->tpPRFParams.blobLabel, (PCRYPT_DATA_BLOB)pbData);
4037
4038 default:
4039 SetLastError(NTE_BAD_TYPE);
4040 return FALSE;
4041 }
4042 }
4043
4044 /******************************************************************************
4045 * CPSetProvParam (RSAENH.@)
4046 */
4047 BOOL WINAPI RSAENH_CPSetProvParam(HCRYPTPROV hProv, DWORD dwParam, BYTE *pbData, DWORD dwFlags)
4048 {
4049 FIXME("(stub)\n");
4050 return FALSE;
4051 }
4052
4053 /******************************************************************************
4054 * CPSignHash (RSAENH.@)
4055 *
4056 * Sign a hash object
4057 *
4058 * PARAMS
4059 * hProv [I] The key container, to which the hash object belongs.
4060 * hHash [I] The hash object to be signed.
4061 * dwKeySpec [I] AT_SIGNATURE or AT_KEYEXCHANGE: Key used to generate the signature.
4062 * sDescription [I] Should be NULL for security reasons.
4063 * dwFlags [I] 0, CRYPT_NOHASHOID or CRYPT_X931_FORMAT: Format of the signature.
4064 * pbSignature [O] Buffer, to which the signature will be stored. May be NULL to query SigLen.
4065 * pdwSigLen [I/O] Size of the buffer (in), Length of the signature (out)
4066 *
4067 * RETURNS
4068 * Success: TRUE
4069 * Failure: FALSE
4070 */
4071 BOOL WINAPI RSAENH_CPSignHash(HCRYPTPROV hProv, HCRYPTHASH hHash, DWORD dwKeySpec,
4072 LPCWSTR sDescription, DWORD dwFlags, BYTE *pbSignature,
4073 DWORD *pdwSigLen)
4074 {
4075 HCRYPTKEY hCryptKey;
4076 CRYPTKEY *pCryptKey;
4077 DWORD dwHashLen;
4078 BYTE abHashValue[RSAENH_MAX_HASH_SIZE];
4079 ALG_ID aiAlgid;
4080
4081 TRACE("(hProv=%08lx, hHash=%08lx, dwKeySpec=%08x, sDescription=%s, dwFlags=%08x, "
4082 "pbSignature=%p, pdwSigLen=%p)\n", hProv, hHash, dwKeySpec, debugstr_w(sDescription),
4083 dwFlags, pbSignature, pdwSigLen);
4084
4085 if (dwFlags & ~(CRYPT_NOHASHOID|CRYPT_X931_FORMAT)) {
4086 SetLastError(NTE_BAD_FLAGS);
4087 return FALSE;
4088 }
4089
4090 if (!RSAENH_CPGetUserKey(hProv, dwKeySpec, &hCryptKey)) return FALSE;
4091
4092 if (!lookup_handle(&handle_table, hCryptKey, RSAENH_MAGIC_KEY,
4093 (OBJECTHDR**)&pCryptKey))
4094 {
4095 SetLastError(NTE_NO_KEY);
4096 return FALSE;
4097 }
4098
4099 if (!pbSignature) {
4100 *pdwSigLen = pCryptKey->dwKeyLen;
4101 return TRUE;
4102 }
4103 if (pCryptKey->dwKeyLen > *pdwSigLen)
4104 {
4105 SetLastError(ERROR_MORE_DATA);
4106 *pdwSigLen = pCryptKey->dwKeyLen;
4107 return FALSE;
4108 }
4109 *pdwSigLen = pCryptKey->dwKeyLen;
4110
4111 if (sDescription) {
4112 if (!RSAENH_CPHashData(hProv, hHash, (CONST BYTE*)sDescription,
4113 (DWORD)lstrlenW(sDescription)*sizeof(WCHAR), 0))
4114 {
4115 return FALSE;
4116 }
4117 }
4118
4119 dwHashLen = sizeof(DWORD);
4120 if (!RSAENH_CPGetHashParam(hProv, hHash, HP_ALGID, (BYTE*)&aiAlgid, &dwHashLen, 0)) return FALSE;
4121
4122 dwHashLen = RSAENH_MAX_HASH_SIZE;
4123 if (!RSAENH_CPGetHashParam(hProv, hHash, HP_HASHVAL, abHashValue, &dwHashLen, 0)) return FALSE;
4124
4125
4126 if (!build_hash_signature(pbSignature, *pdwSigLen, aiAlgid, abHashValue, dwHashLen, dwFlags)) {
4127 return FALSE;
4128 }
4129
4130 return encrypt_block_impl(pCryptKey->aiAlgid, PK_PRIVATE, &pCryptKey->context, pbSignature, pbSignature, RSAENH_ENCRYPT);
4131 }
4132
4133 /******************************************************************************
4134 * CPVerifySignature (RSAENH.@)
4135 *
4136 * Verify the signature of a hash object.
4137 *
4138 * PARAMS
4139 * hProv [I] The key container, to which the hash belongs.
4140 * hHash [I] The hash for which the signature is verified.
4141 * pbSignature [I] The binary signature.
4142 * dwSigLen [I] Length of the signature BLOB.
4143 * hPubKey [I] Public key used to verify the signature.
4144 * sDescription [I] Should be NULL for security reasons.
4145 * dwFlags [I] 0, CRYPT_NOHASHOID or CRYPT_X931_FORMAT: Format of the signature.
4146 *
4147 * RETURNS
4148 * Success: TRUE (Signature is valid)
4149 * Failure: FALSE (GetLastError() == NTE_BAD_SIGNATURE, if signature is invalid)
4150 */
4151 BOOL WINAPI RSAENH_CPVerifySignature(HCRYPTPROV hProv, HCRYPTHASH hHash, CONST BYTE *pbSignature,
4152 DWORD dwSigLen, HCRYPTKEY hPubKey, LPCWSTR sDescription,
4153 DWORD dwFlags)
4154 {
4155 BYTE *pbConstructed = NULL, *pbDecrypted = NULL;
4156 CRYPTKEY *pCryptKey;
4157 DWORD dwHashLen;
4158 ALG_ID aiAlgid;
4159 BYTE abHashValue[RSAENH_MAX_HASH_SIZE];
4160 BOOL res = FALSE;
4161
4162 TRACE("(hProv=%08lx, hHash=%08lx, pbSignature=%p, dwSigLen=%d, hPubKey=%08lx, sDescription=%s, "
4163 "dwFlags=%08x)\n", hProv, hHash, pbSignature, dwSigLen, hPubKey, debugstr_w(sDescription),
4164 dwFlags);
4165
4166 if (dwFlags & ~(CRYPT_NOHASHOID|CRYPT_X931_FORMAT)) {
4167 SetLastError(NTE_BAD_FLAGS);
4168 return FALSE;
4169 }
4170
4171 if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
4172 {
4173 SetLastError(NTE_BAD_UID);
4174 return FALSE;
4175 }
4176
4177 if (!lookup_handle(&handle_table, hPubKey, RSAENH_MAGIC_KEY,
4178 (OBJECTHDR**)&pCryptKey))
4179 {
4180 SetLastError(NTE_BAD_KEY);
4181 return FALSE;
4182 }
4183
4184 /* in Microsoft implementation, the signature length is checked before
4185 * the signature pointer.
4186 */
4187 if (dwSigLen != pCryptKey->dwKeyLen)
4188 {
4189 SetLastError(NTE_BAD_SIGNATURE);
4190 return FALSE;
4191 }
4192
4193 if (!hHash || !pbSignature)
4194 {
4195 SetLastError(ERROR_INVALID_PARAMETER);
4196 return FALSE;
4197 }
4198
4199 if (sDescription) {
4200 if (!RSAENH_CPHashData(hProv, hHash, (CONST BYTE*)sDescription,
4201 (DWORD)lstrlenW(sDescription)*sizeof(WCHAR), 0))
4202 {
4203 return FALSE;
4204 }
4205 }
4206
4207 dwHashLen = sizeof(DWORD);
4208 if (!RSAENH_CPGetHashParam(hProv, hHash, HP_ALGID, (BYTE*)&aiAlgid, &dwHashLen, 0)) return FALSE;
4209
4210 dwHashLen = RSAENH_MAX_HASH_SIZE;
4211 if (!RSAENH_CPGetHashParam(hProv, hHash, HP_HASHVAL, abHashValue, &dwHashLen, 0)) return FALSE;
4212
4213 pbConstructed = HeapAlloc(GetProcessHeap(), 0, dwSigLen);
4214 if (!pbConstructed) {
4215 SetLastError(NTE_NO_MEMORY);
4216 goto cleanup;
4217 }
4218
4219 pbDecrypted = HeapAlloc(GetProcessHeap(), 0, dwSigLen);
4220 if (!pbDecrypted) {
4221 SetLastError(NTE_NO_MEMORY);
4222 goto cleanup;
4223 }
4224
4225 if (!encrypt_block_impl(pCryptKey->aiAlgid, PK_PUBLIC, &pCryptKey->context, pbSignature, pbDecrypted,
4226 RSAENH_DECRYPT))
4227 {
4228 goto cleanup;
4229 }
4230
4231 if (!build_hash_signature(pbConstructed, dwSigLen, aiAlgid, abHashValue, dwHashLen, dwFlags)) {
4232 goto cleanup;
4233 }
4234
4235 if (memcmp(pbDecrypted, pbConstructed, dwSigLen)) {
4236 SetLastError(NTE_BAD_SIGNATURE);
4237 goto cleanup;
4238 }
4239
4240 res = TRUE;
4241 cleanup:
4242 HeapFree(GetProcessHeap(), 0, pbConstructed);
4243 HeapFree(GetProcessHeap(), 0, pbDecrypted);
4244 return res;
4245 }
4246
4247 static const WCHAR szProviderKeys[6][116] = {
4248 { 'S','o','f','t','w','a','r','e','\\',
4249 'M','i','c','r','o','s','o','f','t','\\','C','r','y','p','t','o','g','r',
4250 'a','p','h','y','\\','D','e','f','a','u','l','t','s','\\','P','r','o','v',
4251 'i','d','e','r','\\','M','i','c','r','o','s','o','f','t',' ','B','a','s',
4252 'e',' ','C','r','y','p','t','o','g','r','a','p','h','i','c',' ','P','r',
4253 'o','v','i','d','e','r',' ','v','1','.','0',0 },
4254 { 'S','o','f','t','w','a','r','e','\\',
4255 'M','i','c','r','o','s','o','f','t','\\','C','r','y','p','t','o','g','r',
4256 'a','p','h','y','\\','D','e','f','a','u','l','t','s','\\','P','r','o','v',
4257 'i','d','e','r','\\','M','i','c','r','o','s','o','f','t',' ',
4258 'E','n','h','a','n','c','e','d',
4259 ' ','C','r','y','p','t','o','g','r','a','p','h','i','c',' ','P','r',
4260 'o','v','i','d','e','r',' ','v','1','.','0',0 },
4261 { 'S','o','f','t','w','a','r','e','\\',
4262 'M','i','c','r','o','s','o','f','t','\\','C','r','y','p','t','o','g','r',
4263 'a','p','h','y','\\','D','e','f','a','u','l','t','s','\\','P','r','o','v',
4264 'i','d','e','r','\\','M','i','c','r','o','s','o','f','t',' ','S','t','r','o','n','g',
4265 ' ','C','r','y','p','t','o','g','r','a','p','h','i','c',' ','P','r',
4266 'o','v','i','d','e','r',0 },
4267 { 'S','o','f','t','w','a','r','e','\\','M','i','c','r','o','s','o','f','t','\\',
4268 'C','r','y','p','t','o','g','r','a','p','h','y','\\','D','e','f','a','u','l','t','s','\\',
4269 'P','r','o','v','i','d','e','r','\\','M','i','c','r','o','s','o','f','t',' ',
4270 'R','S','A',' ','S','C','h','a','n','n','e','l',' ',
4271 'C','r','y','p','t','o','g','r','a','p','h','i','c',' ','P','r','o','v','i','d','e','r',0 },
4272 { 'S','o','f','t','w','a','r','e','\\','M','i','c','r','o','s','o','f','t','\\',
4273 'C','r','y','p','t','o','g','r','a','p','h','y','\\','D','e','f','a','u','l','t','s','\\',
4274 'P','r','o','v','i','d','e','r','\\','M','i','c','r','o','s','o','f','t',' ',
4275 'E','n','h','a','n','c','e','d',' ','R','S','A',' ','a','n','d',' ','A','E','S',' ',
4276 'C','r','y','p','t','o','g','r','a','p','h','i','c',' ','P','r','o','v','i','d','e','r',0 },
4277 { 'S','o','f','t','w','a','r','e','\\','M','i','c','r','o','s','o','f','t','\\',
4278 'C','r','y','p','t','o','g','r','a','p','h','y','\\','D','e','f','a','u','l','t','s','\\',
4279 'P','r','o','v','i','d','e','r','\\','M','i','c','r','o','s','o','f','t',' ',
4280 'E','n','h','a','n','c','e','d',' ','R','S','A',' ','a','n','d',' ','A','E','S',' ',
4281 'C','r','y','p','t','o','g','r','a','p','h','i','c',' ','P','r','o','v','i','d','e','r',
4282 ' ','(','P','r','o','t','o','t','y','p','e',')',0 }
4283 };
4284 static const WCHAR szDefaultKeys[3][65] = {
4285 { 'S','o','f','t','w','a','r','e','\\',
4286 'M','i','c','r','o','s','o','f','t','\\','C','r','y','p','t','o','g','r',
4287 'a','p','h','y','\\','D','e','f','a','u','l','t','s','\\','P','r','o','v',
4288 'i','d','e','r',' ','T','y','p','e','s','\\','T','y','p','e',' ','0','0','1',0 },
4289 { 'S','o','f','t','w','a','r','e','\\',
4290 'M','i','c','r','o','s','o','f','t','\\','C','r','y','p','t','o','g','r',
4291 'a','p','h','y','\\','D','e','f','a','u','l','t','s','\\','P','r','o','v',
4292 'i','d','e','r',' ','T','y','p','e','s','\\','T','y','p','e',' ','0','1','2',0 },
4293 { 'S','o','f','t','w','a','r','e','\\',
4294 'M','i','c','r','o','s','o','f','t','\\','C','r','y','p','t','o','g','r',
4295 'a','p','h','y','\\','D','e','f','a','u','l','t','s','\\','P','r','o','v',
4296 'i','d','e','r',' ','T','y','p','e','s','\\','T','y','p','e',' ','0','2','4',0 }
4297 };
4298
4299
4300 /******************************************************************************
4301 * DllRegisterServer (RSAENH.@)
4302 *
4303 * Dll self registration.
4304 *
4305 * PARAMS
4306 *
4307 * RETURNS
4308 * Success: S_OK.
4309 * Failure: != S_OK
4310 *
4311 * NOTES
4312 * Registers the following keys:
4313 * - HKLM\Software\Microsoft\Cryptography\Defaults\Provider\
4314 * Microsoft Base Cryptographic Provider v1.0
4315 * - HKLM\Software\Microsoft\Cryptography\Defaults\Provider\
4316 * Microsoft Enhanced Cryptographic Provider
4317 * - HKLM\Software\Microsoft\Cryptography\Defaults\Provider\
4318 * Microsoft Strong Cryptographpic Provider
4319 * - HKLM\Software\Microsoft\Cryptography\Defaults\Provider Types\Type 001
4320 */
4321 HRESULT WINAPI DllRegisterServer(void)
4322 {
4323 HKEY key;
4324 DWORD dp;
4325 long apiRet;
4326 int i;
4327
4328 for (i=0; i<6; i++) {
4329 apiRet = RegCreateKeyExW(HKEY_LOCAL_MACHINE, szProviderKeys[i], 0, NULL,
4330 REG_OPTION_NON_VOLATILE, KEY_ALL_ACCESS, NULL, &key, &dp);
4331
4332 if (apiRet == ERROR_SUCCESS)
4333 {
4334 if (dp == REG_CREATED_NEW_KEY)
4335 {
4336 static const WCHAR szImagePath[] = { 'I','m','a','g','e',' ','P','a','t','h',0 };
4337 static const WCHAR szRSABase[] = { 'r','s','a','e','n','h','.','d','l','l',0 };
4338 static const WCHAR szType[] = { 'T','y','p','e',0 };
4339 static const WCHAR szSignature[] = { 'S','i','g','n','a','t','u','r','e',0 };
4340 DWORD type, sign;
4341
4342 switch(i)
4343 {
4344 case 3:
4345 type=PROV_RSA_SCHANNEL;
4346 break;
4347 case 4:
4348 case 5:
4349 type=PROV_RSA_AES;
4350 break;
4351 default:
4352 type=PROV_RSA_FULL;
4353 break;
4354 }
4355 sign = 0xdeadbeef;
4356 RegSetValueExW(key, szImagePath, 0, REG_SZ, (const BYTE *)szRSABase,
4357 (lstrlenW(szRSABase) + 1) * sizeof(WCHAR));
4358 RegSetValueExW(key, szType, 0, REG_DWORD, (LPBYTE)&type, sizeof(type));
4359 RegSetValueExW(key, szSignature, 0, REG_BINARY, (LPBYTE)&sign, sizeof(sign));
4360 }
4361 RegCloseKey(key);
4362 }
4363 }
4364
4365 for (i=0; i<3; i++) {
4366 apiRet = RegCreateKeyExW(HKEY_LOCAL_MACHINE, szDefaultKeys[i], 0, NULL,
4367 REG_OPTION_NON_VOLATILE, KEY_ALL_ACCESS, NULL, &key, &dp);
4368 if (apiRet == ERROR_SUCCESS)
4369 {
4370 if (dp == REG_CREATED_NEW_KEY)
4371 {
4372 static const WCHAR szName[] = { 'N','a','m','e',0 };
4373 static const WCHAR szRSAName[3][54] = {
4374 { 'M','i','c','r','o','s','o','f','t',' ', 'B','a','s','e',' ',
4375 'C','r','y','p','t','o','g','r','a','p','h','i','c',' ',
4376 'P','r','o','v','i','d','e','r',' ','v','1','.','0',0 },
4377 { 'M','i','c','r','o','s','o','f','t',' ','R','S','A',' ',
4378 'S','C','h','a','n','n','e','l',' ',
4379 'C','r','y','p','t','o','g','r','a','p','h','i','c',' ',
4380 'P','r','o','v','i','d','e','r',0 },
4381 { 'M','i','c','r','o','s','o','f','t',' ','E','n','h','a','n','c','e','d',' ',
4382 'R','S','A',' ','a','n','d',' ','A','E','S',' ',
4383 'C','r','y','p','t','o','g','r','a','p','h','i','c',' ',
4384 'P','r','o','v','i','d','e','r',0 } };
4385 static const WCHAR szTypeName[] = { 'T','y','p','e','N','a','m','e',0 };
4386 static const WCHAR szRSATypeName[3][38] = {
4387 { 'R','S','A',' ','F','u','l','l',' ',
4388 '(','S','i','g','n','a','t','u','r','e',' ','a','n','d',' ',
4389 'K','e','y',' ','E','x','c','h','a','n','g','e',')',0 },
4390 { 'R','S','A',' ','S','C','h','a','n','n','e','l',0 },
4391 { 'R','S','A',' ','F','u','l','l',' ','a','n','d',' ','A','E','S',0 } };
4392
4393 RegSetValueExW(key, szName, 0, REG_SZ,
4394 (const BYTE *)szRSAName[i], lstrlenW(szRSAName[i])*sizeof(WCHAR)+sizeof(WCHAR));
4395 RegSetValueExW(key, szTypeName, 0, REG_SZ,
4396 (const BYTE *)szRSATypeName[i], lstrlenW(szRSATypeName[i])*sizeof(WCHAR)+sizeof(WCHAR));
4397 }
4398 }
4399 RegCloseKey(key);
4400 }
4401
4402 return HRESULT_FROM_WIN32(apiRet);
4403 }
4404
4405 /******************************************************************************
4406 * DllUnregisterServer (RSAENH.@)
4407 *
4408 * Dll self unregistration.
4409 *
4410 * PARAMS
4411 *
4412 * RETURNS
4413 * Success: S_OK
4414 *
4415 * NOTES
4416 * For the relevant keys see DllRegisterServer.
4417 */
4418 HRESULT WINAPI DllUnregisterServer(void)
4419 {
4420 RegDeleteKeyW(HKEY_LOCAL_MACHINE, szProviderKeys[0]);
4421 RegDeleteKeyW(HKEY_LOCAL_MACHINE, szProviderKeys[1]);
4422 RegDeleteKeyW(HKEY_LOCAL_MACHINE, szProviderKeys[2]);
4423 RegDeleteKeyW(HKEY_LOCAL_MACHINE, szProviderKeys[3]);
4424 RegDeleteKeyW(HKEY_LOCAL_MACHINE, szProviderKeys[4]);
4425 RegDeleteKeyW(HKEY_LOCAL_MACHINE, szProviderKeys[5]);
4426 RegDeleteKeyW(HKEY_LOCAL_MACHINE, szDefaultKeys[0]);
4427 RegDeleteKeyW(HKEY_LOCAL_MACHINE, szDefaultKeys[1]);
4428 RegDeleteKeyW(HKEY_LOCAL_MACHINE, szDefaultKeys[2]);
4429 return S_OK;
4430 }