[FREETYPE]
[reactos.git] / reactos / lib / 3rdparty / freetype / include / internal / ftcalc.h
1 /***************************************************************************/
2 /* */
3 /* ftcalc.h */
4 /* */
5 /* Arithmetic computations (specification). */
6 /* */
7 /* Copyright 1996-2006, 2008, 2009, 2012-2013 by */
8 /* David Turner, Robert Wilhelm, and Werner Lemberg. */
9 /* */
10 /* This file is part of the FreeType project, and may only be used, */
11 /* modified, and distributed under the terms of the FreeType project */
12 /* license, LICENSE.TXT. By continuing to use, modify, or distribute */
13 /* this file you indicate that you have read the license and */
14 /* understand and accept it fully. */
15 /* */
16 /***************************************************************************/
17
18
19 #ifndef __FTCALC_H__
20 #define __FTCALC_H__
21
22
23 #include <ft2build.h>
24 #include FT_FREETYPE_H
25
26
27 FT_BEGIN_HEADER
28
29
30 #if 0
31
32 /*************************************************************************/
33 /* */
34 /* <Function> */
35 /* FT_SqrtFixed */
36 /* */
37 /* <Description> */
38 /* Computes the square root of a 16.16 fixed-point value. */
39 /* */
40 /* <Input> */
41 /* x :: The value to compute the root for. */
42 /* */
43 /* <Return> */
44 /* The result of `sqrt(x)'. */
45 /* */
46 /* <Note> */
47 /* This function is not very fast. */
48 /* */
49 FT_BASE( FT_Int32 )
50 FT_SqrtFixed( FT_Int32 x );
51
52 #endif /* 0 */
53
54
55 /*************************************************************************/
56 /* */
57 /* FT_MulDiv() and FT_MulFix() are declared in freetype.h. */
58 /* */
59 /*************************************************************************/
60
61
62 /*************************************************************************/
63 /* */
64 /* <Function> */
65 /* FT_MulDiv_No_Round */
66 /* */
67 /* <Description> */
68 /* A very simple function used to perform the computation `(a*b)/c' */
69 /* (without rounding) with maximum accuracy (it uses a 64-bit */
70 /* intermediate integer whenever necessary). */
71 /* */
72 /* This function isn't necessarily as fast as some processor specific */
73 /* operations, but is at least completely portable. */
74 /* */
75 /* <Input> */
76 /* a :: The first multiplier. */
77 /* b :: The second multiplier. */
78 /* c :: The divisor. */
79 /* */
80 /* <Return> */
81 /* The result of `(a*b)/c'. This function never traps when trying to */
82 /* divide by zero; it simply returns `MaxInt' or `MinInt' depending */
83 /* on the signs of `a' and `b'. */
84 /* */
85 FT_BASE( FT_Long )
86 FT_MulDiv_No_Round( FT_Long a,
87 FT_Long b,
88 FT_Long c );
89
90
91 /*
92 * A variant of FT_Matrix_Multiply which scales its result afterwards.
93 * The idea is that both `a' and `b' are scaled by factors of 10 so that
94 * the values are as precise as possible to get a correct result during
95 * the 64bit multiplication. Let `sa' and `sb' be the scaling factors of
96 * `a' and `b', respectively, then the scaling factor of the result is
97 * `sa*sb'.
98 */
99 FT_BASE( void )
100 FT_Matrix_Multiply_Scaled( const FT_Matrix* a,
101 FT_Matrix *b,
102 FT_Long scaling );
103
104
105 /*
106 * A variant of FT_Vector_Transform. See comments for
107 * FT_Matrix_Multiply_Scaled.
108 */
109 FT_BASE( void )
110 FT_Vector_Transform_Scaled( FT_Vector* vector,
111 const FT_Matrix* matrix,
112 FT_Long scaling );
113
114
115 /*
116 * Return -1, 0, or +1, depending on the orientation of a given corner.
117 * We use the Cartesian coordinate system, with positive vertical values
118 * going upwards. The function returns +1 if the corner turns to the
119 * left, -1 to the right, and 0 for undecidable cases.
120 */
121 FT_BASE( FT_Int )
122 ft_corner_orientation( FT_Pos in_x,
123 FT_Pos in_y,
124 FT_Pos out_x,
125 FT_Pos out_y );
126
127 /*
128 * Return TRUE if a corner is flat or nearly flat. This is equivalent to
129 * saying that the angle difference between the `in' and `out' vectors is
130 * very small.
131 */
132 FT_BASE( FT_Int )
133 ft_corner_is_flat( FT_Pos in_x,
134 FT_Pos in_y,
135 FT_Pos out_x,
136 FT_Pos out_y );
137
138
139 /*
140 * Return the most significant bit index.
141 */
142 FT_BASE( FT_Int )
143 FT_MSB( FT_UInt32 z );
144
145
146 /*
147 * Return sqrt(x*x+y*y), which is the same as `FT_Vector_Length' but uses
148 * two fixed-point arguments instead.
149 */
150 FT_BASE( FT_Fixed )
151 FT_Hypot( FT_Fixed x,
152 FT_Fixed y );
153
154
155 #define INT_TO_F26DOT6( x ) ( (FT_Long)(x) << 6 )
156 #define INT_TO_F2DOT14( x ) ( (FT_Long)(x) << 14 )
157 #define INT_TO_FIXED( x ) ( (FT_Long)(x) << 16 )
158 #define F2DOT14_TO_FIXED( x ) ( (FT_Long)(x) << 2 )
159 #define FLOAT_TO_FIXED( x ) ( (FT_Long)( x * 65536.0 ) )
160 #define FIXED_TO_INT( x ) ( FT_RoundFix( x ) >> 16 )
161
162 #define ROUND_F26DOT6( x ) ( x >= 0 ? ( ( (x) + 32 ) & -64 ) \
163 : ( -( ( 32 - (x) ) & -64 ) ) )
164
165
166 FT_END_HEADER
167
168 #endif /* __FTCALC_H__ */
169
170
171 /* END */