ecd7ed38d296c8c22156f229584e76cdee4f57cd
[reactos.git] / reactos / drivers / storage / floppy / floppy.c
1 /*
2 * ReactOS Floppy Driver
3 * Copyright (C) 2004, Vizzini (vizzini@plasmic.com)
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * PROJECT: ReactOS Floppy Driver
20 * FILE: floppy.c
21 * PURPOSE: Main floppy driver routines
22 * PROGRAMMER: Vizzini (vizzini@plasmic.com)
23 * REVISIONS:
24 * 15-Feb-2004 vizzini - Created
25 * NOTES:
26 * - This driver is only designed to work with ISA-bus floppy controllers. This
27 * won't work on PCI-based controllers or on anything else with level-sensitive
28 * interrupts without modification. I don't think these controllers exist.
29 *
30 * ---- General to-do items ----
31 * TODO: Figure out why CreateClose isn't called any more. Seems to correspond
32 * with the driver not being unloadable.
33 * TODO: Think about StopDpcQueued -- could be a race; too tired atm to tell
34 * TODO: Clean up drive start/stop responsibilities (currently a mess...)
35 *
36 * ---- Support for proper media detection ----
37 * TODO: Handle MFM flag
38 * TODO: Un-hardcode the data rate from various places
39 * TODO: Proper media detection (right now we're hardcoded to 1.44)
40 * TODO: Media detection based on sector 1
41 */
42
43 #include "precomp.h"
44
45 #include <ntddk.h>
46 #include <debug.h>
47
48 #include "ioctl.h"
49 #include "readwrite.h"
50
51 /*
52 * Global controller info structures. Each controller gets one. Since the system
53 * will probably have only one, with four being a very unlikely maximum, a static
54 * global array is easiest to deal with.
55 */
56 static CONTROLLER_INFO gControllerInfo[MAX_CONTROLLERS];
57 static ULONG gNumberOfControllers = 0;
58
59 /* Queue thread management */
60 static KEVENT QueueThreadTerminate;
61 static PVOID QueueThreadObject;
62
63
64 static VOID NTAPI
65 MotorStopDpcFunc(PKDPC UnusedDpc, PVOID DeferredContext, PVOID SystemArgument1, PVOID SystemArgument2)
66 /*
67 * FUNCTION: Stop the floppy motor
68 * ARGUMENTS:
69 * UnusedDpc: DPC object that's going off
70 * DeferredContext: called with DRIVE_INFO for drive to turn off
71 * SystemArgument1: unused
72 * SystemArgument2: unused
73 * NOTES:
74 * - Must set an event to let other threads know we're done turning off the motor
75 * - Called back at DISPATCH_LEVEL
76 */
77 {
78 PCONTROLLER_INFO ControllerInfo = (PCONTROLLER_INFO)DeferredContext;
79
80 UNREFERENCED_PARAMETER(SystemArgument1);
81 UNREFERENCED_PARAMETER(SystemArgument2);
82 UNREFERENCED_PARAMETER(UnusedDpc);
83
84 ASSERT(KeGetCurrentIrql() == DISPATCH_LEVEL);
85 ASSERT(ControllerInfo);
86
87 TRACE_(FLOPPY, "MotorStopDpcFunc called\n");
88
89 HwTurnOffMotor(ControllerInfo);
90 ControllerInfo->StopDpcQueued = FALSE;
91 KeSetEvent(&ControllerInfo->MotorStoppedEvent, EVENT_INCREMENT, FALSE);
92 }
93
94
95 VOID NTAPI
96 StartMotor(PDRIVE_INFO DriveInfo)
97 /*
98 * FUNCTION: Start the motor, taking into account proper handling of the timer race
99 * ARGUMENTS:
100 * DriveInfo: drive to start
101 * NOTES:
102 * - Never call HwTurnOnMotor() directly
103 * - This protocol manages a race between the cancel timer and the requesting thread.
104 * You wouldn't want to turn on the motor and then cancel the timer, because the
105 * cancel dpc might fire in the meantime, and that'd un-do what you just did. If you
106 * cancel the timer first, but KeCancelTimer returns false, the dpc is already running,
107 * so you have to wait until the dpc is completly done running, or else you'll race
108 * with the turner-offer
109 * - PAGED_CODE because we wait
110 */
111 {
112 PAGED_CODE();
113 ASSERT(DriveInfo);
114
115 TRACE_(FLOPPY, "StartMotor called\n");
116
117 if(DriveInfo->ControllerInfo->StopDpcQueued && !KeCancelTimer(&DriveInfo->ControllerInfo->MotorTimer))
118 {
119 /* Motor turner-offer is already running; wait for it to finish */
120 INFO_(FLOPPY, "StartMotor: motor turner-offer is already running; waiting for it\n");
121 KeWaitForSingleObject(&DriveInfo->ControllerInfo->MotorStoppedEvent, Executive, KernelMode, FALSE, NULL);
122 INFO_(FLOPPY, "StartMotor: wait satisfied\n");
123 }
124
125 DriveInfo->ControllerInfo->StopDpcQueued = FALSE;
126
127 if(HwTurnOnMotor(DriveInfo) != STATUS_SUCCESS)
128 {
129 WARN_(FLOPPY, "StartMotor(): warning: HwTurnOnMotor failed\n");
130 }
131 }
132
133
134 VOID NTAPI
135 StopMotor(PCONTROLLER_INFO ControllerInfo)
136 /*
137 * FUNCTION: Stop all motors on the controller
138 * ARGUMENTS:
139 * DriveInfo: Drive to stop
140 * NOTES:
141 * - Never call HwTurnOffMotor() directly
142 * - This manages the timer cancelation race (see StartMotor for details).
143 * All we have to do is set up a timer.
144 */
145 {
146 LARGE_INTEGER StopTime;
147
148 ASSERT(ControllerInfo);
149
150 TRACE_(FLOPPY, "StopMotor called\n");
151
152 /* one relative second, in 100-ns units */
153 StopTime.QuadPart = 10000000;
154 StopTime.QuadPart *= -1;
155
156 KeClearEvent(&ControllerInfo->MotorStoppedEvent);
157 KeSetTimer(&ControllerInfo->MotorTimer, StopTime, &ControllerInfo->MotorStopDpc);
158 ControllerInfo->StopDpcQueued = TRUE;
159 }
160
161
162 VOID NTAPI
163 WaitForControllerInterrupt(PCONTROLLER_INFO ControllerInfo)
164 /*
165 * FUNCTION: Wait for the controller to interrupt, and then clear the event
166 * ARGUMENTS:
167 * ControllerInfo: Controller to wait for
168 * NOTES:
169 * - There is a small chance that an unexpected or spurious interrupt could
170 * be lost with this clear/wait/clear scheme used in this driver. This is
171 * deemed to be an acceptable risk due to the unlikeliness of the scenario,
172 * and the fact that it'll probably work fine next time.
173 * - PAGED_CODE because it waits
174 */
175 {
176 PAGED_CODE();
177 ASSERT(ControllerInfo);
178
179 KeWaitForSingleObject(&ControllerInfo->SynchEvent, Executive, KernelMode, FALSE, NULL);
180 KeClearEvent(&ControllerInfo->SynchEvent);
181 }
182
183 static DRIVER_DISPATCH CreateClose;
184 static NTSTATUS NTAPI CreateClose(PDEVICE_OBJECT DeviceObject,
185 PIRP Irp)
186 /*
187 * FUNCTION: Dispatch function called for Create and Close IRPs
188 * ARGUMENTS:
189 * DeviceObject: DeviceObject that is the target of the IRP
190 * Irp: IRP to process
191 * RETURNS:
192 * STATUS_SUCCESS in all cases
193 * NOTES:
194 * - The Microsoft sample drivers tend to return FILE_OPENED in Information, so I do too.
195 * - No reason to fail the device open
196 * - No state to track, so this routine is easy
197 * - Can be called <= DISPATCH_LEVEL
198 *
199 * TODO: Figure out why this isn't getting called
200 */
201 {
202 UNREFERENCED_PARAMETER(DeviceObject);
203
204 TRACE_(FLOPPY, "CreateClose called\n");
205
206 Irp->IoStatus.Status = STATUS_SUCCESS;
207 Irp->IoStatus.Information = FILE_OPENED;
208
209 IoCompleteRequest(Irp, IO_DISK_INCREMENT);
210
211 return STATUS_SUCCESS;
212 }
213
214
215 static NTSTATUS NTAPI
216 Recalibrate(PDRIVE_INFO DriveInfo)
217 /*
218 * FUNCTION: Start the recalibration process
219 * ARGUMENTS:
220 * DriveInfo: Pointer to the driveinfo struct associated with the targeted drive
221 * RETURNS:
222 * STATUS_SUCCESS on successful starting of the process
223 * STATUS_IO_DEVICE_ERROR if it fails
224 * NOTES:
225 * - Sometimes you have to do two recalibrations, particularly if the disk has <80 tracks.
226 * - PAGED_CODE because we wait
227 */
228 {
229 NTSTATUS Status;
230 ULONG i;
231
232 PAGED_CODE();
233 ASSERT(DriveInfo);
234
235 /* first turn on the motor */
236 /* Must stop after every start, prior to return */
237 StartMotor(DriveInfo);
238
239 /* set the data rate */
240 WARN_(FLOPPY, "FIXME: UN-HARDCODE DATA RATE\n");
241 if(HwSetDataRate(DriveInfo->ControllerInfo, 0) != STATUS_SUCCESS)
242 {
243 WARN_(FLOPPY, "Recalibrate: HwSetDataRate failed\n");
244 StopMotor(DriveInfo->ControllerInfo);
245 return STATUS_IO_DEVICE_ERROR;
246 }
247
248 /* clear the event just in case the last call forgot */
249 KeClearEvent(&DriveInfo->ControllerInfo->SynchEvent);
250
251 /* sometimes you have to do this twice; we'll just do it twice all the time since
252 * we don't know if the people calling this Recalibrate routine expect a disk to
253 * even be in the drive, and if so, if that disk is formatted.
254 */
255 for(i = 0; i < 2; i++)
256 {
257 /* Send the command */
258 Status = HwRecalibrate(DriveInfo);
259 if(Status != STATUS_SUCCESS)
260 {
261 WARN_(FLOPPY, "Recalibrate: HwRecalibrate returned error\n");
262 continue;
263 }
264
265 WaitForControllerInterrupt(DriveInfo->ControllerInfo);
266
267 /* Get the results */
268 Status = HwRecalibrateResult(DriveInfo->ControllerInfo);
269 if(Status != STATUS_SUCCESS)
270 {
271 WARN_(FLOPPY, "Recalibrate: HwRecalibrateResult returned error\n");
272 break;
273 }
274 }
275
276 KeClearEvent(&DriveInfo->ControllerInfo->SynchEvent);
277
278 /* Must stop after every start, prior to return */
279 StopMotor(DriveInfo->ControllerInfo);
280
281 return Status;
282 }
283
284
285 NTSTATUS NTAPI
286 ResetChangeFlag(PDRIVE_INFO DriveInfo)
287 /*
288 * FUNCTION: Reset the drive's change flag (as reflected in the DIR)
289 * ARGUMENTS:
290 * DriveInfo: the drive to reset
291 * RETURNS:
292 * STATUS_SUCCESS if the changeline is cleared
293 * STATUS_NO_MEDIA_IN_DEVICE if the changeline cannot be cleared
294 * STATUS_IO_DEVICE_ERROR if the controller cannot be communicated with
295 * NOTES:
296 * - Change reset procedure: recalibrate, seek 1, seek 0
297 * - If the line is still set after that, there's clearly no disk in the
298 * drive, so we return STATUS_NO_MEDIA_IN_DEVICE
299 * - PAGED_CODE because we wait
300 */
301 {
302 BOOLEAN DiskChanged;
303
304 PAGED_CODE();
305 ASSERT(DriveInfo);
306
307 TRACE_(FLOPPY, "ResetChangeFlag called\n");
308
309 /* Try to recalibrate. We don't care if it works. */
310 Recalibrate(DriveInfo);
311
312 /* clear spurious interrupts in prep for seeks */
313 KeClearEvent(&DriveInfo->ControllerInfo->SynchEvent);
314
315 /* must re-start the drive because Recalibrate() stops it */
316 StartMotor(DriveInfo);
317
318 /* Seek to 1 */
319 if(HwSeek(DriveInfo, 1) != STATUS_SUCCESS)
320 {
321 WARN_(FLOPPY, "ResetChangeFlag(): HwSeek failed; returning STATUS_IO_DEVICE_ERROR\n");
322 StopMotor(DriveInfo->ControllerInfo);
323 return STATUS_IO_DEVICE_ERROR;
324 }
325
326 WaitForControllerInterrupt(DriveInfo->ControllerInfo);
327
328 if(HwSenseInterruptStatus(DriveInfo->ControllerInfo) != STATUS_SUCCESS)
329 {
330 WARN_(FLOPPY, "ResetChangeFlag(): HwSenseInterruptStatus failed; bailing out\n");
331 StopMotor(DriveInfo->ControllerInfo);
332 return STATUS_IO_DEVICE_ERROR;
333 }
334
335 /* Seek back to 0 */
336 if(HwSeek(DriveInfo, 0) != STATUS_SUCCESS)
337 {
338 WARN_(FLOPPY, "ResetChangeFlag(): HwSeek failed; returning STATUS_IO_DEVICE_ERROR\n");
339 StopMotor(DriveInfo->ControllerInfo);
340 return STATUS_IO_DEVICE_ERROR;
341 }
342
343 WaitForControllerInterrupt(DriveInfo->ControllerInfo);
344
345 if(HwSenseInterruptStatus(DriveInfo->ControllerInfo) != STATUS_SUCCESS)
346 {
347 WARN_(FLOPPY, "ResetChangeFlag(): HwSenseInterruptStatus #2 failed; bailing\n");
348 StopMotor(DriveInfo->ControllerInfo);
349 return STATUS_IO_DEVICE_ERROR;
350 }
351
352 /* Check the change bit */
353 if(HwDiskChanged(DriveInfo, &DiskChanged) != STATUS_SUCCESS)
354 {
355 WARN_(FLOPPY, "ResetChangeFlag(): HwDiskChanged failed; returning STATUS_IO_DEVICE_ERROR\n");
356 StopMotor(DriveInfo->ControllerInfo);
357 return STATUS_IO_DEVICE_ERROR;
358 }
359
360 StopMotor(DriveInfo->ControllerInfo);
361
362 /* if the change flag is still set, there's probably no media in the drive. */
363 if(DiskChanged)
364 return STATUS_NO_MEDIA_IN_DEVICE;
365
366 /* else we're done! */
367 return STATUS_SUCCESS;
368 }
369
370
371 static VOID NTAPI
372 Unload(PDRIVER_OBJECT DriverObject)
373 /*
374 * FUNCTION: Unload the driver from memory
375 * ARGUMENTS:
376 * DriverObject - The driver that is being unloaded
377 */
378 {
379 ULONG i,j;
380
381 PAGED_CODE();
382 UNREFERENCED_PARAMETER(DriverObject);
383
384 TRACE_(FLOPPY, "unloading\n");
385
386 KeSetEvent(&QueueThreadTerminate, 0, FALSE);
387 KeWaitForSingleObject(QueueThreadObject, Executive, KernelMode, FALSE, 0);
388 ObDereferenceObject(QueueThreadObject);
389
390 for(i = 0; i < gNumberOfControllers; i++)
391 {
392 if(!gControllerInfo[i].Initialized)
393 continue;
394
395 for(j = 0; j < gControllerInfo[i].NumberOfDrives; j++)
396 {
397 if(!gControllerInfo[i].DriveInfo[j].Initialized)
398 continue;
399
400 if(gControllerInfo[i].DriveInfo[j].DeviceObject)
401 {
402 UNICODE_STRING Link;
403
404 RtlInitUnicodeString(&Link, gControllerInfo[i].DriveInfo[j].SymLinkBuffer);
405 IoDeleteSymbolicLink(&Link);
406
407 RtlInitUnicodeString(&Link, gControllerInfo[i].DriveInfo[j].ArcPathBuffer);
408 IoDeassignArcName(&Link);
409
410 IoDeleteDevice(gControllerInfo[i].DriveInfo[j].DeviceObject);
411 }
412 }
413
414 IoDisconnectInterrupt(gControllerInfo[i].InterruptObject);
415
416 /* Power down the controller */
417 if(HwPowerOff(&gControllerInfo[i]) != STATUS_SUCCESS)
418 {
419 WARN_(FLOPPY, "unload: warning: HwPowerOff failed\n");
420 }
421 }
422 }
423
424
425 static NTSTATUS NTAPI
426 ConfigCallback(PVOID Context,
427 PUNICODE_STRING PathName,
428 INTERFACE_TYPE BusType,
429 ULONG BusNumber,
430 PKEY_VALUE_FULL_INFORMATION *BusInformation,
431 CONFIGURATION_TYPE ControllerType,
432 ULONG ControllerNumber,
433 PKEY_VALUE_FULL_INFORMATION *ControllerInformation,
434 CONFIGURATION_TYPE PeripheralType,
435 ULONG PeripheralNumber,
436 PKEY_VALUE_FULL_INFORMATION *PeripheralInformation)
437 /*
438 * FUNCTION: Callback to IoQueryDeviceDescription, which tells us about our controllers
439 * ARGUMENTS:
440 * Context: Unused
441 * PathName: Unused
442 * BusType: Type of the bus that our controller is on
443 * BusNumber: Number of the bus that our controller is on
444 * BusInformation: Unused
445 * ControllerType: Unused
446 * ControllerNumber: Number of the controller that we're adding
447 * ControllerInformation: Full configuration information for our controller
448 * PeripheralType: Unused
449 * PeripheralNumber: Unused
450 * PeripheralInformation: Full configuration information for each drive on our controller
451 * RETURNS:
452 * STATUS_SUCCESS in all cases
453 * NOTES:
454 * - The only documentation I've found about the contents of these structures is
455 * from the various Microsoft floppy samples and from the DDK headers. They're
456 * very vague, though, so I'm only mostly sure that this stuff is correct, as
457 * the MS samples do things completely differently than I have done them. Seems
458 * to work in my VMWare, though.
459 * - Basically, the function gets all of the information (port, dma, irq) about the
460 * controller, and then loops through all of the drives presented in PeripheralInformation.
461 * - Each controller has a CONTROLLER_INFO created for it, and each drive has a DRIVE_INFO.
462 * - Device objects are created for each drive (not controller), as that's the targeted
463 * device in the eyes of the rest of the OS. Each DRIVE_INFO points to a single CONTROLLER_INFO.
464 * - We only support up to four controllers in the whole system, each of which supports up to four
465 * drives.
466 */
467 {
468 PKEY_VALUE_FULL_INFORMATION ControllerFullDescriptor = ControllerInformation[IoQueryDeviceConfigurationData];
469 PCM_FULL_RESOURCE_DESCRIPTOR ControllerResourceDescriptor = (PCM_FULL_RESOURCE_DESCRIPTOR)((PCHAR)ControllerFullDescriptor +
470 ControllerFullDescriptor->DataOffset);
471
472 PKEY_VALUE_FULL_INFORMATION PeripheralFullDescriptor = PeripheralInformation[IoQueryDeviceConfigurationData];
473 PCM_FULL_RESOURCE_DESCRIPTOR PeripheralResourceDescriptor = (PCM_FULL_RESOURCE_DESCRIPTOR)((PCHAR)PeripheralFullDescriptor +
474 PeripheralFullDescriptor->DataOffset);
475
476 PCM_PARTIAL_RESOURCE_DESCRIPTOR PartialDescriptor;
477 PCM_FLOPPY_DEVICE_DATA FloppyDeviceData;
478 UCHAR i;
479
480 PAGED_CODE();
481 UNREFERENCED_PARAMETER(PeripheralType);
482 UNREFERENCED_PARAMETER(PeripheralNumber);
483 UNREFERENCED_PARAMETER(BusInformation);
484 UNREFERENCED_PARAMETER(Context);
485 UNREFERENCED_PARAMETER(ControllerType);
486 UNREFERENCED_PARAMETER(PathName);
487
488
489 TRACE_(FLOPPY, "ConfigCallback called with ControllerNumber %d\n", ControllerNumber);
490
491 gControllerInfo[gNumberOfControllers].ControllerNumber = ControllerNumber;
492 gControllerInfo[gNumberOfControllers].InterfaceType = BusType;
493 gControllerInfo[gNumberOfControllers].BusNumber = BusNumber;
494
495 /* Get controller interrupt level/vector, dma channel, and port base */
496 for(i = 0; i < ControllerResourceDescriptor->PartialResourceList.Count; i++)
497 {
498 KeInitializeEvent(&gControllerInfo[gNumberOfControllers].SynchEvent, NotificationEvent, FALSE);
499
500 PartialDescriptor = &ControllerResourceDescriptor->PartialResourceList.PartialDescriptors[i];
501
502 if(PartialDescriptor->Type == CmResourceTypeInterrupt)
503 {
504 gControllerInfo[gNumberOfControllers].Level = PartialDescriptor->u.Interrupt.Level;
505 gControllerInfo[gNumberOfControllers].Vector = PartialDescriptor->u.Interrupt.Vector;
506
507 if(PartialDescriptor->Flags & CM_RESOURCE_INTERRUPT_LATCHED)
508 gControllerInfo[gNumberOfControllers].InterruptMode = Latched;
509 else
510 gControllerInfo[gNumberOfControllers].InterruptMode = LevelSensitive;
511 }
512
513 else if(PartialDescriptor->Type == CmResourceTypePort)
514 {
515 PHYSICAL_ADDRESS TranslatedAddress;
516 ULONG AddressSpace = 0x1; /* I/O Port Range */
517
518 if(!HalTranslateBusAddress(BusType, BusNumber, PartialDescriptor->u.Port.Start, &AddressSpace, &TranslatedAddress))
519 {
520 WARN_(FLOPPY, "HalTranslateBusAddress failed; returning\n");
521 return STATUS_IO_DEVICE_ERROR;
522 }
523
524 if(AddressSpace == 0)
525 gControllerInfo[gNumberOfControllers].BaseAddress = MmMapIoSpace(TranslatedAddress, FDC_PORT_BYTES, MmNonCached);
526 else
527 gControllerInfo[gNumberOfControllers].BaseAddress = (PUCHAR)(ULONG_PTR)TranslatedAddress.QuadPart;
528 }
529
530 else if(PartialDescriptor->Type == CmResourceTypeDma)
531 gControllerInfo[gNumberOfControllers].Dma = PartialDescriptor->u.Dma.Channel;
532 }
533
534 /* Start with 0 drives, then go looking */
535 gControllerInfo[gNumberOfControllers].NumberOfDrives = 0;
536
537 /* learn about drives attached to controller */
538 for(i = 0; i < PeripheralResourceDescriptor->PartialResourceList.Count; i++)
539 {
540 PDRIVE_INFO DriveInfo = &gControllerInfo[gNumberOfControllers].DriveInfo[i];
541
542 PartialDescriptor = &PeripheralResourceDescriptor->PartialResourceList.PartialDescriptors[i];
543
544 if(PartialDescriptor->Type != CmResourceTypeDeviceSpecific)
545 continue;
546
547 FloppyDeviceData = (PCM_FLOPPY_DEVICE_DATA)(PartialDescriptor + 1);
548
549 DriveInfo->ControllerInfo = &gControllerInfo[gNumberOfControllers];
550 DriveInfo->UnitNumber = i;
551
552 DriveInfo->FloppyDeviceData.MaxDensity = FloppyDeviceData->MaxDensity;
553 DriveInfo->FloppyDeviceData.MountDensity = FloppyDeviceData->MountDensity;
554 DriveInfo->FloppyDeviceData.StepRateHeadUnloadTime = FloppyDeviceData->StepRateHeadUnloadTime;
555 DriveInfo->FloppyDeviceData.HeadLoadTime = FloppyDeviceData->HeadLoadTime;
556 DriveInfo->FloppyDeviceData.MotorOffTime = FloppyDeviceData->MotorOffTime;
557 DriveInfo->FloppyDeviceData.SectorLengthCode = FloppyDeviceData->SectorLengthCode;
558 DriveInfo->FloppyDeviceData.SectorPerTrack = FloppyDeviceData->SectorPerTrack;
559 DriveInfo->FloppyDeviceData.ReadWriteGapLength = FloppyDeviceData->ReadWriteGapLength;
560 DriveInfo->FloppyDeviceData.FormatGapLength = FloppyDeviceData->FormatGapLength;
561 DriveInfo->FloppyDeviceData.FormatFillCharacter = FloppyDeviceData->FormatFillCharacter;
562 DriveInfo->FloppyDeviceData.HeadSettleTime = FloppyDeviceData->HeadSettleTime;
563 DriveInfo->FloppyDeviceData.MotorSettleTime = FloppyDeviceData->MotorSettleTime;
564 DriveInfo->FloppyDeviceData.MaximumTrackValue = FloppyDeviceData->MaximumTrackValue;
565 DriveInfo->FloppyDeviceData.DataTransferLength = FloppyDeviceData->DataTransferLength;
566
567 /* Once it's all set up, acknowledge its existance in the controller info object */
568 gControllerInfo[gNumberOfControllers].NumberOfDrives++;
569 }
570
571 gControllerInfo[gNumberOfControllers].Populated = TRUE;
572 gNumberOfControllers++;
573
574 return STATUS_SUCCESS;
575 }
576
577
578 static BOOLEAN NTAPI
579 Isr(PKINTERRUPT Interrupt, PVOID ServiceContext)
580 /*
581 * FUNCTION: Interrupt service routine for the controllers
582 * ARGUMENTS:
583 * Interrupt: Interrupt object representing the interrupt that occured
584 * ServiceContext: Pointer to the ControllerInfo object that caused the interrupt
585 * RETURNS:
586 * TRUE in all cases (see notes)
587 * NOTES:
588 * - We should always be the target of the interrupt, being an edge-triggered ISA interrupt, but
589 * this won't be the case with a level-sensitive system like PCI
590 * - Note that it probably doesn't matter if the interrupt isn't dismissed, as it's edge-triggered.
591 * It probably won't keep re-interrupting.
592 * - There are two different ways to dismiss a floppy interrupt. If the command has a result phase
593 * (see intel datasheet), you dismiss the interrupt by reading the first data byte. If it does
594 * not, you dismiss the interrupt by doing a Sense Interrupt command. Again, because it's edge-
595 * triggered, this is safe to not do here, as we can just wait for the DPC.
596 * - Either way, we don't want to do this here. The controller shouldn't interrupt again, so we'll
597 * schedule a DPC to take care of it.
598 * - This driver really cannot shrare interrupts, as I don't know how to conclusively say
599 * whether it was our controller that interrupted or not. I just have to assume that any time
600 * my ISR gets called, it was my board that called it. Dumb design, yes, but it goes back to
601 * the semantics of ISA buses. That, and I don't know much about ISA drivers. :-)
602 * UPDATE: The high bit of Status Register A seems to work on non-AT controllers.
603 * - Called at DIRQL
604 */
605 {
606 PCONTROLLER_INFO ControllerInfo = (PCONTROLLER_INFO)ServiceContext;
607
608 UNREFERENCED_PARAMETER(Interrupt);
609
610 ASSERT(ControllerInfo);
611
612 TRACE_(FLOPPY, "ISR called\n");
613
614 /*
615 * Due to the stupidity of the drive/controller relationship on the floppy drive, only one device object
616 * can have an active interrupt pending. Due to the nature of these IRPs, though, there will only ever
617 * be one thread expecting an interrupt at a time, and furthermore, Interrupts (outside of spurious ones)
618 * won't ever happen unless a thread is expecting them. Therefore, all we have to do is signal an event
619 * and we're done. Queue a DPC and leave.
620 */
621 KeInsertQueueDpc(&ControllerInfo->Dpc, NULL, NULL);
622
623 return TRUE;
624 }
625
626
627 VOID NTAPI
628 DpcForIsr(PKDPC UnusedDpc, PVOID Context, PVOID SystemArgument1, PVOID SystemArgument2)
629 /*
630 * FUNCTION: This DPC gets queued by every ISR. Does the real per-interrupt work.
631 * ARGUMENTS:
632 * UnusedDpc: Pointer to the DPC object that represents our function
633 * DeviceObject: Device that this DPC is running for
634 * Irp: Unused
635 * Context: Pointer to our ControllerInfo struct
636 * NOTES:
637 * - This function just kicks off whatever the SynchEvent is and returns. We depend on
638 * the thing that caused the drive to interrupt to handle the work of clearing the interrupt.
639 * This enables us to get back to PASSIVE_LEVEL and not hog system time on a really stupid,
640 * slow, screwed-up piece of hardare.
641 * - If nothing is waiting for us to set the event, the interrupt is effectively lost and will
642 * never be dismissed. I wonder if this will become a problem.
643 * - Called at DISPATCH_LEVEL
644 */
645 {
646 PCONTROLLER_INFO ControllerInfo = (PCONTROLLER_INFO)Context;
647
648 UNREFERENCED_PARAMETER(UnusedDpc);
649 UNREFERENCED_PARAMETER(SystemArgument1);
650 UNREFERENCED_PARAMETER(SystemArgument2);
651
652 ASSERT(ControllerInfo);
653
654 TRACE_(FLOPPY, "DpcForIsr called\n");
655
656 KeSetEvent(&ControllerInfo->SynchEvent, EVENT_INCREMENT, FALSE);
657 }
658
659
660 static NTSTATUS NTAPI
661 InitController(PCONTROLLER_INFO ControllerInfo)
662 /*
663 * FUNCTION: Initialize a newly-found controller
664 * ARGUMENTS:
665 * ControllerInfo: pointer to the controller to be initialized
666 * RETURNS:
667 * STATUS_SUCCESS if the controller is successfully initialized
668 * STATUS_IO_DEVICE_ERROR otherwise
669 */
670 {
671 int i;
672 UCHAR HeadLoadTime;
673 UCHAR HeadUnloadTime;
674 UCHAR StepRateTime;
675 UCHAR ControllerVersion;
676
677 PAGED_CODE();
678 ASSERT(ControllerInfo);
679
680 TRACE_(FLOPPY, "InitController called with Controller 0x%p\n", ControllerInfo);
681
682 /* Get controller in a known state */
683 if(HwConfigure(ControllerInfo, FALSE, TRUE, TRUE, 0, 0) != STATUS_SUCCESS)
684 {
685 WARN_(FLOPPY, "InitController: unable to configure controller\n");
686 return STATUS_IO_DEVICE_ERROR;
687 }
688
689 /* Get the controller version */
690 ControllerVersion = HwGetVersion(ControllerInfo);
691
692 KeClearEvent(&ControllerInfo->SynchEvent);
693
694 /* Reset the controller */
695 if(HwReset(ControllerInfo) != STATUS_SUCCESS)
696 {
697 WARN_(FLOPPY, "InitController: unable to reset controller\n");
698 return STATUS_IO_DEVICE_ERROR;
699 }
700
701 INFO_(FLOPPY, "InitController: waiting for initial interrupt\n");
702
703 /* Wait for an interrupt */
704 WaitForControllerInterrupt(ControllerInfo);
705
706 /* Reset means you have to clear each of the four interrupts (one per drive) */
707 for(i = 0; i < MAX_DRIVES_PER_CONTROLLER; i++)
708 {
709 INFO_(FLOPPY, "InitController: Sensing interrupt %d\n", i);
710
711 if(HwSenseInterruptStatus(ControllerInfo) != STATUS_SUCCESS)
712 {
713 WARN_(FLOPPY, "InitController: Unable to clear interrupt 0x%x\n", i);
714 return STATUS_IO_DEVICE_ERROR;
715 }
716 }
717
718 INFO_(FLOPPY, "InitController: done sensing interrupts\n");
719
720 /* Next, see if we have the right version to do implied seek */
721 if(ControllerVersion == VERSION_ENHANCED)
722 {
723 /* If so, set that up -- all defaults below except first TRUE for EIS */
724 if(HwConfigure(ControllerInfo, TRUE, TRUE, TRUE, 0, 0) != STATUS_SUCCESS)
725 {
726 WARN_(FLOPPY, "InitController: unable to set up implied seek\n");
727 ControllerInfo->ImpliedSeeks = FALSE;
728 }
729 else
730 {
731 INFO_(FLOPPY, "InitController: implied seeks set!\n");
732 ControllerInfo->ImpliedSeeks = TRUE;
733 }
734
735 /*
736 * FIXME: Figure out the answer to the below
737 *
738 * I must admit that I'm really confused about the Model 30 issue. At least one
739 * important bit (the disk change bit in the DIR) is flipped if this is a Model 30
740 * controller. However, at least one other floppy driver believes that there are only
741 * two computers that are guaranteed to have a Model 30 controller:
742 * - IBM Thinkpad 750
743 * - IBM PS2e
744 *
745 * ...and another driver only lists a config option for "thinkpad", that flips
746 * the change line. A third driver doesn't mention the Model 30 issue at all.
747 *
748 * What I can't tell is whether or not the average, run-of-the-mill computer now has
749 * a Model 30 controller. For the time being, I'm going to wire this to FALSE,
750 * and just not support the computers mentioned above, while I try to figure out
751 * how ubiquitous these newfangled 30 thingies are.
752 */
753 //ControllerInfo->Model30 = TRUE;
754 ControllerInfo->Model30 = FALSE;
755 }
756 else
757 {
758 INFO_(FLOPPY, "InitController: enhanced version not supported; disabling implied seeks\n");
759 ControllerInfo->ImpliedSeeks = FALSE;
760 ControllerInfo->Model30 = FALSE;
761 }
762
763 /* Specify */
764 WARN_(FLOPPY, "FIXME: Figure out speed\n");
765 HeadLoadTime = SPECIFY_HLT_500K;
766 HeadUnloadTime = SPECIFY_HUT_500K;
767 StepRateTime = SPECIFY_SRT_500K;
768
769 INFO_(FLOPPY, "InitController: setting data rate\n");
770
771 /* Set data rate */
772 if(HwSetDataRate(ControllerInfo, DRSR_DSEL_500KBPS) != STATUS_SUCCESS)
773 {
774 WARN_(FLOPPY, "InitController: unable to set data rate\n");
775 return STATUS_IO_DEVICE_ERROR;
776 }
777
778 INFO_(FLOPPY, "InitController: issuing specify command to controller\n");
779
780 /* Don't disable DMA --> enable dma (dumb & confusing) */
781 if(HwSpecify(ControllerInfo, HeadLoadTime, HeadUnloadTime, StepRateTime, FALSE) != STATUS_SUCCESS)
782 {
783 WARN_(FLOPPY, "InitController: unable to specify options\n");
784 return STATUS_IO_DEVICE_ERROR;
785 }
786
787 /* Init the stop stuff */
788 KeInitializeDpc(&ControllerInfo->MotorStopDpc, MotorStopDpcFunc, ControllerInfo);
789 KeInitializeTimer(&ControllerInfo->MotorTimer);
790 KeInitializeEvent(&ControllerInfo->MotorStoppedEvent, NotificationEvent, FALSE);
791 ControllerInfo->StopDpcQueued = FALSE;
792
793 /*
794 * Recalibrate each drive on the controller (depends on StartMotor, which depends on the timer stuff above)
795 * We don't even know if there is a disk in the drive, so this may not work, but that's OK.
796 */
797 for(i = 0; i < ControllerInfo->NumberOfDrives; i++)
798 {
799 INFO_(FLOPPY, "InitController: recalibrating drive 0x%x on controller 0x%p\n", i, ControllerInfo);
800 Recalibrate(&ControllerInfo->DriveInfo[i]);
801 }
802
803 INFO_(FLOPPY, "InitController: done initializing; returning STATUS_SUCCESS\n");
804
805 return STATUS_SUCCESS;
806 }
807
808
809 static BOOLEAN NTAPI
810 AddControllers(PDRIVER_OBJECT DriverObject)
811 /*
812 * FUNCTION: Called on initialization to find our controllers and build device and controller objects for them
813 * ARGUMENTS:
814 * DriverObject: Our driver's DriverObject (so we can create devices against it)
815 * RETURNS:
816 * FALSE if we can't allocate a device, adapter, or interrupt object, or if we fail to find any controllers
817 * TRUE otherwise (i.e. we have at least one fully-configured controller)
818 * NOTES:
819 * - Currently we only support ISA buses.
820 * - BUG: Windows 2000 seems to clobber the response from the IoQueryDeviceDescription callback, so now we
821 * just test a boolean value in the first object to see if it was completely populated. The same value
822 * is tested for each controller before we build device objects for it.
823 * TODO:
824 * - Report resource usage to the HAL
825 */
826 {
827 INTERFACE_TYPE InterfaceType = Isa;
828 CONFIGURATION_TYPE ControllerType = DiskController;
829 CONFIGURATION_TYPE PeripheralType = FloppyDiskPeripheral;
830 KAFFINITY Affinity;
831 DEVICE_DESCRIPTION DeviceDescription;
832 UCHAR i;
833 UCHAR j;
834
835 PAGED_CODE();
836
837 /* Find our controllers on all ISA buses */
838 IoQueryDeviceDescription(&InterfaceType, 0, &ControllerType, 0, &PeripheralType, 0, ConfigCallback, 0);
839
840 /*
841 * w2k breaks the return val from ConfigCallback, so we have to hack around it, rather than just
842 * looking for a return value from ConfigCallback. We expect at least one controller.
843 */
844 if(!gControllerInfo[0].Populated)
845 {
846 WARN_(FLOPPY, "AddControllers: failed to get controller info from registry\n");
847 return FALSE;
848 }
849
850 /* Now that we have a controller, set it up with the system */
851 for(i = 0; i < gNumberOfControllers && gControllerInfo[i].NumberOfDrives > 0; i++)
852 {
853 /* 0: Report resource usage to the kernel, to make sure they aren't assigned to anyone else */
854 /* FIXME: Implement me. */
855
856 /* 1: Set up interrupt */
857 gControllerInfo[i].MappedVector = HalGetInterruptVector(gControllerInfo[i].InterfaceType, gControllerInfo[i].BusNumber,
858 gControllerInfo[i].Level, gControllerInfo[i].Vector,
859 &gControllerInfo[i].MappedLevel, &Affinity);
860
861 /* Must set up the DPC before we connect the interrupt */
862 KeInitializeDpc(&gControllerInfo[i].Dpc, DpcForIsr, &gControllerInfo[i]);
863
864 INFO_(FLOPPY, "Connecting interrupt %d to controller%d (object 0x%p)\n", gControllerInfo[i].MappedVector,
865 i, &gControllerInfo[i]);
866
867 /* NOTE: We cannot share our interrupt, even on level-triggered buses. See Isr() for details. */
868 if(IoConnectInterrupt(&gControllerInfo[i].InterruptObject, Isr, &gControllerInfo[i], 0, gControllerInfo[i].MappedVector,
869 gControllerInfo[i].MappedLevel, gControllerInfo[i].MappedLevel, gControllerInfo[i].InterruptMode,
870 FALSE, Affinity, 0) != STATUS_SUCCESS)
871 {
872 WARN_(FLOPPY, "AddControllers: unable to connect interrupt\n");
873 continue;
874 }
875
876 /* 2: Set up DMA */
877 memset(&DeviceDescription, 0, sizeof(DeviceDescription));
878 DeviceDescription.Version = DEVICE_DESCRIPTION_VERSION;
879 DeviceDescription.DmaChannel = gControllerInfo[i].Dma;
880 DeviceDescription.InterfaceType = gControllerInfo[i].InterfaceType;
881 DeviceDescription.BusNumber = gControllerInfo[i].BusNumber;
882 DeviceDescription.MaximumLength = 2*18*512; /* based on a 1.44MB floppy */
883
884 /* DMA 0,1,2,3 are 8-bit; 4,5,6,7 are 16-bit (4 is chain i think) */
885 DeviceDescription.DmaWidth = gControllerInfo[i].Dma > 3 ? Width16Bits: Width8Bits;
886
887 gControllerInfo[i].AdapterObject = HalGetAdapter(&DeviceDescription, &gControllerInfo[i].MapRegisters);
888
889 if(!gControllerInfo[i].AdapterObject)
890 {
891 WARN_(FLOPPY, "AddControllers: unable to allocate an adapter object\n");
892 IoDisconnectInterrupt(gControllerInfo[i].InterruptObject);
893 continue;
894 }
895
896 /* 2b: Initialize the new controller */
897 if(InitController(&gControllerInfo[i]) != STATUS_SUCCESS)
898 {
899 WARN_(FLOPPY, "AddControllers(): Unable to set up controller %d - initialization failed\n", i);
900 IoDisconnectInterrupt(gControllerInfo[i].InterruptObject);
901 continue;
902 }
903
904 /* 2c: Set the controller's initlized flag so we know to release stuff in Unload */
905 gControllerInfo[i].Initialized = TRUE;
906
907 /* 3: per-drive setup */
908 for(j = 0; j < gControllerInfo[i].NumberOfDrives; j++)
909 {
910 WCHAR DeviceNameBuf[MAX_DEVICE_NAME];
911 UNICODE_STRING DeviceName;
912 UNICODE_STRING LinkName;
913 UNICODE_STRING ArcPath;
914 UCHAR DriveNumber;
915
916 INFO_(FLOPPY, "AddControllers(): Configuring drive %d on controller %d\n", i, j);
917
918 /*
919 * 3a: create a device object for the drive
920 * Controllers and drives are 0-based, so the combos are:
921 * 0: 0,0
922 * 1: 0,1
923 * 2: 0,2
924 * 3: 0,3
925 * 4: 1,0
926 * 5: 1,1
927 * ...
928 * 14: 3,2
929 * 15: 3,3
930 */
931
932 DriveNumber = (UCHAR)(i*4 + j); /* loss of precision is OK; there are only 16 of 'em */
933
934 RtlZeroMemory(&DeviceNameBuf, MAX_DEVICE_NAME * sizeof(WCHAR));
935 swprintf(DeviceNameBuf, L"\\Device\\Floppy%d", DriveNumber);
936 RtlInitUnicodeString(&DeviceName, DeviceNameBuf);
937
938 if(IoCreateDevice(DriverObject, sizeof(PVOID), &DeviceName,
939 FILE_DEVICE_DISK, FILE_REMOVABLE_MEDIA | FILE_FLOPPY_DISKETTE, FALSE,
940 &gControllerInfo[i].DriveInfo[j].DeviceObject) != STATUS_SUCCESS)
941 {
942 WARN_(FLOPPY, "AddControllers: unable to register a Device object\n");
943 IoDisconnectInterrupt(gControllerInfo[i].InterruptObject);
944 continue; /* continue on to next drive */
945 }
946
947 INFO_(FLOPPY, "AddControllers: New device: %S (0x%p)\n", DeviceNameBuf, gControllerInfo[i].DriveInfo[j].DeviceObject);
948
949 /* 3b.5: Create an ARC path in case we're booting from this drive */
950 swprintf(gControllerInfo[i].DriveInfo[j].ArcPathBuffer,
951 L"\\ArcName\\multi(%d)disk(%d)fdisk(%d)", gControllerInfo[i].BusNumber, i, DriveNumber);
952
953 RtlInitUnicodeString(&ArcPath, gControllerInfo[i].DriveInfo[j].ArcPathBuffer);
954 IoAssignArcName(&ArcPath, &DeviceName);
955
956 /* 3c: Set flags up */
957 gControllerInfo[i].DriveInfo[j].DeviceObject->Flags |= DO_DIRECT_IO;
958
959 /* 3d: Create a symlink */
960 swprintf(gControllerInfo[i].DriveInfo[j].SymLinkBuffer, L"\\DosDevices\\%c:", DriveNumber + 'A');
961 RtlInitUnicodeString(&LinkName, gControllerInfo[i].DriveInfo[j].SymLinkBuffer);
962 if(IoCreateSymbolicLink(&LinkName, &DeviceName) != STATUS_SUCCESS)
963 {
964 WARN_(FLOPPY, "AddControllers: Unable to create a symlink for drive %d\n", DriveNumber);
965 IoDisconnectInterrupt(gControllerInfo[i].InterruptObject);
966 IoDeassignArcName(&ArcPath);
967 continue; /* continue to next drive */
968 }
969
970 /* 3e: Increase global floppy drives count */
971 IoGetConfigurationInformation()->FloppyCount++;
972
973 /* 3f: Set up the DPC */
974 IoInitializeDpcRequest(gControllerInfo[i].DriveInfo[j].DeviceObject, (PIO_DPC_ROUTINE)DpcForIsr);
975
976 /* 3g: Point the device extension at our DriveInfo struct */
977 gControllerInfo[i].DriveInfo[j].DeviceObject->DeviceExtension = &gControllerInfo[i].DriveInfo[j];
978
979 /* 3h: neat comic strip */
980
981 /* 3i: set the initial media type to unknown */
982 memset(&gControllerInfo[i].DriveInfo[j].DiskGeometry, 0, sizeof(DISK_GEOMETRY));
983 gControllerInfo[i].DriveInfo[j].DiskGeometry.MediaType = Unknown;
984
985 /* 3j: Now that we're done, set the Initialized flag so we know to free this in Unload */
986 gControllerInfo[i].DriveInfo[j].Initialized = TRUE;
987
988 /* 3k: Clear the DO_DEVICE_INITIALIZING flag */
989 gControllerInfo[i].DriveInfo[j].DeviceObject->Flags &= ~DO_DEVICE_INITIALIZING;
990 }
991 }
992
993 INFO_(FLOPPY, "AddControllers: --------------------------------------------> finished adding controllers\n");
994
995 return (IoGetConfigurationInformation()->FloppyCount != 0);
996 }
997
998
999 VOID NTAPI
1000 SignalMediaChanged(PDEVICE_OBJECT DeviceObject, PIRP Irp)
1001 /*
1002 * FUNCTION: Process an IRP when the media has changed, and possibly notify the user
1003 * ARGUMENTS:
1004 * DeviceObject: DeviceObject associated with the IRP
1005 * Irp: IRP that we're failing due to change
1006 * NOTES:
1007 * - This procedure is documented in the DDK by "Notifying the File System of Possible Media Changes",
1008 * "IoSetHardErrorOrVerifyDevice", and by "Responding to Check-Verify Requests from the File System".
1009 * - Callable at <= DISPATCH_LEVEL
1010 */
1011 {
1012 PDRIVE_INFO DriveInfo = DeviceObject->DeviceExtension;
1013
1014 TRACE_(FLOPPY, "SignalMediaChanged called\n");
1015
1016 DriveInfo->DiskChangeCount++;
1017
1018 /* If volume is not mounted, do NOT set verify and return STATUS_IO_DEVICE_ERROR */
1019 if(!(DeviceObject->Vpb->Flags & VPB_MOUNTED))
1020 {
1021 Irp->IoStatus.Status = STATUS_IO_DEVICE_ERROR;
1022 Irp->IoStatus.Information = 0;
1023 return;
1024 }
1025
1026 /* Notify the filesystem that it will need to verify the volume */
1027 DeviceObject->Flags |= DO_VERIFY_VOLUME;
1028 Irp->IoStatus.Status = STATUS_VERIFY_REQUIRED;
1029 Irp->IoStatus.Information = 0;
1030
1031 /*
1032 * If this is a user-based, threaded request, let the IO manager know to pop up a box asking
1033 * the user to supply the correct media, but only if the error (which we just picked out above)
1034 * is deemed by the IO manager to be "user induced". The reason we don't just unconditionally
1035 * call IoSetHardError... is because MS might change the definition of "user induced" some day,
1036 * and we don't want to have to remember to re-code this.
1037 */
1038 if(Irp->Tail.Overlay.Thread && IoIsErrorUserInduced(Irp->IoStatus.Status))
1039 IoSetHardErrorOrVerifyDevice(Irp, DeviceObject);
1040 }
1041
1042
1043 static VOID NTAPI
1044 QueueThread(PVOID Context)
1045 /*
1046 * FUNCTION: Thread that manages the queue and dispatches any queued requests
1047 * ARGUMENTS:
1048 * Context: unused
1049 */
1050 {
1051 PIRP Irp;
1052 PIO_STACK_LOCATION Stack;
1053 PDEVICE_OBJECT DeviceObject;
1054 PVOID Objects[2];
1055
1056 PAGED_CODE();
1057 UNREFERENCED_PARAMETER(Context);
1058
1059 Objects[0] = &QueueSemaphore;
1060 Objects[1] = &QueueThreadTerminate;
1061
1062 for(;;)
1063 {
1064 KeWaitForMultipleObjects(2, Objects, WaitAny, Executive, KernelMode, FALSE, NULL, NULL);
1065
1066 if(KeReadStateEvent(&QueueThreadTerminate))
1067 {
1068 INFO_(FLOPPY, "QueueThread terminating\n");
1069 return;
1070 }
1071
1072 INFO_(FLOPPY, "QueueThread: servicing an IRP\n");
1073
1074 Irp = IoCsqRemoveNextIrp(&Csq, 0);
1075
1076 /* we won't get an irp if it was canceled */
1077 if(!Irp)
1078 {
1079 INFO_(FLOPPY, "QueueThread: IRP queue empty\n");
1080 continue;
1081 }
1082
1083 DeviceObject = (PDEVICE_OBJECT)Irp->Tail.Overlay.DriverContext[0];
1084
1085 ASSERT(DeviceObject);
1086
1087 Stack = IoGetCurrentIrpStackLocation(Irp);
1088
1089 /* Decide what to do with the IRP */
1090 switch(Stack->MajorFunction)
1091 {
1092 case IRP_MJ_READ:
1093 case IRP_MJ_WRITE:
1094 ReadWritePassive(DeviceObject->DeviceExtension, Irp);
1095 break;
1096
1097 case IRP_MJ_DEVICE_CONTROL:
1098 DeviceIoctlPassive(DeviceObject->DeviceExtension, Irp);
1099 break;
1100
1101 default:
1102 WARN_(FLOPPY, "QueueThread(): Unrecognized irp: mj: 0x%x\n", Stack->MajorFunction);
1103 Irp->IoStatus.Status = STATUS_NOT_SUPPORTED;
1104 Irp->IoStatus.Information = 0;
1105 IoCompleteRequest(Irp, IO_NO_INCREMENT);
1106 }
1107 }
1108 }
1109
1110
1111 NTSTATUS NTAPI
1112 DriverEntry(PDRIVER_OBJECT DriverObject, PUNICODE_STRING RegistryPath)
1113 /*
1114 * FUNCTION: Entry-point for the driver
1115 * ARGUMENTS:
1116 * DriverObject: Our driver object
1117 * RegistryPath: Unused
1118 * RETURNS:
1119 * STATUS_SUCCESS on successful initialization of at least one drive
1120 * STATUS_NO_SUCH_DEVICE if we didn't find even one drive
1121 * STATUS_UNSUCCESSFUL otherwise
1122 */
1123 {
1124 HANDLE ThreadHandle;
1125
1126 UNREFERENCED_PARAMETER(RegistryPath);
1127
1128 /*
1129 * Set up dispatch routines
1130 */
1131 DriverObject->MajorFunction[IRP_MJ_CREATE] = (PDRIVER_DISPATCH)CreateClose;
1132 DriverObject->MajorFunction[IRP_MJ_CLOSE] = (PDRIVER_DISPATCH)CreateClose;
1133 DriverObject->MajorFunction[IRP_MJ_READ] = (PDRIVER_DISPATCH)ReadWrite;
1134 DriverObject->MajorFunction[IRP_MJ_WRITE] = (PDRIVER_DISPATCH)ReadWrite;
1135 DriverObject->MajorFunction[IRP_MJ_DEVICE_CONTROL] = (PDRIVER_DISPATCH)DeviceIoctl;
1136
1137 DriverObject->DriverUnload = Unload;
1138
1139 /*
1140 * We depend on some zeroes in these structures. I know this is supposed to be
1141 * initialized to 0 by the complier but this makes me feel beter.
1142 */
1143 memset(&gControllerInfo, 0, sizeof(gControllerInfo));
1144
1145 /*
1146 * Set up queue. This routine cannot fail (trust me, I wrote it).
1147 */
1148 IoCsqInitialize(&Csq, CsqInsertIrp, CsqRemoveIrp, CsqPeekNextIrp,
1149 CsqAcquireLock, CsqReleaseLock, CsqCompleteCanceledIrp);
1150
1151 /*
1152 * ...and its lock
1153 */
1154 KeInitializeSpinLock(&IrpQueueLock);
1155
1156 /*
1157 * ...and the queue list itself
1158 */
1159 InitializeListHead(&IrpQueue);
1160
1161 /*
1162 * The queue is counted by a semaphore. The queue management thread
1163 * blocks on this semaphore, so if requests come in faster than the queue
1164 * thread can handle them, the semaphore count goes up.
1165 */
1166 KeInitializeSemaphore(&QueueSemaphore, 0, 0x7fffffff);
1167
1168 /*
1169 * Event to terminate that thread
1170 */
1171 KeInitializeEvent(&QueueThreadTerminate, NotificationEvent, FALSE);
1172
1173 /*
1174 * Create the queue processing thread. Save its handle in the global variable
1175 * ThreadHandle so we can wait on its termination during Unload.
1176 */
1177 if(PsCreateSystemThread(&ThreadHandle, THREAD_ALL_ACCESS, 0, 0, 0, QueueThread, 0) != STATUS_SUCCESS)
1178 {
1179 WARN_(FLOPPY, "Unable to create system thread; failing init\n");
1180 return STATUS_INSUFFICIENT_RESOURCES;
1181 }
1182
1183 if(ObReferenceObjectByHandle(ThreadHandle, STANDARD_RIGHTS_ALL, *PsThreadType, KernelMode, &QueueThreadObject, NULL) != STATUS_SUCCESS)
1184 {
1185 WARN_(FLOPPY, "Unable to reference returned thread handle; failing init\n");
1186 return STATUS_UNSUCCESSFUL;
1187 }
1188
1189 /*
1190 * Close the handle, now that we have the object pointer and a reference of our own.
1191 * The handle will certainly not be valid in the context of the caller next time we
1192 * need it, as handles are process-specific.
1193 */
1194 ZwClose(ThreadHandle);
1195
1196 /*
1197 * Start the device discovery proces. Returns STATUS_SUCCESS if
1198 * it finds even one drive attached to one controller.
1199 */
1200 if(!AddControllers(DriverObject))
1201 return STATUS_NO_SUCH_DEVICE;
1202
1203 return STATUS_SUCCESS;
1204 }