Initial revision
[reactos.git] / reactos / include / internal / dma.h
1 /* $Id: dma.h,v 1.1 1996/01/23 01:02:19 rosmgr Exp $
2 * linux/include/asm/dma.h: Defines for using and allocating dma channels.
3 * Written by Hennus Bergman, 1992.
4 * High DMA channel support & info by Hannu Savolainen
5 * and John Boyd, Nov. 1992.
6 */
7
8 #ifndef _ASM_DMA_H
9 #define _ASM_DMA_H
10
11 #include "io.h" /* need byte IO */
12
13
14 #ifdef HAVE_REALLY_SLOW_DMA_CONTROLLER
15 #define dma_outb outb_p
16 #else
17 #define dma_outb outb
18 #endif
19
20 #define dma_inb inb
21
22 /*
23 * NOTES about DMA transfers:
24 *
25 * controller 1: channels 0-3, byte operations, ports 00-1F
26 * controller 2: channels 4-7, word operations, ports C0-DF
27 *
28 * - ALL registers are 8 bits only, regardless of transfer size
29 * - channel 4 is not used - cascades 1 into 2.
30 * - channels 0-3 are byte - addresses/counts are for physical bytes
31 * - channels 5-7 are word - addresses/counts are for physical words
32 * - transfers must not cross physical 64K (0-3) or 128K (5-7) boundaries
33 * - transfer count loaded to registers is 1 less than actual count
34 * - controller 2 offsets are all even (2x offsets for controller 1)
35 * - page registers for 5-7 don't use data bit 0, represent 128K pages
36 * - page registers for 0-3 use bit 0, represent 64K pages
37 *
38 * DMA transfers are limited to the lower 16MB of _physical_ memory.
39 * Note that addresses loaded into registers must be _physical_ addresses,
40 * not logical addresses (which may differ if paging is active).
41 *
42 * Address mapping for channels 0-3:
43 *
44 * A23 ... A16 A15 ... A8 A7 ... A0 (Physical addresses)
45 * | ... | | ... | | ... |
46 * | ... | | ... | | ... |
47 * | ... | | ... | | ... |
48 * P7 ... P0 A7 ... A0 A7 ... A0
49 * | Page | Addr MSB | Addr LSB | (DMA registers)
50 *
51 * Address mapping for channels 5-7:
52 *
53 * A23 ... A17 A16 A15 ... A9 A8 A7 ... A1 A0 (Physical addresses)
54 * | ... | \ \ ... \ \ \ ... \ \
55 * | ... | \ \ ... \ \ \ ... \ (not used)
56 * | ... | \ \ ... \ \ \ ... \
57 * P7 ... P1 (0) A7 A6 ... A0 A7 A6 ... A0
58 * | Page | Addr MSB | Addr LSB | (DMA registers)
59 *
60 * Again, channels 5-7 transfer _physical_ words (16 bits), so addresses
61 * and counts _must_ be word-aligned (the lowest address bit is _ignored_ at
62 * the hardware level, so odd-byte transfers aren't possible).
63 *
64 * Transfer count (_not # bytes_) is limited to 64K, represented as actual
65 * count - 1 : 64K => 0xFFFF, 1 => 0x0000. Thus, count is always 1 or more,
66 * and up to 128K bytes may be transferred on channels 5-7 in one operation.
67 *
68 */
69
70 #define MAX_DMA_CHANNELS 8
71
72 /* The maximum address that we can perform a DMA transfer to on this platform */
73 #define MAX_DMA_ADDRESS 0x1000000
74
75 /* 8237 DMA controllers */
76 #define IO_DMA1_BASE 0x00 /* 8 bit slave DMA, channels 0..3 */
77 #define IO_DMA2_BASE 0xC0 /* 16 bit master DMA, ch 4(=slave input)..7 */
78
79 /* DMA controller registers */
80 #define DMA1_CMD_REG 0x08 /* command register (w) */
81 #define DMA1_STAT_REG 0x08 /* status register (r) */
82 #define DMA1_REQ_REG 0x09 /* request register (w) */
83 #define DMA1_MASK_REG 0x0A /* single-channel mask (w) */
84 #define DMA1_MODE_REG 0x0B /* mode register (w) */
85 #define DMA1_CLEAR_FF_REG 0x0C /* clear pointer flip-flop (w) */
86 #define DMA1_TEMP_REG 0x0D /* Temporary Register (r) */
87 #define DMA1_RESET_REG 0x0D /* Master Clear (w) */
88 #define DMA1_CLR_MASK_REG 0x0E /* Clear Mask */
89 #define DMA1_MASK_ALL_REG 0x0F /* all-channels mask (w) */
90
91 #define DMA2_CMD_REG 0xD0 /* command register (w) */
92 #define DMA2_STAT_REG 0xD0 /* status register (r) */
93 #define DMA2_REQ_REG 0xD2 /* request register (w) */
94 #define DMA2_MASK_REG 0xD4 /* single-channel mask (w) */
95 #define DMA2_MODE_REG 0xD6 /* mode register (w) */
96 #define DMA2_CLEAR_FF_REG 0xD8 /* clear pointer flip-flop (w) */
97 #define DMA2_TEMP_REG 0xDA /* Temporary Register (r) */
98 #define DMA2_RESET_REG 0xDA /* Master Clear (w) */
99 #define DMA2_CLR_MASK_REG 0xDC /* Clear Mask */
100 #define DMA2_MASK_ALL_REG 0xDE /* all-channels mask (w) */
101
102 #define DMA_ADDR_0 0x00 /* DMA address registers */
103 #define DMA_ADDR_1 0x02
104 #define DMA_ADDR_2 0x04
105 #define DMA_ADDR_3 0x06
106 #define DMA_ADDR_4 0xC0
107 #define DMA_ADDR_5 0xC4
108 #define DMA_ADDR_6 0xC8
109 #define DMA_ADDR_7 0xCC
110
111 #define DMA_CNT_0 0x01 /* DMA count registers */
112 #define DMA_CNT_1 0x03
113 #define DMA_CNT_2 0x05
114 #define DMA_CNT_3 0x07
115 #define DMA_CNT_4 0xC2
116 #define DMA_CNT_5 0xC6
117 #define DMA_CNT_6 0xCA
118 #define DMA_CNT_7 0xCE
119
120 #define DMA_PAGE_0 0x87 /* DMA page registers */
121 #define DMA_PAGE_1 0x83
122 #define DMA_PAGE_2 0x81
123 #define DMA_PAGE_3 0x82
124 #define DMA_PAGE_5 0x8B
125 #define DMA_PAGE_6 0x89
126 #define DMA_PAGE_7 0x8A
127
128 #define DMA_MODE_READ 0x44 /* I/O to memory, no autoinit, increment, single mode */
129 #define DMA_MODE_WRITE 0x48 /* memory to I/O, no autoinit, increment, single mode */
130 #define DMA_MODE_CASCADE 0xC0 /* pass thru DREQ->HRQ, DACK<-HLDA only */
131
132 /* enable/disable a specific DMA channel */
133 static __inline__ void enable_dma(unsigned int dmanr)
134 {
135 if (dmanr<=3)
136 dma_outb(DMA1_MASK_REG, dmanr);
137 else
138 dma_outb(DMA2_MASK_REG, dmanr & 3);
139 }
140
141 static __inline__ void disable_dma(unsigned int dmanr)
142 {
143 if (dmanr<=3)
144 dma_outb(DMA1_MASK_REG, dmanr | 4);
145 else
146 dma_outb(DMA2_MASK_REG, (dmanr & 3) | 4);
147 }
148
149 /* Clear the 'DMA Pointer Flip Flop'.
150 * Write 0 for LSB/MSB, 1 for MSB/LSB access.
151 * Use this once to initialize the FF to a known state.
152 * After that, keep track of it. :-)
153 * --- In order to do that, the DMA routines below should ---
154 * --- only be used while interrupts are disabled! ---
155 */
156 static __inline__ void clear_dma_ff(unsigned int dmanr)
157 {
158 if (dmanr<=3)
159 dma_outb(DMA1_CLEAR_FF_REG, 0);
160 else
161 dma_outb(DMA2_CLEAR_FF_REG, 0);
162 }
163
164 /* set mode (above) for a specific DMA channel */
165 static __inline__ void set_dma_mode(unsigned int dmanr, char mode)
166 {
167 if (dmanr<=3)
168 dma_outb(DMA1_MODE_REG, mode | dmanr);
169 else
170 dma_outb(DMA2_MODE_REG, mode | (dmanr&3));
171 }
172
173 /* Set only the page register bits of the transfer address.
174 * This is used for successive transfers when we know the contents of
175 * the lower 16 bits of the DMA current address register, but a 64k boundary
176 * may have been crossed.
177 */
178 static __inline__ void set_dma_page(unsigned int dmanr, char pagenr)
179 {
180 switch(dmanr) {
181 case 0:
182 dma_outb(DMA_PAGE_0, pagenr);
183 break;
184 case 1:
185 dma_outb(DMA_PAGE_1, pagenr);
186 break;
187 case 2:
188 dma_outb(DMA_PAGE_2, pagenr);
189 break;
190 case 3:
191 dma_outb(DMA_PAGE_3, pagenr);
192 break;
193 case 5:
194 dma_outb(DMA_PAGE_5, pagenr & 0xfe);
195 break;
196 case 6:
197 dma_outb(DMA_PAGE_6, pagenr & 0xfe);
198 break;
199 case 7:
200 dma_outb(DMA_PAGE_7, pagenr & 0xfe);
201 break;
202 }
203 }
204
205
206 /* Set transfer address & page bits for specific DMA channel.
207 * Assumes dma flipflop is clear.
208 */
209 static __inline__ void set_dma_addr(unsigned int dmanr, unsigned int a)
210 {
211 set_dma_page(dmanr, a>>16);
212 if (dmanr <= 3) {
213 dma_outb(((dmanr&3)<<1) + IO_DMA1_BASE, a & 0xff);
214 dma_outb(((dmanr&3)<<1) + IO_DMA1_BASE, (a>>8) & 0xff );
215 } else {
216 dma_outb( ((dmanr&3)<<2) + IO_DMA2_BASE ,(a>>1) & 0xff );
217 dma_outb( ((dmanr&3)<<2) + IO_DMA2_BASE,(a>>9) & 0xff );
218 }
219 }
220
221
222 /* Set transfer size (max 64k for DMA1..3, 128k for DMA5..7) for
223 * a specific DMA channel.
224 * You must ensure the parameters are valid.
225 * NOTE: from a manual: "the number of transfers is one more
226 * than the initial word count"! This is taken into account.
227 * Assumes dma flip-flop is clear.
228 * NOTE 2: "count" represents _bytes_ and must be even for channels 5-7.
229 */
230 static __inline__ void set_dma_count(unsigned int dmanr, unsigned int count)
231 {
232 count--;
233 if (dmanr <= 3) {
234 dma_outb( count & 0xff, ((dmanr&3)<<1) + 1 + IO_DMA1_BASE );
235 dma_outb( (count>>8) & 0xff, ((dmanr&3)<<1) + 1 + IO_DMA1_BASE );
236 } else {
237 dma_outb( (count>>1) & 0xff, ((dmanr&3)<<2) + 2 + IO_DMA2_BASE );
238 dma_outb( (count>>9) & 0xff, ((dmanr&3)<<2) + 2 + IO_DMA2_BASE );
239 }
240 }
241
242
243 /* Get DMA residue count. After a DMA transfer, this
244 * should return zero. Reading this while a DMA transfer is
245 * still in progress will return unpredictable results.
246 * If called before the channel has been used, it may return 1.
247 * Otherwise, it returns the number of _bytes_ left to transfer.
248 *
249 * Assumes DMA flip-flop is clear.
250 */
251 static __inline__ int get_dma_residue(unsigned int dmanr)
252 {
253 unsigned int io_port = (dmanr<=3)? ((dmanr&3)<<1) + 1 + IO_DMA1_BASE
254 : ((dmanr&3)<<2) + 2 + IO_DMA2_BASE;
255
256 /* using short to get 16-bit wrap around */
257 unsigned short count;
258
259 count = 1 + dma_inb(io_port);
260 count += dma_inb(io_port) << 8;
261
262 return (dmanr<=3)? count : (count<<1);
263 }
264
265
266
267 #endif /* _ASM_DMA_H */