test version of startmenu root with big icons
[reactos.git] / reactos / lib / mesa32 / src / swrast / s_aaline.c
1 /*
2 * Mesa 3-D graphics library
3 * Version: 6.1
4 *
5 * Copyright (C) 1999-2004 Brian Paul All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included
15 * in all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
21 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25
26 #include "glheader.h"
27 #include "imports.h"
28 #include "macros.h"
29 #include "swrast/s_aaline.h"
30 #include "swrast/s_context.h"
31 #include "swrast/s_span.h"
32 #include "swrast/swrast.h"
33 #include "mtypes.h"
34
35
36 #define SUB_PIXEL 4
37
38
39 /*
40 * Info about the AA line we're rendering
41 */
42 struct LineInfo
43 {
44 GLfloat x0, y0; /* start */
45 GLfloat x1, y1; /* end */
46 GLfloat dx, dy; /* direction vector */
47 GLfloat len; /* length */
48 GLfloat halfWidth; /* half of line width */
49 GLfloat xAdj, yAdj; /* X and Y adjustment for quad corners around line */
50 /* for coverage computation */
51 GLfloat qx0, qy0; /* quad vertices */
52 GLfloat qx1, qy1;
53 GLfloat qx2, qy2;
54 GLfloat qx3, qy3;
55 GLfloat ex0, ey0; /* quad edge vectors */
56 GLfloat ex1, ey1;
57 GLfloat ex2, ey2;
58 GLfloat ex3, ey3;
59
60 /* DO_Z */
61 GLfloat zPlane[4];
62 /* DO_FOG */
63 GLfloat fPlane[4];
64 /* DO_RGBA */
65 GLfloat rPlane[4], gPlane[4], bPlane[4], aPlane[4];
66 /* DO_INDEX */
67 GLfloat iPlane[4];
68 /* DO_SPEC */
69 GLfloat srPlane[4], sgPlane[4], sbPlane[4];
70 /* DO_TEX or DO_MULTITEX */
71 GLfloat sPlane[MAX_TEXTURE_COORD_UNITS][4];
72 GLfloat tPlane[MAX_TEXTURE_COORD_UNITS][4];
73 GLfloat uPlane[MAX_TEXTURE_COORD_UNITS][4];
74 GLfloat vPlane[MAX_TEXTURE_COORD_UNITS][4];
75 GLfloat lambda[MAX_TEXTURE_COORD_UNITS];
76 GLfloat texWidth[MAX_TEXTURE_COORD_UNITS];
77 GLfloat texHeight[MAX_TEXTURE_COORD_UNITS];
78
79 struct sw_span span;
80 };
81
82
83
84 /*
85 * Compute the equation of a plane used to interpolate line fragment data
86 * such as color, Z, texture coords, etc.
87 * Input: (x0, y0) and (x1,y1) are the endpoints of the line.
88 * z0, and z1 are the end point values to interpolate.
89 * Output: plane - the plane equation.
90 *
91 * Note: we don't really have enough parameters to specify a plane.
92 * We take the endpoints of the line and compute a plane such that
93 * the cross product of the line vector and the plane normal is
94 * parallel to the projection plane.
95 */
96 static void
97 compute_plane(GLfloat x0, GLfloat y0, GLfloat x1, GLfloat y1,
98 GLfloat z0, GLfloat z1, GLfloat plane[4])
99 {
100 #if 0
101 /* original */
102 const GLfloat px = x1 - x0;
103 const GLfloat py = y1 - y0;
104 const GLfloat pz = z1 - z0;
105 const GLfloat qx = -py;
106 const GLfloat qy = px;
107 const GLfloat qz = 0;
108 const GLfloat a = py * qz - pz * qy;
109 const GLfloat b = pz * qx - px * qz;
110 const GLfloat c = px * qy - py * qx;
111 const GLfloat d = -(a * x0 + b * y0 + c * z0);
112 plane[0] = a;
113 plane[1] = b;
114 plane[2] = c;
115 plane[3] = d;
116 #else
117 /* simplified */
118 const GLfloat px = x1 - x0;
119 const GLfloat py = y1 - y0;
120 const GLfloat pz = z0 - z1;
121 const GLfloat a = pz * px;
122 const GLfloat b = pz * py;
123 const GLfloat c = px * px + py * py;
124 const GLfloat d = -(a * x0 + b * y0 + c * z0);
125 if (a == 0.0 && b == 0.0 && c == 0.0 && d == 0.0) {
126 plane[0] = 0.0;
127 plane[1] = 0.0;
128 plane[2] = 1.0;
129 plane[3] = 0.0;
130 }
131 else {
132 plane[0] = a;
133 plane[1] = b;
134 plane[2] = c;
135 plane[3] = d;
136 }
137 #endif
138 }
139
140
141 static INLINE void
142 constant_plane(GLfloat value, GLfloat plane[4])
143 {
144 plane[0] = 0.0;
145 plane[1] = 0.0;
146 plane[2] = -1.0;
147 plane[3] = value;
148 }
149
150
151 static INLINE GLfloat
152 solve_plane(GLfloat x, GLfloat y, const GLfloat plane[4])
153 {
154 const GLfloat z = (plane[3] + plane[0] * x + plane[1] * y) / -plane[2];
155 return z;
156 }
157
158 #define SOLVE_PLANE(X, Y, PLANE) \
159 ((PLANE[3] + PLANE[0] * (X) + PLANE[1] * (Y)) / -PLANE[2])
160
161
162 /*
163 * Return 1 / solve_plane().
164 */
165 static INLINE GLfloat
166 solve_plane_recip(GLfloat x, GLfloat y, const GLfloat plane[4])
167 {
168 const GLfloat denom = plane[3] + plane[0] * x + plane[1] * y;
169 if (denom == 0.0)
170 return 0.0;
171 else
172 return -plane[2] / denom;
173 }
174
175
176 /*
177 * Solve plane and return clamped GLchan value.
178 */
179 static INLINE GLchan
180 solve_plane_chan(GLfloat x, GLfloat y, const GLfloat plane[4])
181 {
182 const GLfloat z = (plane[3] + plane[0] * x + plane[1] * y) / -plane[2];
183 #if CHAN_TYPE == GL_FLOAT
184 return CLAMP(z, 0.0F, CHAN_MAXF);
185 #else
186 if (z < 0)
187 return 0;
188 else if (z > CHAN_MAX)
189 return CHAN_MAX;
190 return (GLchan) IROUND_POS(z);
191 #endif
192 }
193
194
195 /*
196 * Compute mipmap level of detail.
197 */
198 static INLINE GLfloat
199 compute_lambda(const GLfloat sPlane[4], const GLfloat tPlane[4],
200 GLfloat invQ, GLfloat width, GLfloat height)
201 {
202 GLfloat dudx = sPlane[0] / sPlane[2] * invQ * width;
203 GLfloat dudy = sPlane[1] / sPlane[2] * invQ * width;
204 GLfloat dvdx = tPlane[0] / tPlane[2] * invQ * height;
205 GLfloat dvdy = tPlane[1] / tPlane[2] * invQ * height;
206 GLfloat r1 = dudx * dudx + dudy * dudy;
207 GLfloat r2 = dvdx * dvdx + dvdy * dvdy;
208 GLfloat rho2 = r1 + r2;
209 /* return log base 2 of rho */
210 if (rho2 == 0.0F)
211 return 0.0;
212 else
213 return (GLfloat) (log(rho2) * 1.442695 * 0.5);/* 1.442695 = 1/log(2) */
214 }
215
216
217
218
219 /*
220 * Fill in the samples[] array with the (x,y) subpixel positions of
221 * xSamples * ySamples sample positions.
222 * Note that the four corner samples are put into the first four
223 * positions of the array. This allows us to optimize for the common
224 * case of all samples being inside the polygon.
225 */
226 static void
227 make_sample_table(GLint xSamples, GLint ySamples, GLfloat samples[][2])
228 {
229 const GLfloat dx = 1.0F / (GLfloat) xSamples;
230 const GLfloat dy = 1.0F / (GLfloat) ySamples;
231 GLint x, y;
232 GLint i;
233
234 i = 4;
235 for (x = 0; x < xSamples; x++) {
236 for (y = 0; y < ySamples; y++) {
237 GLint j;
238 if (x == 0 && y == 0) {
239 /* lower left */
240 j = 0;
241 }
242 else if (x == xSamples - 1 && y == 0) {
243 /* lower right */
244 j = 1;
245 }
246 else if (x == 0 && y == ySamples - 1) {
247 /* upper left */
248 j = 2;
249 }
250 else if (x == xSamples - 1 && y == ySamples - 1) {
251 /* upper right */
252 j = 3;
253 }
254 else {
255 j = i++;
256 }
257 samples[j][0] = x * dx + 0.5F * dx;
258 samples[j][1] = y * dy + 0.5F * dy;
259 }
260 }
261 }
262
263
264
265 /*
266 * Compute how much of the given pixel's area is inside the rectangle
267 * defined by vertices v0, v1, v2, v3.
268 * Vertices MUST be specified in counter-clockwise order.
269 * Return: coverage in [0, 1].
270 */
271 static GLfloat
272 compute_coveragef(const struct LineInfo *info,
273 GLint winx, GLint winy)
274 {
275 static GLfloat samples[SUB_PIXEL * SUB_PIXEL][2];
276 static GLboolean haveSamples = GL_FALSE;
277 const GLfloat x = (GLfloat) winx;
278 const GLfloat y = (GLfloat) winy;
279 GLint stop = 4, i;
280 GLfloat insideCount = SUB_PIXEL * SUB_PIXEL;
281
282 if (!haveSamples) {
283 make_sample_table(SUB_PIXEL, SUB_PIXEL, samples);
284 haveSamples = GL_TRUE;
285 }
286
287 #if 0 /*DEBUG*/
288 {
289 const GLfloat area = dx0 * dy1 - dx1 * dy0;
290 assert(area >= 0.0);
291 }
292 #endif
293
294 for (i = 0; i < stop; i++) {
295 const GLfloat sx = x + samples[i][0];
296 const GLfloat sy = y + samples[i][1];
297 const GLfloat fx0 = sx - info->qx0;
298 const GLfloat fy0 = sy - info->qy0;
299 const GLfloat fx1 = sx - info->qx1;
300 const GLfloat fy1 = sy - info->qy1;
301 const GLfloat fx2 = sx - info->qx2;
302 const GLfloat fy2 = sy - info->qy2;
303 const GLfloat fx3 = sx - info->qx3;
304 const GLfloat fy3 = sy - info->qy3;
305 /* cross product determines if sample is inside or outside each edge */
306 GLfloat cross0 = (info->ex0 * fy0 - info->ey0 * fx0);
307 GLfloat cross1 = (info->ex1 * fy1 - info->ey1 * fx1);
308 GLfloat cross2 = (info->ex2 * fy2 - info->ey2 * fx2);
309 GLfloat cross3 = (info->ex3 * fy3 - info->ey3 * fx3);
310 /* Check if the sample is exactly on an edge. If so, let cross be a
311 * positive or negative value depending on the direction of the edge.
312 */
313 if (cross0 == 0.0F)
314 cross0 = info->ex0 + info->ey0;
315 if (cross1 == 0.0F)
316 cross1 = info->ex1 + info->ey1;
317 if (cross2 == 0.0F)
318 cross2 = info->ex2 + info->ey2;
319 if (cross3 == 0.0F)
320 cross3 = info->ex3 + info->ey3;
321 if (cross0 < 0.0F || cross1 < 0.0F || cross2 < 0.0F || cross3 < 0.0F) {
322 /* point is outside quadrilateral */
323 insideCount -= 1.0F;
324 stop = SUB_PIXEL * SUB_PIXEL;
325 }
326 }
327 if (stop == 4)
328 return 1.0F;
329 else
330 return insideCount * (1.0F / (SUB_PIXEL * SUB_PIXEL));
331 }
332
333
334 /**
335 * Compute coverage value for color index mode.
336 * XXX this may not be quite correct.
337 * \return coverage in [0,15].
338 */
339 static GLfloat
340 compute_coveragei(const struct LineInfo *info,
341 GLint winx, GLint winy)
342 {
343 return compute_coveragef(info, winx, winy) * 15.0F;
344 }
345
346
347
348 typedef void (*plot_func)(GLcontext *ctx, struct LineInfo *line,
349 int ix, int iy);
350
351
352
353 /*
354 * Draw an AA line segment (called many times per line when stippling)
355 */
356 static void
357 segment(GLcontext *ctx,
358 struct LineInfo *line,
359 plot_func plot,
360 GLfloat t0, GLfloat t1)
361 {
362 const GLfloat absDx = (line->dx < 0.0F) ? -line->dx : line->dx;
363 const GLfloat absDy = (line->dy < 0.0F) ? -line->dy : line->dy;
364 /* compute the actual segment's endpoints */
365 const GLfloat x0 = line->x0 + t0 * line->dx;
366 const GLfloat y0 = line->y0 + t0 * line->dy;
367 const GLfloat x1 = line->x0 + t1 * line->dx;
368 const GLfloat y1 = line->y0 + t1 * line->dy;
369
370 /* compute vertices of the line-aligned quadrilateral */
371 line->qx0 = x0 - line->yAdj;
372 line->qy0 = y0 + line->xAdj;
373 line->qx1 = x0 + line->yAdj;
374 line->qy1 = y0 - line->xAdj;
375 line->qx2 = x1 + line->yAdj;
376 line->qy2 = y1 - line->xAdj;
377 line->qx3 = x1 - line->yAdj;
378 line->qy3 = y1 + line->xAdj;
379 /* compute the quad's edge vectors (for coverage calc) */
380 line->ex0 = line->qx1 - line->qx0;
381 line->ey0 = line->qy1 - line->qy0;
382 line->ex1 = line->qx2 - line->qx1;
383 line->ey1 = line->qy2 - line->qy1;
384 line->ex2 = line->qx3 - line->qx2;
385 line->ey2 = line->qy3 - line->qy2;
386 line->ex3 = line->qx0 - line->qx3;
387 line->ey3 = line->qy0 - line->qy3;
388
389 if (absDx > absDy) {
390 /* X-major line */
391 GLfloat dydx = line->dy / line->dx;
392 GLfloat xLeft, xRight, yBot, yTop;
393 GLint ix, ixRight;
394 if (x0 < x1) {
395 xLeft = x0 - line->halfWidth;
396 xRight = x1 + line->halfWidth;
397 if (line->dy >= 0.0) {
398 yBot = y0 - 3.0F * line->halfWidth;
399 yTop = y0 + line->halfWidth;
400 }
401 else {
402 yBot = y0 - line->halfWidth;
403 yTop = y0 + 3.0F * line->halfWidth;
404 }
405 }
406 else {
407 xLeft = x1 - line->halfWidth;
408 xRight = x0 + line->halfWidth;
409 if (line->dy <= 0.0) {
410 yBot = y1 - 3.0F * line->halfWidth;
411 yTop = y1 + line->halfWidth;
412 }
413 else {
414 yBot = y1 - line->halfWidth;
415 yTop = y1 + 3.0F * line->halfWidth;
416 }
417 }
418
419 /* scan along the line, left-to-right */
420 ixRight = (GLint) (xRight + 1.0F);
421
422 /*printf("avg span height: %g\n", yTop - yBot);*/
423 for (ix = (GLint) xLeft; ix < ixRight; ix++) {
424 const GLint iyBot = (GLint) yBot;
425 const GLint iyTop = (GLint) (yTop + 1.0F);
426 GLint iy;
427 /* scan across the line, bottom-to-top */
428 for (iy = iyBot; iy < iyTop; iy++) {
429 (*plot)(ctx, line, ix, iy);
430 }
431 yBot += dydx;
432 yTop += dydx;
433 }
434 }
435 else {
436 /* Y-major line */
437 GLfloat dxdy = line->dx / line->dy;
438 GLfloat yBot, yTop, xLeft, xRight;
439 GLint iy, iyTop;
440 if (y0 < y1) {
441 yBot = y0 - line->halfWidth;
442 yTop = y1 + line->halfWidth;
443 if (line->dx >= 0.0) {
444 xLeft = x0 - 3.0F * line->halfWidth;
445 xRight = x0 + line->halfWidth;
446 }
447 else {
448 xLeft = x0 - line->halfWidth;
449 xRight = x0 + 3.0F * line->halfWidth;
450 }
451 }
452 else {
453 yBot = y1 - line->halfWidth;
454 yTop = y0 + line->halfWidth;
455 if (line->dx <= 0.0) {
456 xLeft = x1 - 3.0F * line->halfWidth;
457 xRight = x1 + line->halfWidth;
458 }
459 else {
460 xLeft = x1 - line->halfWidth;
461 xRight = x1 + 3.0F * line->halfWidth;
462 }
463 }
464
465 /* scan along the line, bottom-to-top */
466 iyTop = (GLint) (yTop + 1.0F);
467
468 /*printf("avg span width: %g\n", xRight - xLeft);*/
469 for (iy = (GLint) yBot; iy < iyTop; iy++) {
470 const GLint ixLeft = (GLint) xLeft;
471 const GLint ixRight = (GLint) (xRight + 1.0F);
472 GLint ix;
473 /* scan across the line, left-to-right */
474 for (ix = ixLeft; ix < ixRight; ix++) {
475 (*plot)(ctx, line, ix, iy);
476 }
477 xLeft += dxdy;
478 xRight += dxdy;
479 }
480 }
481 }
482
483
484 #define NAME(x) aa_ci_##x
485 #define DO_Z
486 #define DO_FOG
487 #define DO_INDEX
488 #include "s_aalinetemp.h"
489
490
491 #define NAME(x) aa_rgba_##x
492 #define DO_Z
493 #define DO_FOG
494 #define DO_RGBA
495 #include "s_aalinetemp.h"
496
497
498 #define NAME(x) aa_tex_rgba_##x
499 #define DO_Z
500 #define DO_FOG
501 #define DO_RGBA
502 #define DO_TEX
503 #include "s_aalinetemp.h"
504
505
506 #define NAME(x) aa_multitex_rgba_##x
507 #define DO_Z
508 #define DO_FOG
509 #define DO_RGBA
510 #define DO_MULTITEX
511 #include "s_aalinetemp.h"
512
513
514 #define NAME(x) aa_multitex_spec_##x
515 #define DO_Z
516 #define DO_FOG
517 #define DO_RGBA
518 #define DO_MULTITEX
519 #define DO_SPEC
520 #include "s_aalinetemp.h"
521
522
523
524 void
525 _swrast_choose_aa_line_function(GLcontext *ctx)
526 {
527 SWcontext *swrast = SWRAST_CONTEXT(ctx);
528
529 ASSERT(ctx->Line.SmoothFlag);
530
531 if (ctx->Visual.rgbMode) {
532 /* RGBA */
533 if (ctx->Texture._EnabledCoordUnits != 0) {
534 if (ctx->Texture._EnabledCoordUnits > 1) {
535 /* Multitextured! */
536 if (ctx->Light.Model.ColorControl==GL_SEPARATE_SPECULAR_COLOR ||
537 ctx->Fog.ColorSumEnabled)
538 swrast->Line = aa_multitex_spec_line;
539 else
540 swrast->Line = aa_multitex_rgba_line;
541 }
542 else {
543 swrast->Line = aa_tex_rgba_line;
544 }
545 }
546 else {
547 swrast->Line = aa_rgba_line;
548 }
549 }
550 else {
551 /* Color Index */
552 swrast->Line = aa_ci_line;
553 }
554 }