move mesa32 over to new dir
[reactos.git] / reactos / lib / mesa32 / src / tnl / t_vp_build.c
1 /*
2 * Mesa 3-D graphics library
3 * Version: 6.3.1
4 *
5 * Copyright (C) 2005 Tungsten Graphics All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included
15 * in all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * TUNGSTEN GRAPHICS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
21 * WHETHER IN
22 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
23 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26 /**
27 * \file t_vp_build.c
28 * Create a vertex program to execute the current fixed function T&L pipeline.
29 * \author Keith Whitwell
30 */
31
32
33 #include "glheader.h"
34 #include "macros.h"
35 #include "enums.h"
36 #include "t_context.h"
37 #include "t_vp_build.h"
38
39 #include "shader/program.h"
40 #include "shader/nvvertprog.h"
41 #include "shader/arbvertparse.h"
42
43 struct state_key {
44 unsigned light_global_enabled:1;
45 unsigned light_local_viewer:1;
46 unsigned light_twoside:1;
47 unsigned light_color_material:1;
48 unsigned light_color_material_mask:12;
49 unsigned light_material_mask:12;
50
51 unsigned normalize:1;
52 unsigned rescale_normals:1;
53 unsigned fog_source_is_depth:1;
54 unsigned tnl_do_vertex_fog:1;
55 unsigned separate_specular:1;
56 unsigned fog_enabled:1;
57 unsigned fog_mode:2;
58 unsigned point_attenuated:1;
59 unsigned texture_enabled_global:1;
60
61 struct {
62 unsigned light_enabled:1;
63 unsigned light_eyepos3_is_zero:1;
64 unsigned light_spotcutoff_is_180:1;
65 unsigned light_attenuated:1;
66 unsigned texunit_really_enabled:1;
67 unsigned texmat_enabled:1;
68 unsigned texgen_enabled:4;
69 unsigned texgen_mode0:4;
70 unsigned texgen_mode1:4;
71 unsigned texgen_mode2:4;
72 unsigned texgen_mode3:4;
73 } unit[8];
74 };
75
76
77
78 #define FOG_LINEAR 0
79 #define FOG_EXP 1
80 #define FOG_EXP2 2
81 #define FOG_UNKNOWN 3
82
83 static GLuint translate_fog_mode( GLenum mode )
84 {
85 switch (mode) {
86 case GL_LINEAR: return FOG_LINEAR;
87 case GL_EXP: return FOG_EXP;
88 case GL_EXP2: return FOG_EXP2;
89 default: return FOG_UNKNOWN;
90 }
91 }
92
93 #define TXG_NONE 0
94 #define TXG_OBJ_LINEAR 1
95 #define TXG_EYE_LINEAR 2
96 #define TXG_SPHERE_MAP 3
97 #define TXG_REFLECTION_MAP 4
98 #define TXG_NORMAL_MAP 5
99
100 static GLuint translate_texgen( GLboolean enabled, GLenum mode )
101 {
102 if (!enabled)
103 return TXG_NONE;
104
105 switch (mode) {
106 case GL_OBJECT_LINEAR: return TXG_OBJ_LINEAR;
107 case GL_EYE_LINEAR: return TXG_EYE_LINEAR;
108 case GL_SPHERE_MAP: return TXG_SPHERE_MAP;
109 case GL_REFLECTION_MAP_NV: return TXG_REFLECTION_MAP;
110 case GL_NORMAL_MAP_NV: return TXG_NORMAL_MAP;
111 default: return TXG_NONE;
112 }
113 }
114
115 static struct state_key *make_state_key( GLcontext *ctx )
116 {
117 TNLcontext *tnl = TNL_CONTEXT(ctx);
118 struct vertex_buffer *VB = &tnl->vb;
119 struct state_key *key = CALLOC_STRUCT(state_key);
120 GLuint i;
121
122 key->separate_specular = (ctx->Light.Model.ColorControl ==
123 GL_SEPARATE_SPECULAR_COLOR);
124
125 if (ctx->Light.Enabled) {
126 key->light_global_enabled = 1;
127
128 if (ctx->Light.Model.LocalViewer)
129 key->light_local_viewer = 1;
130
131 if (ctx->Light.Model.TwoSide)
132 key->light_twoside = 1;
133
134 if (ctx->Light.ColorMaterialEnabled) {
135 key->light_color_material = 1;
136 key->light_color_material_mask = ctx->Light.ColorMaterialBitmask;
137 }
138
139 for (i = _TNL_ATTRIB_MAT_FRONT_AMBIENT ; i < _TNL_ATTRIB_INDEX ; i++)
140 if (VB->AttribPtr[i]->stride)
141 key->light_material_mask |= 1<<(i-_TNL_ATTRIB_MAT_FRONT_AMBIENT);
142
143 for (i = 0; i < MAX_LIGHTS; i++) {
144 struct gl_light *light = &ctx->Light.Light[i];
145
146 if (light->Enabled) {
147 key->unit[i].light_enabled = 1;
148
149 if (light->EyePosition[3] == 0.0)
150 key->unit[i].light_eyepos3_is_zero = 1;
151
152 if (light->SpotCutoff == 180.0)
153 key->unit[i].light_spotcutoff_is_180 = 1;
154
155 if (light->ConstantAttenuation != 1.0 ||
156 light->LinearAttenuation != 0.0 ||
157 light->QuadraticAttenuation != 0.0)
158 key->unit[i].light_attenuated = 1;
159 }
160 }
161 }
162
163 if (ctx->Transform.Normalize)
164 key->normalize = 1;
165
166 if (ctx->Transform.RescaleNormals)
167 key->rescale_normals = 1;
168
169 if (ctx->Fog.Enabled)
170 key->fog_enabled = 1;
171
172 if (key->fog_enabled) {
173 if (ctx->Fog.FogCoordinateSource == GL_FRAGMENT_DEPTH_EXT)
174 key->fog_source_is_depth = 1;
175
176 if (tnl->_DoVertexFog)
177 key->tnl_do_vertex_fog = 1;
178
179 key->fog_mode = translate_fog_mode(ctx->Fog.Mode);
180 }
181
182 if (ctx->Point._Attenuated)
183 key->point_attenuated = 1;
184
185 if (ctx->Texture._TexGenEnabled ||
186 ctx->Texture._TexMatEnabled ||
187 ctx->Texture._EnabledUnits)
188 key->texture_enabled_global = 1;
189
190 for (i = 0; i < MAX_TEXTURE_UNITS; i++) {
191 struct gl_texture_unit *texUnit = &ctx->Texture.Unit[i];
192
193 if (texUnit->_ReallyEnabled)
194 key->unit[i].texunit_really_enabled = 1;
195
196 if (ctx->Texture._TexMatEnabled & ENABLE_TEXMAT(i))
197 key->unit[i].texmat_enabled = 1;
198
199 if (texUnit->TexGenEnabled) {
200 key->unit[i].texgen_enabled = 1;
201
202 key->unit[i].texgen_mode0 =
203 translate_texgen( texUnit->TexGenEnabled & (1<<0),
204 texUnit->GenModeS );
205 key->unit[i].texgen_mode1 =
206 translate_texgen( texUnit->TexGenEnabled & (1<<1),
207 texUnit->GenModeT );
208 key->unit[i].texgen_mode2 =
209 translate_texgen( texUnit->TexGenEnabled & (1<<2),
210 texUnit->GenModeR );
211 key->unit[i].texgen_mode3 =
212 translate_texgen( texUnit->TexGenEnabled & (1<<3),
213 texUnit->GenModeQ );
214 }
215 }
216
217 return key;
218 }
219
220
221
222 /* Very useful debugging tool - produces annotated listing of
223 * generated program with line/function references for each
224 * instruction back into this file:
225 */
226 #define DISASSEM (MESA_VERBOSE&VERBOSE_DISASSEM)
227
228 /* Should be tunable by the driver - do we want to do matrix
229 * multiplications with DP4's or with MUL/MAD's? SSE works better
230 * with the latter, drivers may differ.
231 */
232 #define PREFER_DP4 0
233
234 #define MAX_INSN 200
235
236 /* Use uregs to represent registers internally, translate to Mesa's
237 * expected formats on emit.
238 *
239 * NOTE: These are passed by value extensively in this file rather
240 * than as usual by pointer reference. If this disturbs you, try
241 * remembering they are just 32bits in size.
242 *
243 * GCC is smart enough to deal with these dword-sized structures in
244 * much the same way as if I had defined them as dwords and was using
245 * macros to access and set the fields. This is much nicer and easier
246 * to evolve.
247 */
248 struct ureg {
249 GLuint file:4;
250 GLint idx:8; /* relative addressing may be negative */
251 GLuint negate:1;
252 GLuint swz:12;
253 GLuint pad:7;
254 };
255
256
257 struct tnl_program {
258 const struct state_key *state;
259 struct vertex_program *program;
260
261 GLuint temp_in_use;
262 GLuint temp_reserved;
263
264 struct ureg eye_position;
265 struct ureg eye_position_normalized;
266 struct ureg eye_normal;
267 struct ureg identity;
268
269 GLuint materials;
270 GLuint color_materials;
271 };
272
273
274 const static struct ureg undef = {
275 ~0,
276 ~0,
277 0,
278 0,
279 0
280 };
281
282 /* Local shorthand:
283 */
284 #define X SWIZZLE_X
285 #define Y SWIZZLE_Y
286 #define Z SWIZZLE_Z
287 #define W SWIZZLE_W
288
289
290 /* Construct a ureg:
291 */
292 static struct ureg make_ureg(GLuint file, GLint idx)
293 {
294 struct ureg reg;
295 reg.file = file;
296 reg.idx = idx;
297 reg.negate = 0;
298 reg.swz = SWIZZLE_NOOP;
299 reg.pad = 0;
300 return reg;
301 }
302
303
304
305 static struct ureg negate( struct ureg reg )
306 {
307 reg.negate ^= 1;
308 return reg;
309 }
310
311
312 static struct ureg swizzle( struct ureg reg, int x, int y, int z, int w )
313 {
314 reg.swz = MAKE_SWIZZLE4(GET_SWZ(reg.swz, x),
315 GET_SWZ(reg.swz, y),
316 GET_SWZ(reg.swz, z),
317 GET_SWZ(reg.swz, w));
318
319 return reg;
320 }
321
322 static struct ureg swizzle1( struct ureg reg, int x )
323 {
324 return swizzle(reg, x, x, x, x);
325 }
326
327 static struct ureg get_temp( struct tnl_program *p )
328 {
329 int bit = ffs( ~p->temp_in_use );
330 if (!bit) {
331 fprintf(stderr, "%s: out of temporaries\n", __FILE__);
332 exit(1);
333 }
334
335 p->temp_in_use |= 1<<(bit-1);
336 return make_ureg(PROGRAM_TEMPORARY, bit-1);
337 }
338
339 static struct ureg reserve_temp( struct tnl_program *p )
340 {
341 struct ureg temp = get_temp( p );
342 p->temp_reserved |= 1<<temp.idx;
343 return temp;
344 }
345
346 static void release_temp( struct tnl_program *p, struct ureg reg )
347 {
348 if (reg.file == PROGRAM_TEMPORARY) {
349 p->temp_in_use &= ~(1<<reg.idx);
350 p->temp_in_use |= p->temp_reserved; /* can't release reserved temps */
351 }
352 }
353
354 static void release_temps( struct tnl_program *p )
355 {
356 p->temp_in_use = p->temp_reserved;
357 }
358
359
360
361 static struct ureg register_input( struct tnl_program *p, GLuint input )
362 {
363 p->program->InputsRead |= (1<<input);
364 return make_ureg(PROGRAM_INPUT, input);
365 }
366
367 static struct ureg register_output( struct tnl_program *p, GLuint output )
368 {
369 p->program->OutputsWritten |= (1<<output);
370 return make_ureg(PROGRAM_OUTPUT, output);
371 }
372
373 static struct ureg register_const4f( struct tnl_program *p,
374 GLfloat s0,
375 GLfloat s1,
376 GLfloat s2,
377 GLfloat s3)
378 {
379 GLfloat values[4];
380 GLint idx;
381 values[0] = s0;
382 values[1] = s1;
383 values[2] = s2;
384 values[3] = s3;
385 idx = _mesa_add_unnamed_constant( p->program->Parameters, values );
386 return make_ureg(PROGRAM_STATE_VAR, idx);
387 }
388
389 #define register_const1f(p, s0) register_const4f(p, s0, 0, 0, 1)
390 #define register_scalar_const(p, s0) register_const4f(p, s0, s0, s0, s0)
391 #define register_const2f(p, s0, s1) register_const4f(p, s0, s1, 0, 1)
392 #define register_const3f(p, s0, s1, s2) register_const4f(p, s0, s1, s2, 1)
393
394 static GLboolean is_undef( struct ureg reg )
395 {
396 return reg.file == 0xf;
397 }
398
399 static struct ureg get_identity_param( struct tnl_program *p )
400 {
401 if (is_undef(p->identity))
402 p->identity = register_const4f(p, 0,0,0,1);
403
404 return p->identity;
405 }
406
407 static struct ureg register_param6( struct tnl_program *p,
408 GLint s0,
409 GLint s1,
410 GLint s2,
411 GLint s3,
412 GLint s4,
413 GLint s5)
414 {
415 GLint tokens[6];
416 GLint idx;
417 tokens[0] = s0;
418 tokens[1] = s1;
419 tokens[2] = s2;
420 tokens[3] = s3;
421 tokens[4] = s4;
422 tokens[5] = s5;
423 idx = _mesa_add_state_reference( p->program->Parameters, tokens );
424 return make_ureg(PROGRAM_STATE_VAR, idx);
425 }
426
427
428 #define register_param1(p,s0) register_param6(p,s0,0,0,0,0,0)
429 #define register_param2(p,s0,s1) register_param6(p,s0,s1,0,0,0,0)
430 #define register_param3(p,s0,s1,s2) register_param6(p,s0,s1,s2,0,0,0)
431 #define register_param4(p,s0,s1,s2,s3) register_param6(p,s0,s1,s2,s3,0,0)
432
433
434 static void register_matrix_param6( struct tnl_program *p,
435 GLint s0,
436 GLint s1,
437 GLint s2,
438 GLint s3,
439 GLint s4,
440 GLint s5,
441 struct ureg *matrix )
442 {
443 GLuint i;
444
445 /* This is a bit sad as the support is there to pull the whole
446 * matrix out in one go:
447 */
448 for (i = 0; i <= s4 - s3; i++)
449 matrix[i] = register_param6( p, s0, s1, s2, i, i, s5 );
450 }
451
452
453 static void emit_arg( struct vp_src_register *src,
454 struct ureg reg )
455 {
456 src->File = reg.file;
457 src->Index = reg.idx;
458 src->Swizzle = reg.swz;
459 src->Negate = reg.negate;
460 src->RelAddr = 0;
461 src->pad = 0;
462 }
463
464 static void emit_dst( struct vp_dst_register *dst,
465 struct ureg reg, GLuint mask )
466 {
467 dst->File = reg.file;
468 dst->Index = reg.idx;
469 /* allow zero as a shorthand for xyzw */
470 dst->WriteMask = mask ? mask : WRITEMASK_XYZW;
471 dst->pad = 0;
472 }
473
474 static void debug_insn( struct vp_instruction *inst, const char *fn,
475 GLuint line )
476 {
477 if (DISASSEM) {
478 static const char *last_fn;
479
480 if (fn != last_fn) {
481 last_fn = fn;
482 _mesa_printf("%s:\n", fn);
483 }
484
485 _mesa_printf("%d:\t", line);
486 _mesa_debug_vp_inst(1, inst);
487 }
488 }
489
490
491 static void emit_op3fn(struct tnl_program *p,
492 GLuint op,
493 struct ureg dest,
494 GLuint mask,
495 struct ureg src0,
496 struct ureg src1,
497 struct ureg src2,
498 const char *fn,
499 GLuint line)
500 {
501 GLuint nr = p->program->Base.NumInstructions++;
502 struct vp_instruction *inst = &p->program->Instructions[nr];
503
504 if (p->program->Base.NumInstructions > MAX_INSN) {
505 _mesa_problem(0, "Out of instructions in emit_op3fn\n");
506 return;
507 }
508
509 inst->Opcode = op;
510 inst->StringPos = 0;
511 inst->Data = 0;
512
513 emit_arg( &inst->SrcReg[0], src0 );
514 emit_arg( &inst->SrcReg[1], src1 );
515 emit_arg( &inst->SrcReg[2], src2 );
516
517 emit_dst( &inst->DstReg, dest, mask );
518
519 debug_insn(inst, fn, line);
520 }
521
522
523 #define emit_op3(p, op, dst, mask, src0, src1, src2) \
524 emit_op3fn(p, op, dst, mask, src0, src1, src2, __FUNCTION__, __LINE__)
525
526 #define emit_op2(p, op, dst, mask, src0, src1) \
527 emit_op3fn(p, op, dst, mask, src0, src1, undef, __FUNCTION__, __LINE__)
528
529 #define emit_op1(p, op, dst, mask, src0) \
530 emit_op3fn(p, op, dst, mask, src0, undef, undef, __FUNCTION__, __LINE__)
531
532
533 static struct ureg make_temp( struct tnl_program *p, struct ureg reg )
534 {
535 if (reg.file == PROGRAM_TEMPORARY &&
536 !(p->temp_reserved & (1<<reg.idx)))
537 return reg;
538 else {
539 struct ureg temp = get_temp(p);
540 emit_op1(p, VP_OPCODE_MOV, temp, 0, reg);
541 return temp;
542 }
543 }
544
545
546 /* Currently no tracking performed of input/output/register size or
547 * active elements. Could be used to reduce these operations, as
548 * could the matrix type.
549 */
550 static void emit_matrix_transform_vec4( struct tnl_program *p,
551 struct ureg dest,
552 const struct ureg *mat,
553 struct ureg src)
554 {
555 emit_op2(p, VP_OPCODE_DP4, dest, WRITEMASK_X, src, mat[0]);
556 emit_op2(p, VP_OPCODE_DP4, dest, WRITEMASK_Y, src, mat[1]);
557 emit_op2(p, VP_OPCODE_DP4, dest, WRITEMASK_Z, src, mat[2]);
558 emit_op2(p, VP_OPCODE_DP4, dest, WRITEMASK_W, src, mat[3]);
559 }
560
561 /* This version is much easier to implement if writemasks are not
562 * supported natively on the target or (like SSE), the target doesn't
563 * have a clean/obvious dotproduct implementation.
564 */
565 static void emit_transpose_matrix_transform_vec4( struct tnl_program *p,
566 struct ureg dest,
567 const struct ureg *mat,
568 struct ureg src)
569 {
570 struct ureg tmp;
571
572 if (dest.file != PROGRAM_TEMPORARY)
573 tmp = get_temp(p);
574 else
575 tmp = dest;
576
577 emit_op2(p, VP_OPCODE_MUL, tmp, 0, swizzle1(src,X), mat[0]);
578 emit_op3(p, VP_OPCODE_MAD, tmp, 0, swizzle1(src,Y), mat[1], tmp);
579 emit_op3(p, VP_OPCODE_MAD, tmp, 0, swizzle1(src,Z), mat[2], tmp);
580 emit_op3(p, VP_OPCODE_MAD, dest, 0, swizzle1(src,W), mat[3], tmp);
581
582 if (dest.file != PROGRAM_TEMPORARY)
583 release_temp(p, tmp);
584 }
585
586 static void emit_matrix_transform_vec3( struct tnl_program *p,
587 struct ureg dest,
588 const struct ureg *mat,
589 struct ureg src)
590 {
591 emit_op2(p, VP_OPCODE_DP3, dest, WRITEMASK_X, src, mat[0]);
592 emit_op2(p, VP_OPCODE_DP3, dest, WRITEMASK_Y, src, mat[1]);
593 emit_op2(p, VP_OPCODE_DP3, dest, WRITEMASK_Z, src, mat[2]);
594 }
595
596
597 static void emit_normalize_vec3( struct tnl_program *p,
598 struct ureg dest,
599 struct ureg src )
600 {
601 struct ureg tmp = get_temp(p);
602 emit_op2(p, VP_OPCODE_DP3, tmp, 0, src, src);
603 emit_op1(p, VP_OPCODE_RSQ, tmp, 0, tmp);
604 emit_op2(p, VP_OPCODE_MUL, dest, 0, src, tmp);
605 release_temp(p, tmp);
606 }
607
608 static void emit_passthrough( struct tnl_program *p,
609 GLuint input,
610 GLuint output )
611 {
612 struct ureg out = register_output(p, output);
613 emit_op1(p, VP_OPCODE_MOV, out, 0, register_input(p, input));
614 }
615
616 static struct ureg get_eye_position( struct tnl_program *p )
617 {
618 if (is_undef(p->eye_position)) {
619 struct ureg pos = register_input( p, VERT_ATTRIB_POS );
620 struct ureg modelview[4];
621
622 p->eye_position = reserve_temp(p);
623
624 if (PREFER_DP4) {
625 register_matrix_param6( p, STATE_MATRIX, STATE_MODELVIEW, 0, 0, 3,
626 STATE_MATRIX, modelview );
627
628 emit_matrix_transform_vec4(p, p->eye_position, modelview, pos);
629 }
630 else {
631 register_matrix_param6( p, STATE_MATRIX, STATE_MODELVIEW, 0, 0, 3,
632 STATE_MATRIX_TRANSPOSE, modelview );
633
634 emit_transpose_matrix_transform_vec4(p, p->eye_position, modelview, pos);
635 }
636 }
637
638 return p->eye_position;
639 }
640
641
642 static struct ureg get_eye_position_normalized( struct tnl_program *p )
643 {
644 if (is_undef(p->eye_position_normalized)) {
645 struct ureg eye = get_eye_position(p);
646 p->eye_position_normalized = reserve_temp(p);
647 emit_normalize_vec3(p, p->eye_position_normalized, eye);
648 }
649
650 return p->eye_position_normalized;
651 }
652
653
654 static struct ureg get_eye_normal( struct tnl_program *p )
655 {
656 if (is_undef(p->eye_normal)) {
657 struct ureg normal = register_input(p, VERT_ATTRIB_NORMAL );
658 struct ureg mvinv[3];
659
660 register_matrix_param6( p, STATE_MATRIX, STATE_MODELVIEW, 0, 0, 2,
661 STATE_MATRIX_INVTRANS, mvinv );
662
663 p->eye_normal = reserve_temp(p);
664
665 /* Transform to eye space:
666 */
667 emit_matrix_transform_vec3( p, p->eye_normal, mvinv, normal );
668
669 /* Normalize/Rescale:
670 */
671 if (p->state->normalize) {
672 emit_normalize_vec3( p, p->eye_normal, p->eye_normal );
673 }
674 else if (p->state->rescale_normals) {
675 struct ureg rescale = register_param2(p, STATE_INTERNAL,
676 STATE_NORMAL_SCALE);
677
678 emit_op2( p, VP_OPCODE_MUL, p->eye_normal, 0, normal,
679 swizzle1(rescale, X));
680 }
681 }
682
683 return p->eye_normal;
684 }
685
686
687
688 static void build_hpos( struct tnl_program *p )
689 {
690 struct ureg pos = register_input( p, VERT_ATTRIB_POS );
691 struct ureg hpos = register_output( p, VERT_RESULT_HPOS );
692 struct ureg mvp[4];
693
694 if (PREFER_DP4) {
695 register_matrix_param6( p, STATE_MATRIX, STATE_MVP, 0, 0, 3,
696 STATE_MATRIX, mvp );
697 emit_matrix_transform_vec4( p, hpos, mvp, pos );
698 }
699 else {
700 register_matrix_param6( p, STATE_MATRIX, STATE_MVP, 0, 0, 3,
701 STATE_MATRIX_TRANSPOSE, mvp );
702 emit_transpose_matrix_transform_vec4( p, hpos, mvp, pos );
703 }
704 }
705
706
707 static GLuint material_attrib( GLuint side, GLuint property )
708 {
709 return ((property - STATE_AMBIENT) * 2 +
710 side);
711 }
712
713 static void set_material_flags( struct tnl_program *p )
714 {
715 p->color_materials = 0;
716 p->materials = 0;
717
718 if (p->state->light_color_material) {
719 p->materials =
720 p->color_materials = p->state->light_color_material_mask;
721 }
722
723 p->materials |= p->state->light_material_mask;
724 }
725
726
727 static struct ureg get_material( struct tnl_program *p, GLuint side,
728 GLuint property )
729 {
730 GLuint attrib = material_attrib(side, property);
731
732 if (p->color_materials & (1<<attrib))
733 return register_input(p, VERT_ATTRIB_COLOR0);
734 else if (p->materials & (1<<attrib))
735 return register_input( p, attrib + _TNL_ATTRIB_MAT_FRONT_AMBIENT );
736 else
737 return register_param3( p, STATE_MATERIAL, side, property );
738 }
739
740 #define SCENE_COLOR_BITS(side) (( MAT_BIT_FRONT_EMISSION | \
741 MAT_BIT_FRONT_AMBIENT | \
742 MAT_BIT_FRONT_DIFFUSE) << (side))
743
744 /* Either return a precalculated constant value or emit code to
745 * calculate these values dynamically in the case where material calls
746 * are present between begin/end pairs.
747 *
748 * Probably want to shift this to the program compilation phase - if
749 * we always emitted the calculation here, a smart compiler could
750 * detect that it was constant (given a certain set of inputs), and
751 * lift it out of the main loop. That way the programs created here
752 * would be independent of the vertex_buffer details.
753 */
754 static struct ureg get_scenecolor( struct tnl_program *p, GLuint side )
755 {
756 if (p->materials & SCENE_COLOR_BITS(side)) {
757 struct ureg lm_ambient = register_param1(p, STATE_LIGHTMODEL_AMBIENT);
758 struct ureg material_emission = get_material(p, side, STATE_EMISSION);
759 struct ureg material_ambient = get_material(p, side, STATE_AMBIENT);
760 struct ureg material_diffuse = get_material(p, side, STATE_DIFFUSE);
761 struct ureg tmp = make_temp(p, material_diffuse);
762 emit_op3(p, VP_OPCODE_MAD, tmp, WRITEMASK_XYZ, lm_ambient,
763 material_ambient, material_emission);
764 return tmp;
765 }
766 else
767 return register_param2( p, STATE_LIGHTMODEL_SCENECOLOR, side );
768 }
769
770
771 static struct ureg get_lightprod( struct tnl_program *p, GLuint light,
772 GLuint side, GLuint property )
773 {
774 GLuint attrib = material_attrib(side, property);
775 if (p->materials & (1<<attrib)) {
776 struct ureg light_value =
777 register_param3(p, STATE_LIGHT, light, property);
778 struct ureg material_value = get_material(p, side, property);
779 struct ureg tmp = get_temp(p);
780 emit_op2(p, VP_OPCODE_MUL, tmp, 0, light_value, material_value);
781 return tmp;
782 }
783 else
784 return register_param4(p, STATE_LIGHTPROD, light, side, property);
785 }
786
787 static struct ureg calculate_light_attenuation( struct tnl_program *p,
788 GLuint i,
789 struct ureg VPpli,
790 struct ureg dist )
791 {
792 struct ureg attenuation = register_param3(p, STATE_LIGHT, i,
793 STATE_ATTENUATION);
794 struct ureg att = get_temp(p);
795
796 /* Calculate spot attenuation:
797 */
798 if (!p->state->unit[i].light_spotcutoff_is_180) {
799 struct ureg spot_dir = register_param3(p, STATE_LIGHT, i,
800 STATE_SPOT_DIRECTION);
801 struct ureg spot = get_temp(p);
802 struct ureg slt = get_temp(p);
803
804 emit_normalize_vec3( p, spot, spot_dir ); /* XXX: precompute! */
805 emit_op2(p, VP_OPCODE_DP3, spot, 0, negate(VPpli), spot);
806 emit_op2(p, VP_OPCODE_SLT, slt, 0, swizzle1(spot_dir,W), spot);
807 emit_op2(p, VP_OPCODE_POW, spot, 0, spot, swizzle1(attenuation, W));
808 emit_op2(p, VP_OPCODE_MUL, att, 0, slt, spot);
809
810 release_temp(p, spot);
811 release_temp(p, slt);
812 }
813
814 /* Calculate distance attenuation:
815 */
816 if (p->state->unit[i].light_attenuated) {
817
818 /* 1/d,d,d,1/d */
819 emit_op1(p, VP_OPCODE_RCP, dist, WRITEMASK_YZ, dist);
820 /* 1,d,d*d,1/d */
821 emit_op2(p, VP_OPCODE_MUL, dist, WRITEMASK_XZ, dist, swizzle1(dist,Y));
822 /* 1/dist-atten */
823 emit_op2(p, VP_OPCODE_DP3, dist, 0, attenuation, dist);
824
825 if (!p->state->unit[i].light_spotcutoff_is_180) {
826 /* dist-atten */
827 emit_op1(p, VP_OPCODE_RCP, dist, 0, dist);
828 /* spot-atten * dist-atten */
829 emit_op2(p, VP_OPCODE_MUL, att, 0, dist, att);
830 } else {
831 /* dist-atten */
832 emit_op1(p, VP_OPCODE_RCP, att, 0, dist);
833 }
834 }
835
836 return att;
837 }
838
839
840
841
842
843 /* Need to add some addtional parameters to allow lighting in object
844 * space - STATE_SPOT_DIRECTION and STATE_HALF implicitly assume eye
845 * space lighting.
846 */
847 static void build_lighting( struct tnl_program *p )
848 {
849 const GLboolean twoside = p->state->light_twoside;
850 const GLboolean separate = p->state->separate_specular;
851 GLuint nr_lights = 0, count = 0;
852 struct ureg normal = get_eye_normal(p);
853 struct ureg lit = get_temp(p);
854 struct ureg dots = get_temp(p);
855 struct ureg _col0 = undef, _col1 = undef;
856 struct ureg _bfc0 = undef, _bfc1 = undef;
857 GLuint i;
858
859 for (i = 0; i < MAX_LIGHTS; i++)
860 if (p->state->unit[i].light_enabled)
861 nr_lights++;
862
863 set_material_flags(p);
864
865 {
866 struct ureg shininess = get_material(p, 0, STATE_SHININESS);
867 emit_op1(p, VP_OPCODE_MOV, dots, WRITEMASK_W, swizzle1(shininess,X));
868 release_temp(p, shininess);
869
870 _col0 = make_temp(p, get_scenecolor(p, 0));
871 if (separate)
872 _col1 = make_temp(p, get_identity_param(p));
873 else
874 _col1 = _col0;
875
876 }
877
878 if (twoside) {
879 struct ureg shininess = get_material(p, 1, STATE_SHININESS);
880 emit_op1(p, VP_OPCODE_MOV, dots, WRITEMASK_Z,
881 negate(swizzle1(shininess,X)));
882 release_temp(p, shininess);
883
884 _bfc0 = make_temp(p, get_scenecolor(p, 1));
885 if (separate)
886 _bfc1 = make_temp(p, get_identity_param(p));
887 else
888 _bfc1 = _bfc0;
889 }
890
891
892 /* If no lights, still need to emit the scenecolor.
893 */
894 {
895 struct ureg res0 = register_output( p, VERT_RESULT_COL0 );
896 emit_op1(p, VP_OPCODE_MOV, res0, 0, _col0);
897 }
898
899 if (separate) {
900 struct ureg res1 = register_output( p, VERT_RESULT_COL1 );
901 emit_op1(p, VP_OPCODE_MOV, res1, 0, _col1);
902 }
903
904 if (twoside) {
905 struct ureg res0 = register_output( p, VERT_RESULT_BFC0 );
906 emit_op1(p, VP_OPCODE_MOV, res0, 0, _bfc0);
907 }
908
909 if (twoside && separate) {
910 struct ureg res1 = register_output( p, VERT_RESULT_BFC1 );
911 emit_op1(p, VP_OPCODE_MOV, res1, 0, _bfc1);
912 }
913
914 if (nr_lights == 0) {
915 release_temps(p);
916 return;
917 }
918
919
920 for (i = 0; i < MAX_LIGHTS; i++) {
921 if (p->state->unit[i].light_enabled) {
922 struct ureg half = undef;
923 struct ureg att = undef, VPpli = undef;
924
925 count++;
926
927 if (p->state->unit[i].light_eyepos3_is_zero) {
928 /* Can used precomputed constants in this case.
929 * Attenuation never applies to infinite lights.
930 */
931 VPpli = register_param3(p, STATE_LIGHT, i,
932 STATE_POSITION_NORMALIZED);
933 half = register_param3(p, STATE_LIGHT, i, STATE_HALF);
934 }
935 else {
936 struct ureg Ppli = register_param3(p, STATE_LIGHT, i,
937 STATE_POSITION);
938 struct ureg V = get_eye_position(p);
939 struct ureg dist = get_temp(p);
940
941 VPpli = get_temp(p);
942 half = get_temp(p);
943
944 /* Calulate VPpli vector
945 */
946 emit_op2(p, VP_OPCODE_SUB, VPpli, 0, Ppli, V);
947
948 /* Normalize VPpli. The dist value also used in
949 * attenuation below.
950 */
951 emit_op2(p, VP_OPCODE_DP3, dist, 0, VPpli, VPpli);
952 emit_op1(p, VP_OPCODE_RSQ, dist, 0, dist);
953 emit_op2(p, VP_OPCODE_MUL, VPpli, 0, VPpli, dist);
954
955
956 /* Calculate attenuation:
957 */
958 if (!p->state->unit[i].light_spotcutoff_is_180 ||
959 p->state->unit[i].light_attenuated) {
960 att = calculate_light_attenuation(p, i, VPpli, dist);
961 }
962
963
964 /* Calculate viewer direction, or use infinite viewer:
965 */
966 if (p->state->light_local_viewer) {
967 struct ureg eye_hat = get_eye_position_normalized(p);
968 emit_op2(p, VP_OPCODE_SUB, half, 0, VPpli, eye_hat);
969 }
970 else {
971 struct ureg z_dir = swizzle(get_identity_param(p),X,Y,W,Z);
972 emit_op2(p, VP_OPCODE_ADD, half, 0, VPpli, z_dir);
973 }
974
975 emit_normalize_vec3(p, half, half);
976
977 release_temp(p, dist);
978 }
979
980 /* Calculate dot products:
981 */
982 emit_op2(p, VP_OPCODE_DP3, dots, WRITEMASK_X, normal, VPpli);
983 emit_op2(p, VP_OPCODE_DP3, dots, WRITEMASK_Y, normal, half);
984
985
986 /* Front face lighting:
987 */
988 {
989 struct ureg ambient = get_lightprod(p, i, 0, STATE_AMBIENT);
990 struct ureg diffuse = get_lightprod(p, i, 0, STATE_DIFFUSE);
991 struct ureg specular = get_lightprod(p, i, 0, STATE_SPECULAR);
992 struct ureg res0, res1;
993 GLuint mask0, mask1;
994
995 emit_op1(p, VP_OPCODE_LIT, lit, 0, dots);
996
997 if (!is_undef(att))
998 emit_op2(p, VP_OPCODE_MUL, lit, 0, lit, att);
999
1000
1001 if (count == nr_lights) {
1002 if (separate) {
1003 mask0 = WRITEMASK_XYZ;
1004 mask1 = WRITEMASK_XYZ;
1005 res0 = register_output( p, VERT_RESULT_COL0 );
1006 res1 = register_output( p, VERT_RESULT_COL1 );
1007 }
1008 else {
1009 mask0 = 0;
1010 mask1 = WRITEMASK_XYZ;
1011 res0 = _col0;
1012 res1 = register_output( p, VERT_RESULT_COL0 );
1013 }
1014 } else {
1015 mask0 = 0;
1016 mask1 = 0;
1017 res0 = _col0;
1018 res1 = _col1;
1019 }
1020
1021 emit_op3(p, VP_OPCODE_MAD, _col0, 0, swizzle1(lit,X), ambient, _col0);
1022 emit_op3(p, VP_OPCODE_MAD, res0, mask0, swizzle1(lit,Y), diffuse, _col0);
1023 emit_op3(p, VP_OPCODE_MAD, res1, mask1, swizzle1(lit,Z), specular, _col1);
1024
1025 release_temp(p, ambient);
1026 release_temp(p, diffuse);
1027 release_temp(p, specular);
1028 }
1029
1030 /* Back face lighting:
1031 */
1032 if (twoside) {
1033 struct ureg ambient = get_lightprod(p, i, 1, STATE_AMBIENT);
1034 struct ureg diffuse = get_lightprod(p, i, 1, STATE_DIFFUSE);
1035 struct ureg specular = get_lightprod(p, i, 1, STATE_SPECULAR);
1036 struct ureg res0, res1;
1037 GLuint mask0, mask1;
1038
1039 emit_op1(p, VP_OPCODE_LIT, lit, 0, negate(swizzle(dots,X,Y,W,Z)));
1040
1041 if (!is_undef(att))
1042 emit_op2(p, VP_OPCODE_MUL, lit, 0, lit, att);
1043
1044 if (count == nr_lights) {
1045 if (separate) {
1046 mask0 = WRITEMASK_XYZ;
1047 mask1 = WRITEMASK_XYZ;
1048 res0 = register_output( p, VERT_RESULT_BFC0 );
1049 res1 = register_output( p, VERT_RESULT_BFC1 );
1050 }
1051 else {
1052 mask0 = 0;
1053 mask1 = WRITEMASK_XYZ;
1054 res0 = _bfc0;
1055 res1 = register_output( p, VERT_RESULT_BFC0 );
1056 }
1057 } else {
1058 res0 = _bfc0;
1059 res1 = _bfc1;
1060 mask0 = 0;
1061 mask1 = 0;
1062 }
1063
1064 emit_op3(p, VP_OPCODE_MAD, _bfc0, 0, swizzle1(lit,X), ambient, _bfc0);
1065 emit_op3(p, VP_OPCODE_MAD, res0, mask0, swizzle1(lit,Y), diffuse, _bfc0);
1066 emit_op3(p, VP_OPCODE_MAD, res1, mask1, swizzle1(lit,Z), specular, _bfc1);
1067
1068 release_temp(p, ambient);
1069 release_temp(p, diffuse);
1070 release_temp(p, specular);
1071 }
1072
1073 release_temp(p, half);
1074 release_temp(p, VPpli);
1075 release_temp(p, att);
1076 }
1077 }
1078
1079 release_temps( p );
1080 }
1081
1082
1083 static void build_fog( struct tnl_program *p )
1084 {
1085 struct ureg fog = register_output(p, VERT_RESULT_FOGC);
1086 struct ureg input;
1087
1088 if (p->state->fog_source_is_depth) {
1089 input = swizzle1(get_eye_position(p), Z);
1090 }
1091 else {
1092 input = swizzle1(register_input(p, VERT_ATTRIB_FOG), X);
1093 }
1094
1095 if (p->state->tnl_do_vertex_fog) {
1096 struct ureg params = register_param1(p, STATE_FOG_PARAMS);
1097 struct ureg tmp = get_temp(p);
1098
1099 switch (p->state->fog_mode) {
1100 case FOG_LINEAR: {
1101 struct ureg id = get_identity_param(p);
1102 emit_op2(p, VP_OPCODE_SUB, tmp, 0, swizzle1(params,Z), input);
1103 emit_op2(p, VP_OPCODE_MUL, tmp, 0, tmp, swizzle1(params,W));
1104 emit_op2(p, VP_OPCODE_MAX, tmp, 0, tmp, swizzle1(id,X)); /* saturate */
1105 emit_op2(p, VP_OPCODE_MIN, fog, WRITEMASK_X, tmp, swizzle1(id,W));
1106 break;
1107 }
1108 case FOG_EXP:
1109 emit_op1(p, VP_OPCODE_ABS, tmp, 0, input);
1110 emit_op2(p, VP_OPCODE_MUL, tmp, 0, tmp, swizzle1(params,X));
1111 emit_op2(p, VP_OPCODE_POW, fog, WRITEMASK_X,
1112 register_const1f(p, M_E), negate(tmp));
1113 break;
1114 case FOG_EXP2:
1115 emit_op2(p, VP_OPCODE_MUL, tmp, 0, input, swizzle1(params,X));
1116 emit_op2(p, VP_OPCODE_MUL, tmp, 0, tmp, tmp);
1117 emit_op2(p, VP_OPCODE_POW, fog, WRITEMASK_X,
1118 register_const1f(p, M_E), negate(tmp));
1119 break;
1120 }
1121
1122 release_temp(p, tmp);
1123 }
1124 else {
1125 /* results = incoming fog coords (compute fog per-fragment later)
1126 *
1127 * KW: Is it really necessary to do anything in this case?
1128 */
1129 emit_op1(p, VP_OPCODE_MOV, fog, WRITEMASK_X, input);
1130 }
1131 }
1132
1133 static void build_reflect_texgen( struct tnl_program *p,
1134 struct ureg dest,
1135 GLuint writemask )
1136 {
1137 struct ureg normal = get_eye_normal(p);
1138 struct ureg eye_hat = get_eye_position_normalized(p);
1139 struct ureg tmp = get_temp(p);
1140
1141 /* n.u */
1142 emit_op2(p, VP_OPCODE_DP3, tmp, 0, normal, eye_hat);
1143 /* 2n.u */
1144 emit_op2(p, VP_OPCODE_ADD, tmp, 0, tmp, tmp);
1145 /* (-2n.u)n + u */
1146 emit_op3(p, VP_OPCODE_MAD, dest, writemask, negate(tmp), normal, eye_hat);
1147 }
1148
1149 static void build_sphere_texgen( struct tnl_program *p,
1150 struct ureg dest,
1151 GLuint writemask )
1152 {
1153 struct ureg normal = get_eye_normal(p);
1154 struct ureg eye_hat = get_eye_position_normalized(p);
1155 struct ureg tmp = get_temp(p);
1156 struct ureg half = register_scalar_const(p, .5);
1157 struct ureg r = get_temp(p);
1158 struct ureg inv_m = get_temp(p);
1159 struct ureg id = get_identity_param(p);
1160
1161 /* Could share the above calculations, but it would be
1162 * a fairly odd state for someone to set (both sphere and
1163 * reflection active for different texture coordinate
1164 * components. Of course - if two texture units enable
1165 * reflect and/or sphere, things start to tilt in favour
1166 * of seperating this out:
1167 */
1168
1169 /* n.u */
1170 emit_op2(p, VP_OPCODE_DP3, tmp, 0, normal, eye_hat);
1171 /* 2n.u */
1172 emit_op2(p, VP_OPCODE_ADD, tmp, 0, tmp, tmp);
1173 /* (-2n.u)n + u */
1174 emit_op3(p, VP_OPCODE_MAD, r, 0, negate(tmp), normal, eye_hat);
1175 /* r + 0,0,1 */
1176 emit_op2(p, VP_OPCODE_ADD, tmp, 0, r, swizzle(id,X,Y,W,Z));
1177 /* rx^2 + ry^2 + (rz+1)^2 */
1178 emit_op2(p, VP_OPCODE_DP3, tmp, 0, tmp, tmp);
1179 /* 2/m */
1180 emit_op1(p, VP_OPCODE_RSQ, tmp, 0, tmp);
1181 /* 1/m */
1182 emit_op2(p, VP_OPCODE_MUL, inv_m, 0, tmp, half);
1183 /* r/m + 1/2 */
1184 emit_op3(p, VP_OPCODE_MAD, dest, writemask, r, inv_m, half);
1185
1186 release_temp(p, tmp);
1187 release_temp(p, r);
1188 release_temp(p, inv_m);
1189 }
1190
1191
1192 static void build_texture_transform( struct tnl_program *p )
1193 {
1194 GLuint i, j;
1195
1196 for (i = 0; i < MAX_TEXTURE_UNITS; i++) {
1197 GLuint texmat_enabled = p->state->unit[i].texmat_enabled;
1198
1199 if (p->state->unit[i].texgen_enabled || texmat_enabled) {
1200 struct ureg out = register_output(p, VERT_RESULT_TEX0 + i);
1201 struct ureg out_texgen = undef;
1202
1203 if (p->state->unit[i].texgen_enabled) {
1204 GLuint copy_mask = 0;
1205 GLuint sphere_mask = 0;
1206 GLuint reflect_mask = 0;
1207 GLuint normal_mask = 0;
1208 GLuint modes[4];
1209
1210 if (texmat_enabled)
1211 out_texgen = get_temp(p);
1212 else
1213 out_texgen = out;
1214
1215 modes[0] = p->state->unit[i].texgen_mode0;
1216 modes[1] = p->state->unit[i].texgen_mode1;
1217 modes[2] = p->state->unit[i].texgen_mode2;
1218 modes[3] = p->state->unit[i].texgen_mode3;
1219
1220 for (j = 0; j < 4; j++) {
1221 switch (modes[j]) {
1222 case TXG_OBJ_LINEAR: {
1223 struct ureg obj = register_input(p, VERT_ATTRIB_POS);
1224 struct ureg plane =
1225 register_param3(p, STATE_TEXGEN, i,
1226 STATE_TEXGEN_OBJECT_S + j);
1227
1228 emit_op2(p, VP_OPCODE_DP4, out_texgen, WRITEMASK_X << j,
1229 obj, plane );
1230 break;
1231 }
1232 case TXG_EYE_LINEAR: {
1233 struct ureg eye = get_eye_position(p);
1234 struct ureg plane =
1235 register_param3(p, STATE_TEXGEN, i,
1236 STATE_TEXGEN_EYE_S + j);
1237
1238 emit_op2(p, VP_OPCODE_DP4, out_texgen, WRITEMASK_X << j,
1239 eye, plane );
1240 break;
1241 }
1242 case TXG_SPHERE_MAP:
1243 sphere_mask |= WRITEMASK_X << j;
1244 break;
1245 case TXG_REFLECTION_MAP:
1246 reflect_mask |= WRITEMASK_X << j;
1247 break;
1248 case TXG_NORMAL_MAP:
1249 normal_mask |= WRITEMASK_X << j;
1250 break;
1251 case TXG_NONE:
1252 copy_mask |= WRITEMASK_X << j;
1253 }
1254
1255 }
1256
1257
1258 if (sphere_mask) {
1259 build_sphere_texgen(p, out_texgen, sphere_mask);
1260 }
1261
1262 if (reflect_mask) {
1263 build_reflect_texgen(p, out_texgen, reflect_mask);
1264 }
1265
1266 if (normal_mask) {
1267 struct ureg normal = get_eye_normal(p);
1268 emit_op1(p, VP_OPCODE_MOV, out_texgen, normal_mask, normal );
1269 }
1270
1271 if (copy_mask) {
1272 struct ureg in = register_input(p, VERT_ATTRIB_TEX0+i);
1273 emit_op1(p, VP_OPCODE_MOV, out_texgen, copy_mask, in );
1274 }
1275 }
1276
1277 if (texmat_enabled) {
1278 struct ureg texmat[4];
1279 struct ureg in = (!is_undef(out_texgen) ?
1280 out_texgen :
1281 register_input(p, VERT_ATTRIB_TEX0+i));
1282 if (PREFER_DP4) {
1283 register_matrix_param6( p, STATE_MATRIX, STATE_TEXTURE, i,
1284 0, 3, STATE_MATRIX, texmat );
1285 emit_matrix_transform_vec4( p, out, texmat, in );
1286 }
1287 else {
1288 register_matrix_param6( p, STATE_MATRIX, STATE_TEXTURE, i,
1289 0, 3, STATE_MATRIX_TRANSPOSE, texmat );
1290 emit_transpose_matrix_transform_vec4( p, out, texmat, in );
1291 }
1292 }
1293
1294 release_temps(p);
1295 }
1296 else if (p->state->unit[i].texunit_really_enabled) {
1297 /* KW: _ReallyEnabled isn't sufficient? Need to know whether
1298 * this texture unit is referenced by the fragment shader.
1299 */
1300 emit_passthrough(p, VERT_ATTRIB_TEX0+i, VERT_RESULT_TEX0+i);
1301 }
1302 }
1303 }
1304
1305
1306 /* Seems like it could be tighter:
1307 */
1308 static void build_pointsize( struct tnl_program *p )
1309 {
1310 struct ureg eye = get_eye_position(p);
1311 struct ureg state_size = register_param1(p, STATE_POINT_SIZE);
1312 struct ureg state_attenuation = register_param1(p, STATE_POINT_ATTENUATION);
1313 struct ureg out = register_output(p, VERT_RESULT_PSIZ);
1314 struct ureg ut = get_temp(p);
1315
1316 /* 1, -Z, Z * Z, 1 */
1317 emit_op1(p, VP_OPCODE_MOV, ut, 0, swizzle1(get_identity_param(p), W));
1318 emit_op2(p, VP_OPCODE_MUL, ut, WRITEMASK_YZ, ut, negate(swizzle1(eye, Z)));
1319 emit_op2(p, VP_OPCODE_MUL, ut, WRITEMASK_Z, ut, negate(swizzle1(eye, Z)));
1320
1321
1322 /* p1 + p2 * dist + p3 * dist * dist, 0 */
1323 emit_op2(p, VP_OPCODE_DP3, ut, 0, ut, state_attenuation);
1324
1325 /* 1 / factor */
1326 emit_op1(p, VP_OPCODE_RCP, ut, 0, ut );
1327
1328 /* out = pointSize / factor */
1329 emit_op2(p, VP_OPCODE_MUL, out, WRITEMASK_X, ut, state_size);
1330
1331 release_temp(p, ut);
1332 }
1333
1334 static void build_tnl_program( struct tnl_program *p )
1335 { /* Emit the program, starting with modelviewproject:
1336 */
1337 build_hpos(p);
1338
1339 /* Lighting calculations:
1340 */
1341 if (p->state->light_global_enabled)
1342 build_lighting(p);
1343 else
1344 emit_passthrough(p, VERT_ATTRIB_COLOR0, VERT_RESULT_COL0);
1345
1346 if (p->state->fog_enabled)
1347 build_fog(p);
1348
1349 if (p->state->texture_enabled_global)
1350 build_texture_transform(p);
1351
1352 if (p->state->point_attenuated)
1353 build_pointsize(p);
1354
1355 /* Finish up:
1356 */
1357 emit_op1(p, VP_OPCODE_END, undef, 0, undef);
1358
1359 /* Disassemble:
1360 */
1361 if (DISASSEM) {
1362 _mesa_printf ("\n");
1363 }
1364 }
1365
1366
1367 static void
1368 create_new_program( const struct state_key *key,
1369 struct vertex_program *program,
1370 GLuint max_temps)
1371 {
1372 struct tnl_program p;
1373
1374 _mesa_memset(&p, 0, sizeof(p));
1375 p.state = key;
1376 p.program = program;
1377 p.eye_position = undef;
1378 p.eye_position_normalized = undef;
1379 p.eye_normal = undef;
1380 p.identity = undef;
1381 p.temp_in_use = 0;
1382
1383 if (max_temps >= sizeof(int) * 8)
1384 p.temp_reserved = 0;
1385 else
1386 p.temp_reserved = ~((1<<max_temps)-1);
1387
1388 p.program->Instructions = MALLOC(sizeof(struct vp_instruction) * MAX_INSN);
1389 p.program->Base.String = 0;
1390 p.program->Base.NumInstructions =
1391 p.program->Base.NumTemporaries =
1392 p.program->Base.NumParameters =
1393 p.program->Base.NumAttributes = p.program->Base.NumAddressRegs = 0;
1394 p.program->Parameters = _mesa_new_parameter_list();
1395 p.program->InputsRead = 0;
1396 p.program->OutputsWritten = 0;
1397
1398 build_tnl_program( &p );
1399 }
1400
1401 static void *search_cache( struct tnl_cache *cache,
1402 GLuint hash,
1403 const void *key,
1404 GLuint keysize)
1405 {
1406 struct tnl_cache *c;
1407
1408 for (c = cache; c; c = c->next) {
1409 if (c->hash == hash && memcmp(c->key, key, keysize) == 0)
1410 return c->data;
1411 }
1412
1413 return NULL;
1414 }
1415
1416 static void cache_item( struct tnl_cache **cache,
1417 GLuint hash,
1418 void *key,
1419 void *data )
1420 {
1421 struct tnl_cache *c = MALLOC(sizeof(*c));
1422 c->hash = hash;
1423 c->key = key;
1424 c->data = data;
1425 c->next = *cache;
1426 *cache = c;
1427 }
1428
1429 static GLuint hash_key( struct state_key *key )
1430 {
1431 GLuint *ikey = (GLuint *)key;
1432 GLuint hash = 0, i;
1433
1434 /* I'm sure this can be improved on, but speed is important:
1435 */
1436 for (i = 0; i < sizeof(*key)/sizeof(GLuint); i++)
1437 hash ^= ikey[i];
1438
1439 return hash;
1440 }
1441
1442 void _tnl_UpdateFixedFunctionProgram( GLcontext *ctx )
1443 {
1444 TNLcontext *tnl = TNL_CONTEXT(ctx);
1445 struct state_key *key;
1446 GLuint hash;
1447
1448 if (ctx->VertexProgram._Enabled)
1449 return;
1450
1451 /* Grab all the relevent state and put it in a single structure:
1452 */
1453 key = make_state_key(ctx);
1454 hash = hash_key(key);
1455
1456 /* Look for an already-prepared program for this state:
1457 */
1458 ctx->_TnlProgram = (struct vertex_program *)
1459 search_cache( tnl->vp_cache, hash, key, sizeof(*key) );
1460
1461 /* OK, we'll have to build a new one:
1462 */
1463 if (!ctx->_TnlProgram) {
1464 if (0)
1465 _mesa_printf("Build new TNL program\n");
1466
1467 ctx->_TnlProgram = (struct vertex_program *)
1468 ctx->Driver.NewProgram(ctx, GL_VERTEX_PROGRAM_ARB, 0);
1469
1470 create_new_program( key, ctx->_TnlProgram,
1471 ctx->Const.MaxVertexProgramTemps );
1472
1473 cache_item(&tnl->vp_cache, hash, key, ctx->_TnlProgram );
1474 }
1475 else {
1476 FREE(key);
1477 if (0)
1478 _mesa_printf("Found existing TNL program for key %x\n", hash);
1479 }
1480
1481 /* Need a BindProgram callback for the driver?
1482 */
1483 }
1484
1485
1486 void _tnl_ProgramCacheDestroy( GLcontext *ctx )
1487 {
1488 TNLcontext *tnl = TNL_CONTEXT(ctx);
1489 struct tnl_cache *a, *tmp;
1490
1491 for (a = tnl->vp_cache ; a; a = tmp) {
1492 tmp = a->next;
1493 FREE(a->key);
1494 FREE(a->data);
1495 FREE(a);
1496 }
1497 }