merge ROS Shell without integrated explorer part into trunk
[reactos.git] / reactos / lib / cabinet / cabinet.h
1 /*
2 * cabinet.h
3 *
4 * Copyright 2002 Greg Turner
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20 #ifndef __WINE_CABINET_H
21 #define __WINE_CABINET_H
22
23 #include <stdarg.h>
24
25 #include "windef.h"
26 #include "winbase.h"
27 #include "winnt.h"
28 #include "fdi.h"
29 #include "fci.h"
30
31 /* from msvcrt/sys/stat.h */
32 #define _S_IWRITE 0x0080
33 #define _S_IREAD 0x0100
34
35 #define CAB_SPLITMAX (10)
36
37 #define CAB_SEARCH_SIZE (32*1024)
38
39 typedef unsigned char cab_UBYTE; /* 8 bits */
40 typedef UINT16 cab_UWORD; /* 16 bits */
41 typedef UINT32 cab_ULONG; /* 32 bits */
42 typedef INT32 cab_LONG; /* 32 bits */
43
44 typedef UINT32 cab_off_t;
45
46 /* number of bits in a ULONG */
47 #ifndef CHAR_BIT
48 # define CHAR_BIT (8)
49 #endif
50 #define CAB_ULONG_BITS (sizeof(cab_ULONG) * CHAR_BIT)
51
52 /* structure offsets */
53 #define cfhead_Signature (0x00)
54 #define cfhead_CabinetSize (0x08)
55 #define cfhead_FileOffset (0x10)
56 #define cfhead_MinorVersion (0x18)
57 #define cfhead_MajorVersion (0x19)
58 #define cfhead_NumFolders (0x1A)
59 #define cfhead_NumFiles (0x1C)
60 #define cfhead_Flags (0x1E)
61 #define cfhead_SetID (0x20)
62 #define cfhead_CabinetIndex (0x22)
63 #define cfhead_SIZEOF (0x24)
64 #define cfheadext_HeaderReserved (0x00)
65 #define cfheadext_FolderReserved (0x02)
66 #define cfheadext_DataReserved (0x03)
67 #define cfheadext_SIZEOF (0x04)
68 #define cffold_DataOffset (0x00)
69 #define cffold_NumBlocks (0x04)
70 #define cffold_CompType (0x06)
71 #define cffold_SIZEOF (0x08)
72 #define cffile_UncompressedSize (0x00)
73 #define cffile_FolderOffset (0x04)
74 #define cffile_FolderIndex (0x08)
75 #define cffile_Date (0x0A)
76 #define cffile_Time (0x0C)
77 #define cffile_Attribs (0x0E)
78 #define cffile_SIZEOF (0x10)
79 #define cfdata_CheckSum (0x00)
80 #define cfdata_CompressedSize (0x04)
81 #define cfdata_UncompressedSize (0x06)
82 #define cfdata_SIZEOF (0x08)
83
84 /* flags */
85 #define cffoldCOMPTYPE_MASK (0x000f)
86 #define cffoldCOMPTYPE_NONE (0x0000)
87 #define cffoldCOMPTYPE_MSZIP (0x0001)
88 #define cffoldCOMPTYPE_QUANTUM (0x0002)
89 #define cffoldCOMPTYPE_LZX (0x0003)
90 #define cfheadPREV_CABINET (0x0001)
91 #define cfheadNEXT_CABINET (0x0002)
92 #define cfheadRESERVE_PRESENT (0x0004)
93 #define cffileCONTINUED_FROM_PREV (0xFFFD)
94 #define cffileCONTINUED_TO_NEXT (0xFFFE)
95 #define cffileCONTINUED_PREV_AND_NEXT (0xFFFF)
96 #define cffile_A_RDONLY (0x01)
97 #define cffile_A_HIDDEN (0x02)
98 #define cffile_A_SYSTEM (0x04)
99 #define cffile_A_ARCH (0x20)
100 #define cffile_A_EXEC (0x40)
101 #define cffile_A_NAME_IS_UTF (0x80)
102
103 /****************************************************************************/
104 /* our archiver information / state */
105
106 /* MSZIP stuff */
107 #define ZIPWSIZE 0x8000 /* window size */
108 #define ZIPLBITS 9 /* bits in base literal/length lookup table */
109 #define ZIPDBITS 6 /* bits in base distance lookup table */
110 #define ZIPBMAX 16 /* maximum bit length of any code */
111 #define ZIPN_MAX 288 /* maximum number of codes in any set */
112
113 struct Ziphuft {
114 cab_UBYTE e; /* number of extra bits or operation */
115 cab_UBYTE b; /* number of bits in this code or subcode */
116 union {
117 cab_UWORD n; /* literal, length base, or distance base */
118 struct Ziphuft *t; /* pointer to next level of table */
119 } v;
120 };
121
122 struct ZIPstate {
123 cab_ULONG window_posn; /* current offset within the window */
124 cab_ULONG bb; /* bit buffer */
125 cab_ULONG bk; /* bits in bit buffer */
126 cab_ULONG ll[288+32]; /* literal/length and distance code lengths */
127 cab_ULONG c[ZIPBMAX+1]; /* bit length count table */
128 cab_LONG lx[ZIPBMAX+1]; /* memory for l[-1..ZIPBMAX-1] */
129 struct Ziphuft *u[ZIPBMAX]; /* table stack */
130 cab_ULONG v[ZIPN_MAX]; /* values in order of bit length */
131 cab_ULONG x[ZIPBMAX+1]; /* bit offsets, then code stack */
132 cab_UBYTE *inpos;
133 };
134
135 /* Quantum stuff */
136
137 struct QTMmodelsym {
138 cab_UWORD sym, cumfreq;
139 };
140
141 struct QTMmodel {
142 int shiftsleft, entries;
143 struct QTMmodelsym *syms;
144 cab_UWORD tabloc[256];
145 };
146
147 struct QTMstate {
148 cab_UBYTE *window; /* the actual decoding window */
149 cab_ULONG window_size; /* window size (1Kb through 2Mb) */
150 cab_ULONG actual_size; /* window size when it was first allocated */
151 cab_ULONG window_posn; /* current offset within the window */
152
153 struct QTMmodel model7;
154 struct QTMmodelsym m7sym[7+1];
155
156 struct QTMmodel model4, model5, model6pos, model6len;
157 struct QTMmodelsym m4sym[0x18 + 1];
158 struct QTMmodelsym m5sym[0x24 + 1];
159 struct QTMmodelsym m6psym[0x2a + 1], m6lsym[0x1b + 1];
160
161 struct QTMmodel model00, model40, model80, modelC0;
162 struct QTMmodelsym m00sym[0x40 + 1], m40sym[0x40 + 1];
163 struct QTMmodelsym m80sym[0x40 + 1], mC0sym[0x40 + 1];
164 };
165
166 /* LZX stuff */
167
168 /* some constants defined by the LZX specification */
169 #define LZX_MIN_MATCH (2)
170 #define LZX_MAX_MATCH (257)
171 #define LZX_NUM_CHARS (256)
172 #define LZX_BLOCKTYPE_INVALID (0) /* also blocktypes 4-7 invalid */
173 #define LZX_BLOCKTYPE_VERBATIM (1)
174 #define LZX_BLOCKTYPE_ALIGNED (2)
175 #define LZX_BLOCKTYPE_UNCOMPRESSED (3)
176 #define LZX_PRETREE_NUM_ELEMENTS (20)
177 #define LZX_ALIGNED_NUM_ELEMENTS (8) /* aligned offset tree #elements */
178 #define LZX_NUM_PRIMARY_LENGTHS (7) /* this one missing from spec! */
179 #define LZX_NUM_SECONDARY_LENGTHS (249) /* length tree #elements */
180
181 /* LZX huffman defines: tweak tablebits as desired */
182 #define LZX_PRETREE_MAXSYMBOLS (LZX_PRETREE_NUM_ELEMENTS)
183 #define LZX_PRETREE_TABLEBITS (6)
184 #define LZX_MAINTREE_MAXSYMBOLS (LZX_NUM_CHARS + 50*8)
185 #define LZX_MAINTREE_TABLEBITS (12)
186 #define LZX_LENGTH_MAXSYMBOLS (LZX_NUM_SECONDARY_LENGTHS+1)
187 #define LZX_LENGTH_TABLEBITS (12)
188 #define LZX_ALIGNED_MAXSYMBOLS (LZX_ALIGNED_NUM_ELEMENTS)
189 #define LZX_ALIGNED_TABLEBITS (7)
190
191 #define LZX_LENTABLE_SAFETY (64) /* we allow length table decoding overruns */
192
193 #define LZX_DECLARE_TABLE(tbl) \
194 cab_UWORD tbl##_table[(1<<LZX_##tbl##_TABLEBITS) + (LZX_##tbl##_MAXSYMBOLS<<1)];\
195 cab_UBYTE tbl##_len [LZX_##tbl##_MAXSYMBOLS + LZX_LENTABLE_SAFETY]
196
197 struct LZXstate {
198 cab_UBYTE *window; /* the actual decoding window */
199 cab_ULONG window_size; /* window size (32Kb through 2Mb) */
200 cab_ULONG actual_size; /* window size when it was first allocated */
201 cab_ULONG window_posn; /* current offset within the window */
202 cab_ULONG R0, R1, R2; /* for the LRU offset system */
203 cab_UWORD main_elements; /* number of main tree elements */
204 int header_read; /* have we started decoding at all yet? */
205 cab_UWORD block_type; /* type of this block */
206 cab_ULONG block_length; /* uncompressed length of this block */
207 cab_ULONG block_remaining; /* uncompressed bytes still left to decode */
208 cab_ULONG frames_read; /* the number of CFDATA blocks processed */
209 cab_LONG intel_filesize; /* magic header value used for transform */
210 cab_LONG intel_curpos; /* current offset in transform space */
211 int intel_started; /* have we seen any translatable data yet? */
212
213 LZX_DECLARE_TABLE(PRETREE);
214 LZX_DECLARE_TABLE(MAINTREE);
215 LZX_DECLARE_TABLE(LENGTH);
216 LZX_DECLARE_TABLE(ALIGNED);
217 };
218
219 struct lzx_bits {
220 cab_ULONG bb;
221 int bl;
222 cab_UBYTE *ip;
223 };
224
225 /* CAB data blocks are <= 32768 bytes in uncompressed form. Uncompressed
226 * blocks have zero growth. MSZIP guarantees that it won't grow above
227 * uncompressed size by more than 12 bytes. LZX guarantees it won't grow
228 * more than 6144 bytes.
229 */
230 #define CAB_BLOCKMAX (32768)
231 #define CAB_INPUTMAX (CAB_BLOCKMAX+6144)
232
233 struct cab_file {
234 struct cab_file *next; /* next file in sequence */
235 struct cab_folder *folder; /* folder that contains this file */
236 LPCSTR filename; /* output name of file */
237 HANDLE fh; /* open file handle or NULL */
238 cab_ULONG length; /* uncompressed length of file */
239 cab_ULONG offset; /* uncompressed offset in folder */
240 cab_UWORD index; /* magic index number of folder */
241 cab_UWORD time, date, attribs; /* MS-DOS time/date/attributes */
242 };
243
244
245 struct cab_folder {
246 struct cab_folder *next;
247 struct cabinet *cab[CAB_SPLITMAX]; /* cabinet(s) this folder spans */
248 cab_off_t offset[CAB_SPLITMAX]; /* offset to data blocks */
249 cab_UWORD comp_type; /* compression format/window size */
250 cab_ULONG comp_size; /* compressed size of folder */
251 cab_UBYTE num_splits; /* number of split blocks + 1 */
252 cab_UWORD num_blocks; /* total number of blocks */
253 struct cab_file *contfile; /* the first split file */
254 };
255
256 struct cabinet {
257 struct cabinet *next; /* for making a list of cabinets */
258 LPCSTR filename; /* input name of cabinet */
259 HANDLE *fh; /* open file handle or NULL */
260 cab_off_t filelen; /* length of cabinet file */
261 cab_off_t blocks_off; /* offset to data blocks in file */
262 struct cabinet *prevcab, *nextcab; /* multipart cabinet chains */
263 char *prevname, *nextname; /* and their filenames */
264 char *previnfo, *nextinfo; /* and their visible names */
265 struct cab_folder *folders; /* first folder in this cabinet */
266 struct cab_file *files; /* first file in this cabinet */
267 cab_UBYTE block_resv; /* reserved space in datablocks */
268 cab_UBYTE flags; /* header flags */
269 };
270
271 typedef struct cds_forward {
272 struct cab_folder *current; /* current folder we're extracting from */
273 cab_ULONG offset; /* uncompressed offset within folder */
274 cab_UBYTE *outpos; /* (high level) start of data to use up */
275 cab_UWORD outlen; /* (high level) amount of data to use up */
276 cab_UWORD split; /* at which split in current folder? */
277 int (*decompress)(int, int, struct cds_forward *); /* chosen compress fn */
278 cab_UBYTE inbuf[CAB_INPUTMAX+2]; /* +2 for lzx bitbuffer overflows! */
279 cab_UBYTE outbuf[CAB_BLOCKMAX];
280 cab_UBYTE q_length_base[27], q_length_extra[27], q_extra_bits[42];
281 cab_ULONG q_position_base[42];
282 cab_ULONG lzx_position_base[51];
283 cab_UBYTE extra_bits[51];
284 union {
285 struct ZIPstate zip;
286 struct QTMstate qtm;
287 struct LZXstate lzx;
288 } methods;
289 } cab_decomp_state;
290
291 /* _Int as in "Internal" fyi */
292
293 typedef struct {
294 unsigned int FCI_Intmagic;
295 } FCI_Int, *PFCI_Int;
296
297 typedef struct {
298 unsigned int FDI_Intmagic;
299 PFNALLOC pfnalloc;
300 PFNFREE pfnfree;
301 PFNOPEN pfnopen;
302 PFNREAD pfnread;
303 PFNWRITE pfnwrite;
304 PFNCLOSE pfnclose;
305 PFNSEEK pfnseek;
306 PERF perf;
307 } FDI_Int, *PFDI_Int;
308
309 /* cast an HFCI into a PFCI_Int */
310 #define PFCI_INT(hfci) ((PFDI_Int)(hfci))
311
312 /* cast an HFDI into a PFDI_Int */
313 #define PFDI_INT(hfdi) ((PFDI_Int)(hfdi))
314
315 /* quickie pfdi method invokers */
316 #define PFDI_ALLOC(hfdi, size) ((*PFDI_INT(hfdi)->pfnalloc) (size))
317 #define PFDI_FREE(hfdi, ptr) ((*PFDI_INT(hfdi)->pfnfree) (ptr))
318 #define PFDI_OPEN(hfdi, file, flag, mode) ((*PFDI_INT(hfdi)->pfnopen) (file, flag, mode))
319 #define PFDI_READ(hfdi, hf, pv, cb) ((*PFDI_INT(hfdi)->pfnread) (hf, pv, cb))
320 #define PFDI_WRITE(hfdi, hf, pv, cb) ((*PFDI_INT(hfdi)->pfnwrite) (hf, pv, cb))
321 #define PFDI_CLOSE(hfdi, hf) ((*PFDI_INT(hfdi)->pfnclose) (hf))
322 #define PFDI_SEEK(hfdi, hf, dist, type) ((*PFDI_INT(hfdi)->pfnseek) (hf, dist, type))
323
324 #define FCI_INT_MAGIC 0xfcfcfc05
325 #define FDI_INT_MAGIC 0xfdfdfd05
326
327 #define REALLY_IS_FCI(hfci) ( \
328 (((void *) hfci) != NULL) && \
329 (PFCI_INT(hfci)->FCI_Intmagic == FCI_INT_MAGIC) )
330
331 #define REALLY_IS_FDI(hfdi) ( \
332 (((void *) hfdi) != NULL) && \
333 (PFDI_INT(hfdi)->FDI_Intmagic == FDI_INT_MAGIC) )
334
335 /*
336 * the rest of these are somewhat kludgy macros which are shared between fdi.c
337 * and cabextract.c.
338 */
339
340 #define ZIPNEEDBITS(n) {while(k<(n)){cab_LONG c=*(ZIP(inpos)++);\
341 b|=((cab_ULONG)c)<<k;k+=8;}}
342 #define ZIPDUMPBITS(n) {b>>=(n);k-=(n);}
343
344 /* endian-neutral reading of little-endian data */
345 #define EndGetI32(a) ((((a)[3])<<24)|(((a)[2])<<16)|(((a)[1])<<8)|((a)[0]))
346 #define EndGetI16(a) ((((a)[1])<<8)|((a)[0]))
347
348 #define CAB(x) (decomp_state->x)
349 #define ZIP(x) (decomp_state->methods.zip.x)
350 #define QTM(x) (decomp_state->methods.qtm.x)
351 #define LZX(x) (decomp_state->methods.lzx.x)
352 #define DECR_OK (0)
353 #define DECR_DATAFORMAT (1)
354 #define DECR_ILLEGALDATA (2)
355 #define DECR_NOMEMORY (3)
356 #define DECR_CHECKSUM (4)
357 #define DECR_INPUT (5)
358 #define DECR_OUTPUT (6)
359 #define DECR_USERABORT (7)
360
361 /* Bitstream reading macros (Quantum / normal byte order)
362 *
363 * Q_INIT_BITSTREAM should be used first to set up the system
364 * Q_READ_BITS(var,n) takes N bits from the buffer and puts them in var.
365 * unlike LZX, this can loop several times to get the
366 * requisite number of bits.
367 * Q_FILL_BUFFER adds more data to the bit buffer, if there is room
368 * for another 16 bits.
369 * Q_PEEK_BITS(n) extracts (without removing) N bits from the bit
370 * buffer
371 * Q_REMOVE_BITS(n) removes N bits from the bit buffer
372 *
373 * These bit access routines work by using the area beyond the MSB and the
374 * LSB as a free source of zeroes. This avoids having to mask any bits.
375 * So we have to know the bit width of the bitbuffer variable. This is
376 * defined as ULONG_BITS.
377 *
378 * ULONG_BITS should be at least 16 bits. Unlike LZX's Huffman decoding,
379 * Quantum's arithmetic decoding only needs 1 bit at a time, it doesn't
380 * need an assured number. Retrieving larger bitstrings can be done with
381 * multiple reads and fills of the bitbuffer. The code should work fine
382 * for machines where ULONG >= 32 bits.
383 *
384 * Also note that Quantum reads bytes in normal order; LZX is in
385 * little-endian order.
386 */
387
388 #define Q_INIT_BITSTREAM do { bitsleft = 0; bitbuf = 0; } while (0)
389
390 #define Q_FILL_BUFFER do { \
391 if (bitsleft <= (CAB_ULONG_BITS - 16)) { \
392 bitbuf |= ((inpos[0]<<8)|inpos[1]) << (CAB_ULONG_BITS-16 - bitsleft); \
393 bitsleft += 16; inpos += 2; \
394 } \
395 } while (0)
396
397 #define Q_PEEK_BITS(n) (bitbuf >> (CAB_ULONG_BITS - (n)))
398 #define Q_REMOVE_BITS(n) ((bitbuf <<= (n)), (bitsleft -= (n)))
399
400 #define Q_READ_BITS(v,n) do { \
401 (v) = 0; \
402 for (bitsneed = (n); bitsneed; bitsneed -= bitrun) { \
403 Q_FILL_BUFFER; \
404 bitrun = (bitsneed > bitsleft) ? bitsleft : bitsneed; \
405 (v) = ((v) << bitrun) | Q_PEEK_BITS(bitrun); \
406 Q_REMOVE_BITS(bitrun); \
407 } \
408 } while (0)
409
410 #define Q_MENTRIES(model) (QTM(model).entries)
411 #define Q_MSYM(model,symidx) (QTM(model).syms[(symidx)].sym)
412 #define Q_MSYMFREQ(model,symidx) (QTM(model).syms[(symidx)].cumfreq)
413
414 /* GET_SYMBOL(model, var) fetches the next symbol from the stated model
415 * and puts it in var. it may need to read the bitstream to do this.
416 */
417 #define GET_SYMBOL(m, var) do { \
418 range = ((H - L) & 0xFFFF) + 1; \
419 symf = ((((C - L + 1) * Q_MSYMFREQ(m,0)) - 1) / range) & 0xFFFF; \
420 \
421 for (i=1; i < Q_MENTRIES(m); i++) { \
422 if (Q_MSYMFREQ(m,i) <= symf) break; \
423 } \
424 (var) = Q_MSYM(m,i-1); \
425 \
426 range = (H - L) + 1; \
427 H = L + ((Q_MSYMFREQ(m,i-1) * range) / Q_MSYMFREQ(m,0)) - 1; \
428 L = L + ((Q_MSYMFREQ(m,i) * range) / Q_MSYMFREQ(m,0)); \
429 while (1) { \
430 if ((L & 0x8000) != (H & 0x8000)) { \
431 if ((L & 0x4000) && !(H & 0x4000)) { \
432 /* underflow case */ \
433 C ^= 0x4000; L &= 0x3FFF; H |= 0x4000; \
434 } \
435 else break; \
436 } \
437 L <<= 1; H = (H << 1) | 1; \
438 Q_FILL_BUFFER; \
439 C = (C << 1) | Q_PEEK_BITS(1); \
440 Q_REMOVE_BITS(1); \
441 } \
442 \
443 QTMupdatemodel(&(QTM(m)), i); \
444 } while (0)
445
446 /* Bitstream reading macros (LZX / intel little-endian byte order)
447 *
448 * INIT_BITSTREAM should be used first to set up the system
449 * READ_BITS(var,n) takes N bits from the buffer and puts them in var
450 *
451 * ENSURE_BITS(n) ensures there are at least N bits in the bit buffer.
452 * it can guarantee up to 17 bits (i.e. it can read in
453 * 16 new bits when there is down to 1 bit in the buffer,
454 * and it can read 32 bits when there are 0 bits in the
455 * buffer).
456 * PEEK_BITS(n) extracts (without removing) N bits from the bit buffer
457 * REMOVE_BITS(n) removes N bits from the bit buffer
458 *
459 * These bit access routines work by using the area beyond the MSB and the
460 * LSB as a free source of zeroes. This avoids having to mask any bits.
461 * So we have to know the bit width of the bitbuffer variable.
462 */
463
464 #define INIT_BITSTREAM do { bitsleft = 0; bitbuf = 0; } while (0)
465
466 /* Quantum reads bytes in normal order; LZX is little-endian order */
467 #define ENSURE_BITS(n) \
468 while (bitsleft < (n)) { \
469 bitbuf |= ((inpos[1]<<8)|inpos[0]) << (CAB_ULONG_BITS-16 - bitsleft); \
470 bitsleft += 16; inpos+=2; \
471 }
472
473 #define PEEK_BITS(n) (bitbuf >> (CAB_ULONG_BITS - (n)))
474 #define REMOVE_BITS(n) ((bitbuf <<= (n)), (bitsleft -= (n)))
475
476 #define READ_BITS(v,n) do { \
477 if (n) { \
478 ENSURE_BITS(n); \
479 (v) = PEEK_BITS(n); \
480 REMOVE_BITS(n); \
481 } \
482 else { \
483 (v) = 0; \
484 } \
485 } while (0)
486
487 /* Huffman macros */
488
489 #define TABLEBITS(tbl) (LZX_##tbl##_TABLEBITS)
490 #define MAXSYMBOLS(tbl) (LZX_##tbl##_MAXSYMBOLS)
491 #define SYMTABLE(tbl) (LZX(tbl##_table))
492 #define LENTABLE(tbl) (LZX(tbl##_len))
493
494 /* BUILD_TABLE(tablename) builds a huffman lookup table from code lengths.
495 * In reality, it just calls make_decode_table() with the appropriate
496 * values - they're all fixed by some #defines anyway, so there's no point
497 * writing each call out in full by hand.
498 */
499 #define BUILD_TABLE(tbl) \
500 if (make_decode_table( \
501 MAXSYMBOLS(tbl), TABLEBITS(tbl), LENTABLE(tbl), SYMTABLE(tbl) \
502 )) { return DECR_ILLEGALDATA; }
503
504 /* READ_HUFFSYM(tablename, var) decodes one huffman symbol from the
505 * bitstream using the stated table and puts it in var.
506 */
507 #define READ_HUFFSYM(tbl,var) do { \
508 ENSURE_BITS(16); \
509 hufftbl = SYMTABLE(tbl); \
510 if ((i = hufftbl[PEEK_BITS(TABLEBITS(tbl))]) >= MAXSYMBOLS(tbl)) { \
511 j = 1 << (CAB_ULONG_BITS - TABLEBITS(tbl)); \
512 do { \
513 j >>= 1; i <<= 1; i |= (bitbuf & j) ? 1 : 0; \
514 if (!j) { return DECR_ILLEGALDATA; } \
515 } while ((i = hufftbl[i]) >= MAXSYMBOLS(tbl)); \
516 } \
517 j = LENTABLE(tbl)[(var) = i]; \
518 REMOVE_BITS(j); \
519 } while (0)
520
521 /* READ_LENGTHS(tablename, first, last) reads in code lengths for symbols
522 * first to last in the given table. The code lengths are stored in their
523 * own special LZX way.
524 */
525 #define READ_LENGTHS(tbl,first,last,fn) do { \
526 lb.bb = bitbuf; lb.bl = bitsleft; lb.ip = inpos; \
527 if (fn(LENTABLE(tbl),(first),(last),&lb,decomp_state)) { \
528 return DECR_ILLEGALDATA; \
529 } \
530 bitbuf = lb.bb; bitsleft = lb.bl; inpos = lb.ip; \
531 } while (0)
532
533 /* Tables for deflate from PKZIP's appnote.txt. */
534
535 #define THOSE_ZIP_CONSTS \
536 static const cab_UBYTE Zipborder[] = /* Order of the bit length code lengths */ \
537 { 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15}; \
538 static const cab_UWORD Zipcplens[] = /* Copy lengths for literal codes 257..285 */ \
539 { 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31, 35, 43, 51, \
540 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0}; \
541 static const cab_UWORD Zipcplext[] = /* Extra bits for literal codes 257..285 */ \
542 { 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, \
543 4, 5, 5, 5, 5, 0, 99, 99}; /* 99==invalid */ \
544 static const cab_UWORD Zipcpdist[] = /* Copy offsets for distance codes 0..29 */ \
545 { 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193, 257, 385, \
546 513, 769, 1025, 1537, 2049, 3073, 4097, 6145, 8193, 12289, 16385, 24577}; \
547 static const cab_UWORD Zipcpdext[] = /* Extra bits for distance codes */ \
548 { 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, \
549 10, 11, 11, 12, 12, 13, 13}; \
550 /* And'ing with Zipmask[n] masks the lower n bits */ \
551 static const cab_UWORD Zipmask[17] = { \
552 0x0000, 0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff, \
553 0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff \
554 }
555
556 struct ExtractFileList {
557 LPSTR filename;
558 struct ExtractFileList *next;
559 BOOL unknown; /* always 1L */
560 } ;
561
562 /* the first parameter of the function extract */
563 typedef struct {
564 long result1; /* 0x000 */
565 long unknown1[3]; /* 0x004 */
566 struct ExtractFileList *filelist; /* 0x010 */
567 long filecount; /* 0x014 */
568 long unknown2; /* 0x018 */
569 char directory[0x104]; /* 0x01c */
570 char lastfile[0x20c]; /* 0x120 */
571 } EXTRACTdest;
572
573
574 /* from cabextract.c */
575 BOOL process_cabinet(LPCSTR cabname, LPCSTR dir, BOOL fix, BOOL lower, EXTRACTdest *dest);
576 void QTMupdatemodel(struct QTMmodel *model, int sym);
577 int make_decode_table(cab_ULONG nsyms, cab_ULONG nbits, cab_UBYTE *length, cab_UWORD *table);
578 cab_ULONG checksum(cab_UBYTE *data, cab_UWORD bytes, cab_ULONG csum);
579
580 #endif /* __WINE_CABINET_H */