[REISERFS]
[reactos.git] / reactos / drivers / filesystems / reiserfs / inc / linux / reiserfs_fs.h
1 /*
2 * Copyright 1996, 1997, 1998 Hans Reiser, see reiserfs/README for licensing and copyright details
3 */
4
5 #ifdef __GCC__
6 #ifndef __REACTOS__
7 #define __PACKED __PACKED
8 #else
9 #define __PACKED __attribute__((packed))
10 #endif
11 #else
12 #define __PACKED
13 #endif
14
15 /* this file has an amazingly stupid
16 name, yura please fix it to be
17 reiserfs.h, and merge all the rest
18 of our .h files that are in this
19 directory into it. */
20
21
22 #ifndef _LINUX_REISER_FS_H
23 #define _LINUX_REISER_FS_H
24
25 #include <linux/types.h>
26 #ifdef __KERNEL__
27 #include <linux/slab.h>
28 #include <linux/interrupt.h>
29 #include <linux/sched.h>
30 #include <linux/workqueue.h>
31 #include <asm/unaligned.h>
32 #include <linux/bitops.h>
33 #include <linux/proc_fs.h>
34 #include <linux/smp_lock.h>
35 #include <linux/buffer_head.h>
36 #include <linux/reiserfs_fs_i.h>
37 #include <linux/reiserfs_fs_sb.h>
38 #endif
39
40 /*
41 * include/linux/reiser_fs.h
42 *
43 * Reiser File System constants and structures
44 *
45 */
46
47 /* in reading the #defines, it may help to understand that they employ
48 the following abbreviations:
49
50 B = Buffer
51 I = Item header
52 H = Height within the tree (should be changed to LEV)
53 N = Number of the item in the node
54 STAT = stat data
55 DEH = Directory Entry Header
56 EC = Entry Count
57 E = Entry number
58 UL = Unsigned Long
59 BLKH = BLocK Header
60 UNFM = UNForMatted node
61 DC = Disk Child
62 P = Path
63
64 These #defines are named by concatenating these abbreviations,
65 where first comes the arguments, and last comes the return value,
66 of the macro.
67
68 */
69
70 #define USE_INODE_GENERATION_COUNTER
71
72 #define REISERFS_PREALLOCATE
73 #define DISPLACE_NEW_PACKING_LOCALITIES
74 #define PREALLOCATION_SIZE 9
75
76 /* n must be power of 2 */
77 #define _ROUND_UP(x,n) (((x)+(n)-1u) & ~((n)-1u))
78
79 // to be ok for alpha and others we have to align structures to 8 byte
80 // boundary.
81 // FIXME: do not change 4 by anything else: there is code which relies on that
82 #define ROUND_UP(x) _ROUND_UP(x,8LL)
83
84 /* debug levels. Right now, CONFIG_REISERFS_CHECK means print all debug
85 ** messages.
86 */
87 #define REISERFS_DEBUG_CODE 5 /* extra messages to help find/debug errors */
88
89 void reiserfs_warning (struct super_block *s, const char * fmt, ...);
90 /* assertions handling */
91
92 #ifdef __GCC__
93 #define CONSTF __attribute_const__
94 #else
95 #define CONSTF
96 #endif
97
98 /*
99 * Disk Data Structures
100 */
101
102 /***************************************************************************/
103 /* SUPER BLOCK */
104 /***************************************************************************/
105
106 /*
107 * Structure of super block on disk, a version of which in RAM is often accessed as REISERFS_SB(s)->s_rs
108 * the version in RAM is part of a larger structure containing fields never written to disk.
109 */
110 #define UNSET_HASH 0 // read_super will guess about, what hash names
111 // in directories were sorted with
112 #define TEA_HASH 1
113 #define YURA_HASH 2
114 #define R5_HASH 3
115 #define DEFAULT_HASH R5_HASH
116
117
118 struct journal_params {
119 __u32 jp_journal_1st_block; /* where does journal start from on its
120 * device */
121 __u32 jp_journal_dev; /* journal device st_rdev */
122 __u32 jp_journal_size; /* size of the journal */
123 __u32 jp_journal_trans_max; /* max number of blocks in a transaction. */
124 __u32 jp_journal_magic; /* random value made on fs creation (this
125 * was sb_journal_block_count) */
126 __u32 jp_journal_max_batch; /* max number of blocks to batch into a
127 * trans */
128 __u32 jp_journal_max_commit_age; /* in seconds, how old can an async
129 * commit be */
130 __u32 jp_journal_max_trans_age; /* in seconds, how old can a transaction
131 * be */
132 };
133
134 /* this is the super from 3.5.X, where X >= 10 */
135 #ifndef __GCC__
136 #pragma pack(push, 1)
137 #endif
138
139 struct reiserfs_super_block_v1
140 {
141 __u32 s_block_count; /* blocks count */
142 __u32 s_free_blocks; /* free blocks count */
143 __u32 s_root_block; /* root block number */
144 struct journal_params s_journal;
145 __u16 s_blocksize; /* block size */
146 __u16 s_oid_maxsize; /* max size of object id array, see
147 * get_objectid() commentary */
148 __u16 s_oid_cursize; /* current size of object id array */
149 __u16 s_umount_state; /* this is set to 1 when filesystem was
150 * umounted, to 2 - when not */
151 char s_magic[10]; /* reiserfs magic string indicates that
152 * file system is reiserfs:
153 * "ReIsErFs" or "ReIsEr2Fs" or "ReIsEr3Fs" */
154 __u16 s_fs_state; /* it is set to used by fsck to mark which
155 * phase of rebuilding is done */
156 __u32 s_hash_function_code; /* indicate, what hash function is being use
157 * to sort names in a directory*/
158 __u16 s_tree_height; /* height of disk tree */
159 __u16 s_bmap_nr; /* amount of bitmap blocks needed to address
160 * each block of file system */
161 __u16 s_version; /* this field is only reliable on filesystem
162 * with non-standard journal */
163 __u16 s_reserved_for_journal; /* size in blocks of journal area on main
164 * device, we need to keep after
165 * making fs with non-standard journal */
166 } __PACKED;
167 #ifndef __GCC__
168 #pragma pack(pop)
169 #endif
170
171
172 #define SB_SIZE_V1 (sizeof(struct reiserfs_super_block_v1))
173
174 /* this is the on disk super block */
175 #ifndef __GCC__
176 #pragma pack(push, 1)
177 #endif
178
179 struct reiserfs_super_block
180 {
181 struct reiserfs_super_block_v1 s_v1;
182 __u32 s_inode_generation;
183 __u32 s_flags; /* Right now used only by inode-attributes, if enabled */
184 unsigned char s_uuid[16]; /* filesystem unique identifier */
185 unsigned char s_label[16]; /* filesystem volume label */
186 char s_unused[88] ; /* zero filled by mkreiserfs and
187 * reiserfs_convert_objectid_map_v1()
188 * so any additions must be updated
189 * there as well. */
190 } __PACKED;
191
192 #ifndef __GCC__
193 #pragma pack(pop)
194 #endif
195
196 #define SB_SIZE (sizeof(struct reiserfs_super_block))
197
198 #define REISERFS_VERSION_1 0
199 #define REISERFS_VERSION_2 2
200
201
202 // on-disk super block fields converted to cpu form
203 #define SB_DISK_SUPER_BLOCK(s) (REISERFS_SB(s)->s_rs)
204 #define SB_V1_DISK_SUPER_BLOCK(s) (&(SB_DISK_SUPER_BLOCK(s)->s_v1))
205 #define SB_BLOCKSIZE(s) \
206 le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_blocksize))
207 #define SB_BLOCK_COUNT(s) \
208 le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_block_count))
209 #define SB_FREE_BLOCKS(s) \
210 le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_free_blocks))
211 #define SB_REISERFS_MAGIC(s) \
212 (SB_V1_DISK_SUPER_BLOCK(s)->s_magic)
213 #define SB_ROOT_BLOCK(s) \
214 le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_root_block))
215 #define SB_TREE_HEIGHT(s) \
216 le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_tree_height))
217 #define SB_REISERFS_STATE(s) \
218 le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_umount_state))
219 #define SB_VERSION(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_version))
220 #define SB_BMAP_NR(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_bmap_nr))
221
222 #define PUT_SB_BLOCK_COUNT(s, val) \
223 do { SB_V1_DISK_SUPER_BLOCK(s)->s_block_count = cpu_to_le32(val); } while (0)
224 #define PUT_SB_FREE_BLOCKS(s, val) \
225 do { SB_V1_DISK_SUPER_BLOCK(s)->s_free_blocks = cpu_to_le32(val); } while (0)
226 #define PUT_SB_ROOT_BLOCK(s, val) \
227 do { SB_V1_DISK_SUPER_BLOCK(s)->s_root_block = cpu_to_le32(val); } while (0)
228 #define PUT_SB_TREE_HEIGHT(s, val) \
229 do { SB_V1_DISK_SUPER_BLOCK(s)->s_tree_height = cpu_to_le16(val); } while (0)
230 #define PUT_SB_REISERFS_STATE(s, val) \
231 do { SB_V1_DISK_SUPER_BLOCK(s)->s_umount_state = cpu_to_le16(val); } while (0)
232 #define PUT_SB_VERSION(s, val) \
233 do { SB_V1_DISK_SUPER_BLOCK(s)->s_version = cpu_to_le16(val); } while (0)
234 #define PUT_SB_BMAP_NR(s, val) \
235 do { SB_V1_DISK_SUPER_BLOCK(s)->s_bmap_nr = cpu_to_le16 (val); } while (0)
236
237
238 #define SB_ONDISK_JP(s) (&SB_V1_DISK_SUPER_BLOCK(s)->s_journal)
239 #define SB_ONDISK_JOURNAL_SIZE(s) \
240 le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_size))
241 #define SB_ONDISK_JOURNAL_1st_BLOCK(s) \
242 le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_1st_block))
243 #define SB_ONDISK_JOURNAL_DEVICE(s) \
244 le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_dev))
245 #define SB_ONDISK_RESERVED_FOR_JOURNAL(s) \
246 le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_reserved_for_journal))
247
248 #define is_block_in_log_or_reserved_area(s, block) \
249 block >= SB_JOURNAL_1st_RESERVED_BLOCK(s) \
250 && block < SB_JOURNAL_1st_RESERVED_BLOCK(s) + \
251 ((!is_reiserfs_jr(SB_DISK_SUPER_BLOCK(s)) ? \
252 SB_ONDISK_JOURNAL_SIZE(s) + 1 : SB_ONDISK_RESERVED_FOR_JOURNAL(s)))
253
254
255
256 /* used by gcc */
257 #define REISERFS_SUPER_MAGIC 0x52654973
258 /* used by file system utilities that
259 look at the superblock, etc. */
260 #define REISERFS_SUPER_MAGIC_STRING "ReIsErFs"
261 #define REISER2FS_SUPER_MAGIC_STRING "ReIsEr2Fs"
262 #define REISER2FS_JR_SUPER_MAGIC_STRING "ReIsEr3Fs"
263
264 int is_reiserfs_3_5 (struct reiserfs_super_block * rs);
265 int is_reiserfs_3_6 (struct reiserfs_super_block * rs);
266 int is_reiserfs_jr (struct reiserfs_super_block * rs);
267
268 /* ReiserFS leaves the first 64k unused, so that partition labels have
269 enough space. If someone wants to write a fancy bootloader that
270 needs more than 64k, let us know, and this will be increased in size.
271 This number must be larger than than the largest block size on any
272 platform, or code will break. -Hans */
273 #define REISERFS_DISK_OFFSET_IN_BYTES (64 * 1024)
274 #define REISERFS_FIRST_BLOCK unused_define
275 #define REISERFS_JOURNAL_OFFSET_IN_BYTES REISERFS_DISK_OFFSET_IN_BYTES
276
277 /* the spot for the super in versions 3.5 - 3.5.10 (inclusive) */
278 #define REISERFS_OLD_DISK_OFFSET_IN_BYTES (8 * 1024)
279
280 // reiserfs internal error code (used by search_by_key adn fix_nodes))
281 #define CARRY_ON 0
282 #define REPEAT_SEARCH -1
283 #define IO_ERROR -2
284 #define NO_DISK_SPACE -3
285 #define NO_BALANCING_NEEDED (-4)
286 #define NO_MORE_UNUSED_CONTIGUOUS_BLOCKS (-5)
287 #define QUOTA_EXCEEDED -6
288
289 typedef __u32 b_blocknr_t;
290 typedef __u32 unp_t;
291
292 struct unfm_nodeinfo {
293 unp_t unfm_nodenum;
294 unsigned short unfm_freespace;
295 };
296
297 /* there are two formats of keys: 3.5 and 3.6
298 */
299 #define KEY_FORMAT_3_5 0
300 #define KEY_FORMAT_3_6 1
301
302 /* there are two stat datas */
303 #define STAT_DATA_V1 0
304 #define STAT_DATA_V2 1
305
306 /** this says about version of key of all items (but stat data) the
307 object consists of */
308 #define get_inode_item_key_version( inode ) \
309 ((REISERFS_I(inode)->i_flags & i_item_key_version_mask) ? KEY_FORMAT_3_6 : KEY_FORMAT_3_5)
310
311 #define set_inode_item_key_version( inode, version ) \
312 ({ if((version)==KEY_FORMAT_3_6) \
313 REISERFS_I(inode)->i_flags |= i_item_key_version_mask; \
314 else \
315 REISERFS_I(inode)->i_flags &= ~i_item_key_version_mask; })
316
317 #define get_inode_sd_version(inode) \
318 ((REISERFS_I(inode)->i_flags & i_stat_data_version_mask) ? STAT_DATA_V2 : STAT_DATA_V1)
319
320 #define set_inode_sd_version(inode, version) \
321 ({ if((version)==STAT_DATA_V2) \
322 REISERFS_I(inode)->i_flags |= i_stat_data_version_mask; \
323 else \
324 REISERFS_I(inode)->i_flags &= ~i_stat_data_version_mask; })
325
326 /* This is an aggressive tail suppression policy, I am hoping it
327 improves our benchmarks. The principle behind it is that percentage
328 space saving is what matters, not absolute space saving. This is
329 non-intuitive, but it helps to understand it if you consider that the
330 cost to access 4 blocks is not much more than the cost to access 1
331 block, if you have to do a seek and rotate. A tail risks a
332 non-linear disk access that is significant as a percentage of total
333 time cost for a 4 block file and saves an amount of space that is
334 less significant as a percentage of space, or so goes the hypothesis.
335 -Hans */
336 #define STORE_TAIL_IN_UNFM_S1(n_file_size,n_tail_size,n_block_size) \
337 (\
338 (!(n_tail_size)) || \
339 (((n_tail_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) || \
340 ( (n_file_size) >= (n_block_size) * 4 ) || \
341 ( ( (n_file_size) >= (n_block_size) * 3 ) && \
342 ( (n_tail_size) >= (MAX_DIRECT_ITEM_LEN(n_block_size))/4) ) || \
343 ( ( (n_file_size) >= (n_block_size) * 2 ) && \
344 ( (n_tail_size) >= (MAX_DIRECT_ITEM_LEN(n_block_size))/2) ) || \
345 ( ( (n_file_size) >= (n_block_size) ) && \
346 ( (n_tail_size) >= (MAX_DIRECT_ITEM_LEN(n_block_size) * 3)/4) ) ) \
347 )
348
349 /* Another strategy for tails, this one means only create a tail if all the
350 file would fit into one DIRECT item.
351 Primary intention for this one is to increase performance by decreasing
352 seeking.
353 */
354 #define STORE_TAIL_IN_UNFM_S2(n_file_size,n_tail_size,n_block_size) \
355 (\
356 (!(n_tail_size)) || \
357 (((n_file_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) ) \
358 )
359
360
361
362 /*
363 * values for s_umount_state field
364 */
365 #define REISERFS_VALID_FS 1
366 #define REISERFS_ERROR_FS 2
367
368 //
369 // there are 5 item types currently
370 //
371 #define TYPE_STAT_DATA 0
372 #define TYPE_INDIRECT 1
373 #define TYPE_DIRECT 2
374 #define TYPE_DIRENTRY 3
375 #define TYPE_MAXTYPE 3
376 #define TYPE_ANY 15 // FIXME: comment is required
377
378 /***************************************************************************/
379 /* KEY & ITEM HEAD */
380 /***************************************************************************/
381
382 //
383 // directories use this key as well as old files
384 //
385 #ifndef __GCC__
386 #pragma pack(push, 1)
387 #endif
388
389 struct offset_v1 {
390 __u32 k_offset;
391 __u32 k_uniqueness;
392 } __PACKED;
393
394 #ifndef __GCC__
395 #pragma pack(pop)
396 #endif
397
398
399 #ifndef __GCC__
400 #pragma pack(push, 1)
401 #endif
402
403 struct offset_v2 {
404 #ifdef __LITTLE_ENDIAN
405 /* little endian version */
406 __u64 k_offset:60;
407 __u64 k_type: 4;
408 #else
409 /* big endian version */
410 __u64 k_type: 4;
411 __u64 k_offset:60;
412 #endif
413 } __PACKED;
414
415 #ifndef __GCC__
416 #pragma pack(pop)
417 #endif
418
419
420 #ifndef __LITTLE_ENDIAN
421
422 #ifndef __GCC__
423 #pragma pack(push, 1)
424 #endif
425
426 typedef union {
427 struct offset_v2 offset_v2;
428 __u64 linear;
429 } __PACKED offset_v2_esafe_overlay;
430
431 #ifndef __GCC__
432 #pragma pack(pop)
433 #endif
434
435
436 #else
437 # define offset_v2_k_type(v2) ((v2)->k_type)
438 # define set_offset_v2_k_type(v2,val) (offset_v2_k_type(v2) = (val))
439 # define offset_v2_k_offset(v2) ((v2)->k_offset)
440 # define set_offset_v2_k_offset(v2,val) (offset_v2_k_offset(v2) = (val))
441 #endif
442
443
444 #ifndef __GCC__
445 #pragma pack(push, 1)
446 #endif
447
448 /* Key of an item determines its location in the S+tree, and
449 is composed of 4 components */
450 struct reiserfs_key {
451 __u32 k_dir_id; /* packing locality: by default parent
452 directory object id */
453 __u32 k_objectid; /* object identifier */
454 union {
455 struct offset_v1 k_offset_v1;
456 struct offset_v2 k_offset_v2;
457 } __PACKED u;
458 } __PACKED;
459
460 #ifndef __GCC__
461 #pragma pack(pop)
462 #endif
463
464 struct cpu_key {
465 struct reiserfs_key on_disk_key;
466 int version;
467 int key_length; /* 3 in all cases but direct2indirect and
468 indirect2direct conversion */
469 };
470
471 /* Our function for comparing keys can compare keys of different
472 lengths. It takes as a parameter the length of the keys it is to
473 compare. These defines are used in determining what is to be passed
474 to it as that parameter. */
475 #define REISERFS_FULL_KEY_LEN 4
476 #define REISERFS_SHORT_KEY_LEN 2
477
478 /* The result of the key compare */
479 #define FIRST_GREATER 1
480 #define SECOND_GREATER -1
481 #define KEYS_IDENTICAL 0
482 #define KEY_FOUND 1
483 #define KEY_NOT_FOUND 0
484
485 #define KEY_SIZE (sizeof(struct reiserfs_key))
486 #define SHORT_KEY_SIZE (sizeof (__u32) + sizeof (__u32))
487
488 /* return values for search_by_key and clones */
489 #define ITEM_FOUND 1
490 #define ITEM_NOT_FOUND 0
491 #define ENTRY_FOUND 1
492 #define ENTRY_NOT_FOUND 0
493 #define DIRECTORY_NOT_FOUND -1
494 #define REGULAR_FILE_FOUND -2
495 #define DIRECTORY_FOUND -3
496 #define BYTE_FOUND 1
497 #define BYTE_NOT_FOUND 0
498 #define FILE_NOT_FOUND -1
499
500 #define POSITION_FOUND 1
501 #define POSITION_NOT_FOUND 0
502
503 // return values for reiserfs_find_entry and search_by_entry_key
504 #define NAME_FOUND 1
505 #define NAME_NOT_FOUND 0
506 #define GOTO_PREVIOUS_ITEM 2
507 #define NAME_FOUND_INVISIBLE 3
508
509
510 #ifndef __GCC__
511 #pragma pack(push, 1)
512 #endif
513
514 /* Everything in the filesystem is stored as a set of items. The
515 item head contains the key of the item, its free space (for
516 indirect items) and specifies the location of the item itself
517 within the block. */
518 struct item_head
519 {
520 /* Everything in the tree is found by searching for it based on
521 * its key.*/
522 struct reiserfs_key ih_key;
523 union {
524 /* The free space in the last unformatted node of an
525 indirect item if this is an indirect item. This
526 equals 0xFFFF iff this is a direct item or stat data
527 item. Note that the key, not this field, is used to
528 determine the item type, and thus which field this
529 union contains. */
530 __u16 ih_free_space_reserved;
531 /* Iff this is a directory item, this field equals the
532 number of directory entries in the directory item. */
533 __u16 ih_entry_count;
534 } __PACKED u;
535 __u16 ih_item_len; /* total size of the item body */
536 __u16 ih_item_location; /* an offset to the item body
537 * within the block */
538 __u16 ih_version; /* 0 for all old items, 2 for new
539 ones. Highest bit is set by fsck
540 temporary, cleaned after all
541 done */
542 } __PACKED;
543
544 #ifndef __GCC__
545 #pragma pack(pop)
546 #endif
547
548 /* size of item header */
549 #define IH_SIZE (sizeof(struct item_head))
550
551 #define ih_free_space(ih) le16_to_cpu((ih)->u.ih_free_space_reserved)
552 #define ih_version(ih) le16_to_cpu((ih)->ih_version)
553 #define ih_entry_count(ih) le16_to_cpu((ih)->u.ih_entry_count)
554 #define ih_location(ih) le16_to_cpu((ih)->ih_item_location)
555 #define ih_item_len(ih) le16_to_cpu((ih)->ih_item_len)
556
557 #define put_ih_free_space(ih, val) do { (ih)->u.ih_free_space_reserved = cpu_to_le16(val); } while(0)
558 #define put_ih_version(ih, val) do { (ih)->ih_version = cpu_to_le16(val); } while (0)
559 #define put_ih_entry_count(ih, val) do { (ih)->u.ih_entry_count = cpu_to_le16(val); } while (0)
560 #define put_ih_location(ih, val) do { (ih)->ih_item_location = cpu_to_le16(val); } while (0)
561 #define put_ih_item_len(ih, val) do { (ih)->ih_item_len = cpu_to_le16(val); } while (0)
562
563
564 #define unreachable_item(ih) (ih_version(ih) & (1 << 15))
565
566 #define get_ih_free_space(ih) (ih_version (ih) == KEY_FORMAT_3_6 ? 0 : ih_free_space (ih))
567 #define set_ih_free_space(ih,val) put_ih_free_space((ih), ((ih_version(ih) == KEY_FORMAT_3_6) ? 0 : (val)))
568
569 /* these operate on indirect items, where you've got an array of ints
570 ** at a possibly unaligned location. These are a noop on ia32
571 **
572 ** p is the array of __u32, i is the index into the array, v is the value
573 ** to store there.
574 */
575 #define get_block_num(p, i) le32_to_cpu(get_unaligned((p) + (i)))
576 #define put_block_num(p, i, v) put_unaligned(cpu_to_le32(v), (p) + (i))
577
578 //
579 // in old version uniqueness field shows key type
580 //
581 #define V1_SD_UNIQUENESS 0
582 #define V1_INDIRECT_UNIQUENESS 0xfffffffe
583 #define V1_DIRECT_UNIQUENESS 0xffffffff
584 #define V1_DIRENTRY_UNIQUENESS 500
585 #define V1_ANY_UNIQUENESS 555 // FIXME: comment is required
586
587 //
588 // here are conversion routines
589 //
590 static inline int uniqueness2type (__u32 uniqueness) CONSTF;
591 static inline int uniqueness2type (__u32 uniqueness)
592 {
593 switch ((int)uniqueness) {
594 case V1_SD_UNIQUENESS: return TYPE_STAT_DATA;
595 case V1_INDIRECT_UNIQUENESS: return TYPE_INDIRECT;
596 case V1_DIRECT_UNIQUENESS: return TYPE_DIRECT;
597 case V1_DIRENTRY_UNIQUENESS: return TYPE_DIRENTRY;
598 default:
599 reiserfs_warning (NULL, "vs-500: unknown uniqueness %d",
600 uniqueness);
601 case V1_ANY_UNIQUENESS:
602 return TYPE_ANY;
603 }
604 }
605
606 static inline __u32 type2uniqueness (int type) CONSTF;
607 static inline __u32 type2uniqueness (int type)
608 {
609 switch (type) {
610 case TYPE_STAT_DATA: return V1_SD_UNIQUENESS;
611 case TYPE_INDIRECT: return V1_INDIRECT_UNIQUENESS;
612 case TYPE_DIRECT: return V1_DIRECT_UNIQUENESS;
613 case TYPE_DIRENTRY: return V1_DIRENTRY_UNIQUENESS;
614 default:
615 reiserfs_warning (NULL, "vs-501: unknown type %d", type);
616 case TYPE_ANY:
617 return V1_ANY_UNIQUENESS;
618 }
619 }
620
621 #define is_direntry_le_key(version,key) (le_key_k_type (version, key) == TYPE_DIRENTRY)
622 #define is_direct_le_key(version,key) (le_key_k_type (version, key) == TYPE_DIRECT)
623 #define is_indirect_le_key(version,key) (le_key_k_type (version, key) == TYPE_INDIRECT)
624 #define is_statdata_le_key(version,key) (le_key_k_type (version, key) == TYPE_STAT_DATA)
625
626 //
627 // item header has version.
628 //
629 #define is_direntry_le_ih(ih) is_direntry_le_key (ih_version (ih), &((ih)->ih_key))
630 #define is_direct_le_ih(ih) is_direct_le_key (ih_version (ih), &((ih)->ih_key))
631 #define is_indirect_le_ih(ih) is_indirect_le_key (ih_version(ih), &((ih)->ih_key))
632 #define is_statdata_le_ih(ih) is_statdata_le_key (ih_version (ih), &((ih)->ih_key))
633
634 #define is_direntry_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRENTRY)
635 #define is_direct_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRECT)
636 #define is_indirect_cpu_key(key) (cpu_key_k_type (key) == TYPE_INDIRECT)
637 #define is_statdata_cpu_key(key) (cpu_key_k_type (key) == TYPE_STAT_DATA)
638
639
640 /* are these used ? */
641 #define is_direntry_cpu_ih(ih) (is_direntry_cpu_key (&((ih)->ih_key)))
642 #define is_direct_cpu_ih(ih) (is_direct_cpu_key (&((ih)->ih_key)))
643 #define is_indirect_cpu_ih(ih) (is_indirect_cpu_key (&((ih)->ih_key)))
644 #define is_statdata_cpu_ih(ih) (is_statdata_cpu_key (&((ih)->ih_key)))
645
646
647
648
649
650 #define I_K_KEY_IN_ITEM(p_s_ih, p_s_key, n_blocksize) \
651 ( ! COMP_SHORT_KEYS(p_s_ih, p_s_key) && \
652 I_OFF_BYTE_IN_ITEM(p_s_ih, k_offset (p_s_key), n_blocksize) )
653
654 /* maximal length of item */
655 #define MAX_ITEM_LEN(block_size) (block_size - BLKH_SIZE - IH_SIZE)
656 #define MIN_ITEM_LEN 1
657
658
659 /* object identifier for root dir */
660 #define REISERFS_ROOT_OBJECTID 2
661 #define REISERFS_ROOT_PARENT_OBJECTID 1
662 extern struct reiserfs_key root_key;
663
664
665
666
667 /*
668 * Picture represents a leaf of the S+tree
669 * ______________________________________________________
670 * | | Array of | | |
671 * |Block | Object-Item | F r e e | Objects- |
672 * | head | Headers | S p a c e | Items |
673 * |______|_______________|___________________|___________|
674 */
675
676 /* Header of a disk block. More precisely, header of a formatted leaf
677 or internal node, and not the header of an unformatted node. */
678 struct block_head {
679 __u16 blk_level; /* Level of a block in the tree. */
680 __u16 blk_nr_item; /* Number of keys/items in a block. */
681 __u16 blk_free_space; /* Block free space in bytes. */
682 __u16 blk_reserved;
683 /* dump this in v4/planA */
684 struct reiserfs_key blk_right_delim_key; /* kept only for compatibility */
685 };
686
687 #define BLKH_SIZE (sizeof(struct block_head))
688 #define blkh_level(p_blkh) (le16_to_cpu((p_blkh)->blk_level))
689 #define blkh_nr_item(p_blkh) (le16_to_cpu((p_blkh)->blk_nr_item))
690 #define blkh_free_space(p_blkh) (le16_to_cpu((p_blkh)->blk_free_space))
691 #define blkh_reserved(p_blkh) (le16_to_cpu((p_blkh)->blk_reserved))
692 #define set_blkh_level(p_blkh,val) ((p_blkh)->blk_level = cpu_to_le16(val))
693 #define set_blkh_nr_item(p_blkh,val) ((p_blkh)->blk_nr_item = cpu_to_le16(val))
694 #define set_blkh_free_space(p_blkh,val) ((p_blkh)->blk_free_space = cpu_to_le16(val))
695 #define set_blkh_reserved(p_blkh,val) ((p_blkh)->blk_reserved = cpu_to_le16(val))
696 #define blkh_right_delim_key(p_blkh) ((p_blkh)->blk_right_delim_key)
697 #define set_blkh_right_delim_key(p_blkh,val) ((p_blkh)->blk_right_delim_key = val)
698
699 /*
700 * values for blk_level field of the struct block_head
701 */
702
703 #define FREE_LEVEL 0 /* when node gets removed from the tree its
704 blk_level is set to FREE_LEVEL. It is then
705 used to see whether the node is still in the
706 tree */
707
708 #define DISK_LEAF_NODE_LEVEL 1 /* Leaf node level.*/
709
710 /* Given the buffer head of a formatted node, resolve to the block head of that node. */
711 #define B_BLK_HEAD(p_s_bh) ((struct block_head *)((p_s_bh)->b_data))
712 /* Number of items that are in buffer. */
713 #define B_NR_ITEMS(p_s_bh) (blkh_nr_item(B_BLK_HEAD(p_s_bh)))
714 #define B_LEVEL(p_s_bh) (blkh_level(B_BLK_HEAD(p_s_bh)))
715 #define B_FREE_SPACE(p_s_bh) (blkh_free_space(B_BLK_HEAD(p_s_bh)))
716
717 #define PUT_B_NR_ITEMS(p_s_bh,val) do { set_blkh_nr_item(B_BLK_HEAD(p_s_bh),val); } while (0)
718 #define PUT_B_LEVEL(p_s_bh,val) do { set_blkh_level(B_BLK_HEAD(p_s_bh),val); } while (0)
719 #define PUT_B_FREE_SPACE(p_s_bh,val) do { set_blkh_free_space(B_BLK_HEAD(p_s_bh),val); } while (0)
720
721
722 /* Get right delimiting key. -- little endian */
723 #define B_PRIGHT_DELIM_KEY(p_s_bh) (&(blk_right_delim_key(B_BLK_HEAD(p_s_bh))
724
725 /* Does the buffer contain a disk leaf. */
726 #define B_IS_ITEMS_LEVEL(p_s_bh) (B_LEVEL(p_s_bh) == DISK_LEAF_NODE_LEVEL)
727
728 /* Does the buffer contain a disk internal node */
729 #define B_IS_KEYS_LEVEL(p_s_bh) (B_LEVEL(p_s_bh) > DISK_LEAF_NODE_LEVEL \
730 && B_LEVEL(p_s_bh) <= MAX_HEIGHT)
731
732
733
734
735 /***************************************************************************/
736 /* STAT DATA */
737 /***************************************************************************/
738
739
740 #ifndef __GCC__
741 #pragma pack(push, 1)
742 #endif
743
744 //
745 // old stat data is 32 bytes long. We are going to distinguish new one by
746 // different size
747 //
748 struct stat_data_v1
749 {
750 __u16 sd_mode; /* file type, permissions */
751 __u16 sd_nlink; /* number of hard links */
752 __u16 sd_uid; /* owner */
753 __u16 sd_gid; /* group */
754 __u32 sd_size; /* file size */
755 __u32 sd_atime; /* time of last access */
756 __u32 sd_mtime; /* time file was last modified */
757 __u32 sd_ctime; /* time inode (stat data) was last changed (except changes to sd_atime and sd_mtime) */
758 union {
759 __u32 sd_rdev;
760 __u32 sd_blocks; /* number of blocks file uses */
761 } __PACKED u;
762 __u32 sd_first_direct_byte; /* first byte of file which is stored
763 in a direct item: except that if it
764 equals 1 it is a symlink and if it
765 equals ~(__u32)0 there is no
766 direct item. The existence of this
767 field really grates on me. Let's
768 replace it with a macro based on
769 sd_size and our tail suppression
770 policy. Someday. -Hans */
771 } __PACKED;
772
773 #ifndef __GCC__
774 #pragma pack(pop)
775 #endif
776
777 #define SD_V1_SIZE (sizeof(struct stat_data_v1))
778 #define stat_data_v1(ih) (ih_version (ih) == KEY_FORMAT_3_5)
779 #define sd_v1_mode(sdp) (le16_to_cpu((sdp)->sd_mode))
780 #define set_sd_v1_mode(sdp,v) ((sdp)->sd_mode = cpu_to_le16(v))
781 #define sd_v1_nlink(sdp) (le16_to_cpu((sdp)->sd_nlink))
782 #define set_sd_v1_nlink(sdp,v) ((sdp)->sd_nlink = cpu_to_le16(v))
783 #define sd_v1_uid(sdp) (le16_to_cpu((sdp)->sd_uid))
784 #define set_sd_v1_uid(sdp,v) ((sdp)->sd_uid = cpu_to_le16(v))
785 #define sd_v1_gid(sdp) (le16_to_cpu((sdp)->sd_gid))
786 #define set_sd_v1_gid(sdp,v) ((sdp)->sd_gid = cpu_to_le16(v))
787 #define sd_v1_size(sdp) (le32_to_cpu((sdp)->sd_size))
788 #define set_sd_v1_size(sdp,v) ((sdp)->sd_size = cpu_to_le32(v))
789 #define sd_v1_atime(sdp) (le32_to_cpu((sdp)->sd_atime))
790 #define set_sd_v1_atime(sdp,v) ((sdp)->sd_atime = cpu_to_le32(v))
791 #define sd_v1_mtime(sdp) (le32_to_cpu((sdp)->sd_mtime))
792 #define set_sd_v1_mtime(sdp,v) ((sdp)->sd_mtime = cpu_to_le32(v))
793 #define sd_v1_ctime(sdp) (le32_to_cpu((sdp)->sd_ctime))
794 #define set_sd_v1_ctime(sdp,v) ((sdp)->sd_ctime = cpu_to_le32(v))
795 #define sd_v1_rdev(sdp) (le32_to_cpu((sdp)->u.sd_rdev))
796 #define set_sd_v1_rdev(sdp,v) ((sdp)->u.sd_rdev = cpu_to_le32(v))
797 #define sd_v1_blocks(sdp) (le32_to_cpu((sdp)->u.sd_blocks))
798 #define set_sd_v1_blocks(sdp,v) ((sdp)->u.sd_blocks = cpu_to_le32(v))
799 #define sd_v1_first_direct_byte(sdp) \
800 (le32_to_cpu((sdp)->sd_first_direct_byte))
801 #define set_sd_v1_first_direct_byte(sdp,v) \
802 ((sdp)->sd_first_direct_byte = cpu_to_le32(v))
803
804 #include <linux/ext2_fs.h>
805
806 /* inode flags stored in sd_attrs (nee sd_reserved) */
807
808 /* we want common flags to have the same values as in ext2,
809 so chattr(1) will work without problems */
810 #define REISERFS_IMMUTABLE_FL EXT2_IMMUTABLE_FL
811 #define REISERFS_APPEND_FL EXT2_APPEND_FL
812 #define REISERFS_SYNC_FL EXT2_SYNC_FL
813 #define REISERFS_NOATIME_FL EXT2_NOATIME_FL
814 #define REISERFS_NODUMP_FL EXT2_NODUMP_FL
815 #define REISERFS_SECRM_FL EXT2_SECRM_FL
816 #define REISERFS_UNRM_FL EXT2_UNRM_FL
817 #define REISERFS_COMPR_FL EXT2_COMPR_FL
818 #define REISERFS_NOTAIL_FL EXT2_NOTAIL_FL
819
820 /* persistent flags that file inherits from the parent directory */
821 #define REISERFS_INHERIT_MASK ( REISERFS_IMMUTABLE_FL | \
822 REISERFS_SYNC_FL | \
823 REISERFS_NOATIME_FL | \
824 REISERFS_NODUMP_FL | \
825 REISERFS_SECRM_FL | \
826 REISERFS_COMPR_FL | \
827 REISERFS_NOTAIL_FL )
828
829
830 #ifndef __GCC__
831 #pragma pack(push, 1)
832 #endif
833
834 /* Stat Data on disk (reiserfs version of UFS disk inode minus the
835 address blocks) */
836 struct stat_data {
837 __u16 sd_mode; /* file type, permissions */
838 __u16 sd_attrs; /* persistent inode flags */
839 __u32 sd_nlink; /* number of hard links */
840 __u64 sd_size; /* file size */
841 __u32 sd_uid; /* owner */
842 __u32 sd_gid; /* group */
843 __u32 sd_atime; /* time of last access */
844 __u32 sd_mtime; /* time file was last modified */
845 __u32 sd_ctime; /* time inode (stat data) was last changed (except changes to sd_atime and sd_mtime) */
846 __u32 sd_blocks;
847 union {
848 __u32 sd_rdev;
849 __u32 sd_generation;
850 //__u32 sd_first_direct_byte;
851 /* first byte of file which is stored in a
852 direct item: except that if it equals 1
853 it is a symlink and if it equals
854 ~(__u32)0 there is no direct item. The
855 existence of this field really grates
856 on me. Let's replace it with a macro
857 based on sd_size and our tail
858 suppression policy? */
859 } __PACKED u;
860 } __PACKED;
861
862 #ifndef __GCC__
863 #pragma pack(pop)
864 #endif
865
866 //
867 // this is 44 bytes long
868 //
869 #define SD_SIZE (sizeof(struct stat_data))
870 #define SD_V2_SIZE SD_SIZE
871 #define stat_data_v2(ih) (ih_version (ih) == KEY_FORMAT_3_6)
872 #define sd_v2_mode(sdp) (le16_to_cpu((sdp)->sd_mode))
873 #define set_sd_v2_mode(sdp,v) ((sdp)->sd_mode = cpu_to_le16(v))
874 /* sd_reserved */
875 /* set_sd_reserved */
876 #define sd_v2_nlink(sdp) (le32_to_cpu((sdp)->sd_nlink))
877 #define set_sd_v2_nlink(sdp,v) ((sdp)->sd_nlink = cpu_to_le32(v))
878 #define sd_v2_size(sdp) (le64_to_cpu((sdp)->sd_size))
879 #define set_sd_v2_size(sdp,v) ((sdp)->sd_size = cpu_to_le64(v))
880 #define sd_v2_uid(sdp) (le32_to_cpu((sdp)->sd_uid))
881 #define set_sd_v2_uid(sdp,v) ((sdp)->sd_uid = cpu_to_le32(v))
882 #define sd_v2_gid(sdp) (le32_to_cpu((sdp)->sd_gid))
883 #define set_sd_v2_gid(sdp,v) ((sdp)->sd_gid = cpu_to_le32(v))
884 #define sd_v2_atime(sdp) (le32_to_cpu((sdp)->sd_atime))
885 #define set_sd_v2_atime(sdp,v) ((sdp)->sd_atime = cpu_to_le32(v))
886 #define sd_v2_mtime(sdp) (le32_to_cpu((sdp)->sd_mtime))
887 #define set_sd_v2_mtime(sdp,v) ((sdp)->sd_mtime = cpu_to_le32(v))
888 #define sd_v2_ctime(sdp) (le32_to_cpu((sdp)->sd_ctime))
889 #define set_sd_v2_ctime(sdp,v) ((sdp)->sd_ctime = cpu_to_le32(v))
890 #define sd_v2_blocks(sdp) (le32_to_cpu((sdp)->sd_blocks))
891 #define set_sd_v2_blocks(sdp,v) ((sdp)->sd_blocks = cpu_to_le32(v))
892 #define sd_v2_rdev(sdp) (le32_to_cpu((sdp)->u.sd_rdev))
893 #define set_sd_v2_rdev(sdp,v) ((sdp)->u.sd_rdev = cpu_to_le32(v))
894 #define sd_v2_generation(sdp) (le32_to_cpu((sdp)->u.sd_generation))
895 #define set_sd_v2_generation(sdp,v) ((sdp)->u.sd_generation = cpu_to_le32(v))
896 #define sd_v2_attrs(sdp) (le16_to_cpu((sdp)->sd_attrs))
897 #define set_sd_v2_attrs(sdp,v) ((sdp)->sd_attrs = cpu_to_le16(v))
898
899
900 /***************************************************************************/
901 /* DIRECTORY STRUCTURE */
902 /***************************************************************************/
903 /*
904 Picture represents the structure of directory items
905 ________________________________________________
906 | Array of | | | | | |
907 | directory |N-1| N-2 | .... | 1st |0th|
908 | entry headers | | | | | |
909 |_______________|___|_____|________|_______|___|
910 <---- directory entries ------>
911
912 First directory item has k_offset component 1. We store "." and ".."
913 in one item, always, we never split "." and ".." into differing
914 items. This makes, among other things, the code for removing
915 directories simpler. */
916 #define SD_OFFSET 0
917 #define SD_UNIQUENESS 0
918 #define DOT_OFFSET 1
919 #define DOT_DOT_OFFSET 2
920 #define DIRENTRY_UNIQUENESS 500
921
922 /* */
923 #define FIRST_ITEM_OFFSET 1
924
925 /*
926 Q: How to get key of object pointed to by entry from entry?
927
928 A: Each directory entry has its header. This header has deh_dir_id and deh_objectid fields, those are key
929 of object, entry points to */
930
931 /* NOT IMPLEMENTED:
932 Directory will someday contain stat data of object */
933
934
935
936 #ifndef __GCC__
937 #pragma pack(push, 1)
938 #endif
939
940 struct reiserfs_de_head
941 {
942 __u32 deh_offset; /* third component of the directory entry key */
943 __u32 deh_dir_id; /* objectid of the parent directory of the object, that is referenced
944 by directory entry */
945 __u32 deh_objectid; /* objectid of the object, that is referenced by directory entry */
946 __u16 deh_location; /* offset of name in the whole item */
947 __u16 deh_state; /* whether 1) entry contains stat data (for future), and 2) whether
948 entry is hidden (unlinked) */
949 } __PACKED;
950
951 #ifndef __GCC__
952 #pragma pack(pop)
953 #endif
954
955 #define DEH_SIZE sizeof(struct reiserfs_de_head)
956 #define deh_offset(p_deh) (le32_to_cpu((p_deh)->deh_offset))
957 #define deh_dir_id(p_deh) (le32_to_cpu((p_deh)->deh_dir_id))
958 #define deh_objectid(p_deh) (le32_to_cpu((p_deh)->deh_objectid))
959 #define deh_location(p_deh) (le16_to_cpu((p_deh)->deh_location))
960 #define deh_state(p_deh) (le16_to_cpu((p_deh)->deh_state))
961
962 #define put_deh_offset(p_deh,v) ((p_deh)->deh_offset = cpu_to_le32((v)))
963 #define put_deh_dir_id(p_deh,v) ((p_deh)->deh_dir_id = cpu_to_le32((v)))
964 #define put_deh_objectid(p_deh,v) ((p_deh)->deh_objectid = cpu_to_le32((v)))
965 #define put_deh_location(p_deh,v) ((p_deh)->deh_location = cpu_to_le16((v)))
966 #define put_deh_state(p_deh,v) ((p_deh)->deh_state = cpu_to_le16((v)))
967
968 /* empty directory contains two entries "." and ".." and their headers */
969 #define EMPTY_DIR_SIZE \
970 (DEH_SIZE * 2 + ROUND_UP (strlen (".")) + ROUND_UP (strlen ("..")))
971
972 /* old format directories have this size when empty */
973 #define EMPTY_DIR_SIZE_V1 (DEH_SIZE * 2 + 3)
974
975 #define DEH_Statdata 0 /* not used now */
976 #define DEH_Visible 2
977
978 /* 64 bit systems (and the S/390) need to be aligned explicitly -jdm */
979 #if BITS_PER_LONG == 64 || defined(__s390__) || defined(__hppa__)
980 # define ADDR_UNALIGNED_BITS (3)
981 #endif
982
983 /* These are only used to manipulate deh_state.
984 * Because of this, we'll use the ext2_ bit routines,
985 * since they are little endian */
986 #ifdef ADDR_UNALIGNED_BITS
987
988 # define aligned_address(addr) ((void *)((long)(addr) & ~((1UL << ADDR_UNALIGNED_BITS) - 1)))
989 # define unaligned_offset(addr) (((int)((long)(addr) & ((1 << ADDR_UNALIGNED_BITS) - 1))) << 3)
990
991 # define set_bit_unaligned(nr, addr) ext2_set_bit((nr) + unaligned_offset(addr), aligned_address(addr))
992 # define clear_bit_unaligned(nr, addr) ext2_clear_bit((nr) + unaligned_offset(addr), aligned_address(addr))
993 # define test_bit_unaligned(nr, addr) ext2_test_bit((nr) + unaligned_offset(addr), aligned_address(addr))
994
995 #else
996
997 # define set_bit_unaligned(nr, addr) ext2_set_bit(nr, addr)
998 # define clear_bit_unaligned(nr, addr) ext2_clear_bit(nr, addr)
999 # define test_bit_unaligned(nr, addr) ext2_test_bit(nr, addr)
1000
1001 #endif
1002
1003 #define mark_de_with_sd(deh) set_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
1004 #define mark_de_without_sd(deh) clear_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
1005 #define mark_de_visible(deh) set_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1006 #define mark_de_hidden(deh) clear_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1007
1008 #define de_with_sd(deh) test_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
1009 #define de_visible(deh) test_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1010 #define de_hidden(deh) !test_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1011
1012 extern void make_empty_dir_item_v1 (char * body, __u32 dirid, __u32 objid,
1013 __u32 par_dirid, __u32 par_objid);
1014 extern void make_empty_dir_item (char * body, __u32 dirid, __u32 objid,
1015 __u32 par_dirid, __u32 par_objid);
1016
1017 /* array of the entry headers */
1018 /* get item body */
1019 #define B_I_PITEM(bh,ih) ( (bh)->b_data + ih_location(ih) )
1020 #define B_I_DEH(bh,ih) ((struct reiserfs_de_head *)(B_I_PITEM(bh,ih)))
1021
1022 /* length of the directory entry in directory item. This define
1023 calculates length of i-th directory entry using directory entry
1024 locations from dir entry head. When it calculates length of 0-th
1025 directory entry, it uses length of whole item in place of entry
1026 location of the non-existent following entry in the calculation.
1027 See picture above.*/
1028 /*
1029 #define I_DEH_N_ENTRY_LENGTH(ih,deh,i) \
1030 ((i) ? (deh_location((deh)-1) - deh_location((deh))) : (ih_item_len((ih)) - deh_location((deh))))
1031 */
1032 static inline int entry_length (const struct buffer_head * bh,
1033 const struct item_head * ih, int pos_in_item)
1034 {
1035 struct reiserfs_de_head * deh;
1036
1037 deh = B_I_DEH (bh, ih) + pos_in_item;
1038 if (pos_in_item)
1039 return deh_location(deh-1) - deh_location(deh);
1040
1041 return ih_item_len(ih) - deh_location(deh);
1042 }
1043
1044
1045
1046 /* number of entries in the directory item, depends on ENTRY_COUNT being at the start of directory dynamic data. */
1047 #define I_ENTRY_COUNT(ih) (ih_entry_count((ih)))
1048
1049
1050 /* name by bh, ih and entry_num */
1051 #define B_I_E_NAME(bh,ih,entry_num) ((char *)(bh->b_data + ih_location(ih) + deh_location(B_I_DEH(bh,ih)+(entry_num))))
1052
1053 // two entries per block (at least)
1054 #define REISERFS_MAX_NAME(block_size) 255
1055
1056
1057 /* this structure is used for operations on directory entries. It is
1058 not a disk structure. */
1059 /* When reiserfs_find_entry or search_by_entry_key find directory
1060 entry, they return filled reiserfs_dir_entry structure */
1061 struct reiserfs_dir_entry
1062 {
1063 struct buffer_head * de_bh;
1064 int de_item_num;
1065 struct item_head * de_ih;
1066 int de_entry_num;
1067 struct reiserfs_de_head * de_deh;
1068 int de_entrylen;
1069 int de_namelen;
1070 char * de_name;
1071 char * de_gen_number_bit_string;
1072
1073 __u32 de_dir_id;
1074 __u32 de_objectid;
1075
1076 struct cpu_key de_entry_key;
1077 };
1078
1079 /* these defines are useful when a particular member of a reiserfs_dir_entry is needed */
1080
1081 /* pointer to file name, stored in entry */
1082 #define B_I_DEH_ENTRY_FILE_NAME(bh,ih,deh) (B_I_PITEM (bh, ih) + deh_location(deh))
1083
1084 /* length of name */
1085 #define I_DEH_N_ENTRY_FILE_NAME_LENGTH(ih,deh,entry_num) \
1086 (I_DEH_N_ENTRY_LENGTH (ih, deh, entry_num) - (de_with_sd (deh) ? SD_SIZE : 0))
1087
1088
1089
1090 /* hash value occupies bits from 7 up to 30 */
1091 #define GET_HASH_VALUE(offset) ((offset) & 0x7fffff80LL)
1092 /* generation number occupies 7 bits starting from 0 up to 6 */
1093 #define GET_GENERATION_NUMBER(offset) ((offset) & 0x7fLL)
1094 #define MAX_GENERATION_NUMBER 127
1095
1096 #define SET_GENERATION_NUMBER(offset,gen_number) (GET_HASH_VALUE(offset)|(gen_number))
1097
1098
1099 /*
1100 * Picture represents an internal node of the reiserfs tree
1101 * ______________________________________________________
1102 * | | Array of | Array of | Free |
1103 * |block | keys | pointers | space |
1104 * | head | N | N+1 | |
1105 * |______|_______________|___________________|___________|
1106 */
1107
1108 /***************************************************************************/
1109 /* DISK CHILD */
1110 /***************************************************************************/
1111 /* Disk child pointer: The pointer from an internal node of the tree
1112 to a node that is on disk. */
1113 struct disk_child {
1114 __u32 dc_block_number; /* Disk child's block number. */
1115 __u16 dc_size; /* Disk child's used space. */
1116 __u16 dc_reserved;
1117 };
1118
1119 #define DC_SIZE (sizeof(struct disk_child))
1120 #define dc_block_number(dc_p) (le32_to_cpu((dc_p)->dc_block_number))
1121 #define dc_size(dc_p) (le16_to_cpu((dc_p)->dc_size))
1122 #define put_dc_block_number(dc_p, val) do { (dc_p)->dc_block_number = cpu_to_le32(val); } while(0)
1123 #define put_dc_size(dc_p, val) do { (dc_p)->dc_size = cpu_to_le16(val); } while(0)
1124
1125 /* Get disk child by buffer header and position in the tree node. */
1126 #define B_N_CHILD(p_s_bh,n_pos) ((struct disk_child *)\
1127 ((p_s_bh)->b_data+BLKH_SIZE+B_NR_ITEMS(p_s_bh)*KEY_SIZE+DC_SIZE*(n_pos)))
1128
1129 /* Get disk child number by buffer header and position in the tree node. */
1130 #define B_N_CHILD_NUM(p_s_bh,n_pos) (dc_block_number(B_N_CHILD(p_s_bh,n_pos)))
1131 #define PUT_B_N_CHILD_NUM(p_s_bh,n_pos, val) (put_dc_block_number(B_N_CHILD(p_s_bh,n_pos), val ))
1132
1133 /* maximal value of field child_size in structure disk_child */
1134 /* child size is the combined size of all items and their headers */
1135 #define MAX_CHILD_SIZE(bh) ((int)( (bh)->b_size - BLKH_SIZE ))
1136
1137 /* amount of used space in buffer (not including block head) */
1138 #define B_CHILD_SIZE(cur) (MAX_CHILD_SIZE(cur)-(B_FREE_SPACE(cur)))
1139
1140 /* max and min number of keys in internal node */
1141 #define MAX_NR_KEY(bh) ( (MAX_CHILD_SIZE(bh)-DC_SIZE)/(KEY_SIZE+DC_SIZE) )
1142 #define MIN_NR_KEY(bh) (MAX_NR_KEY(bh)/2)
1143
1144 /***************************************************************************/
1145 /* PATH STRUCTURES AND DEFINES */
1146 /***************************************************************************/
1147
1148
1149 /* Search_by_key fills up the path from the root to the leaf as it descends the tree looking for the
1150 key. It uses reiserfs_bread to try to find buffers in the cache given their block number. If it
1151 does not find them in the cache it reads them from disk. For each node search_by_key finds using
1152 reiserfs_bread it then uses bin_search to look through that node. bin_search will find the
1153 position of the block_number of the next node if it is looking through an internal node. If it
1154 is looking through a leaf node bin_search will find the position of the item which has key either
1155 equal to given key, or which is the maximal key less than the given key. */
1156
1157 struct path_element {
1158 struct buffer_head * pe_buffer; /* Pointer to the buffer at the path in the tree. */
1159 int pe_position; /* Position in the tree node which is placed in the */
1160 /* buffer above. */
1161 };
1162
1163 #define MAX_HEIGHT 5 /* maximal height of a tree. don't change this without changing JOURNAL_PER_BALANCE_CNT */
1164 #define EXTENDED_MAX_HEIGHT 7 /* Must be equals MAX_HEIGHT + FIRST_PATH_ELEMENT_OFFSET */
1165 #define FIRST_PATH_ELEMENT_OFFSET 2 /* Must be equal to at least 2. */
1166
1167 #define ILLEGAL_PATH_ELEMENT_OFFSET 1 /* Must be equal to FIRST_PATH_ELEMENT_OFFSET - 1 */
1168 #define MAX_FEB_SIZE 6 /* this MUST be MAX_HEIGHT + 1. See about FEB below */
1169
1170
1171
1172 /* We need to keep track of who the ancestors of nodes are. When we
1173 perform a search we record which nodes were visited while
1174 descending the tree looking for the node we searched for. This list
1175 of nodes is called the path. This information is used while
1176 performing balancing. Note that this path information may become
1177 invalid, and this means we must check it when using it to see if it
1178 is still valid. You'll need to read search_by_key and the comments
1179 in it, especially about decrement_counters_in_path(), to understand
1180 this structure.
1181
1182 Paths make the code so much harder to work with and debug.... An
1183 enormous number of bugs are due to them, and trying to write or modify
1184 code that uses them just makes my head hurt. They are based on an
1185 excessive effort to avoid disturbing the precious VFS code.:-( The
1186 gods only know how we are going to SMP the code that uses them.
1187 znodes are the way! */
1188
1189 #define PATH_READA 0x1 /* do read ahead */
1190 #define PATH_READA_BACK 0x2 /* read backwards */
1191
1192 struct path {
1193 int path_length; /* Length of the array above. */
1194 int reada;
1195 struct path_element path_elements[EXTENDED_MAX_HEIGHT]; /* Array of the path elements. */
1196 int pos_in_item;
1197 };
1198
1199 #define pos_in_item(path) ((path)->pos_in_item)
1200
1201 #define INITIALIZE_PATH(var) \
1202 struct path var = {.path_length = ILLEGAL_PATH_ELEMENT_OFFSET, .reada = 0,}
1203
1204 /* Get path element by path and path position. */
1205 #define PATH_OFFSET_PELEMENT(p_s_path,n_offset) ((p_s_path)->path_elements +(n_offset))
1206
1207 /* Get buffer header at the path by path and path position. */
1208 #define PATH_OFFSET_PBUFFER(p_s_path,n_offset) (PATH_OFFSET_PELEMENT(p_s_path,n_offset)->pe_buffer)
1209
1210 /* Get position in the element at the path by path and path position. */
1211 #define PATH_OFFSET_POSITION(p_s_path,n_offset) (PATH_OFFSET_PELEMENT(p_s_path,n_offset)->pe_position)
1212
1213
1214 #define PATH_PLAST_BUFFER(p_s_path) (PATH_OFFSET_PBUFFER((p_s_path), (p_s_path)->path_length))
1215 /* you know, to the person who didn't
1216 write this the macro name does not
1217 at first suggest what it does.
1218 Maybe POSITION_FROM_PATH_END? Or
1219 maybe we should just focus on
1220 dumping paths... -Hans */
1221 #define PATH_LAST_POSITION(p_s_path) (PATH_OFFSET_POSITION((p_s_path), (p_s_path)->path_length))
1222
1223
1224 #define PATH_PITEM_HEAD(p_s_path) B_N_PITEM_HEAD(PATH_PLAST_BUFFER(p_s_path),PATH_LAST_POSITION(p_s_path))
1225
1226 /* in do_balance leaf has h == 0 in contrast with path structure,
1227 where root has level == 0. That is why we need these defines */
1228 #define PATH_H_PBUFFER(p_s_path, h) PATH_OFFSET_PBUFFER (p_s_path, p_s_path->path_length - (h)) /* tb->S[h] */
1229 #define PATH_H_PPARENT(path, h) PATH_H_PBUFFER (path, (h) + 1) /* tb->F[h] or tb->S[0]->b_parent */
1230 #define PATH_H_POSITION(path, h) PATH_OFFSET_POSITION (path, path->path_length - (h))
1231 #define PATH_H_B_ITEM_ORDER(path, h) PATH_H_POSITION(path, h + 1) /* tb->S[h]->b_item_order */
1232
1233 #define PATH_H_PATH_OFFSET(p_s_path, n_h) ((p_s_path)->path_length - (n_h))
1234
1235 #define get_last_bh(path) PATH_PLAST_BUFFER(path)
1236 #define get_ih(path) PATH_PITEM_HEAD(path)
1237 #define get_item_pos(path) PATH_LAST_POSITION(path)
1238 #define get_item(path) ((void *)B_N_PITEM(PATH_PLAST_BUFFER(path), PATH_LAST_POSITION (path)))
1239 #define item_moved(ih,path) comp_items(ih, path)
1240 #define path_changed(ih,path) comp_items (ih, path)
1241
1242
1243 /***************************************************************************/
1244 /* MISC */
1245 /***************************************************************************/
1246
1247 /* Size of pointer to the unformatted node. */
1248 #define UNFM_P_SIZE (sizeof(unp_t))
1249 #define UNFM_P_SHIFT 2
1250
1251 // in in-core inode key is stored on le form
1252 #define INODE_PKEY(inode) ((struct reiserfs_key *)(REISERFS_I(inode)->i_key))
1253
1254 #define MAX_UL_INT 0xffffffff
1255 #define MAX_INT 0x7ffffff
1256 #define MAX_US_INT 0xffff
1257
1258 // reiserfs version 2 has max offset 60 bits. Version 1 - 32 bit offset
1259 #define U32_MAX (~(__u32)0)
1260
1261 static inline loff_t max_reiserfs_offset (struct inode * inode)
1262 {
1263 if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5)
1264 return (loff_t)U32_MAX;
1265
1266 return (loff_t)((~(__u64)0) >> 4);
1267 }
1268
1269
1270 /*#define MAX_KEY_UNIQUENESS MAX_UL_INT*/
1271 #define MAX_KEY_OBJECTID MAX_UL_INT
1272
1273
1274 #define MAX_B_NUM MAX_UL_INT
1275 #define MAX_FC_NUM MAX_US_INT
1276
1277
1278 /* the purpose is to detect overflow of an unsigned short */
1279 #define REISERFS_LINK_MAX (MAX_US_INT - 1000)
1280
1281
1282 /* The following defines are used in reiserfs_insert_item and reiserfs_append_item */
1283 #define REISERFS_KERNEL_MEM 0 /* reiserfs kernel memory mode */
1284 #define REISERFS_USER_MEM 1 /* reiserfs user memory mode */
1285
1286 #define fs_generation(s) (REISERFS_SB(s)->s_generation_counter)
1287 #define get_generation(s) atomic_read (&fs_generation(s))
1288 #define FILESYSTEM_CHANGED_TB(tb) (get_generation((tb)->tb_sb) != (tb)->fs_gen)
1289 #define __fs_changed(gen,s) (gen != get_generation (s))
1290 #define fs_changed(gen,s) ({cond_resched(); __fs_changed(gen, s);})
1291
1292
1293 /***************************************************************************/
1294 /* FIXATE NODES */
1295 /***************************************************************************/
1296
1297 #define VI_TYPE_LEFT_MERGEABLE 1
1298 #define VI_TYPE_RIGHT_MERGEABLE 2
1299
1300 /* To make any changes in the tree we always first find node, that
1301 contains item to be changed/deleted or place to insert a new
1302 item. We call this node S. To do balancing we need to decide what
1303 we will shift to left/right neighbor, or to a new node, where new
1304 item will be etc. To make this analysis simpler we build virtual
1305 node. Virtual node is an array of items, that will replace items of
1306 node S. (For instance if we are going to delete an item, virtual
1307 node does not contain it). Virtual node keeps information about
1308 item sizes and types, mergeability of first and last items, sizes
1309 of all entries in directory item. We use this array of items when
1310 calculating what we can shift to neighbors and how many nodes we
1311 have to have if we do not any shiftings, if we shift to left/right
1312 neighbor or to both. */
1313 struct virtual_item
1314 {
1315 int vi_index; // index in the array of item operations
1316 unsigned short vi_type; // left/right mergeability
1317 unsigned short vi_item_len; /* length of item that it will have after balancing */
1318 struct item_head * vi_ih;
1319 const char * vi_item; // body of item (old or new)
1320 const void * vi_new_data; // 0 always but paste mode
1321 void * vi_uarea; // item specific area
1322 };
1323
1324
1325 struct virtual_node
1326 {
1327 char * vn_free_ptr; /* this is a pointer to the free space in the buffer */
1328 unsigned short vn_nr_item; /* number of items in virtual node */
1329 short vn_size; /* size of node , that node would have if it has unlimited size and no balancing is performed */
1330 short vn_mode; /* mode of balancing (paste, insert, delete, cut) */
1331 short vn_affected_item_num;
1332 short vn_pos_in_item;
1333 struct item_head * vn_ins_ih; /* item header of inserted item, 0 for other modes */
1334 const void * vn_data;
1335 struct virtual_item * vn_vi; /* array of items (including a new one, excluding item to be deleted) */
1336 };
1337
1338
1339 #ifndef __GCC__
1340 #pragma pack(push, 1)
1341 #endif
1342
1343 /* used by directory items when creating virtual nodes */
1344 struct direntry_uarea {
1345 int flags;
1346 __u16 entry_count;
1347 __u16 entry_sizes[1];
1348 } __PACKED ;
1349
1350 #ifndef __GCC__
1351 #pragma pack(pop)
1352 #endif
1353
1354 /***************************************************************************/
1355 /* TREE BALANCE */
1356 /***************************************************************************/
1357
1358 /* This temporary structure is used in tree balance algorithms, and
1359 constructed as we go to the extent that its various parts are
1360 needed. It contains arrays of nodes that can potentially be
1361 involved in the balancing of node S, and parameters that define how
1362 each of the nodes must be balanced. Note that in these algorithms
1363 for balancing the worst case is to need to balance the current node
1364 S and the left and right neighbors and all of their parents plus
1365 create a new node. We implement S1 balancing for the leaf nodes
1366 and S0 balancing for the internal nodes (S1 and S0 are defined in
1367 our papers.)*/
1368
1369 #define MAX_FREE_BLOCK 7 /* size of the array of buffers to free at end of do_balance */
1370
1371 /* maximum number of FEB blocknrs on a single level */
1372 #define MAX_AMOUNT_NEEDED 2
1373
1374 /* someday somebody will prefix every field in this struct with tb_ */
1375 struct tree_balance
1376 {
1377 int tb_mode;
1378 int need_balance_dirty;
1379 struct super_block * tb_sb;
1380 struct reiserfs_transaction_handle *transaction_handle ;
1381 struct path * tb_path;
1382 struct buffer_head * L[MAX_HEIGHT]; /* array of left neighbors of nodes in the path */
1383 struct buffer_head * R[MAX_HEIGHT]; /* array of right neighbors of nodes in the path*/
1384 struct buffer_head * FL[MAX_HEIGHT]; /* array of fathers of the left neighbors */
1385 struct buffer_head * FR[MAX_HEIGHT]; /* array of fathers of the right neighbors */
1386 struct buffer_head * CFL[MAX_HEIGHT]; /* array of common parents of center node and its left neighbor */
1387 struct buffer_head * CFR[MAX_HEIGHT]; /* array of common parents of center node and its right neighbor */
1388
1389 struct buffer_head * FEB[MAX_FEB_SIZE]; /* array of empty buffers. Number of buffers in array equals
1390 cur_blknum. */
1391 struct buffer_head * used[MAX_FEB_SIZE];
1392 struct buffer_head * thrown[MAX_FEB_SIZE];
1393 int lnum[MAX_HEIGHT]; /* array of number of items which must be
1394 shifted to the left in order to balance the
1395 current node; for leaves includes item that
1396 will be partially shifted; for internal
1397 nodes, it is the number of child pointers
1398 rather than items. It includes the new item
1399 being created. The code sometimes subtracts
1400 one to get the number of wholly shifted
1401 items for other purposes. */
1402 int rnum[MAX_HEIGHT]; /* substitute right for left in comment above */
1403 int lkey[MAX_HEIGHT]; /* array indexed by height h mapping the key delimiting L[h] and
1404 S[h] to its item number within the node CFL[h] */
1405 int rkey[MAX_HEIGHT]; /* substitute r for l in comment above */
1406 int insert_size[MAX_HEIGHT]; /* the number of bytes by we are trying to add or remove from
1407 S[h]. A negative value means removing. */
1408 int blknum[MAX_HEIGHT]; /* number of nodes that will replace node S[h] after
1409 balancing on the level h of the tree. If 0 then S is
1410 being deleted, if 1 then S is remaining and no new nodes
1411 are being created, if 2 or 3 then 1 or 2 new nodes is
1412 being created */
1413
1414 /* fields that are used only for balancing leaves of the tree */
1415 int cur_blknum; /* number of empty blocks having been already allocated */
1416 int s0num; /* number of items that fall into left most node when S[0] splits */
1417 int s1num; /* number of items that fall into first new node when S[0] splits */
1418 int s2num; /* number of items that fall into second new node when S[0] splits */
1419 int lbytes; /* number of bytes which can flow to the left neighbor from the left */
1420 /* most liquid item that cannot be shifted from S[0] entirely */
1421 /* if -1 then nothing will be partially shifted */
1422 int rbytes; /* number of bytes which will flow to the right neighbor from the right */
1423 /* most liquid item that cannot be shifted from S[0] entirely */
1424 /* if -1 then nothing will be partially shifted */
1425 int s1bytes; /* number of bytes which flow to the first new node when S[0] splits */
1426 /* note: if S[0] splits into 3 nodes, then items do not need to be cut */
1427 int s2bytes;
1428 struct buffer_head * buf_to_free[MAX_FREE_BLOCK]; /* buffers which are to be freed after do_balance finishes by unfix_nodes */
1429 char * vn_buf; /* kmalloced memory. Used to create
1430 virtual node and keep map of
1431 dirtied bitmap blocks */
1432 int vn_buf_size; /* size of the vn_buf */
1433 struct virtual_node * tb_vn; /* VN starts after bitmap of bitmap blocks */
1434
1435 int fs_gen; /* saved value of `reiserfs_generation' counter
1436 see FILESYSTEM_CHANGED() macro in reiserfs_fs.h */
1437 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
1438 struct reiserfs_key key; /* key pointer, to pass to block allocator or
1439 another low-level subsystem */
1440 #endif
1441 } ;
1442
1443 /* These are modes of balancing */
1444
1445 /* When inserting an item. */
1446 #define M_INSERT 'i'
1447 /* When inserting into (directories only) or appending onto an already
1448 existant item. */
1449 #define M_PASTE 'p'
1450 /* When deleting an item. */
1451 #define M_DELETE 'd'
1452 /* When truncating an item or removing an entry from a (directory) item. */
1453 #define M_CUT 'c'
1454
1455 /* used when balancing on leaf level skipped (in reiserfsck) */
1456 #define M_INTERNAL 'n'
1457
1458 /* When further balancing is not needed, then do_balance does not need
1459 to be called. */
1460 #define M_SKIP_BALANCING 's'
1461 #define M_CONVERT 'v'
1462
1463 /* modes of leaf_move_items */
1464 #define LEAF_FROM_S_TO_L 0
1465 #define LEAF_FROM_S_TO_R 1
1466 #define LEAF_FROM_R_TO_L 2
1467 #define LEAF_FROM_L_TO_R 3
1468 #define LEAF_FROM_S_TO_SNEW 4
1469
1470 #define FIRST_TO_LAST 0
1471 #define LAST_TO_FIRST 1
1472
1473 /* used in do_balance for passing parent of node information that has
1474 been gotten from tb struct */
1475 struct buffer_info {
1476 struct tree_balance * tb;
1477 struct buffer_head * bi_bh;
1478 struct buffer_head * bi_parent;
1479 int bi_position;
1480 };
1481
1482
1483 /* there are 4 types of items: stat data, directory item, indirect, direct.
1484 +-------------------+------------+--------------+------------+
1485 | | k_offset | k_uniqueness | mergeable? |
1486 +-------------------+------------+--------------+------------+
1487 | stat data | 0 | 0 | no |
1488 +-------------------+------------+--------------+------------+
1489 | 1st directory item| DOT_OFFSET |DIRENTRY_UNIQUENESS| no |
1490 | non 1st directory | hash value | | yes |
1491 | item | | | |
1492 +-------------------+------------+--------------+------------+
1493 | indirect item | offset + 1 |TYPE_INDIRECT | if this is not the first indirect item of the object
1494 +-------------------+------------+--------------+------------+
1495 | direct item | offset + 1 |TYPE_DIRECT | if not this is not the first direct item of the object
1496 +-------------------+------------+--------------+------------+
1497 */
1498
1499 struct item_operations {
1500 int (*bytes_number) (struct item_head * ih, int block_size);
1501 void (*decrement_key) (struct cpu_key *);
1502 int (*is_left_mergeable) (struct reiserfs_key * ih, unsigned long bsize);
1503 void (*print_item) (struct item_head *, char * item);
1504 void (*check_item) (struct item_head *, char * item);
1505
1506 int (*create_vi) (struct virtual_node * vn, struct virtual_item * vi,
1507 int is_affected, int insert_size);
1508 int (*check_left) (struct virtual_item * vi, int free,
1509 int start_skip, int end_skip);
1510 int (*check_right) (struct virtual_item * vi, int free);
1511 int (*part_size) (struct virtual_item * vi, int from, int to);
1512 int (*unit_num) (struct virtual_item * vi);
1513 void (*print_vi) (struct virtual_item * vi);
1514 };
1515
1516
1517 extern struct item_operations * item_ops [TYPE_ANY + 1];
1518
1519 #define op_bytes_number(ih,bsize) item_ops[le_ih_k_type (ih)]->bytes_number (ih, bsize)
1520 #define op_is_left_mergeable(key,bsize) item_ops[le_key_k_type (le_key_version (key), key)]->is_left_mergeable (key, bsize)
1521 #define op_print_item(ih,item) item_ops[le_ih_k_type (ih)]->print_item (ih, item)
1522 #define op_check_item(ih,item) item_ops[le_ih_k_type (ih)]->check_item (ih, item)
1523 #define op_create_vi(vn,vi,is_affected,insert_size) item_ops[le_ih_k_type ((vi)->vi_ih)]->create_vi (vn,vi,is_affected,insert_size)
1524 #define op_check_left(vi,free,start_skip,end_skip) item_ops[(vi)->vi_index]->check_left (vi, free, start_skip, end_skip)
1525 #define op_check_right(vi,free) item_ops[(vi)->vi_index]->check_right (vi, free)
1526 #define op_part_size(vi,from,to) item_ops[(vi)->vi_index]->part_size (vi, from, to)
1527 #define op_unit_num(vi) item_ops[(vi)->vi_index]->unit_num (vi)
1528 #define op_print_vi(vi) item_ops[(vi)->vi_index]->print_vi (vi)
1529
1530
1531
1532 #define COMP_SHORT_KEYS comp_short_keys
1533
1534 /* number of blocks pointed to by the indirect item */
1535 #define I_UNFM_NUM(p_s_ih) ( ih_item_len(p_s_ih) / UNFM_P_SIZE )
1536
1537 /* the used space within the unformatted node corresponding to pos within the item pointed to by ih */
1538 #define I_POS_UNFM_SIZE(ih,pos,size) (((pos) == I_UNFM_NUM(ih) - 1 ) ? (size) - ih_free_space(ih) : (size))
1539
1540 /* number of bytes contained by the direct item or the unformatted nodes the indirect item points to */
1541
1542
1543 /* get the item header */
1544 #define B_N_PITEM_HEAD(bh,item_num) ( (struct item_head * )((bh)->b_data + BLKH_SIZE) + (item_num) )
1545
1546 /* get key */
1547 #define B_N_PDELIM_KEY(bh,item_num) ( (struct reiserfs_key * )((bh)->b_data + BLKH_SIZE) + (item_num) )
1548
1549 /* get the key */
1550 #define B_N_PKEY(bh,item_num) ( &(B_N_PITEM_HEAD(bh,item_num)->ih_key) )
1551
1552 /* get item body */
1553 #define B_N_PITEM(bh,item_num) ( (bh)->b_data + ih_location(B_N_PITEM_HEAD((bh),(item_num))))
1554
1555 /* get the stat data by the buffer header and the item order */
1556 #define B_N_STAT_DATA(bh,nr) \
1557 ( (struct stat_data *)((bh)->b_data + ih_location(B_N_PITEM_HEAD((bh),(nr))) ) )
1558
1559 /* following defines use reiserfs buffer header and item header */
1560
1561 /* get stat-data */
1562 #define B_I_STAT_DATA(bh, ih) ( (struct stat_data * )((bh)->b_data + ih_location(ih)) )
1563
1564 // this is 3976 for size==4096
1565 #define MAX_DIRECT_ITEM_LEN(size) ((size) - BLKH_SIZE - 2*IH_SIZE - SD_SIZE - UNFM_P_SIZE)
1566
1567 /* indirect items consist of entries which contain blocknrs, pos
1568 indicates which entry, and B_I_POS_UNFM_POINTER resolves to the
1569 blocknr contained by the entry pos points to */
1570 #define B_I_POS_UNFM_POINTER(bh,ih,pos) le32_to_cpu(*(((unp_t *)B_I_PITEM(bh,ih)) + (pos)))
1571 #define PUT_B_I_POS_UNFM_POINTER(bh,ih,pos, val) do {*(((unp_t *)B_I_PITEM(bh,ih)) + (pos)) = cpu_to_le32(val); } while (0)
1572
1573 struct reiserfs_iget_args {
1574 __u32 objectid ;
1575 __u32 dirid ;
1576 } ;
1577
1578 /***************************************************************************/
1579 /* FUNCTION DECLARATIONS */
1580 /***************************************************************************/
1581
1582 /*#ifdef __KERNEL__*/
1583 #define get_journal_desc_magic(bh) (bh->b_data + bh->b_size - 12)
1584
1585 #define journal_trans_half(blocksize) \
1586 ((blocksize - sizeof (struct reiserfs_journal_desc) + sizeof (__u32) - 12) / sizeof (__u32))
1587
1588 /* journal.c see journal.c for all the comments here */
1589
1590 /* first block written in a commit. */
1591 struct reiserfs_journal_desc {
1592 __u32 j_trans_id ; /* id of commit */
1593 __u32 j_len ; /* length of commit. len +1 is the commit block */
1594 __u32 j_mount_id ; /* mount id of this trans*/
1595 __u32 j_realblock[1] ; /* real locations for each block */
1596 } ;
1597
1598 #define get_desc_trans_id(d) le32_to_cpu((d)->j_trans_id)
1599 #define get_desc_trans_len(d) le32_to_cpu((d)->j_len)
1600 #define get_desc_mount_id(d) le32_to_cpu((d)->j_mount_id)
1601
1602 #define set_desc_trans_id(d,val) do { (d)->j_trans_id = cpu_to_le32 (val); } while (0)
1603 #define set_desc_trans_len(d,val) do { (d)->j_len = cpu_to_le32 (val); } while (0)
1604 #define set_desc_mount_id(d,val) do { (d)->j_mount_id = cpu_to_le32 (val); } while (0)
1605
1606 /* last block written in a commit */
1607 struct reiserfs_journal_commit {
1608 __u32 j_trans_id ; /* must match j_trans_id from the desc block */
1609 __u32 j_len ; /* ditto */
1610 __u32 j_realblock[1] ; /* real locations for each block */
1611 } ;
1612
1613 #define get_commit_trans_id(c) le32_to_cpu((c)->j_trans_id)
1614 #define get_commit_trans_len(c) le32_to_cpu((c)->j_len)
1615 #define get_commit_mount_id(c) le32_to_cpu((c)->j_mount_id)
1616
1617 #define set_commit_trans_id(c,val) do { (c)->j_trans_id = cpu_to_le32 (val); } while (0)
1618 #define set_commit_trans_len(c,val) do { (c)->j_len = cpu_to_le32 (val); } while (0)
1619
1620 /* this header block gets written whenever a transaction is considered fully flushed, and is more recent than the
1621 ** last fully flushed transaction. fully flushed means all the log blocks and all the real blocks are on disk,
1622 ** and this transaction does not need to be replayed.
1623 */
1624 struct reiserfs_journal_header {
1625 __u32 j_last_flush_trans_id ; /* id of last fully flushed transaction */
1626 __u32 j_first_unflushed_offset ; /* offset in the log of where to start replay after a crash */
1627 __u32 j_mount_id ;
1628 /* 12 */ struct journal_params jh_journal;
1629 } ;
1630
1631 /* biggest tunable defines are right here */
1632 #define JOURNAL_BLOCK_COUNT 8192 /* number of blocks in the journal */
1633 #define JOURNAL_TRANS_MAX_DEFAULT 1024 /* biggest possible single transaction, don't change for now (8/3/99) */
1634 #define JOURNAL_TRANS_MIN_DEFAULT 256
1635 #define JOURNAL_MAX_BATCH_DEFAULT 900 /* max blocks to batch into one transaction, don't make this any bigger than 900 */
1636 #define JOURNAL_MIN_RATIO 2
1637 #define JOURNAL_MAX_COMMIT_AGE 30
1638 #define JOURNAL_MAX_TRANS_AGE 30
1639 #define JOURNAL_PER_BALANCE_CNT (3 * (MAX_HEIGHT-2) + 9)
1640 #ifdef CONFIG_QUOTA
1641 #define REISERFS_QUOTA_TRANS_BLOCKS 2 /* We need to update data and inode (atime) */
1642 #define REISERFS_QUOTA_INIT_BLOCKS (DQUOT_MAX_WRITES*(JOURNAL_PER_BALANCE_CNT+2)+1) /* 1 balancing, 1 bitmap, 1 data per write + stat data update */
1643 #else
1644 #define REISERFS_QUOTA_TRANS_BLOCKS 0
1645 #define REISERFS_QUOTA_INIT_BLOCKS 0
1646 #endif
1647
1648 /* both of these can be as low as 1, or as high as you want. The min is the
1649 ** number of 4k bitmap nodes preallocated on mount. New nodes are allocated
1650 ** as needed, and released when transactions are committed. On release, if
1651 ** the current number of nodes is > max, the node is freed, otherwise,
1652 ** it is put on a free list for faster use later.
1653 */
1654 #define REISERFS_MIN_BITMAP_NODES 10
1655 #define REISERFS_MAX_BITMAP_NODES 100
1656
1657 #define JBH_HASH_SHIFT 13 /* these are based on journal hash size of 8192 */
1658 #define JBH_HASH_MASK 8191
1659
1660 #define _jhashfn(sb,block) \
1661 (((unsigned long)sb>>L1_CACHE_SHIFT) ^ \
1662 (((block)<<(JBH_HASH_SHIFT - 6)) ^ ((block) >> 13) ^ ((block) << (JBH_HASH_SHIFT - 12))))
1663 #define journal_hash(t,sb,block) ((t)[_jhashfn((sb),(block)) & JBH_HASH_MASK])
1664
1665 // We need these to make journal.c code more readable
1666 #define journal_find_get_block(s, block) __find_get_block(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize)
1667 #define journal_getblk(s, block) __getblk(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize)
1668 #define journal_bread(s, block) __bread(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize)
1669
1670 enum reiserfs_bh_state_bits {
1671 BH_JDirty = BH_PrivateStart, /* buffer is in current transaction */
1672 BH_JDirty_wait,
1673 BH_JNew, /* disk block was taken off free list before
1674 * being in a finished transaction, or
1675 * written to disk. Can be reused immed. */
1676 BH_JPrepared,
1677 BH_JRestore_dirty,
1678 BH_JTest, // debugging only will go away
1679 };
1680
1681 BUFFER_FNS(JDirty, journaled);
1682 TAS_BUFFER_FNS(JDirty, journaled);
1683 BUFFER_FNS(JDirty_wait, journal_dirty);
1684 TAS_BUFFER_FNS(JDirty_wait, journal_dirty);
1685 BUFFER_FNS(JNew, journal_new);
1686 TAS_BUFFER_FNS(JNew, journal_new);
1687 BUFFER_FNS(JPrepared, journal_prepared);
1688 TAS_BUFFER_FNS(JPrepared, journal_prepared);
1689 BUFFER_FNS(JRestore_dirty, journal_restore_dirty);
1690 TAS_BUFFER_FNS(JRestore_dirty, journal_restore_dirty);
1691 BUFFER_FNS(JTest, journal_test);
1692 TAS_BUFFER_FNS(JTest, journal_test);
1693
1694 /*
1695 ** transaction handle which is passed around for all journal calls
1696 */
1697 struct reiserfs_transaction_handle {
1698 struct super_block *t_super ; /* super for this FS when journal_begin was
1699 called. saves calls to reiserfs_get_super
1700 also used by nested transactions to make
1701 sure they are nesting on the right FS
1702 _must_ be first in the handle
1703 */
1704 int t_refcount;
1705 int t_blocks_logged ; /* number of blocks this writer has logged */
1706 int t_blocks_allocated ; /* number of blocks this writer allocated */
1707 unsigned long t_trans_id ; /* sanity check, equals the current trans id */
1708 void *t_handle_save ; /* save existing current->journal_info */
1709 unsigned displace_new_blocks:1; /* if new block allocation occurres, that block
1710 should be displaced from others */
1711 struct list_head t_list;
1712 } ;
1713
1714 /* used to keep track of ordered and tail writes, attached to the buffer
1715 * head through b_journal_head.
1716 */
1717 struct reiserfs_jh {
1718 struct reiserfs_journal_list *jl;
1719 struct buffer_head *bh;
1720 struct list_head list;
1721 };
1722
1723 void reiserfs_free_jh(struct buffer_head *bh);
1724 int reiserfs_add_tail_list(struct inode *inode, struct buffer_head *bh);
1725 int reiserfs_add_ordered_list(struct inode *inode, struct buffer_head *bh);
1726 int journal_mark_dirty(struct reiserfs_transaction_handle *, struct super_block *, struct buffer_head *bh) ;
1727
1728 static inline int
1729 reiserfs_file_data_log(struct inode *inode) {
1730 if (reiserfs_data_log(inode->i_sb) ||
1731 (REISERFS_I(inode)->i_flags & i_data_log))
1732 return 1 ;
1733 return 0 ;
1734 }
1735
1736 static inline int reiserfs_transaction_running(struct super_block *s) {
1737 struct reiserfs_transaction_handle *th = current->journal_info ;
1738 if (th && th->t_super == s)
1739 return 1 ;
1740 if (th && th->t_super == NULL)
1741 BUG();
1742 return 0 ;
1743 }
1744
1745 int reiserfs_async_progress_wait(struct super_block *s);
1746
1747 struct reiserfs_transaction_handle *
1748 reiserfs_persistent_transaction(struct super_block *, int count);
1749 int reiserfs_end_persistent_transaction(struct reiserfs_transaction_handle *);
1750 int reiserfs_commit_page(struct inode *inode, struct page *page,
1751 unsigned from, unsigned to);
1752 int reiserfs_flush_old_commits(struct super_block *);
1753 int reiserfs_commit_for_inode(struct inode *) ;
1754 int reiserfs_inode_needs_commit(struct inode *) ;
1755 void reiserfs_update_inode_transaction(struct inode *) ;
1756 void reiserfs_wait_on_write_block(struct super_block *s) ;
1757 void reiserfs_block_writes(struct reiserfs_transaction_handle *th) ;
1758 void reiserfs_allow_writes(struct super_block *s) ;
1759 void reiserfs_check_lock_depth(struct super_block *s, char *caller) ;
1760 int reiserfs_prepare_for_journal(struct super_block *, struct buffer_head *bh, int wait) ;
1761 void reiserfs_restore_prepared_buffer(struct super_block *, struct buffer_head *bh) ;
1762 int journal_init(struct super_block *, const char * j_dev_name, int old_format, unsigned int) ;
1763 int journal_release(struct reiserfs_transaction_handle*, struct super_block *) ;
1764 int journal_release_error(struct reiserfs_transaction_handle*, struct super_block *) ;
1765 int journal_end(struct reiserfs_transaction_handle *, struct super_block *, unsigned long) ;
1766 int journal_end_sync(struct reiserfs_transaction_handle *, struct super_block *, unsigned long) ;
1767 int journal_mark_freed(struct reiserfs_transaction_handle *, struct super_block *, b_blocknr_t blocknr) ;
1768 int journal_transaction_should_end(struct reiserfs_transaction_handle *, int) ;
1769 int reiserfs_in_journal(struct super_block *p_s_sb, int bmap_nr, int bit_nr, int searchall, b_blocknr_t *next) ;
1770 int journal_begin(struct reiserfs_transaction_handle *, struct super_block *p_s_sb, unsigned long) ;
1771 int journal_join_abort(struct reiserfs_transaction_handle *, struct super_block *p_s_sb, unsigned long) ;
1772 void reiserfs_journal_abort (struct super_block *sb, int errno);
1773 void reiserfs_abort (struct super_block *sb, int errno, const char *fmt, ...);
1774 int reiserfs_allocate_list_bitmaps(struct super_block *s, struct reiserfs_list_bitmap *, int) ;
1775
1776 void add_save_link (struct reiserfs_transaction_handle * th,
1777 struct inode * inode, int truncate);
1778 int remove_save_link (struct inode * inode, int truncate);
1779
1780 /* objectid.c */
1781 __u32 reiserfs_get_unused_objectid (struct reiserfs_transaction_handle *th);
1782 void reiserfs_release_objectid (struct reiserfs_transaction_handle *th, __u32 objectid_to_release);
1783 int reiserfs_convert_objectid_map_v1(struct super_block *) ;
1784
1785 /* stree.c */
1786 int B_IS_IN_TREE(const struct buffer_head *);
1787 extern void copy_item_head(struct item_head * p_v_to,
1788 const struct item_head * p_v_from);
1789
1790 // first key is in cpu form, second - le
1791 extern int comp_short_keys (const struct reiserfs_key * le_key,
1792 const struct cpu_key * cpu_key);
1793 extern void le_key2cpu_key (struct cpu_key * to, const struct reiserfs_key * from);
1794
1795 // both are in le form
1796 extern int comp_le_keys (const struct reiserfs_key *, const struct reiserfs_key *);
1797 extern int comp_short_le_keys (const struct reiserfs_key *, const struct reiserfs_key *);
1798
1799 //
1800 // get key version from on disk key - kludge
1801 //
1802 static inline int le_key_version (const struct reiserfs_key * key)
1803 {
1804 int type;
1805
1806 type = offset_v2_k_type( &(key->u.k_offset_v2));
1807 if (type != TYPE_DIRECT && type != TYPE_INDIRECT && type != TYPE_DIRENTRY)
1808 return KEY_FORMAT_3_5;
1809
1810 return KEY_FORMAT_3_6;
1811
1812 }
1813
1814
1815 static inline void copy_key (struct reiserfs_key *to, const struct reiserfs_key *from)
1816 {
1817 memcpy (to, from, KEY_SIZE);
1818 }
1819
1820
1821 int comp_items (const struct item_head * stored_ih, const struct path * p_s_path);
1822 const struct reiserfs_key * get_rkey (const struct path * p_s_chk_path,
1823 const struct super_block * p_s_sb);
1824 int search_by_key (struct super_block *, const struct cpu_key *,
1825 struct path *, int);
1826 #define search_item(s,key,path) search_by_key (s, key, path, DISK_LEAF_NODE_LEVEL)
1827 int search_for_position_by_key (struct super_block * p_s_sb,
1828 const struct cpu_key * p_s_cpu_key,
1829 struct path * p_s_search_path);
1830 extern void decrement_bcount (struct buffer_head * p_s_bh);
1831 void decrement_counters_in_path (struct path * p_s_search_path);
1832 void pathrelse (struct path * p_s_search_path);
1833 int reiserfs_check_path(struct path *p) ;
1834 void pathrelse_and_restore (struct super_block *s, struct path * p_s_search_path);
1835
1836 int reiserfs_insert_item (struct reiserfs_transaction_handle *th,
1837 struct path * path,
1838 const struct cpu_key * key,
1839 struct item_head * ih,
1840 struct inode *inode, const char * body);
1841
1842 int reiserfs_paste_into_item (struct reiserfs_transaction_handle *th,
1843 struct path * path,
1844 const struct cpu_key * key,
1845 struct inode *inode,
1846 const char * body, int paste_size);
1847
1848 int reiserfs_cut_from_item (struct reiserfs_transaction_handle *th,
1849 struct path * path,
1850 struct cpu_key * key,
1851 struct inode * inode,
1852 struct page *page,
1853 loff_t new_file_size);
1854
1855 int reiserfs_delete_item (struct reiserfs_transaction_handle *th,
1856 struct path * path,
1857 const struct cpu_key * key,
1858 struct inode * inode,
1859 struct buffer_head * p_s_un_bh);
1860
1861 void reiserfs_delete_solid_item (struct reiserfs_transaction_handle *th,
1862 struct inode *inode, struct reiserfs_key * key);
1863 int reiserfs_delete_object (struct reiserfs_transaction_handle *th, struct inode * p_s_inode);
1864 int reiserfs_do_truncate (struct reiserfs_transaction_handle *th,
1865 struct inode * p_s_inode, struct page *,
1866 int update_timestamps);
1867
1868 #define i_block_size(inode) ((inode)->i_sb->s_blocksize)
1869 #define file_size(inode) ((inode)->i_size)
1870 #define tail_size(inode) (file_size (inode) & (i_block_size (inode) - 1))
1871
1872 #define tail_has_to_be_packed(inode) (have_large_tails ((inode)->i_sb)?\
1873 !STORE_TAIL_IN_UNFM_S1(file_size (inode), tail_size(inode), inode->i_sb->s_blocksize):have_small_tails ((inode)->i_sb)?!STORE_TAIL_IN_UNFM_S2(file_size (inode), tail_size(inode), inode->i_sb->s_blocksize):0 )
1874
1875 void padd_item (char * item, int total_length, int length);
1876
1877 /* inode.c */
1878 /* args for the create parameter of reiserfs_get_block */
1879 #define GET_BLOCK_NO_CREATE 0 /* don't create new blocks or convert tails */
1880 #define GET_BLOCK_CREATE 1 /* add anything you need to find block */
1881 #define GET_BLOCK_NO_HOLE 2 /* return -ENOENT for file holes */
1882 #define GET_BLOCK_READ_DIRECT 4 /* read the tail if indirect item not found */
1883 #define GET_BLOCK_NO_ISEM 8 /* i_sem is not held, don't preallocate */
1884 #define GET_BLOCK_NO_DANGLE 16 /* don't leave any transactions running */
1885
1886 int restart_transaction(struct reiserfs_transaction_handle *th, struct inode *inode, struct path *path);
1887 void reiserfs_read_locked_inode(struct inode * inode, struct reiserfs_iget_args *args) ;
1888 int reiserfs_find_actor(struct inode * inode, void *p) ;
1889 int reiserfs_init_locked_inode(struct inode * inode, void *p) ;
1890 void reiserfs_delete_inode (struct inode * inode);
1891 int reiserfs_write_inode (struct inode * inode, int) ;
1892 int reiserfs_get_block (struct inode * inode, sector_t block, struct buffer_head * bh_result, int create);
1893 struct dentry *reiserfs_get_dentry(struct super_block *, void *) ;
1894 struct dentry *reiserfs_decode_fh(struct super_block *sb, __u32 *data,
1895 int len, int fhtype,
1896 int (*acceptable)(void *contect, struct dentry *de),
1897 void *context) ;
1898 int reiserfs_encode_fh( struct dentry *dentry, __u32 *data, int *lenp,
1899 int connectable );
1900
1901 int reiserfs_truncate_file(struct inode *, int update_timestamps) ;
1902 void make_cpu_key (struct cpu_key * cpu_key, struct inode * inode, loff_t offset,
1903 int type, int key_length);
1904 void make_le_item_head (struct item_head * ih, const struct cpu_key * key,
1905 int version,
1906 loff_t offset, int type, int length, int entry_count);
1907 struct inode * reiserfs_iget (struct super_block * s,
1908 const struct cpu_key * key);
1909
1910
1911 int reiserfs_new_inode (struct reiserfs_transaction_handle *th,
1912 struct inode * dir, int mode,
1913 const char * symname, loff_t i_size,
1914 struct dentry *dentry, struct inode *inode);
1915
1916 void reiserfs_update_sd_size (struct reiserfs_transaction_handle *th,
1917 struct inode * inode, loff_t size);
1918
1919 static inline void reiserfs_update_sd(struct reiserfs_transaction_handle *th,
1920 struct inode *inode)
1921 {
1922 reiserfs_update_sd_size(th, inode, inode->i_size) ;
1923 }
1924
1925 void sd_attrs_to_i_attrs( __u16 sd_attrs, struct inode *inode );
1926 void i_attrs_to_sd_attrs( struct inode *inode, __u16 *sd_attrs );
1927 int reiserfs_setattr(struct dentry *dentry, struct iattr *attr);
1928
1929 /* namei.c */
1930 void set_de_name_and_namelen (struct reiserfs_dir_entry * de);
1931 int search_by_entry_key (struct super_block * sb, const struct cpu_key * key,
1932 struct path * path,
1933 struct reiserfs_dir_entry * de);
1934 struct dentry *reiserfs_get_parent(struct dentry *) ;
1935 /* procfs.c */
1936
1937 #if defined( CONFIG_PROC_FS ) && defined( CONFIG_REISERFS_PROC_INFO )
1938 #define REISERFS_PROC_INFO
1939 #else
1940 #undef REISERFS_PROC_INFO
1941 #endif
1942
1943 int reiserfs_proc_info_init( struct super_block *sb );
1944 int reiserfs_proc_info_done( struct super_block *sb );
1945 struct proc_dir_entry *reiserfs_proc_register_global( char *name,
1946 read_proc_t *func );
1947 void reiserfs_proc_unregister_global( const char *name );
1948 int reiserfs_proc_info_global_init( void );
1949 int reiserfs_proc_info_global_done( void );
1950 int reiserfs_global_version_in_proc( char *buffer, char **start, off_t offset,
1951 int count, int *eof, void *data );
1952
1953 #if defined( REISERFS_PROC_INFO )
1954
1955 #define PROC_EXP( e ) e
1956
1957 #define __PINFO( sb ) REISERFS_SB(sb) -> s_proc_info_data
1958 #define PROC_INFO_MAX( sb, field, value ) \
1959 __PINFO( sb ).field = \
1960 max( REISERFS_SB( sb ) -> s_proc_info_data.field, value )
1961 #define PROC_INFO_INC( sb, field ) ( ++ ( __PINFO( sb ).field ) )
1962 #define PROC_INFO_ADD( sb, field, val ) ( __PINFO( sb ).field += ( val ) )
1963 #define PROC_INFO_BH_STAT( sb, bh, level ) \
1964 PROC_INFO_INC( sb, sbk_read_at[ ( level ) ] ); \
1965 PROC_INFO_ADD( sb, free_at[ ( level ) ], B_FREE_SPACE( bh ) ); \
1966 PROC_INFO_ADD( sb, items_at[ ( level ) ], B_NR_ITEMS( bh ) )
1967 #else
1968 #define PROC_EXP( e )
1969 #define VOID_V ( ( void ) 0 )
1970 #define PROC_INFO_MAX( sb, field, value ) VOID_V
1971 #define PROC_INFO_INC( sb, field ) VOID_V
1972 #define PROC_INFO_ADD( sb, field, val ) VOID_V
1973 #define PROC_INFO_BH_STAT( p_s_sb, p_s_bh, n_node_level ) VOID_V
1974 #endif
1975
1976 /* dir.c */
1977 extern struct inode_operations reiserfs_dir_inode_operations;
1978 extern struct inode_operations reiserfs_symlink_inode_operations;
1979 extern struct inode_operations reiserfs_special_inode_operations;
1980 extern struct file_operations reiserfs_dir_operations;
1981
1982 /* tail_conversion.c */
1983 int direct2indirect (struct reiserfs_transaction_handle *, struct inode *, struct path *, struct buffer_head *, loff_t);
1984 int indirect2direct (struct reiserfs_transaction_handle *, struct inode *, struct page *, struct path *, const struct cpu_key *, loff_t, char *);
1985 void reiserfs_unmap_buffer(struct buffer_head *) ;
1986
1987
1988 /* file.c */
1989 extern struct inode_operations reiserfs_file_inode_operations;
1990 extern struct file_operations reiserfs_file_operations;
1991 extern struct address_space_operations reiserfs_address_space_operations ;
1992
1993 /* fix_nodes.c */
1994 #ifdef CONFIG_REISERFS_CHECK
1995 void * reiserfs_kmalloc (size_t size, int flags, struct super_block * s);
1996 void reiserfs_kfree (const void * vp, size_t size, struct super_block * s);
1997 #else
1998 static inline void *reiserfs_kmalloc(size_t size, int flags,
1999 struct super_block *s)
2000 {
2001 return kmalloc(size, flags);
2002 }
2003
2004 static inline void reiserfs_kfree(const void *vp, size_t size,
2005 struct super_block *s)
2006 {
2007 kfree(vp);
2008 }
2009 #endif
2010
2011 int fix_nodes (int n_op_mode, struct tree_balance * p_s_tb,
2012 struct item_head * p_s_ins_ih, const void *);
2013 void unfix_nodes (struct tree_balance *);
2014
2015
2016 /* prints.c */
2017 void reiserfs_panic (struct super_block * s, const char * fmt, ...) __attribute__ ( ( noreturn ) );
2018 void reiserfs_info (struct super_block *s, const char * fmt, ...);
2019 void reiserfs_debug (struct super_block *s, int level, const char * fmt, ...);
2020 void print_indirect_item (struct buffer_head * bh, int item_num);
2021 void store_print_tb (struct tree_balance * tb);
2022 void print_cur_tb (char * mes);
2023 void print_de (struct reiserfs_dir_entry * de);
2024 void print_bi (struct buffer_info * bi, char * mes);
2025 #define PRINT_LEAF_ITEMS 1 /* print all items */
2026 #define PRINT_DIRECTORY_ITEMS 2 /* print directory items */
2027 #define PRINT_DIRECT_ITEMS 4 /* print contents of direct items */
2028 void print_block (struct buffer_head * bh, ...);
2029 void print_bmap (struct super_block * s, int silent);
2030 void print_bmap_block (int i, char * data, int size, int silent);
2031 /*void print_super_block (struct super_block * s, char * mes);*/
2032 void print_objectid_map (struct super_block * s);
2033 void print_block_head (struct buffer_head * bh, char * mes);
2034 void check_leaf (struct buffer_head * bh);
2035 void check_internal (struct buffer_head * bh);
2036 void print_statistics (struct super_block * s);
2037 char * reiserfs_hashname(int code);
2038
2039 /* lbalance.c */
2040 int leaf_move_items (int shift_mode, struct tree_balance * tb, int mov_num, int mov_bytes, struct buffer_head * Snew);
2041 int leaf_shift_left (struct tree_balance * tb, int shift_num, int shift_bytes);
2042 int leaf_shift_right (struct tree_balance * tb, int shift_num, int shift_bytes);
2043 void leaf_delete_items (struct buffer_info * cur_bi, int last_first, int first, int del_num, int del_bytes);
2044 void leaf_insert_into_buf (struct buffer_info * bi, int before,
2045 struct item_head * inserted_item_ih, const char * inserted_item_body, int zeros_number);
2046 void leaf_paste_in_buffer (struct buffer_info * bi, int pasted_item_num,
2047 int pos_in_item, int paste_size, const char * body, int zeros_number);
2048 void leaf_cut_from_buffer (struct buffer_info * bi, int cut_item_num, int pos_in_item,
2049 int cut_size);
2050 void leaf_paste_entries (struct buffer_head * bh, int item_num, int before,
2051 int new_entry_count, struct reiserfs_de_head * new_dehs, const char * records, int paste_size);
2052 /* ibalance.c */
2053 int balance_internal (struct tree_balance * , int, int, struct item_head * ,
2054 struct buffer_head **);
2055
2056 /* do_balance.c */
2057 void do_balance_mark_leaf_dirty (struct tree_balance * tb,
2058 struct buffer_head * bh, int flag);
2059 #define do_balance_mark_internal_dirty do_balance_mark_leaf_dirty
2060 #define do_balance_mark_sb_dirty do_balance_mark_leaf_dirty
2061
2062 void do_balance (struct tree_balance * tb, struct item_head * ih,
2063 const char * body, int flag);
2064 void reiserfs_invalidate_buffer (struct tree_balance * tb, struct buffer_head * bh);
2065
2066 int get_left_neighbor_position (struct tree_balance * tb, int h);
2067 int get_right_neighbor_position (struct tree_balance * tb, int h);
2068 void replace_key (struct tree_balance * tb, struct buffer_head *, int, struct buffer_head *, int);
2069 void make_empty_node (struct buffer_info *);
2070 struct buffer_head * get_FEB (struct tree_balance *);
2071
2072 /* bitmap.c */
2073
2074 /* structure contains hints for block allocator, and it is a container for
2075 * arguments, such as node, search path, transaction_handle, etc. */
2076 struct __reiserfs_blocknr_hint {
2077 struct inode * inode; /* inode passed to allocator, if we allocate unf. nodes */
2078 long block; /* file offset, in blocks */
2079 struct reiserfs_key key;
2080 struct path * path; /* search path, used by allocator to deternine search_start by
2081 * various ways */
2082 struct reiserfs_transaction_handle * th; /* transaction handle is needed to log super blocks and
2083 * bitmap blocks changes */
2084 b_blocknr_t beg, end;
2085 b_blocknr_t search_start; /* a field used to transfer search start value (block number)
2086 * between different block allocator procedures
2087 * (determine_search_start() and others) */
2088 int prealloc_size; /* is set in determine_prealloc_size() function, used by underlayed
2089 * function that do actual allocation */
2090
2091 unsigned formatted_node:1; /* the allocator uses different polices for getting disk space for
2092 * formatted/unformatted blocks with/without preallocation */
2093 unsigned preallocate:1;
2094 };
2095
2096 typedef struct __reiserfs_blocknr_hint reiserfs_blocknr_hint_t;
2097
2098 int reiserfs_parse_alloc_options (struct super_block *, char *);
2099 void reiserfs_init_alloc_options (struct super_block *s);
2100
2101 /*
2102 * given a directory, this will tell you what packing locality
2103 * to use for a new object underneat it. The locality is returned
2104 * in disk byte order (le).
2105 */
2106 u32 reiserfs_choose_packing(struct inode *dir);
2107
2108 int is_reusable (struct super_block * s, b_blocknr_t block, int bit_value);
2109 void reiserfs_free_block (struct reiserfs_transaction_handle *th, struct inode *, b_blocknr_t, int for_unformatted);
2110 int reiserfs_allocate_blocknrs(reiserfs_blocknr_hint_t *, b_blocknr_t * , int, int);
2111 extern inline int reiserfs_new_form_blocknrs (struct tree_balance * tb,
2112 b_blocknr_t *new_blocknrs, int amount_needed)
2113 {
2114 reiserfs_blocknr_hint_t hint = {
2115 .th = tb->transaction_handle,
2116 .path = tb->tb_path,
2117 .inode = NULL,
2118 .key = tb->key,
2119 .block = 0,
2120 .formatted_node = 1
2121 };
2122 return reiserfs_allocate_blocknrs(&hint, new_blocknrs, amount_needed, 0);
2123 }
2124
2125 extern inline int reiserfs_new_unf_blocknrs (struct reiserfs_transaction_handle *th,
2126 struct inode *inode,
2127 b_blocknr_t *new_blocknrs,
2128 struct path * path, long block)
2129 {
2130 reiserfs_blocknr_hint_t hint = {
2131 .th = th,
2132 .path = path,
2133 .inode = inode,
2134 .block = block,
2135 .formatted_node = 0,
2136 .preallocate = 0
2137 };
2138 return reiserfs_allocate_blocknrs(&hint, new_blocknrs, 1, 0);
2139 }
2140
2141 #ifdef REISERFS_PREALLOCATE
2142 extern inline int reiserfs_new_unf_blocknrs2(struct reiserfs_transaction_handle *th,
2143 struct inode * inode,
2144 b_blocknr_t *new_blocknrs,
2145 struct path * path, long block)
2146 {
2147 reiserfs_blocknr_hint_t hint = {
2148 .th = th,
2149 .path = path,
2150 .inode = inode,
2151 .block = block,
2152 .formatted_node = 0,
2153 .preallocate = 1
2154 };
2155 return reiserfs_allocate_blocknrs(&hint, new_blocknrs, 1, 0);
2156 }
2157
2158 void reiserfs_discard_prealloc (struct reiserfs_transaction_handle *th,
2159 struct inode * inode);
2160 void reiserfs_discard_all_prealloc (struct reiserfs_transaction_handle *th);
2161 #endif
2162 void reiserfs_claim_blocks_to_be_allocated( struct super_block *sb, int blocks);
2163 void reiserfs_release_claimed_blocks( struct super_block *sb, int blocks);
2164 int reiserfs_can_fit_pages(struct super_block *sb);
2165
2166 /* hashes.c */
2167 __u32 keyed_hash (const signed char *msg, int len);
2168 __u32 yura_hash (const signed char *msg, int len);
2169 __u32 r5_hash (const signed char *msg, int len);
2170
2171 /* the ext2 bit routines adjust for big or little endian as
2172 ** appropriate for the arch, so in our laziness we use them rather
2173 ** than using the bit routines they call more directly. These
2174 ** routines must be used when changing on disk bitmaps. */
2175 #define reiserfs_test_and_set_le_bit ext2_set_bit
2176 #define reiserfs_test_and_clear_le_bit ext2_clear_bit
2177 #define reiserfs_test_le_bit ext2_test_bit
2178 #define reiserfs_find_next_zero_le_bit ext2_find_next_zero_bit
2179
2180 /* sometimes reiserfs_truncate may require to allocate few new blocks
2181 to perform indirect2direct conversion. People probably used to
2182 think, that truncate should work without problems on a filesystem
2183 without free disk space. They may complain that they can not
2184 truncate due to lack of free disk space. This spare space allows us
2185 to not worry about it. 500 is probably too much, but it should be
2186 absolutely safe */
2187 #define SPARE_SPACE 500
2188
2189
2190 /* prototypes from ioctl.c */
2191 int reiserfs_ioctl (struct inode * inode, struct file * filp,
2192 unsigned int cmd, unsigned long arg);
2193
2194 /* ioctl's command */
2195 #define REISERFS_IOC_UNPACK _IOW(0xCD,1,long)
2196 /* define following flags to be the same as in ext2, so that chattr(1),
2197 lsattr(1) will work with us. */
2198 #define REISERFS_IOC_GETFLAGS EXT2_IOC_GETFLAGS
2199 #define REISERFS_IOC_SETFLAGS EXT2_IOC_SETFLAGS
2200 #define REISERFS_IOC_GETVERSION EXT2_IOC_GETVERSION
2201 #define REISERFS_IOC_SETVERSION EXT2_IOC_SETVERSION
2202
2203 /* Locking primitives */
2204 /* Right now we are still falling back to (un)lock_kernel, but eventually that
2205 would evolve into real per-fs locks */
2206 #define reiserfs_write_lock( sb ) lock_kernel()
2207 #define reiserfs_write_unlock( sb ) unlock_kernel()
2208
2209 /* xattr stuff */
2210 #define REISERFS_XATTR_DIR_SEM(s) (REISERFS_SB(s)->xattr_dir_sem)
2211
2212 #endif /* _LINUX_REISER_FS_H */
2213
2214