43855ae830c8da5fc5ad8a0c06a69adb207c785d
[reactos.git] / reactos / lib / oleaut32 / variant.c
1 /*
2 * VARIANT
3 *
4 * Copyright 1998 Jean-Claude Cote
5 * Copyright 2003 Jon Griffiths
6 * The alorithm for conversion from Julian days to day/month/year is based on
7 * that devised by Henry Fliegel, as implemented in PostgreSQL, which is
8 * Copyright 1994-7 Regents of the University of California
9 *
10 * This library is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU Lesser General Public
12 * License as published by the Free Software Foundation; either
13 * version 2.1 of the License, or (at your option) any later version.
14 *
15 * This library is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * Lesser General Public License for more details.
19 *
20 * You should have received a copy of the GNU Lesser General Public
21 * License along with this library; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 */
24
25 #include "config.h"
26
27 #include <string.h>
28 #include <stdlib.h>
29 #include <stdarg.h>
30
31 #define COBJMACROS
32 #define NONAMELESSUNION
33 #define NONAMELESSSTRUCT
34
35 #include "windef.h"
36 #include "winbase.h"
37 #include "wine/unicode.h"
38 #include "winerror.h"
39 #include "variant.h"
40 #include "wine/debug.h"
41
42 WINE_DEFAULT_DEBUG_CHANNEL(variant);
43
44 const char* wine_vtypes[VT_CLSID] =
45 {
46 "VT_EMPTY","VT_NULL","VT_I2","VT_I4","VT_R4","VT_R8","VT_CY","VT_DATE",
47 "VT_BSTR","VT_DISPATCH","VT_ERROR","VT_BOOL","VT_VARIANT","VT_UNKNOWN",
48 "VT_DECIMAL","15","VT_I1","VT_UI1","VT_UI2","VT_UI4","VT_I8","VT_UI8",
49 "VT_INT","VT_UINT","VT_VOID","VT_HRESULT","VT_PTR","VT_SAFEARRAY",
50 "VT_CARRAY","VT_USERDEFINED","VT_LPSTR","VT_LPWSTR""32","33","34","35",
51 "VT_RECORD","VT_INT_PTR","VT_UINT_PTR","39","40","41","42","43","44","45",
52 "46","47","48","49","50","51","52","53","54","55","56","57","58","59","60",
53 "61","62","63","VT_FILETIME","VT_BLOB","VT_STREAM","VT_STORAGE",
54 "VT_STREAMED_OBJECT","VT_STORED_OBJECT","VT_BLOB_OBJECT","VT_CF","VT_CLSID"
55 };
56
57 const char* wine_vflags[16] =
58 {
59 "",
60 "|VT_VECTOR",
61 "|VT_ARRAY",
62 "|VT_VECTOR|VT_ARRAY",
63 "|VT_BYREF",
64 "|VT_VECTOR|VT_ARRAY",
65 "|VT_ARRAY|VT_BYREF",
66 "|VT_VECTOR|VT_ARRAY|VT_BYREF",
67 "|VT_HARDTYPE",
68 "|VT_VECTOR|VT_HARDTYPE",
69 "|VT_ARRAY|VT_HARDTYPE",
70 "|VT_VECTOR|VT_ARRAY|VT_HARDTYPE",
71 "|VT_BYREF|VT_HARDTYPE",
72 "|VT_VECTOR|VT_ARRAY|VT_HARDTYPE",
73 "|VT_ARRAY|VT_BYREF|VT_HARDTYPE",
74 "|VT_VECTOR|VT_ARRAY|VT_BYREF|VT_HARDTYPE",
75 };
76
77 /* Convert a variant from one type to another */
78 static inline HRESULT VARIANT_Coerce(VARIANTARG* pd, LCID lcid, USHORT wFlags,
79 VARIANTARG* ps, VARTYPE vt)
80 {
81 HRESULT res = DISP_E_TYPEMISMATCH;
82 VARTYPE vtFrom = V_TYPE(ps);
83 BOOL bIgnoreOverflow = FALSE;
84 DWORD dwFlags = 0;
85
86 TRACE("(%p->(%s%s),0x%08lx,0x%04x,%p->(%s%s),%s%s)\n", pd, debugstr_VT(pd),
87 debugstr_VF(pd), lcid, wFlags, ps, debugstr_VT(ps), debugstr_VF(ps),
88 debugstr_vt(vt), debugstr_vf(vt));
89
90 if (vt == VT_BSTR || vtFrom == VT_BSTR)
91 {
92 /* All flags passed to low level function are only used for
93 * changing to or from strings. Map these here.
94 */
95 if (wFlags & VARIANT_LOCALBOOL)
96 dwFlags |= VAR_LOCALBOOL;
97 if (wFlags & VARIANT_CALENDAR_HIJRI)
98 dwFlags |= VAR_CALENDAR_HIJRI;
99 if (wFlags & VARIANT_CALENDAR_THAI)
100 dwFlags |= VAR_CALENDAR_THAI;
101 if (wFlags & VARIANT_CALENDAR_GREGORIAN)
102 dwFlags |= VAR_CALENDAR_GREGORIAN;
103 if (wFlags & VARIANT_NOUSEROVERRIDE)
104 dwFlags |= LOCALE_NOUSEROVERRIDE;
105 if (wFlags & VARIANT_USE_NLS)
106 dwFlags |= LOCALE_USE_NLS;
107 }
108
109 /* Map int/uint to i4/ui4 */
110 if (vt == VT_INT)
111 vt = VT_I4;
112 else if (vt == VT_UINT)
113 vt = VT_UI4;
114
115 if (vtFrom == VT_INT)
116 vtFrom = VT_I4;
117 else if (vtFrom == VT_UINT)
118 {
119 vtFrom = VT_UI4;
120 if (vt == VT_I4)
121 bIgnoreOverflow = TRUE;
122 }
123
124 if (vt == vtFrom)
125 return VariantCopy(pd, ps);
126
127 if (wFlags & VARIANT_NOVALUEPROP && vtFrom == VT_DISPATCH && vt != VT_UNKNOWN)
128 {
129 /* VARIANT_NOVALUEPROP prevents IDispatch objects from being coerced by
130 * accessing the default object property.
131 */
132 return DISP_E_TYPEMISMATCH;
133 }
134
135 switch (vt)
136 {
137 case VT_EMPTY:
138 if (vtFrom == VT_NULL)
139 return DISP_E_TYPEMISMATCH;
140 /* ... Fall through */
141 case VT_NULL:
142 if (vtFrom <= VT_UINT && vtFrom != (VARTYPE)15 && vtFrom != VT_ERROR)
143 {
144 res = VariantClear( pd );
145 if (vt == VT_NULL && SUCCEEDED(res))
146 V_VT(pd) = VT_NULL;
147 }
148 return res;
149
150 case VT_I1:
151 switch (vtFrom)
152 {
153 case VT_EMPTY: V_I1(pd) = 0; return S_OK;
154 case VT_I2: return VarI1FromI2(V_I2(ps), &V_I1(pd));
155 case VT_I4: return VarI1FromI4(V_I4(ps), &V_I1(pd));
156 case VT_UI1: return VarI1FromUI1(V_UI1(ps), &V_I1(pd));
157 case VT_UI2: return VarI1FromUI2(V_UI2(ps), &V_I1(pd));
158 case VT_UI4: return VarI1FromUI4(V_UI4(ps), &V_I1(pd));
159 case VT_I8: return VarI1FromI8(V_I8(ps), &V_I1(pd));
160 case VT_UI8: return VarI1FromUI8(V_UI8(ps), &V_I1(pd));
161 case VT_R4: return VarI1FromR4(V_R4(ps), &V_I1(pd));
162 case VT_R8: return VarI1FromR8(V_R8(ps), &V_I1(pd));
163 case VT_DATE: return VarI1FromDate(V_DATE(ps), &V_I1(pd));
164 case VT_BOOL: return VarI1FromBool(V_BOOL(ps), &V_I1(pd));
165 case VT_CY: return VarI1FromCy(V_CY(ps), &V_I1(pd));
166 case VT_DECIMAL: return VarI1FromDec(&V_DECIMAL(ps), &V_I1(pd) );
167 case VT_DISPATCH: return VarI1FromDisp(V_DISPATCH(ps), lcid, &V_I1(pd) );
168 case VT_BSTR: return VarI1FromStr(V_BSTR(ps), lcid, dwFlags, &V_I1(pd) );
169 }
170 break;
171
172 case VT_I2:
173 switch (vtFrom)
174 {
175 case VT_EMPTY: V_I2(pd) = 0; return S_OK;
176 case VT_I1: return VarI2FromI1(V_I1(ps), &V_I2(pd));
177 case VT_I4: return VarI2FromI4(V_I4(ps), &V_I2(pd));
178 case VT_UI1: return VarI2FromUI1(V_UI1(ps), &V_I2(pd));
179 case VT_UI2: return VarI2FromUI2(V_UI2(ps), &V_I2(pd));
180 case VT_UI4: return VarI2FromUI4(V_UI4(ps), &V_I2(pd));
181 case VT_I8: return VarI2FromI8(V_I8(ps), &V_I2(pd));
182 case VT_UI8: return VarI2FromUI8(V_UI8(ps), &V_I2(pd));
183 case VT_R4: return VarI2FromR4(V_R4(ps), &V_I2(pd));
184 case VT_R8: return VarI2FromR8(V_R8(ps), &V_I2(pd));
185 case VT_DATE: return VarI2FromDate(V_DATE(ps), &V_I2(pd));
186 case VT_BOOL: return VarI2FromBool(V_BOOL(ps), &V_I2(pd));
187 case VT_CY: return VarI2FromCy(V_CY(ps), &V_I2(pd));
188 case VT_DECIMAL: return VarI2FromDec(&V_DECIMAL(ps), &V_I2(pd));
189 case VT_DISPATCH: return VarI2FromDisp(V_DISPATCH(ps), lcid, &V_I2(pd));
190 case VT_BSTR: return VarI2FromStr(V_BSTR(ps), lcid, dwFlags, &V_I2(pd));
191 }
192 break;
193
194 case VT_I4:
195 switch (vtFrom)
196 {
197 case VT_EMPTY: V_I4(pd) = 0; return S_OK;
198 case VT_I1: return VarI4FromI1(V_I1(ps), &V_I4(pd));
199 case VT_I2: return VarI4FromI2(V_I2(ps), &V_I4(pd));
200 case VT_UI1: return VarI4FromUI1(V_UI1(ps), &V_I4(pd));
201 case VT_UI2: return VarI4FromUI2(V_UI2(ps), &V_I4(pd));
202 case VT_UI4:
203 if (bIgnoreOverflow)
204 {
205 V_VT(pd) = VT_I4;
206 V_I4(pd) = V_I4(ps);
207 return S_OK;
208 }
209 return VarI4FromUI4(V_UI4(ps), &V_I4(pd));
210 case VT_I8: return VarI4FromI8(V_I8(ps), &V_I4(pd));
211 case VT_UI8: return VarI4FromUI8(V_UI8(ps), &V_I4(pd));
212 case VT_R4: return VarI4FromR4(V_R4(ps), &V_I4(pd));
213 case VT_R8: return VarI4FromR8(V_R8(ps), &V_I4(pd));
214 case VT_DATE: return VarI4FromDate(V_DATE(ps), &V_I4(pd));
215 case VT_BOOL: return VarI4FromBool(V_BOOL(ps), &V_I4(pd));
216 case VT_CY: return VarI4FromCy(V_CY(ps), &V_I4(pd));
217 case VT_DECIMAL: return VarI4FromDec(&V_DECIMAL(ps), &V_I4(pd));
218 case VT_DISPATCH: return VarI4FromDisp(V_DISPATCH(ps), lcid, &V_I4(pd));
219 case VT_BSTR: return VarI4FromStr(V_BSTR(ps), lcid, dwFlags, &V_I4(pd));
220 }
221 break;
222
223 case VT_UI1:
224 switch (vtFrom)
225 {
226 case VT_EMPTY: V_UI1(pd) = 0; return S_OK;
227 case VT_I1: return VarUI1FromI1(V_I1(ps), &V_UI1(pd));
228 case VT_I2: return VarUI1FromI2(V_I2(ps), &V_UI1(pd));
229 case VT_I4: return VarUI1FromI4(V_I4(ps), &V_UI1(pd));
230 case VT_UI2: return VarUI1FromUI2(V_UI2(ps), &V_UI1(pd));
231 case VT_UI4: return VarUI1FromUI4(V_UI4(ps), &V_UI1(pd));
232 case VT_I8: return VarUI1FromI8(V_I8(ps), &V_UI1(pd));
233 case VT_UI8: return VarUI1FromUI8(V_UI8(ps), &V_UI1(pd));
234 case VT_R4: return VarUI1FromR4(V_R4(ps), &V_UI1(pd));
235 case VT_R8: return VarUI1FromR8(V_R8(ps), &V_UI1(pd));
236 case VT_DATE: return VarUI1FromDate(V_DATE(ps), &V_UI1(pd));
237 case VT_BOOL: return VarUI1FromBool(V_BOOL(ps), &V_UI1(pd));
238 case VT_CY: return VarUI1FromCy(V_CY(ps), &V_UI1(pd));
239 case VT_DECIMAL: return VarUI1FromDec(&V_DECIMAL(ps), &V_UI1(pd));
240 case VT_DISPATCH: return VarUI1FromDisp(V_DISPATCH(ps), lcid, &V_UI1(pd));
241 case VT_BSTR: return VarUI1FromStr(V_BSTR(ps), lcid, dwFlags, &V_UI1(pd));
242 }
243 break;
244
245 case VT_UI2:
246 switch (vtFrom)
247 {
248 case VT_EMPTY: V_UI2(pd) = 0; return S_OK;
249 case VT_I1: return VarUI2FromI1(V_I1(ps), &V_UI2(pd));
250 case VT_I2: return VarUI2FromI2(V_I2(ps), &V_UI2(pd));
251 case VT_I4: return VarUI2FromI4(V_I4(ps), &V_UI2(pd));
252 case VT_UI1: return VarUI2FromUI1(V_UI1(ps), &V_UI2(pd));
253 case VT_UI4: return VarUI2FromUI4(V_UI4(ps), &V_UI2(pd));
254 case VT_I8: return VarUI4FromI8(V_I8(ps), &V_UI4(pd));
255 case VT_UI8: return VarUI4FromUI8(V_UI8(ps), &V_UI4(pd));
256 case VT_R4: return VarUI2FromR4(V_R4(ps), &V_UI2(pd));
257 case VT_R8: return VarUI2FromR8(V_R8(ps), &V_UI2(pd));
258 case VT_DATE: return VarUI2FromDate(V_DATE(ps), &V_UI2(pd));
259 case VT_BOOL: return VarUI2FromBool(V_BOOL(ps), &V_UI2(pd));
260 case VT_CY: return VarUI2FromCy(V_CY(ps), &V_UI2(pd));
261 case VT_DECIMAL: return VarUI2FromDec(&V_DECIMAL(ps), &V_UI2(pd));
262 case VT_DISPATCH: return VarUI2FromDisp(V_DISPATCH(ps), lcid, &V_UI2(pd));
263 case VT_BSTR: return VarUI2FromStr(V_BSTR(ps), lcid, dwFlags, &V_UI2(pd));
264 }
265 break;
266
267 case VT_UI4:
268 switch (vtFrom)
269 {
270 case VT_EMPTY: V_UI4(pd) = 0; return S_OK;
271 case VT_I1: return VarUI4FromI1(V_I1(ps), &V_UI4(pd));
272 case VT_I2: return VarUI4FromI2(V_I2(ps), &V_UI4(pd));
273 case VT_I4: return VarUI4FromI4(V_I4(ps), &V_UI4(pd));
274 case VT_UI1: return VarUI4FromUI1(V_UI1(ps), &V_UI4(pd));
275 case VT_UI2: return VarUI4FromUI2(V_UI2(ps), &V_UI4(pd));
276 case VT_I8: return VarUI4FromI8(V_I8(ps), &V_UI4(pd));
277 case VT_UI8: return VarUI4FromUI8(V_UI8(ps), &V_UI4(pd));
278 case VT_R4: return VarUI4FromR4(V_R4(ps), &V_UI4(pd));
279 case VT_R8: return VarUI4FromR8(V_R8(ps), &V_UI4(pd));
280 case VT_DATE: return VarUI4FromDate(V_DATE(ps), &V_UI4(pd));
281 case VT_BOOL: return VarUI4FromBool(V_BOOL(ps), &V_UI4(pd));
282 case VT_CY: return VarUI4FromCy(V_CY(ps), &V_UI4(pd));
283 case VT_DECIMAL: return VarUI4FromDec(&V_DECIMAL(ps), &V_UI4(pd));
284 case VT_DISPATCH: return VarUI4FromDisp(V_DISPATCH(ps), lcid, &V_UI4(pd));
285 case VT_BSTR: return VarUI4FromStr(V_BSTR(ps), lcid, dwFlags, &V_UI4(pd));
286 }
287 break;
288
289 case VT_UI8:
290 switch (vtFrom)
291 {
292 case VT_EMPTY: V_UI8(pd) = 0; return S_OK;
293 case VT_I4: if (V_I4(ps) < 0) return DISP_E_OVERFLOW; V_UI8(pd) = V_I4(ps); return S_OK;
294 case VT_I1: return VarUI8FromI1(V_I1(ps), &V_UI8(pd));
295 case VT_I2: return VarUI8FromI2(V_I2(ps), &V_UI8(pd));
296 case VT_UI1: return VarUI8FromUI1(V_UI1(ps), &V_UI8(pd));
297 case VT_UI2: return VarUI8FromUI2(V_UI2(ps), &V_UI8(pd));
298 case VT_UI4: return VarUI8FromUI4(V_UI4(ps), &V_UI8(pd));
299 case VT_I8: return VarUI8FromI8(V_I8(ps), &V_UI8(pd));
300 case VT_R4: return VarUI8FromR4(V_R4(ps), &V_UI8(pd));
301 case VT_R8: return VarUI8FromR8(V_R8(ps), &V_UI8(pd));
302 case VT_DATE: return VarUI8FromDate(V_DATE(ps), &V_UI8(pd));
303 case VT_BOOL: return VarUI8FromBool(V_BOOL(ps), &V_UI8(pd));
304 case VT_CY: return VarUI8FromCy(V_CY(ps), &V_UI8(pd));
305 case VT_DECIMAL: return VarUI8FromDec(&V_DECIMAL(ps), &V_UI8(pd));
306 case VT_DISPATCH: return VarUI8FromDisp(V_DISPATCH(ps), lcid, &V_UI8(pd));
307 case VT_BSTR: return VarUI8FromStr(V_BSTR(ps), lcid, dwFlags, &V_UI8(pd));
308 }
309 break;
310
311 case VT_I8:
312 switch (vtFrom)
313 {
314 case VT_EMPTY: V_I8(pd) = 0; return S_OK;
315 case VT_I4: V_I8(pd) = V_I4(ps); return S_OK;
316 case VT_I1: return VarI8FromI1(V_I1(ps), &V_I8(pd));
317 case VT_I2: return VarI8FromI2(V_I2(ps), &V_I8(pd));
318 case VT_UI1: return VarI8FromUI1(V_UI1(ps), &V_I8(pd));
319 case VT_UI2: return VarI8FromUI2(V_UI2(ps), &V_I8(pd));
320 case VT_UI4: return VarI8FromUI4(V_UI4(ps), &V_I8(pd));
321 case VT_UI8: return VarI8FromUI8(V_I8(ps), &V_I8(pd));
322 case VT_R4: return VarI8FromR4(V_R4(ps), &V_I8(pd));
323 case VT_R8: return VarI8FromR8(V_R8(ps), &V_I8(pd));
324 case VT_DATE: return VarI8FromDate(V_DATE(ps), &V_I8(pd));
325 case VT_BOOL: return VarI8FromBool(V_BOOL(ps), &V_I8(pd));
326 case VT_CY: return VarI8FromCy(V_CY(ps), &V_I8(pd));
327 case VT_DECIMAL: return VarI8FromDec(&V_DECIMAL(ps), &V_I8(pd));
328 case VT_DISPATCH: return VarI8FromDisp(V_DISPATCH(ps), lcid, &V_I8(pd));
329 case VT_BSTR: return VarI8FromStr(V_BSTR(ps), lcid, dwFlags, &V_I8(pd));
330 }
331 break;
332
333 case VT_R4:
334 switch (vtFrom)
335 {
336 case VT_EMPTY: V_R4(pd) = 0.0f; return S_OK;
337 case VT_I1: return VarR4FromI1(V_I1(ps), &V_R4(pd));
338 case VT_I2: return VarR4FromI2(V_I2(ps), &V_R4(pd));
339 case VT_I4: return VarR4FromI4(V_I4(ps), &V_R4(pd));
340 case VT_UI1: return VarR4FromUI1(V_UI1(ps), &V_R4(pd));
341 case VT_UI2: return VarR4FromUI2(V_UI2(ps), &V_R4(pd));
342 case VT_UI4: return VarR4FromUI4(V_UI4(ps), &V_R4(pd));
343 case VT_I8: return VarR4FromI8(V_I8(ps), &V_R4(pd));
344 case VT_UI8: return VarR4FromUI8(V_UI8(ps), &V_R4(pd));
345 case VT_R8: return VarR4FromR8(V_R8(ps), &V_R4(pd));
346 case VT_DATE: return VarR4FromDate(V_DATE(ps), &V_R4(pd));
347 case VT_BOOL: return VarR4FromBool(V_BOOL(ps), &V_R4(pd));
348 case VT_CY: return VarR4FromCy(V_CY(ps), &V_R4(pd));
349 case VT_DECIMAL: return VarR4FromDec(&V_DECIMAL(ps), &V_R4(pd));
350 case VT_DISPATCH: return VarR4FromDisp(V_DISPATCH(ps), lcid, &V_R4(pd));
351 case VT_BSTR: return VarR4FromStr(V_BSTR(ps), lcid, dwFlags, &V_R4(pd));
352 }
353 break;
354
355 case VT_R8:
356 switch (vtFrom)
357 {
358 case VT_EMPTY: V_R8(pd) = 0.0; return S_OK;
359 case VT_I1: return VarR8FromI1(V_I1(ps), &V_R8(pd));
360 case VT_I2: return VarR8FromI2(V_I2(ps), &V_R8(pd));
361 case VT_I4: return VarR8FromI4(V_I4(ps), &V_R8(pd));
362 case VT_UI1: return VarR8FromUI1(V_UI1(ps), &V_R8(pd));
363 case VT_UI2: return VarR8FromUI2(V_UI2(ps), &V_R8(pd));
364 case VT_UI4: return VarR8FromUI4(V_UI4(ps), &V_R8(pd));
365 case VT_I8: return VarR8FromI8(V_I8(ps), &V_R8(pd));
366 case VT_UI8: return VarR8FromUI8(V_UI8(ps), &V_R8(pd));
367 case VT_R4: return VarR8FromR4(V_R4(ps), &V_R8(pd));
368 case VT_DATE: return VarR8FromDate(V_DATE(ps), &V_R8(pd));
369 case VT_BOOL: return VarR8FromBool(V_BOOL(ps), &V_R8(pd));
370 case VT_CY: return VarR8FromCy(V_CY(ps), &V_R8(pd));
371 case VT_DECIMAL: return VarR8FromDec(&V_DECIMAL(ps), &V_R8(pd));
372 case VT_DISPATCH: return VarR8FromDisp(V_DISPATCH(ps), lcid, &V_R8(pd));
373 case VT_BSTR: return VarR8FromStr(V_BSTR(ps), lcid, dwFlags, &V_R8(pd));
374 }
375 break;
376
377 case VT_DATE:
378 switch (vtFrom)
379 {
380 case VT_EMPTY: V_DATE(pd) = 0.0; return S_OK;
381 case VT_I1: return VarDateFromI1(V_I1(ps), &V_DATE(pd));
382 case VT_I2: return VarDateFromI2(V_I2(ps), &V_DATE(pd));
383 case VT_I4: return VarDateFromI4(V_I4(ps), &V_DATE(pd));
384 case VT_UI1: return VarDateFromUI1(V_UI1(ps), &V_DATE(pd));
385 case VT_UI2: return VarDateFromUI2(V_UI2(ps), &V_DATE(pd));
386 case VT_UI4: return VarDateFromUI4(V_UI4(ps), &V_DATE(pd));
387 case VT_I8: return VarDateFromI8(V_I8(ps), &V_DATE(pd));
388 case VT_UI8: return VarDateFromUI8(V_UI8(ps), &V_DATE(pd));
389 case VT_R4: return VarDateFromR4(V_R4(ps), &V_DATE(pd));
390 case VT_R8: return VarDateFromR8(V_R8(ps), &V_DATE(pd));
391 case VT_BOOL: return VarDateFromBool(V_BOOL(ps), &V_DATE(pd));
392 case VT_CY: return VarDateFromCy(V_CY(ps), &V_DATE(pd));
393 case VT_DECIMAL: return VarDateFromDec(&V_DECIMAL(ps), &V_DATE(pd));
394 case VT_DISPATCH: return VarDateFromDisp(V_DISPATCH(ps), lcid, &V_DATE(pd));
395 case VT_BSTR: return VarDateFromStr(V_BSTR(ps), lcid, dwFlags, &V_DATE(pd));
396 }
397 break;
398
399 case VT_BOOL:
400 switch (vtFrom)
401 {
402 case VT_EMPTY: V_BOOL(pd) = 0; return S_OK;
403 case VT_I1: return VarBoolFromI1(V_I1(ps), &V_BOOL(pd));
404 case VT_I2: return VarBoolFromI2(V_I2(ps), &V_BOOL(pd));
405 case VT_I4: return VarBoolFromI4(V_I4(ps), &V_BOOL(pd));
406 case VT_UI1: return VarBoolFromUI1(V_UI1(ps), &V_BOOL(pd));
407 case VT_UI2: return VarBoolFromUI2(V_UI2(ps), &V_BOOL(pd));
408 case VT_UI4: return VarBoolFromUI4(V_UI4(ps), &V_BOOL(pd));
409 case VT_I8: return VarBoolFromI8(V_I8(ps), &V_BOOL(pd));
410 case VT_UI8: return VarBoolFromUI8(V_UI8(ps), &V_BOOL(pd));
411 case VT_R4: return VarBoolFromR4(V_R4(ps), &V_BOOL(pd));
412 case VT_R8: return VarBoolFromR8(V_R8(ps), &V_BOOL(pd));
413 case VT_DATE: return VarBoolFromDate(V_DATE(ps), &V_BOOL(pd));
414 case VT_CY: return VarBoolFromCy(V_CY(ps), &V_BOOL(pd));
415 case VT_DECIMAL: return VarBoolFromDec(&V_DECIMAL(ps), &V_BOOL(pd));
416 case VT_DISPATCH: return VarBoolFromDisp(V_DISPATCH(ps), lcid, &V_BOOL(pd));
417 case VT_BSTR: return VarBoolFromStr(V_BSTR(ps), lcid, dwFlags, &V_BOOL(pd));
418 }
419 break;
420
421 case VT_BSTR:
422 switch (vtFrom)
423 {
424 case VT_EMPTY:
425 V_BSTR(pd) = SysAllocStringLen(NULL, 0);
426 return V_BSTR(pd) ? S_OK : E_OUTOFMEMORY;
427 case VT_BOOL:
428 if (wFlags & (VARIANT_ALPHABOOL|VARIANT_LOCALBOOL))
429 return VarBstrFromBool(V_BOOL(ps), lcid, dwFlags, &V_BSTR(pd));
430 return VarBstrFromI2(V_BOOL(ps), lcid, dwFlags, &V_BSTR(pd));
431 case VT_I1: return VarBstrFromI1(V_I1(ps), lcid, dwFlags, &V_BSTR(pd));
432 case VT_I2: return VarBstrFromI2(V_I2(ps), lcid, dwFlags, &V_BSTR(pd));
433 case VT_I4: return VarBstrFromI4(V_I4(ps), lcid, dwFlags, &V_BSTR(pd));
434 case VT_UI1: return VarBstrFromUI1(V_UI1(ps), lcid, dwFlags, &V_BSTR(pd));
435 case VT_UI2: return VarBstrFromUI2(V_UI2(ps), lcid, dwFlags, &V_BSTR(pd));
436 case VT_UI4: return VarBstrFromUI4(V_UI4(ps), lcid, dwFlags, &V_BSTR(pd));
437 case VT_I8: return VarBstrFromI8(V_I8(ps), lcid, dwFlags, &V_BSTR(pd));
438 case VT_UI8: return VarBstrFromUI8(V_UI8(ps), lcid, dwFlags, &V_BSTR(pd));
439 case VT_R4: return VarBstrFromR4(V_R4(ps), lcid, dwFlags, &V_BSTR(pd));
440 case VT_R8: return VarBstrFromR8(V_R8(ps), lcid, dwFlags, &V_BSTR(pd));
441 case VT_DATE: return VarBstrFromDate(V_DATE(ps), lcid, dwFlags, &V_BSTR(pd));
442 case VT_CY: return VarBstrFromCy(V_CY(ps), lcid, dwFlags, &V_BSTR(pd));
443 case VT_DECIMAL: return VarBstrFromDec(&V_DECIMAL(ps), lcid, dwFlags, &V_BSTR(pd));
444 /* case VT_DISPATCH: return VarBstrFromDisp(V_DISPATCH(ps), lcid, dwFlags, &V_BSTR(pd)); */
445 }
446 break;
447
448 case VT_CY:
449 switch (vtFrom)
450 {
451 case VT_EMPTY: V_CY(pd).int64 = 0; return S_OK;
452 case VT_I1: return VarCyFromI1(V_I1(ps), &V_CY(pd));
453 case VT_I2: return VarCyFromI2(V_I2(ps), &V_CY(pd));
454 case VT_I4: return VarCyFromI4(V_I4(ps), &V_CY(pd));
455 case VT_UI1: return VarCyFromUI1(V_UI1(ps), &V_CY(pd));
456 case VT_UI2: return VarCyFromUI2(V_UI2(ps), &V_CY(pd));
457 case VT_UI4: return VarCyFromUI4(V_UI4(ps), &V_CY(pd));
458 case VT_I8: return VarCyFromI8(V_I8(ps), &V_CY(pd));
459 case VT_UI8: return VarCyFromUI8(V_UI8(ps), &V_CY(pd));
460 case VT_R4: return VarCyFromR4(V_R4(ps), &V_CY(pd));
461 case VT_R8: return VarCyFromR8(V_R8(ps), &V_CY(pd));
462 case VT_DATE: return VarCyFromDate(V_DATE(ps), &V_CY(pd));
463 case VT_BOOL: return VarCyFromBool(V_BOOL(ps), &V_CY(pd));
464 case VT_DECIMAL: return VarCyFromDec(&V_DECIMAL(ps), &V_CY(pd));
465 case VT_DISPATCH: return VarCyFromDisp(V_DISPATCH(ps), lcid, &V_CY(pd));
466 case VT_BSTR: return VarCyFromStr(V_BSTR(ps), lcid, dwFlags, &V_CY(pd));
467 }
468 break;
469
470 case VT_DECIMAL:
471 switch (vtFrom)
472 {
473 case VT_EMPTY:
474 case VT_BOOL:
475 DEC_SIGNSCALE(&V_DECIMAL(pd)) = SIGNSCALE(DECIMAL_POS,0);
476 DEC_HI32(&V_DECIMAL(pd)) = 0;
477 DEC_MID32(&V_DECIMAL(pd)) = 0;
478 /* VarDecFromBool() coerces to -1/0, ChangeTypeEx() coerces to 1/0.
479 * VT_NULL and VT_EMPTY always give a 0 value.
480 */
481 DEC_LO32(&V_DECIMAL(pd)) = vtFrom == VT_BOOL && V_BOOL(ps) ? 1 : 0;
482 return S_OK;
483 case VT_I1: return VarDecFromI1(V_I1(ps), &V_DECIMAL(pd));
484 case VT_I2: return VarDecFromI2(V_I2(ps), &V_DECIMAL(pd));
485 case VT_I4: return VarDecFromI4(V_I4(ps), &V_DECIMAL(pd));
486 case VT_UI1: return VarDecFromUI1(V_UI1(ps), &V_DECIMAL(pd));
487 case VT_UI2: return VarDecFromUI2(V_UI2(ps), &V_DECIMAL(pd));
488 case VT_UI4: return VarDecFromUI4(V_UI4(ps), &V_DECIMAL(pd));
489 case VT_I8: return VarDecFromI8(V_I8(ps), &V_DECIMAL(pd));
490 case VT_UI8: return VarDecFromUI8(V_UI8(ps), &V_DECIMAL(pd));
491 case VT_R4: return VarDecFromR4(V_R4(ps), &V_DECIMAL(pd));
492 case VT_R8: return VarDecFromR8(V_R8(ps), &V_DECIMAL(pd));
493 case VT_DATE: return VarDecFromDate(V_DATE(ps), &V_DECIMAL(pd));
494 case VT_CY: return VarDecFromCy(V_CY(pd), &V_DECIMAL(ps));
495 case VT_DISPATCH: return VarDecFromDisp(V_DISPATCH(ps), lcid, &V_DECIMAL(ps));
496 case VT_BSTR: return VarDecFromStr(V_BSTR(ps), lcid, dwFlags, &V_DECIMAL(pd));
497 }
498 break;
499
500 case VT_UNKNOWN:
501 switch (vtFrom)
502 {
503 case VT_DISPATCH:
504 if (V_DISPATCH(ps) == NULL)
505 V_UNKNOWN(pd) = NULL;
506 else
507 res = IDispatch_QueryInterface(V_DISPATCH(ps), &IID_IUnknown, (LPVOID*)&V_UNKNOWN(pd));
508 break;
509 }
510 break;
511
512 case VT_DISPATCH:
513 switch (vtFrom)
514 {
515 case VT_UNKNOWN:
516 if (V_UNKNOWN(ps) == NULL)
517 V_DISPATCH(pd) = NULL;
518 else
519 res = IUnknown_QueryInterface(V_UNKNOWN(ps), &IID_IDispatch, (LPVOID*)&V_DISPATCH(pd));
520 break;
521 }
522 break;
523
524 case VT_RECORD:
525 break;
526 }
527 return res;
528 }
529
530 /* Coerce to/from an array */
531 static inline HRESULT VARIANT_CoerceArray(VARIANTARG* pd, VARIANTARG* ps, VARTYPE vt)
532 {
533 if (vt == VT_BSTR && V_VT(ps) == (VT_ARRAY|VT_UI1))
534 return BstrFromVector(V_ARRAY(ps), &V_BSTR(pd));
535
536 if (V_VT(ps) == VT_BSTR && vt == (VT_ARRAY|VT_UI1))
537 return VectorFromBstr(V_BSTR(ps), &V_ARRAY(ps));
538
539 if (V_VT(ps) == vt)
540 return SafeArrayCopy(V_ARRAY(ps), &V_ARRAY(pd));
541
542 return DISP_E_TYPEMISMATCH;
543 }
544
545 /******************************************************************************
546 * Check if a variants type is valid.
547 */
548 static inline HRESULT VARIANT_ValidateType(VARTYPE vt)
549 {
550 VARTYPE vtExtra = vt & VT_EXTRA_TYPE;
551
552 vt &= VT_TYPEMASK;
553
554 if (!(vtExtra & (VT_VECTOR|VT_RESERVED)))
555 {
556 if (vt < VT_VOID || vt == VT_RECORD || vt == VT_CLSID)
557 {
558 if ((vtExtra & (VT_BYREF|VT_ARRAY)) && vt <= VT_NULL)
559 return DISP_E_BADVARTYPE;
560 if (vt != (VARTYPE)15)
561 return S_OK;
562 }
563 }
564 return DISP_E_BADVARTYPE;
565 }
566
567 /******************************************************************************
568 * VariantInit [OLEAUT32.8]
569 *
570 * Initialise a variant.
571 *
572 * PARAMS
573 * pVarg [O] Variant to initialise
574 *
575 * RETURNS
576 * Nothing.
577 *
578 * NOTES
579 * This function simply sets the type of the variant to VT_EMPTY. It does not
580 * free any existing value, use VariantClear() for that.
581 */
582 void WINAPI VariantInit(VARIANTARG* pVarg)
583 {
584 TRACE("(%p)\n", pVarg);
585
586 V_VT(pVarg) = VT_EMPTY; /* Native doesn't set any other fields */
587 }
588
589 /******************************************************************************
590 * VariantClear [OLEAUT32.9]
591 *
592 * Clear a variant.
593 *
594 * PARAMS
595 * pVarg [I/O] Variant to clear
596 *
597 * RETURNS
598 * Success: S_OK. Any previous value in pVarg is freed and its type is set to VT_EMPTY.
599 * Failure: DISP_E_BADVARTYPE, if the variant is a not a valid variant type.
600 */
601 HRESULT WINAPI VariantClear(VARIANTARG* pVarg)
602 {
603 HRESULT hres = S_OK;
604
605 TRACE("(%p->(%s%s))\n", pVarg, debugstr_VT(pVarg), debugstr_VF(pVarg));
606
607 hres = VARIANT_ValidateType(V_VT(pVarg));
608
609 if (SUCCEEDED(hres))
610 {
611 if (!V_ISBYREF(pVarg))
612 {
613 if (V_ISARRAY(pVarg) || V_VT(pVarg) == VT_SAFEARRAY)
614 {
615 if (V_ARRAY(pVarg))
616 hres = SafeArrayDestroy(V_ARRAY(pVarg));
617 }
618 else if (V_VT(pVarg) == VT_BSTR)
619 {
620 if (V_BSTR(pVarg))
621 SysFreeString(V_BSTR(pVarg));
622 }
623 else if (V_VT(pVarg) == VT_RECORD)
624 {
625 struct __tagBRECORD* pBr = &V_UNION(pVarg,brecVal);
626 if (pBr->pRecInfo)
627 {
628 IRecordInfo_RecordClear(pBr->pRecInfo, pBr->pvRecord);
629 IRecordInfo_Release(pBr->pRecInfo);
630 }
631 }
632 else if (V_VT(pVarg) == VT_DISPATCH ||
633 V_VT(pVarg) == VT_UNKNOWN)
634 {
635 if (V_UNKNOWN(pVarg))
636 IUnknown_Release(V_UNKNOWN(pVarg));
637 }
638 else if (V_VT(pVarg) == VT_VARIANT)
639 {
640 if (V_VARIANTREF(pVarg))
641 VariantClear(V_VARIANTREF(pVarg));
642 }
643 }
644 V_VT(pVarg) = VT_EMPTY;
645 }
646 return hres;
647 }
648
649 /******************************************************************************
650 * Copy an IRecordInfo object contained in a variant.
651 */
652 static HRESULT VARIANT_CopyIRecordInfo(struct __tagBRECORD* pBr)
653 {
654 HRESULT hres = S_OK;
655
656 if (pBr->pRecInfo)
657 {
658 ULONG ulSize;
659
660 hres = IRecordInfo_GetSize(pBr->pRecInfo, &ulSize);
661 if (SUCCEEDED(hres))
662 {
663 PVOID pvRecord = HeapAlloc(GetProcessHeap(), 0, ulSize);
664 if (!pvRecord)
665 hres = E_OUTOFMEMORY;
666 else
667 {
668 memcpy(pvRecord, pBr->pvRecord, ulSize);
669 pBr->pvRecord = pvRecord;
670
671 hres = IRecordInfo_RecordCopy(pBr->pRecInfo, pvRecord, pvRecord);
672 if (SUCCEEDED(hres))
673 IRecordInfo_AddRef(pBr->pRecInfo);
674 }
675 }
676 }
677 else if (pBr->pvRecord)
678 hres = E_INVALIDARG;
679 return hres;
680 }
681
682 /******************************************************************************
683 * VariantCopy [OLEAUT32.10]
684 *
685 * Copy a variant.
686 *
687 * PARAMS
688 * pvargDest [O] Destination for copy
689 * pvargSrc [I] Source variant to copy
690 *
691 * RETURNS
692 * Success: S_OK. pvargDest contains a copy of pvargSrc.
693 * Failure: DISP_E_BADVARTYPE, if either variant has an invalid type.
694 * E_OUTOFMEMORY, if memory cannot be allocated. Otherwise an
695 * HRESULT error code from SafeArrayCopy(), IRecordInfo_GetSize(),
696 * or IRecordInfo_RecordCopy(), depending on the type of pvargSrc.
697 *
698 * NOTES
699 * - If pvargSrc == pvargDest, this function does nothing, and succeeds if
700 * pvargSrc is valid. Otherwise, pvargDest is always cleared using
701 * VariantClear() before pvargSrc is copied to it. If clearing pvargDest
702 * fails, so does this function.
703 * - VT_CLSID is a valid type type for pvargSrc, but not for pvargDest.
704 * - For by-value non-intrinsic types, a deep copy is made, i.e. The whole value
705 * is copied rather than just any pointers to it.
706 * - For by-value object types the object pointer is copied and the objects
707 * reference count increased using IUnknown_AddRef().
708 * - For all by-reference types, only the referencing pointer is copied.
709 */
710 HRESULT WINAPI VariantCopy(VARIANTARG* pvargDest, VARIANTARG* pvargSrc)
711 {
712 HRESULT hres = S_OK;
713
714 TRACE("(%p->(%s%s),%p->(%s%s))\n", pvargDest, debugstr_VT(pvargDest),
715 debugstr_VF(pvargDest), pvargSrc, debugstr_VT(pvargSrc),
716 debugstr_VF(pvargSrc));
717
718 if (V_TYPE(pvargSrc) == VT_CLSID || /* VT_CLSID is a special case */
719 FAILED(VARIANT_ValidateType(V_VT(pvargSrc))))
720 return DISP_E_BADVARTYPE;
721
722 if (pvargSrc != pvargDest &&
723 SUCCEEDED(hres = VariantClear(pvargDest)))
724 {
725 *pvargDest = *pvargSrc; /* Shallow copy the value */
726
727 if (!V_ISBYREF(pvargSrc))
728 {
729 if (V_ISARRAY(pvargSrc))
730 {
731 if (V_ARRAY(pvargSrc))
732 hres = SafeArrayCopy(V_ARRAY(pvargSrc), &V_ARRAY(pvargDest));
733 }
734 else if (V_VT(pvargSrc) == VT_BSTR)
735 {
736 if (V_BSTR(pvargSrc))
737 {
738 V_BSTR(pvargDest) = SysAllocStringByteLen((char*)V_BSTR(pvargSrc), SysStringByteLen(V_BSTR(pvargSrc)));
739 if (!V_BSTR(pvargDest))
740 {
741 TRACE("!V_BSTR(pvargDest), SysAllocStringByteLen() failed to allocate %d bytes\n", SysStringByteLen(V_BSTR(pvargSrc)));
742 hres = E_OUTOFMEMORY;
743 }
744 }
745 }
746 else if (V_VT(pvargSrc) == VT_RECORD)
747 {
748 hres = VARIANT_CopyIRecordInfo(&V_UNION(pvargDest,brecVal));
749 }
750 else if (V_VT(pvargSrc) == VT_DISPATCH ||
751 V_VT(pvargSrc) == VT_UNKNOWN)
752 {
753 if (V_UNKNOWN(pvargSrc))
754 IUnknown_AddRef(V_UNKNOWN(pvargSrc));
755 }
756 }
757 }
758 return hres;
759 }
760
761 /* Return the byte size of a variants data */
762 static inline size_t VARIANT_DataSize(const VARIANT* pv)
763 {
764 switch (V_TYPE(pv))
765 {
766 case VT_I1:
767 case VT_UI1: return sizeof(BYTE);
768 case VT_I2:
769 case VT_UI2: return sizeof(SHORT);
770 case VT_INT:
771 case VT_UINT:
772 case VT_I4:
773 case VT_UI4: return sizeof(LONG);
774 case VT_I8:
775 case VT_UI8: return sizeof(LONGLONG);
776 case VT_R4: return sizeof(float);
777 case VT_R8: return sizeof(double);
778 case VT_DATE: return sizeof(DATE);
779 case VT_BOOL: return sizeof(VARIANT_BOOL);
780 case VT_DISPATCH:
781 case VT_UNKNOWN:
782 case VT_BSTR: return sizeof(void*);
783 case VT_CY: return sizeof(CY);
784 case VT_ERROR: return sizeof(SCODE);
785 }
786 TRACE("Shouldn't be called for vt %s%s!\n", debugstr_VT(pv), debugstr_VF(pv));
787 return 0;
788 }
789
790 /******************************************************************************
791 * VariantCopyInd [OLEAUT32.11]
792 *
793 * Copy a variant, dereferencing it it is by-reference.
794 *
795 * PARAMS
796 * pvargDest [O] Destination for copy
797 * pvargSrc [I] Source variant to copy
798 *
799 * RETURNS
800 * Success: S_OK. pvargDest contains a copy of pvargSrc.
801 * Failure: An HRESULT error code indicating the error.
802 *
803 * NOTES
804 * Failure: DISP_E_BADVARTYPE, if either variant has an invalid by-value type.
805 * E_INVALIDARG, if pvargSrc is an invalid by-reference type.
806 * E_OUTOFMEMORY, if memory cannot be allocated. Otherwise an
807 * HRESULT error code from SafeArrayCopy(), IRecordInfo_GetSize(),
808 * or IRecordInfo_RecordCopy(), depending on the type of pvargSrc.
809 *
810 * NOTES
811 * - If pvargSrc is by-value, this function behaves exactly as VariantCopy().
812 * - If pvargSrc is by-reference, the value copied to pvargDest is the pointed-to
813 * value.
814 * - if pvargSrc == pvargDest, this function dereferences in place. Otherwise,
815 * pvargDest is always cleared using VariantClear() before pvargSrc is copied
816 * to it. If clearing pvargDest fails, so does this function.
817 */
818 HRESULT WINAPI VariantCopyInd(VARIANT* pvargDest, VARIANTARG* pvargSrc)
819 {
820 VARIANTARG vTmp, *pSrc = pvargSrc;
821 VARTYPE vt;
822 HRESULT hres = S_OK;
823
824 TRACE("(%p->(%s%s),%p->(%s%s))\n", pvargDest, debugstr_VT(pvargDest),
825 debugstr_VF(pvargDest), pvargSrc, debugstr_VT(pvargSrc),
826 debugstr_VF(pvargSrc));
827
828 if (!V_ISBYREF(pvargSrc))
829 return VariantCopy(pvargDest, pvargSrc);
830
831 /* Argument checking is more lax than VariantCopy()... */
832 vt = V_TYPE(pvargSrc);
833 if (V_ISARRAY(pvargSrc) ||
834 (vt > VT_NULL && vt != (VARTYPE)15 && vt < VT_VOID &&
835 !(V_VT(pvargSrc) & (VT_VECTOR|VT_RESERVED))))
836 {
837 /* OK */
838 }
839 else
840 return E_INVALIDARG; /* ...And the return value for invalid types differs too */
841
842 if (pvargSrc == pvargDest)
843 {
844 /* In place copy. Use a shallow copy of pvargSrc & init pvargDest.
845 * This avoids an expensive VariantCopy() call - e.g. SafeArrayCopy().
846 */
847 vTmp = *pvargSrc;
848 pSrc = &vTmp;
849 V_VT(pvargDest) = VT_EMPTY;
850 }
851 else
852 {
853 /* Copy into another variant. Free the variant in pvargDest */
854 if (FAILED(hres = VariantClear(pvargDest)))
855 {
856 TRACE("VariantClear() of destination failed\n");
857 return hres;
858 }
859 }
860
861 if (V_ISARRAY(pSrc))
862 {
863 /* Native doesn't check that *V_ARRAYREF(pSrc) is valid */
864 hres = SafeArrayCopy(*V_ARRAYREF(pSrc), &V_ARRAY(pvargDest));
865 }
866 else if (V_VT(pSrc) == (VT_BSTR|VT_BYREF))
867 {
868 /* Native doesn't check that *V_BSTRREF(pSrc) is valid */
869 V_BSTR(pvargDest) = SysAllocStringByteLen((char*)*V_BSTRREF(pSrc), SysStringByteLen(*V_BSTRREF(pSrc)));
870 }
871 else if (V_VT(pSrc) == (VT_RECORD|VT_BYREF))
872 {
873 V_UNION(pvargDest,brecVal) = V_UNION(pvargSrc,brecVal);
874 hres = VARIANT_CopyIRecordInfo(&V_UNION(pvargDest,brecVal));
875 }
876 else if (V_VT(pSrc) == (VT_DISPATCH|VT_BYREF) ||
877 V_VT(pSrc) == (VT_UNKNOWN|VT_BYREF))
878 {
879 /* Native doesn't check that *V_UNKNOWNREF(pSrc) is valid */
880 V_UNKNOWN(pvargDest) = *V_UNKNOWNREF(pSrc);
881 if (*V_UNKNOWNREF(pSrc))
882 IUnknown_AddRef(*V_UNKNOWNREF(pSrc));
883 }
884 else if (V_VT(pSrc) == (VT_VARIANT|VT_BYREF))
885 {
886 /* Native doesn't check that *V_VARIANTREF(pSrc) is valid */
887 if (V_VT(V_VARIANTREF(pSrc)) == (VT_VARIANT|VT_BYREF))
888 hres = E_INVALIDARG; /* Don't dereference more than one level */
889 else
890 hres = VariantCopyInd(pvargDest, V_VARIANTREF(pSrc));
891
892 /* Use the dereferenced variants type value, not VT_VARIANT */
893 goto VariantCopyInd_Return;
894 }
895 else if (V_VT(pSrc) == (VT_DECIMAL|VT_BYREF))
896 {
897 memcpy(&DEC_SCALE(&V_DECIMAL(pvargDest)), &DEC_SCALE(V_DECIMALREF(pSrc)),
898 sizeof(DECIMAL) - sizeof(USHORT));
899 }
900 else
901 {
902 /* Copy the pointed to data into this variant */
903 memcpy(&V_BYREF(pvargDest), V_BYREF(pSrc), VARIANT_DataSize(pSrc));
904 }
905
906 V_VT(pvargDest) = V_VT(pSrc) & ~VT_BYREF;
907
908 VariantCopyInd_Return:
909
910 if (pSrc != pvargSrc)
911 VariantClear(pSrc);
912
913 TRACE("returning 0x%08lx, %p->(%s%s)\n", hres, pvargDest,
914 debugstr_VT(pvargDest), debugstr_VF(pvargDest));
915 return hres;
916 }
917
918 /******************************************************************************
919 * VariantChangeType [OLEAUT32.12]
920 *
921 * Change the type of a variant.
922 *
923 * PARAMS
924 * pvargDest [O] Destination for the converted variant
925 * pvargSrc [O] Source variant to change the type of
926 * wFlags [I] VARIANT_ flags from "oleauto.h"
927 * vt [I] Variant type to change pvargSrc into
928 *
929 * RETURNS
930 * Success: S_OK. pvargDest contains the converted value.
931 * Failure: An HRESULT error code describing the failure.
932 *
933 * NOTES
934 * The LCID used for the conversion is LOCALE_USER_DEFAULT.
935 * See VariantChangeTypeEx.
936 */
937 HRESULT WINAPI VariantChangeType(VARIANTARG* pvargDest, VARIANTARG* pvargSrc,
938 USHORT wFlags, VARTYPE vt)
939 {
940 return VariantChangeTypeEx( pvargDest, pvargSrc, LOCALE_USER_DEFAULT, wFlags, vt );
941 }
942
943 /******************************************************************************
944 * VariantChangeTypeEx [OLEAUT32.147]
945 *
946 * Change the type of a variant.
947 *
948 * PARAMS
949 * pvargDest [O] Destination for the converted variant
950 * pvargSrc [O] Source variant to change the type of
951 * lcid [I] LCID for the conversion
952 * wFlags [I] VARIANT_ flags from "oleauto.h"
953 * vt [I] Variant type to change pvargSrc into
954 *
955 * RETURNS
956 * Success: S_OK. pvargDest contains the converted value.
957 * Failure: An HRESULT error code describing the failure.
958 *
959 * NOTES
960 * pvargDest and pvargSrc can point to the same variant to perform an in-place
961 * conversion. If the conversion is successful, pvargSrc will be freed.
962 */
963 HRESULT WINAPI VariantChangeTypeEx(VARIANTARG* pvargDest, VARIANTARG* pvargSrc,
964 LCID lcid, USHORT wFlags, VARTYPE vt)
965 {
966 HRESULT res = S_OK;
967
968 TRACE("(%p->(%s%s),%p->(%s%s),0x%08lx,0x%04x,%s%s)\n", pvargDest,
969 debugstr_VT(pvargDest), debugstr_VF(pvargDest), pvargSrc,
970 debugstr_VT(pvargSrc), debugstr_VF(pvargSrc), lcid, wFlags,
971 debugstr_vt(vt), debugstr_vf(vt));
972
973 if (vt == VT_CLSID)
974 res = DISP_E_BADVARTYPE;
975 else
976 {
977 res = VARIANT_ValidateType(V_VT(pvargSrc));
978
979 if (SUCCEEDED(res))
980 {
981 res = VARIANT_ValidateType(vt);
982
983 if (SUCCEEDED(res))
984 {
985 VARIANTARG vTmp, vSrcDeref;
986
987 if(V_ISBYREF(pvargSrc) && !V_BYREF(pvargSrc))
988 res = DISP_E_TYPEMISMATCH;
989 else
990 {
991 V_VT(&vTmp) = VT_EMPTY;
992 V_VT(&vSrcDeref) = VT_EMPTY;
993 VariantClear(&vTmp);
994 VariantClear(&vSrcDeref);
995 }
996
997 if (SUCCEEDED(res))
998 {
999 res = VariantCopyInd(&vSrcDeref, pvargSrc);
1000 if (SUCCEEDED(res))
1001 {
1002 if (V_ISARRAY(&vSrcDeref) || (vt & VT_ARRAY))
1003 res = VARIANT_CoerceArray(&vTmp, &vSrcDeref, vt);
1004 else
1005 res = VARIANT_Coerce(&vTmp, lcid, wFlags, &vSrcDeref, vt);
1006
1007 if (SUCCEEDED(res)) {
1008 V_VT(&vTmp) = vt;
1009 VariantCopy(pvargDest, &vTmp);
1010 }
1011 VariantClear(&vTmp);
1012 VariantClear(&vSrcDeref);
1013 }
1014 }
1015 }
1016 }
1017 }
1018
1019 TRACE("returning 0x%08lx, %p->(%s%s)\n", res, pvargDest,
1020 debugstr_VT(pvargDest), debugstr_VF(pvargDest));
1021 return res;
1022 }
1023
1024 /* Date Conversions */
1025
1026 #define IsLeapYear(y) (((y % 4) == 0) && (((y % 100) != 0) || ((y % 400) == 0)))
1027
1028 /* Convert a VT_DATE value to a Julian Date */
1029 static inline int VARIANT_JulianFromDate(int dateIn)
1030 {
1031 int julianDays = dateIn;
1032
1033 julianDays -= DATE_MIN; /* Convert to + days from 1 Jan 100 AD */
1034 julianDays += 1757585; /* Convert to + days from 23 Nov 4713 BC (Julian) */
1035 return julianDays;
1036 }
1037
1038 /* Convert a Julian Date to a VT_DATE value */
1039 static inline int VARIANT_DateFromJulian(int dateIn)
1040 {
1041 int julianDays = dateIn;
1042
1043 julianDays -= 1757585; /* Convert to + days from 1 Jan 100 AD */
1044 julianDays += DATE_MIN; /* Convert to +/- days from 1 Jan 1899 AD */
1045 return julianDays;
1046 }
1047
1048 /* Convert a Julian date to Day/Month/Year - from PostgreSQL */
1049 static inline void VARIANT_DMYFromJulian(int jd, USHORT *year, USHORT *month, USHORT *day)
1050 {
1051 int j, i, l, n;
1052
1053 l = jd + 68569;
1054 n = l * 4 / 146097;
1055 l -= (n * 146097 + 3) / 4;
1056 i = (4000 * (l + 1)) / 1461001;
1057 l += 31 - (i * 1461) / 4;
1058 j = (l * 80) / 2447;
1059 *day = l - (j * 2447) / 80;
1060 l = j / 11;
1061 *month = (j + 2) - (12 * l);
1062 *year = 100 * (n - 49) + i + l;
1063 }
1064
1065 /* Convert Day/Month/Year to a Julian date - from PostgreSQL */
1066 static inline double VARIANT_JulianFromDMY(USHORT year, USHORT month, USHORT day)
1067 {
1068 int m12 = (month - 14) / 12;
1069
1070 return ((1461 * (year + 4800 + m12)) / 4 + (367 * (month - 2 - 12 * m12)) / 12 -
1071 (3 * ((year + 4900 + m12) / 100)) / 4 + day - 32075);
1072 }
1073
1074 /* Macros for accessing DOS format date/time fields */
1075 #define DOS_YEAR(x) (1980 + (x >> 9))
1076 #define DOS_MONTH(x) ((x >> 5) & 0xf)
1077 #define DOS_DAY(x) (x & 0x1f)
1078 #define DOS_HOUR(x) (x >> 11)
1079 #define DOS_MINUTE(x) ((x >> 5) & 0x3f)
1080 #define DOS_SECOND(x) ((x & 0x1f) << 1)
1081 /* Create a DOS format date/time */
1082 #define DOS_DATE(d,m,y) (d | (m << 5) | ((y-1980) << 9))
1083 #define DOS_TIME(h,m,s) ((s >> 1) | (m << 5) | (h << 11))
1084
1085 /* Roll a date forwards or backwards to correct it */
1086 static HRESULT VARIANT_RollUdate(UDATE *lpUd)
1087 {
1088 static const BYTE days[] = { 0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
1089
1090 TRACE("Raw date: %d/%d/%d %d:%d:%d\n", lpUd->st.wDay, lpUd->st.wMonth,
1091 lpUd->st.wYear, lpUd->st.wHour, lpUd->st.wMinute, lpUd->st.wSecond);
1092
1093 /* Years < 100 are treated as 1900 + year */
1094 if (lpUd->st.wYear < 100)
1095 lpUd->st.wYear += 1900;
1096
1097 if (!lpUd->st.wMonth)
1098 {
1099 /* Roll back to December of the previous year */
1100 lpUd->st.wMonth = 12;
1101 lpUd->st.wYear--;
1102 }
1103 else while (lpUd->st.wMonth > 12)
1104 {
1105 /* Roll forward the correct number of months */
1106 lpUd->st.wYear++;
1107 lpUd->st.wMonth -= 12;
1108 }
1109
1110 if (lpUd->st.wYear > 9999 || lpUd->st.wHour > 23 ||
1111 lpUd->st.wMinute > 59 || lpUd->st.wSecond > 59)
1112 return E_INVALIDARG; /* Invalid values */
1113
1114 if (!lpUd->st.wDay)
1115 {
1116 /* Roll back the date one day */
1117 if (lpUd->st.wMonth == 1)
1118 {
1119 /* Roll back to December 31 of the previous year */
1120 lpUd->st.wDay = 31;
1121 lpUd->st.wMonth = 12;
1122 lpUd->st.wYear--;
1123 }
1124 else
1125 {
1126 lpUd->st.wMonth--; /* Previous month */
1127 if (lpUd->st.wMonth == 2 && IsLeapYear(lpUd->st.wYear))
1128 lpUd->st.wDay = 29; /* Februaury has 29 days on leap years */
1129 else
1130 lpUd->st.wDay = days[lpUd->st.wMonth]; /* Last day of the month */
1131 }
1132 }
1133 else if (lpUd->st.wDay > 28)
1134 {
1135 int rollForward = 0;
1136
1137 /* Possibly need to roll the date forward */
1138 if (lpUd->st.wMonth == 2 && IsLeapYear(lpUd->st.wYear))
1139 rollForward = lpUd->st.wDay - 29; /* Februaury has 29 days on leap years */
1140 else
1141 rollForward = lpUd->st.wDay - days[lpUd->st.wMonth];
1142
1143 if (rollForward > 0)
1144 {
1145 lpUd->st.wDay = rollForward;
1146 lpUd->st.wMonth++;
1147 if (lpUd->st.wMonth > 12)
1148 {
1149 lpUd->st.wMonth = 1; /* Roll forward into January of the next year */
1150 lpUd->st.wYear++;
1151 }
1152 }
1153 }
1154 TRACE("Rolled date: %d/%d/%d %d:%d:%d\n", lpUd->st.wDay, lpUd->st.wMonth,
1155 lpUd->st.wYear, lpUd->st.wHour, lpUd->st.wMinute, lpUd->st.wSecond);
1156 return S_OK;
1157 }
1158
1159 /**********************************************************************
1160 * DosDateTimeToVariantTime [OLEAUT32.14]
1161 *
1162 * Convert a Dos format date and time into variant VT_DATE format.
1163 *
1164 * PARAMS
1165 * wDosDate [I] Dos format date
1166 * wDosTime [I] Dos format time
1167 * pDateOut [O] Destination for VT_DATE format
1168 *
1169 * RETURNS
1170 * Success: TRUE. pDateOut contains the converted time.
1171 * Failure: FALSE, if wDosDate or wDosTime are invalid (see notes).
1172 *
1173 * NOTES
1174 * - Dos format dates can only hold dates from 1-Jan-1980 to 31-Dec-2099.
1175 * - Dos format times are accurate to only 2 second precision.
1176 * - The format of a Dos Date is:
1177 *| Bits Values Meaning
1178 *| ---- ------ -------
1179 *| 0-4 1-31 Day of the week. 0 rolls back one day. A value greater than
1180 *| the days in the month rolls forward the extra days.
1181 *| 5-8 1-12 Month of the year. 0 rolls back to December of the previous
1182 *| year. 13-15 are invalid.
1183 *| 9-15 0-119 Year based from 1980 (Max 2099). 120-127 are invalid.
1184 * - The format of a Dos Time is:
1185 *| Bits Values Meaning
1186 *| ---- ------ -------
1187 *| 0-4 0-29 Seconds/2. 30 and 31 are invalid.
1188 *| 5-10 0-59 Minutes. 60-63 are invalid.
1189 *| 11-15 0-23 Hours (24 hour clock). 24-32 are invalid.
1190 */
1191 INT WINAPI DosDateTimeToVariantTime(USHORT wDosDate, USHORT wDosTime,
1192 double *pDateOut)
1193 {
1194 UDATE ud;
1195
1196 TRACE("(0x%x(%d/%d/%d),0x%x(%d:%d:%d),%p)\n",
1197 wDosDate, DOS_YEAR(wDosDate), DOS_MONTH(wDosDate), DOS_DAY(wDosDate),
1198 wDosTime, DOS_HOUR(wDosTime), DOS_MINUTE(wDosTime), DOS_SECOND(wDosTime),
1199 pDateOut);
1200
1201 ud.st.wYear = DOS_YEAR(wDosDate);
1202 ud.st.wMonth = DOS_MONTH(wDosDate);
1203 if (ud.st.wYear > 2099 || ud.st.wMonth > 12)
1204 return FALSE;
1205 ud.st.wDay = DOS_DAY(wDosDate);
1206 ud.st.wHour = DOS_HOUR(wDosTime);
1207 ud.st.wMinute = DOS_MINUTE(wDosTime);
1208 ud.st.wSecond = DOS_SECOND(wDosTime);
1209 ud.st.wDayOfWeek = ud.st.wMilliseconds = 0;
1210
1211 return !VarDateFromUdate(&ud, 0, pDateOut);
1212 }
1213
1214 /**********************************************************************
1215 * VariantTimeToDosDateTime [OLEAUT32.13]
1216 *
1217 * Convert a variant format date into a Dos format date and time.
1218 *
1219 * dateIn [I] VT_DATE time format
1220 * pwDosDate [O] Destination for Dos format date
1221 * pwDosTime [O] Destination for Dos format time
1222 *
1223 * RETURNS
1224 * Success: TRUE. pwDosDate and pwDosTime contains the converted values.
1225 * Failure: FALSE, if dateIn cannot be represented in Dos format.
1226 *
1227 * NOTES
1228 * See DosDateTimeToVariantTime() for Dos format details and bugs.
1229 */
1230 INT WINAPI VariantTimeToDosDateTime(double dateIn, USHORT *pwDosDate, USHORT *pwDosTime)
1231 {
1232 UDATE ud;
1233
1234 TRACE("(%g,%p,%p)\n", dateIn, pwDosDate, pwDosTime);
1235
1236 if (FAILED(VarUdateFromDate(dateIn, 0, &ud)))
1237 return FALSE;
1238
1239 if (ud.st.wYear < 1980 || ud.st.wYear > 2099)
1240 return FALSE;
1241
1242 *pwDosDate = DOS_DATE(ud.st.wDay, ud.st.wMonth, ud.st.wYear);
1243 *pwDosTime = DOS_TIME(ud.st.wHour, ud.st.wMinute, ud.st.wSecond);
1244
1245 TRACE("Returning 0x%x(%d/%d/%d), 0x%x(%d:%d:%d)\n",
1246 *pwDosDate, DOS_YEAR(*pwDosDate), DOS_MONTH(*pwDosDate), DOS_DAY(*pwDosDate),
1247 *pwDosTime, DOS_HOUR(*pwDosTime), DOS_MINUTE(*pwDosTime), DOS_SECOND(*pwDosTime));
1248 return TRUE;
1249 }
1250
1251 /***********************************************************************
1252 * SystemTimeToVariantTime [OLEAUT32.184]
1253 *
1254 * Convert a System format date and time into variant VT_DATE format.
1255 *
1256 * PARAMS
1257 * lpSt [I] System format date and time
1258 * pDateOut [O] Destination for VT_DATE format date
1259 *
1260 * RETURNS
1261 * Success: TRUE. *pDateOut contains the converted value.
1262 * Failure: FALSE, if lpSt cannot be represented in VT_DATE format.
1263 */
1264 INT WINAPI SystemTimeToVariantTime(LPSYSTEMTIME lpSt, double *pDateOut)
1265 {
1266 UDATE ud;
1267
1268 TRACE("(%p->%d/%d/%d %d:%d:%d,%p)\n", lpSt, lpSt->wDay, lpSt->wMonth,
1269 lpSt->wYear, lpSt->wHour, lpSt->wMinute, lpSt->wSecond, pDateOut);
1270
1271 if (lpSt->wMonth > 12)
1272 return FALSE;
1273
1274 memcpy(&ud.st, lpSt, sizeof(ud.st));
1275 return !VarDateFromUdate(&ud, 0, pDateOut);
1276 }
1277
1278 /***********************************************************************
1279 * VariantTimeToSystemTime [OLEAUT32.185]
1280 *
1281 * Convert a variant VT_DATE into a System format date and time.
1282 *
1283 * PARAMS
1284 * datein [I] Variant VT_DATE format date
1285 * lpSt [O] Destination for System format date and time
1286 *
1287 * RETURNS
1288 * Success: TRUE. *lpSt contains the converted value.
1289 * Failure: FALSE, if dateIn is too large or small.
1290 */
1291 INT WINAPI VariantTimeToSystemTime(double dateIn, LPSYSTEMTIME lpSt)
1292 {
1293 UDATE ud;
1294
1295 TRACE("(%g,%p)\n", dateIn, lpSt);
1296
1297 if (FAILED(VarUdateFromDate(dateIn, 0, &ud)))
1298 return FALSE;
1299
1300 memcpy(lpSt, &ud.st, sizeof(ud.st));
1301 return TRUE;
1302 }
1303
1304 /***********************************************************************
1305 * VarDateFromUdateEx [OLEAUT32.319]
1306 *
1307 * Convert an unpacked format date and time to a variant VT_DATE.
1308 *
1309 * PARAMS
1310 * pUdateIn [I] Unpacked format date and time to convert
1311 * lcid [I] Locale identifier for the conversion
1312 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
1313 * pDateOut [O] Destination for variant VT_DATE.
1314 *
1315 * RETURNS
1316 * Success: S_OK. *pDateOut contains the converted value.
1317 * Failure: E_INVALIDARG, if pUdateIn cannot be represented in VT_DATE format.
1318 */
1319 HRESULT WINAPI VarDateFromUdateEx(UDATE *pUdateIn, LCID lcid, ULONG dwFlags, DATE *pDateOut)
1320 {
1321 UDATE ud;
1322 double dateVal;
1323
1324 TRACE("(%p->%d/%d/%d %d:%d:%d:%d %d %d,0x%08lx,0x%08lx,%p)\n", pUdateIn,
1325 pUdateIn->st.wMonth, pUdateIn->st.wDay, pUdateIn->st.wYear,
1326 pUdateIn->st.wHour, pUdateIn->st.wMinute, pUdateIn->st.wSecond,
1327 pUdateIn->st.wMilliseconds, pUdateIn->st.wDayOfWeek,
1328 pUdateIn->wDayOfYear, lcid, dwFlags, pDateOut);
1329
1330 if (lcid != MAKELCID(MAKELANGID(LANG_ENGLISH, SUBLANG_ENGLISH_US), SORT_DEFAULT))
1331 FIXME("lcid possibly not handled, treating as en-us\n");
1332
1333 memcpy(&ud, pUdateIn, sizeof(ud));
1334
1335 if (dwFlags & VAR_VALIDDATE)
1336 WARN("Ignoring VAR_VALIDDATE\n");
1337
1338 if (FAILED(VARIANT_RollUdate(&ud)))
1339 return E_INVALIDARG;
1340
1341 /* Date */
1342 dateVal = VARIANT_DateFromJulian(VARIANT_JulianFromDMY(ud.st.wYear, ud.st.wMonth, ud.st.wDay));
1343
1344 /* Time */
1345 dateVal += ud.st.wHour / 24.0;
1346 dateVal += ud.st.wMinute / 1440.0;
1347 dateVal += ud.st.wSecond / 86400.0;
1348 dateVal += ud.st.wMilliseconds / 86400000.0;
1349
1350 TRACE("Returning %g\n", dateVal);
1351 *pDateOut = dateVal;
1352 return S_OK;
1353 }
1354
1355 /***********************************************************************
1356 * VarDateFromUdate [OLEAUT32.330]
1357 *
1358 * Convert an unpacked format date and time to a variant VT_DATE.
1359 *
1360 * PARAMS
1361 * pUdateIn [I] Unpacked format date and time to convert
1362 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
1363 * pDateOut [O] Destination for variant VT_DATE.
1364 *
1365 * RETURNS
1366 * Success: S_OK. *pDateOut contains the converted value.
1367 * Failure: E_INVALIDARG, if pUdateIn cannot be represented in VT_DATE format.
1368 *
1369 * NOTES
1370 * This function uses the United States English locale for the conversion. Use
1371 * VarDateFromUdateEx() for alternate locales.
1372 */
1373 HRESULT WINAPI VarDateFromUdate(UDATE *pUdateIn, ULONG dwFlags, DATE *pDateOut)
1374 {
1375 LCID lcid = MAKELCID(MAKELANGID(LANG_ENGLISH, SUBLANG_ENGLISH_US), SORT_DEFAULT);
1376
1377 return VarDateFromUdateEx(pUdateIn, lcid, dwFlags, pDateOut);
1378 }
1379
1380 /***********************************************************************
1381 * VarUdateFromDate [OLEAUT32.331]
1382 *
1383 * Convert a variant VT_DATE into an unpacked format date and time.
1384 *
1385 * PARAMS
1386 * datein [I] Variant VT_DATE format date
1387 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
1388 * lpUdate [O] Destination for unpacked format date and time
1389 *
1390 * RETURNS
1391 * Success: S_OK. *lpUdate contains the converted value.
1392 * Failure: E_INVALIDARG, if dateIn is too large or small.
1393 */
1394 HRESULT WINAPI VarUdateFromDate(DATE dateIn, ULONG dwFlags, UDATE *lpUdate)
1395 {
1396 /* Cumulative totals of days per month */
1397 static const USHORT cumulativeDays[] =
1398 {
1399 0, 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334
1400 };
1401 double datePart, timePart;
1402 int julianDays;
1403
1404 TRACE("(%g,0x%08lx,%p)\n", dateIn, dwFlags, lpUdate);
1405
1406 if (dateIn <= (DATE_MIN - 1.0) || dateIn >= (DATE_MAX + 1.0))
1407 return E_INVALIDARG;
1408
1409 datePart = dateIn < 0.0 ? ceil(dateIn) : floor(dateIn);
1410 /* Compensate for int truncation (always downwards) */
1411 timePart = dateIn - datePart + 0.00000000001;
1412 if (timePart >= 1.0)
1413 timePart -= 0.00000000001;
1414
1415 /* Date */
1416 julianDays = VARIANT_JulianFromDate(dateIn);
1417 VARIANT_DMYFromJulian(julianDays, &lpUdate->st.wYear, &lpUdate->st.wMonth,
1418 &lpUdate->st.wDay);
1419
1420 datePart = (datePart + 1.5) / 7.0;
1421 lpUdate->st.wDayOfWeek = (datePart - floor(datePart)) * 7;
1422 if (lpUdate->st.wDayOfWeek == 0)
1423 lpUdate->st.wDayOfWeek = 5;
1424 else if (lpUdate->st.wDayOfWeek == 1)
1425 lpUdate->st.wDayOfWeek = 6;
1426 else
1427 lpUdate->st.wDayOfWeek -= 2;
1428
1429 if (lpUdate->st.wMonth > 2 && IsLeapYear(lpUdate->st.wYear))
1430 lpUdate->wDayOfYear = 1; /* After February, in a leap year */
1431 else
1432 lpUdate->wDayOfYear = 0;
1433
1434 lpUdate->wDayOfYear += cumulativeDays[lpUdate->st.wMonth];
1435 lpUdate->wDayOfYear += lpUdate->st.wDay;
1436
1437 /* Time */
1438 timePart *= 24.0;
1439 lpUdate->st.wHour = timePart;
1440 timePart -= lpUdate->st.wHour;
1441 timePart *= 60.0;
1442 lpUdate->st.wMinute = timePart;
1443 timePart -= lpUdate->st.wMinute;
1444 timePart *= 60.0;
1445 lpUdate->st.wSecond = timePart;
1446 timePart -= lpUdate->st.wSecond;
1447 lpUdate->st.wMilliseconds = 0;
1448 if (timePart > 0.5)
1449 {
1450 /* Round the milliseconds, adjusting the time/date forward if needed */
1451 if (lpUdate->st.wSecond < 59)
1452 lpUdate->st.wSecond++;
1453 else
1454 {
1455 lpUdate->st.wSecond = 0;
1456 if (lpUdate->st.wMinute < 59)
1457 lpUdate->st.wMinute++;
1458 else
1459 {
1460 lpUdate->st.wMinute = 0;
1461 if (lpUdate->st.wHour < 23)
1462 lpUdate->st.wHour++;
1463 else
1464 {
1465 lpUdate->st.wHour = 0;
1466 /* Roll over a whole day */
1467 if (++lpUdate->st.wDay > 28)
1468 VARIANT_RollUdate(lpUdate);
1469 }
1470 }
1471 }
1472 }
1473 return S_OK;
1474 }
1475
1476 #define GET_NUMBER_TEXT(fld,name) \
1477 buff[0] = 0; \
1478 if (!GetLocaleInfoW(lcid, lctype|fld, buff, 2)) \
1479 WARN("buffer too small for " #fld "\n"); \
1480 else \
1481 if (buff[0]) lpChars->name = buff[0]; \
1482 TRACE("lcid 0x%lx, " #name "=%d '%c'\n", lcid, lpChars->name, lpChars->name)
1483
1484 /* Get the valid number characters for an lcid */
1485 void VARIANT_GetLocalisedNumberChars(VARIANT_NUMBER_CHARS *lpChars, LCID lcid, DWORD dwFlags)
1486 {
1487 static const VARIANT_NUMBER_CHARS defaultChars = { '-','+','.',',','$',0,'.',',' };
1488 LCTYPE lctype = dwFlags & LOCALE_NOUSEROVERRIDE;
1489 WCHAR buff[4];
1490
1491 memcpy(lpChars, &defaultChars, sizeof(defaultChars));
1492 GET_NUMBER_TEXT(LOCALE_SNEGATIVESIGN, cNegativeSymbol);
1493 GET_NUMBER_TEXT(LOCALE_SPOSITIVESIGN, cPositiveSymbol);
1494 GET_NUMBER_TEXT(LOCALE_SDECIMAL, cDecimalPoint);
1495 GET_NUMBER_TEXT(LOCALE_STHOUSAND, cDigitSeperator);
1496 GET_NUMBER_TEXT(LOCALE_SMONDECIMALSEP, cCurrencyDecimalPoint);
1497 GET_NUMBER_TEXT(LOCALE_SMONTHOUSANDSEP, cCurrencyDigitSeperator);
1498
1499 /* Local currency symbols are often 2 characters */
1500 lpChars->cCurrencyLocal2 = '\0';
1501 switch(GetLocaleInfoW(lcid, lctype|LOCALE_SCURRENCY, buff, sizeof(buff)/sizeof(WCHAR)))
1502 {
1503 case 3: lpChars->cCurrencyLocal2 = buff[1]; /* Fall through */
1504 case 2: lpChars->cCurrencyLocal = buff[0];
1505 break;
1506 default: WARN("buffer too small for LOCALE_SCURRENCY\n");
1507 }
1508 TRACE("lcid 0x%lx, cCurrencyLocal =%d,%d '%c','%c'\n", lcid, lpChars->cCurrencyLocal,
1509 lpChars->cCurrencyLocal2, lpChars->cCurrencyLocal, lpChars->cCurrencyLocal2);
1510 }
1511
1512 /* Number Parsing States */
1513 #define B_PROCESSING_EXPONENT 0x1
1514 #define B_NEGATIVE_EXPONENT 0x2
1515 #define B_EXPONENT_START 0x4
1516 #define B_INEXACT_ZEROS 0x8
1517 #define B_LEADING_ZERO 0x10
1518 #define B_PROCESSING_HEX 0x20
1519 #define B_PROCESSING_OCT 0x40
1520
1521 /**********************************************************************
1522 * VarParseNumFromStr [OLEAUT32.46]
1523 *
1524 * Parse a string containing a number into a NUMPARSE structure.
1525 *
1526 * PARAMS
1527 * lpszStr [I] String to parse number from
1528 * lcid [I] Locale Id for the conversion
1529 * dwFlags [I] 0, or LOCALE_NOUSEROVERRIDE to use system default number chars
1530 * pNumprs [I/O] Destination for parsed number
1531 * rgbDig [O] Destination for digits read in
1532 *
1533 * RETURNS
1534 * Success: S_OK. pNumprs and rgbDig contain the parsed representation of
1535 * the number.
1536 * Failure: E_INVALIDARG, if any parameter is invalid.
1537 * DISP_E_TYPEMISMATCH, if the string is not a number or is formatted
1538 * incorrectly.
1539 * DISP_E_OVERFLOW, if rgbDig is too small to hold the number.
1540 *
1541 * NOTES
1542 * pNumprs must have the following fields set:
1543 * cDig: Set to the size of rgbDig.
1544 * dwInFlags: Set to the allowable syntax of the number using NUMPRS_ flags
1545 * from "oleauto.h".
1546 *
1547 * FIXME
1548 * - I am unsure if this function should parse non-arabic (e.g. Thai)
1549 * numerals, so this has not been implemented.
1550 */
1551 HRESULT WINAPI VarParseNumFromStr(OLECHAR *lpszStr, LCID lcid, ULONG dwFlags,
1552 NUMPARSE *pNumprs, BYTE *rgbDig)
1553 {
1554 VARIANT_NUMBER_CHARS chars;
1555 BYTE rgbTmp[1024];
1556 DWORD dwState = B_EXPONENT_START|B_INEXACT_ZEROS;
1557 int iMaxDigits = sizeof(rgbTmp) / sizeof(BYTE);
1558 int cchUsed = 0;
1559
1560 TRACE("(%s,%ld,0x%08lx,%p,%p)\n", debugstr_w(lpszStr), lcid, dwFlags, pNumprs, rgbDig);
1561
1562 if (!pNumprs || !rgbDig)
1563 return E_INVALIDARG;
1564
1565 if (pNumprs->cDig < iMaxDigits)
1566 iMaxDigits = pNumprs->cDig;
1567
1568 pNumprs->cDig = 0;
1569 pNumprs->dwOutFlags = 0;
1570 pNumprs->cchUsed = 0;
1571 pNumprs->nBaseShift = 0;
1572 pNumprs->nPwr10 = 0;
1573
1574 if (!lpszStr)
1575 return DISP_E_TYPEMISMATCH;
1576
1577 VARIANT_GetLocalisedNumberChars(&chars, lcid, dwFlags);
1578
1579 /* First consume all the leading symbols and space from the string */
1580 while (1)
1581 {
1582 if (pNumprs->dwInFlags & NUMPRS_LEADING_WHITE && isspaceW(*lpszStr))
1583 {
1584 pNumprs->dwOutFlags |= NUMPRS_LEADING_WHITE;
1585 do
1586 {
1587 cchUsed++;
1588 lpszStr++;
1589 } while (isspaceW(*lpszStr));
1590 }
1591 else if (pNumprs->dwInFlags & NUMPRS_LEADING_PLUS &&
1592 *lpszStr == chars.cPositiveSymbol &&
1593 !(pNumprs->dwOutFlags & NUMPRS_LEADING_PLUS))
1594 {
1595 pNumprs->dwOutFlags |= NUMPRS_LEADING_PLUS;
1596 cchUsed++;
1597 lpszStr++;
1598 }
1599 else if (pNumprs->dwInFlags & NUMPRS_LEADING_MINUS &&
1600 *lpszStr == chars.cNegativeSymbol &&
1601 !(pNumprs->dwOutFlags & NUMPRS_LEADING_MINUS))
1602 {
1603 pNumprs->dwOutFlags |= (NUMPRS_LEADING_MINUS|NUMPRS_NEG);
1604 cchUsed++;
1605 lpszStr++;
1606 }
1607 else if (pNumprs->dwInFlags & NUMPRS_CURRENCY &&
1608 !(pNumprs->dwOutFlags & NUMPRS_CURRENCY) &&
1609 *lpszStr == chars.cCurrencyLocal &&
1610 (!chars.cCurrencyLocal2 || lpszStr[1] == chars.cCurrencyLocal2))
1611 {
1612 pNumprs->dwOutFlags |= NUMPRS_CURRENCY;
1613 cchUsed++;
1614 lpszStr++;
1615 /* Only accept currency characters */
1616 chars.cDecimalPoint = chars.cCurrencyDecimalPoint;
1617 chars.cDigitSeperator = chars.cCurrencyDigitSeperator;
1618 }
1619 else if (pNumprs->dwInFlags & NUMPRS_PARENS && *lpszStr == '(' &&
1620 !(pNumprs->dwOutFlags & NUMPRS_PARENS))
1621 {
1622 pNumprs->dwOutFlags |= NUMPRS_PARENS;
1623 cchUsed++;
1624 lpszStr++;
1625 }
1626 else
1627 break;
1628 }
1629
1630 if (!(pNumprs->dwOutFlags & NUMPRS_CURRENCY))
1631 {
1632 /* Only accept non-currency characters */
1633 chars.cCurrencyDecimalPoint = chars.cDecimalPoint;
1634 chars.cCurrencyDigitSeperator = chars.cDigitSeperator;
1635 }
1636
1637 if ((*lpszStr == '&' && (*(lpszStr+1) == 'H' || *(lpszStr+1) == 'h')) &&
1638 pNumprs->dwInFlags & NUMPRS_HEX_OCT)
1639 {
1640 dwState |= B_PROCESSING_HEX;
1641 pNumprs->dwOutFlags |= NUMPRS_HEX_OCT;
1642 cchUsed=cchUsed+2;
1643 lpszStr=lpszStr+2;
1644 }
1645 else if ((*lpszStr == '&' && (*(lpszStr+1) == 'O' || *(lpszStr+1) == 'o')) &&
1646 pNumprs->dwInFlags & NUMPRS_HEX_OCT)
1647 {
1648 dwState |= B_PROCESSING_OCT;
1649 pNumprs->dwOutFlags |= NUMPRS_HEX_OCT;
1650 cchUsed=cchUsed+2;
1651 lpszStr=lpszStr+2;
1652 }
1653
1654 /* Strip Leading zeros */
1655 while (*lpszStr == '0')
1656 {
1657 dwState |= B_LEADING_ZERO;
1658 cchUsed++;
1659 lpszStr++;
1660 }
1661
1662 while (*lpszStr)
1663 {
1664 if (isdigitW(*lpszStr))
1665 {
1666 if (dwState & B_PROCESSING_EXPONENT)
1667 {
1668 int exponentSize = 0;
1669 if (dwState & B_EXPONENT_START)
1670 {
1671 if (!isdigitW(*lpszStr))
1672 break; /* No exponent digits - invalid */
1673 while (*lpszStr == '0')
1674 {
1675 /* Skip leading zero's in the exponent */
1676 cchUsed++;
1677 lpszStr++;
1678 }
1679 }
1680
1681 while (isdigitW(*lpszStr))
1682 {
1683 exponentSize *= 10;
1684 exponentSize += *lpszStr - '0';
1685 cchUsed++;
1686 lpszStr++;
1687 }
1688 if (dwState & B_NEGATIVE_EXPONENT)
1689 exponentSize = -exponentSize;
1690 /* Add the exponent into the powers of 10 */
1691 pNumprs->nPwr10 += exponentSize;
1692 dwState &= ~(B_PROCESSING_EXPONENT|B_EXPONENT_START);
1693 lpszStr--; /* back up to allow processing of next char */
1694 }
1695 else
1696 {
1697 if ((pNumprs->cDig >= iMaxDigits) && !(dwState & B_PROCESSING_HEX)
1698 && !(dwState & B_PROCESSING_OCT))
1699 {
1700 pNumprs->dwOutFlags |= NUMPRS_INEXACT;
1701
1702 if (*lpszStr != '0')
1703 dwState &= ~B_INEXACT_ZEROS; /* Inexact number with non-trailing zeros */
1704
1705 /* This digit can't be represented, but count it in nPwr10 */
1706 if (pNumprs->dwOutFlags & NUMPRS_DECIMAL)
1707 pNumprs->nPwr10--;
1708 else
1709 pNumprs->nPwr10++;
1710 }
1711 else
1712 {
1713 if ((dwState & B_PROCESSING_OCT) && ((*lpszStr == '8') || (*lpszStr == '9'))) {
1714 return DISP_E_TYPEMISMATCH;
1715 }
1716
1717 if (pNumprs->dwOutFlags & NUMPRS_DECIMAL)
1718 pNumprs->nPwr10--; /* Count decimal points in nPwr10 */
1719
1720 rgbTmp[pNumprs->cDig] = *lpszStr - '0';
1721 }
1722 pNumprs->cDig++;
1723 cchUsed++;
1724 }
1725 }
1726 else if (*lpszStr == chars.cDigitSeperator && pNumprs->dwInFlags & NUMPRS_THOUSANDS)
1727 {
1728 pNumprs->dwOutFlags |= NUMPRS_THOUSANDS;
1729 cchUsed++;
1730 }
1731 else if (*lpszStr == chars.cDecimalPoint &&
1732 pNumprs->dwInFlags & NUMPRS_DECIMAL &&
1733 !(pNumprs->dwOutFlags & (NUMPRS_DECIMAL|NUMPRS_EXPONENT)))
1734 {
1735 pNumprs->dwOutFlags |= NUMPRS_DECIMAL;
1736 cchUsed++;
1737
1738 /* If we have no digits so far, skip leading zeros */
1739 if (!pNumprs->cDig)
1740 {
1741 while (lpszStr[1] == '0')
1742 {
1743 dwState |= B_LEADING_ZERO;
1744 cchUsed++;
1745 lpszStr++;
1746 pNumprs->nPwr10--;
1747 }
1748 }
1749 }
1750 else if ((*lpszStr == 'e' || *lpszStr == 'E') &&
1751 pNumprs->dwInFlags & NUMPRS_EXPONENT &&
1752 !(pNumprs->dwOutFlags & NUMPRS_EXPONENT))
1753 {
1754 dwState |= B_PROCESSING_EXPONENT;
1755 pNumprs->dwOutFlags |= NUMPRS_EXPONENT;
1756 cchUsed++;
1757 }
1758 else if (dwState & B_PROCESSING_EXPONENT && *lpszStr == chars.cPositiveSymbol)
1759 {
1760 cchUsed++; /* Ignore positive exponent */
1761 }
1762 else if (dwState & B_PROCESSING_EXPONENT && *lpszStr == chars.cNegativeSymbol)
1763 {
1764 dwState |= B_NEGATIVE_EXPONENT;
1765 cchUsed++;
1766 }
1767 else if (((*lpszStr >= 'a' && *lpszStr <= 'f') ||
1768 (*lpszStr >= 'A' && *lpszStr <= 'F')) &&
1769 dwState & B_PROCESSING_HEX)
1770 {
1771 if (pNumprs->cDig >= iMaxDigits)
1772 {
1773 return DISP_E_OVERFLOW;
1774 }
1775 else
1776 {
1777 if (*lpszStr >= 'a')
1778 rgbTmp[pNumprs->cDig] = *lpszStr - 'a' + 10;
1779 else
1780 rgbTmp[pNumprs->cDig] = *lpszStr - 'A' + 10;
1781 }
1782 pNumprs->cDig++;
1783 cchUsed++;
1784 }
1785 else
1786 break; /* Stop at an unrecognised character */
1787
1788 lpszStr++;
1789 }
1790
1791 if (!pNumprs->cDig && dwState & B_LEADING_ZERO)
1792 {
1793 /* Ensure a 0 on its own gets stored */
1794 pNumprs->cDig = 1;
1795 rgbTmp[0] = 0;
1796 }
1797
1798 if (pNumprs->dwOutFlags & NUMPRS_EXPONENT && dwState & B_PROCESSING_EXPONENT)
1799 {
1800 pNumprs->cchUsed = cchUsed;
1801 return DISP_E_TYPEMISMATCH; /* Failed to completely parse the exponent */
1802 }
1803
1804 if (pNumprs->dwOutFlags & NUMPRS_INEXACT)
1805 {
1806 if (dwState & B_INEXACT_ZEROS)
1807 pNumprs->dwOutFlags &= ~NUMPRS_INEXACT; /* All zeros doesn't set NUMPRS_INEXACT */
1808 } else if(pNumprs->dwInFlags & NUMPRS_HEX_OCT)
1809 {
1810 /* copy all of the digits into the output digit buffer */
1811 /* this is exactly what windows does although it also returns */
1812 /* cDig of X and writes X+Y where Y>=0 number of digits to rgbDig */
1813 memcpy(rgbDig, rgbTmp, pNumprs->cDig * sizeof(BYTE));
1814
1815 if (dwState & B_PROCESSING_HEX) {
1816 /* hex numbers have always the same format */
1817 pNumprs->nPwr10=0;
1818 pNumprs->nBaseShift=4;
1819 } else {
1820 if (dwState & B_PROCESSING_OCT) {
1821 /* oct numbers have always the same format */
1822 pNumprs->nPwr10=0;
1823 pNumprs->nBaseShift=3;
1824 } else {
1825 while (pNumprs->cDig > 1 && !rgbTmp[pNumprs->cDig - 1])
1826 {
1827 pNumprs->nPwr10++;
1828 pNumprs->cDig--;
1829 }
1830 }
1831 }
1832 } else
1833 {
1834 /* Remove trailing zeros from the last (whole number or decimal) part */
1835 while (pNumprs->cDig > 1 && !rgbTmp[pNumprs->cDig - 1])
1836 {
1837 pNumprs->nPwr10++;
1838 pNumprs->cDig--;
1839 }
1840 }
1841
1842 if (pNumprs->cDig <= iMaxDigits)
1843 pNumprs->dwOutFlags &= ~NUMPRS_INEXACT; /* Ignore stripped zeros for NUMPRS_INEXACT */
1844 else
1845 pNumprs->cDig = iMaxDigits; /* Only return iMaxDigits worth of digits */
1846
1847 /* Copy the digits we processed into rgbDig */
1848 memcpy(rgbDig, rgbTmp, pNumprs->cDig * sizeof(BYTE));
1849
1850 /* Consume any trailing symbols and space */
1851 while (1)
1852 {
1853 if ((pNumprs->dwInFlags & NUMPRS_TRAILING_WHITE) && isspaceW(*lpszStr))
1854 {
1855 pNumprs->dwOutFlags |= NUMPRS_TRAILING_WHITE;
1856 do
1857 {
1858 cchUsed++;
1859 lpszStr++;
1860 } while (isspaceW(*lpszStr));
1861 }
1862 else if (pNumprs->dwInFlags & NUMPRS_TRAILING_PLUS &&
1863 !(pNumprs->dwOutFlags & NUMPRS_LEADING_PLUS) &&
1864 *lpszStr == chars.cPositiveSymbol)
1865 {
1866 pNumprs->dwOutFlags |= NUMPRS_TRAILING_PLUS;
1867 cchUsed++;
1868 lpszStr++;
1869 }
1870 else if (pNumprs->dwInFlags & NUMPRS_TRAILING_MINUS &&
1871 !(pNumprs->dwOutFlags & NUMPRS_LEADING_MINUS) &&
1872 *lpszStr == chars.cNegativeSymbol)
1873 {
1874 pNumprs->dwOutFlags |= (NUMPRS_TRAILING_MINUS|NUMPRS_NEG);
1875 cchUsed++;
1876 lpszStr++;
1877 }
1878 else if (pNumprs->dwInFlags & NUMPRS_PARENS && *lpszStr == ')' &&
1879 pNumprs->dwOutFlags & NUMPRS_PARENS)
1880 {
1881 cchUsed++;
1882 lpszStr++;
1883 pNumprs->dwOutFlags |= NUMPRS_NEG;
1884 }
1885 else
1886 break;
1887 }
1888
1889 if (pNumprs->dwOutFlags & NUMPRS_PARENS && !(pNumprs->dwOutFlags & NUMPRS_NEG))
1890 {
1891 pNumprs->cchUsed = cchUsed;
1892 return DISP_E_TYPEMISMATCH; /* Opening parenthesis not matched */
1893 }
1894
1895 if (pNumprs->dwInFlags & NUMPRS_USE_ALL && *lpszStr != '\0')
1896 return DISP_E_TYPEMISMATCH; /* Not all chars were consumed */
1897
1898 if (!pNumprs->cDig)
1899 return DISP_E_TYPEMISMATCH; /* No Number found */
1900
1901 pNumprs->cchUsed = cchUsed;
1902 return S_OK;
1903 }
1904
1905 /* VTBIT flags indicating an integer value */
1906 #define INTEGER_VTBITS (VTBIT_I1|VTBIT_UI1|VTBIT_I2|VTBIT_UI2|VTBIT_I4|VTBIT_UI4|VTBIT_I8|VTBIT_UI8)
1907 /* VTBIT flags indicating a real number value */
1908 #define REAL_VTBITS (VTBIT_R4|VTBIT_R8|VTBIT_CY)
1909
1910 /* Helper macros to check whether bit pattern fits in VARIANT (x is a ULONG64 ) */
1911 #define FITS_AS_I1(x) ((x) >> 8 == 0)
1912 #define FITS_AS_I2(x) ((x) >> 16 == 0)
1913 #define FITS_AS_I4(x) ((x) >> 32 == 0)
1914
1915 /**********************************************************************
1916 * VarNumFromParseNum [OLEAUT32.47]
1917 *
1918 * Convert a NUMPARSE structure into a numeric Variant type.
1919 *
1920 * PARAMS
1921 * pNumprs [I] Source for parsed number. cDig must be set to the size of rgbDig
1922 * rgbDig [I] Source for the numbers digits
1923 * dwVtBits [I] VTBIT_ flags from "oleauto.h" indicating the acceptable dest types
1924 * pVarDst [O] Destination for the converted Variant value.
1925 *
1926 * RETURNS
1927 * Success: S_OK. pVarDst contains the converted value.
1928 * Failure: E_INVALIDARG, if any parameter is invalid.
1929 * DISP_E_OVERFLOW, if the number is too big for the types set in dwVtBits.
1930 *
1931 * NOTES
1932 * - The smallest favoured type present in dwVtBits that can represent the
1933 * number in pNumprs without losing precision is used.
1934 * - Signed types are preferrred over unsigned types of the same size.
1935 * - Preferred types in order are: integer, float, double, currency then decimal.
1936 * - Rounding (dropping of decimal points) occurs without error. See VarI8FromR8()
1937 * for details of the rounding method.
1938 * - pVarDst is not cleared before the result is stored in it.
1939 */
1940 HRESULT WINAPI VarNumFromParseNum(NUMPARSE *pNumprs, BYTE *rgbDig,
1941 ULONG dwVtBits, VARIANT *pVarDst)
1942 {
1943 /* Scale factors and limits for double arithmetic */
1944 static const double dblMultipliers[11] = {
1945 1.0, 10.0, 100.0, 1000.0, 10000.0, 100000.0,
1946 1000000.0, 10000000.0, 100000000.0, 1000000000.0, 10000000000.0
1947 };
1948 static const double dblMinimums[11] = {
1949 R8_MIN, R8_MIN*10.0, R8_MIN*100.0, R8_MIN*1000.0, R8_MIN*10000.0,
1950 R8_MIN*100000.0, R8_MIN*1000000.0, R8_MIN*10000000.0,
1951 R8_MIN*100000000.0, R8_MIN*1000000000.0, R8_MIN*10000000000.0
1952 };
1953 static const double dblMaximums[11] = {
1954 R8_MAX, R8_MAX/10.0, R8_MAX/100.0, R8_MAX/1000.0, R8_MAX/10000.0,
1955 R8_MAX/100000.0, R8_MAX/1000000.0, R8_MAX/10000000.0,
1956 R8_MAX/100000000.0, R8_MAX/1000000000.0, R8_MAX/10000000000.0
1957 };
1958
1959 int wholeNumberDigits, fractionalDigits, divisor10 = 0, multiplier10 = 0;
1960
1961 TRACE("(%p,%p,0x%lx,%p)\n", pNumprs, rgbDig, dwVtBits, pVarDst);
1962
1963 if (pNumprs->nBaseShift)
1964 {
1965 /* nBaseShift indicates a hex or octal number */
1966 ULONG64 ul64 = 0;
1967 LONG64 l64;
1968 int i;
1969
1970 /* Convert the hex or octal number string into a UI64 */
1971 for (i = 0; i < pNumprs->cDig; i++)
1972 {
1973 if (ul64 > ((UI8_MAX>>pNumprs->nBaseShift) - rgbDig[i]))
1974 {
1975 TRACE("Overflow multiplying digits\n");
1976 return DISP_E_OVERFLOW;
1977 }
1978 ul64 = (ul64<<pNumprs->nBaseShift) + rgbDig[i];
1979 }
1980
1981 /* also make a negative representation */
1982 l64=-ul64;
1983
1984 /* Try signed and unsigned types in size order */
1985 if (dwVtBits & VTBIT_I1 && FITS_AS_I1(ul64))
1986 {
1987 V_VT(pVarDst) = VT_I1;
1988 V_I1(pVarDst) = ul64;
1989 return S_OK;
1990 }
1991 else if (dwVtBits & VTBIT_UI1 && FITS_AS_I1(ul64))
1992 {
1993 V_VT(pVarDst) = VT_UI1;
1994 V_UI1(pVarDst) = ul64;
1995 return S_OK;
1996 }
1997 else if (dwVtBits & VTBIT_I2 && FITS_AS_I2(ul64))
1998 {
1999 V_VT(pVarDst) = VT_I2;
2000 V_I2(pVarDst) = ul64;
2001 return S_OK;
2002 }
2003 else if (dwVtBits & VTBIT_UI2 && FITS_AS_I2(ul64))
2004 {
2005 V_VT(pVarDst) = VT_UI2;
2006 V_UI2(pVarDst) = ul64;
2007 return S_OK;
2008 }
2009 else if (dwVtBits & VTBIT_I4 && FITS_AS_I4(ul64))
2010 {
2011 V_VT(pVarDst) = VT_I4;
2012 V_I4(pVarDst) = ul64;
2013 return S_OK;
2014 }
2015 else if (dwVtBits & VTBIT_UI4 && FITS_AS_I4(ul64))
2016 {
2017 V_VT(pVarDst) = VT_UI4;
2018 V_UI4(pVarDst) = ul64;
2019 return S_OK;
2020 }
2021 else if (dwVtBits & VTBIT_I8 && ((ul64 <= I8_MAX)||(l64>=I8_MIN)))
2022 {
2023 V_VT(pVarDst) = VT_I8;
2024 V_I8(pVarDst) = ul64;
2025 return S_OK;
2026 }
2027 else if (dwVtBits & VTBIT_UI8)
2028 {
2029 V_VT(pVarDst) = VT_UI8;
2030 V_UI8(pVarDst) = ul64;
2031 return S_OK;
2032 }
2033 else if ((dwVtBits & REAL_VTBITS) == VTBIT_DECIMAL)
2034 {
2035 V_VT(pVarDst) = VT_DECIMAL;
2036 DEC_SIGNSCALE(&V_DECIMAL(pVarDst)) = SIGNSCALE(DECIMAL_POS,0);
2037 DEC_HI32(&V_DECIMAL(pVarDst)) = 0;
2038 DEC_LO64(&V_DECIMAL(pVarDst)) = ul64;
2039 return S_OK;
2040 }
2041 else if (dwVtBits & VTBIT_R4 && ((ul64 <= I4_MAX)||(l64 >= I4_MIN)))
2042 {
2043 V_VT(pVarDst) = VT_R4;
2044 if (ul64 <= I4_MAX)
2045 V_R4(pVarDst) = ul64;
2046 else
2047 V_R4(pVarDst) = l64;
2048 return S_OK;
2049 }
2050 else if (dwVtBits & VTBIT_R8 && ((ul64 <= I4_MAX)||(l64 >= I4_MIN)))
2051 {
2052 V_VT(pVarDst) = VT_R8;
2053 if (ul64 <= I4_MAX)
2054 V_R8(pVarDst) = ul64;
2055 else
2056 V_R8(pVarDst) = l64;
2057 return S_OK;
2058 }
2059
2060 TRACE("Overflow: possible return types: 0x%lx, value: %s\n", dwVtBits, wine_dbgstr_longlong(ul64));
2061 return DISP_E_OVERFLOW;
2062 }
2063
2064 /* Count the number of relevant fractional and whole digits stored,
2065 * And compute the divisor/multiplier to scale the number by.
2066 */
2067 if (pNumprs->nPwr10 < 0)
2068 {
2069 if (-pNumprs->nPwr10 >= pNumprs->cDig)
2070 {
2071 /* A real number < +/- 1.0 e.g. 0.1024 or 0.01024 */
2072 wholeNumberDigits = 0;
2073 fractionalDigits = pNumprs->cDig;
2074 divisor10 = -pNumprs->nPwr10;
2075 }
2076 else
2077 {
2078 /* An exactly represented real number e.g. 1.024 */
2079 wholeNumberDigits = pNumprs->cDig + pNumprs->nPwr10;
2080 fractionalDigits = pNumprs->cDig - wholeNumberDigits;
2081 divisor10 = pNumprs->cDig - wholeNumberDigits;
2082 }
2083 }
2084 else if (pNumprs->nPwr10 == 0)
2085 {
2086 /* An exactly represented whole number e.g. 1024 */
2087 wholeNumberDigits = pNumprs->cDig;
2088 fractionalDigits = 0;
2089 }
2090 else /* pNumprs->nPwr10 > 0 */
2091 {
2092 /* A whole number followed by nPwr10 0's e.g. 102400 */
2093 wholeNumberDigits = pNumprs->cDig;
2094 fractionalDigits = 0;
2095 multiplier10 = pNumprs->nPwr10;
2096 }
2097
2098 TRACE("cDig %d; nPwr10 %d, whole %d, frac %d ", pNumprs->cDig,
2099 pNumprs->nPwr10, wholeNumberDigits, fractionalDigits);
2100 TRACE("mult %d; div %d\n", multiplier10, divisor10);
2101
2102 if (dwVtBits & (INTEGER_VTBITS|VTBIT_DECIMAL) &&
2103 (!fractionalDigits || !(dwVtBits & (REAL_VTBITS|VTBIT_CY|VTBIT_DECIMAL))))
2104 {
2105 /* We have one or more integer output choices, and either:
2106 * 1) An integer input value, or
2107 * 2) A real number input value but no floating output choices.
2108 * Alternately, we have a DECIMAL output available and an integer input.
2109 *
2110 * So, place the integer value into pVarDst, using the smallest type
2111 * possible and preferring signed over unsigned types.
2112 */
2113 BOOL bOverflow = FALSE, bNegative;
2114 ULONG64 ul64 = 0;
2115 int i;
2116
2117 /* Convert the integer part of the number into a UI8 */
2118 for (i = 0; i < wholeNumberDigits; i++)
2119 {
2120 if (ul64 > (UI8_MAX / 10 - rgbDig[i]))
2121 {
2122 TRACE("Overflow multiplying digits\n");
2123 bOverflow = TRUE;
2124 break;
2125 }
2126 ul64 = ul64 * 10 + rgbDig[i];
2127 }
2128
2129 /* Account for the scale of the number */
2130 if (!bOverflow && multiplier10)
2131 {
2132 for (i = 0; i < multiplier10; i++)
2133 {
2134 if (ul64 > (UI8_MAX / 10))
2135 {
2136 TRACE("Overflow scaling number\n");
2137 bOverflow = TRUE;
2138 break;
2139 }
2140 ul64 = ul64 * 10;
2141 }
2142 }
2143
2144 /* If we have any fractional digits, round the value.
2145 * Note we don't have to do this if divisor10 is < 1,
2146 * because this means the fractional part must be < 0.5
2147 */
2148 if (!bOverflow && fractionalDigits && divisor10 > 0)
2149 {
2150 const BYTE* fracDig = rgbDig + wholeNumberDigits;
2151 BOOL bAdjust = FALSE;
2152
2153 TRACE("first decimal value is %d\n", *fracDig);
2154
2155 if (*fracDig > 5)
2156 bAdjust = TRUE; /* > 0.5 */
2157 else if (*fracDig == 5)
2158 {
2159 for (i = 1; i < fractionalDigits; i++)
2160 {
2161 if (fracDig[i])
2162 {
2163 bAdjust = TRUE; /* > 0.5 */
2164 break;
2165 }
2166 }
2167 /* If exactly 0.5, round only odd values */
2168 if (i == fractionalDigits && (ul64 & 1))
2169 bAdjust = TRUE;
2170 }
2171
2172 if (bAdjust)
2173 {
2174 if (ul64 == UI8_MAX)
2175 {
2176 TRACE("Overflow after rounding\n");
2177 bOverflow = TRUE;
2178 }
2179 ul64++;
2180 }
2181 }
2182
2183 /* Zero is not a negative number */
2184 bNegative = pNumprs->dwOutFlags & NUMPRS_NEG && ul64 ? TRUE : FALSE;
2185
2186 TRACE("Integer value is %lld, bNeg %d\n", ul64, bNegative);
2187
2188 /* For negative integers, try the signed types in size order */
2189 if (!bOverflow && bNegative)
2190 {
2191 if (dwVtBits & (VTBIT_I1|VTBIT_I2|VTBIT_I4|VTBIT_I8))
2192 {
2193 if (dwVtBits & VTBIT_I1 && ul64 <= -I1_MIN)
2194 {
2195 V_VT(pVarDst) = VT_I1;
2196 V_I1(pVarDst) = -ul64;
2197 return S_OK;
2198 }
2199 else if (dwVtBits & VTBIT_I2 && ul64 <= -I2_MIN)
2200 {
2201 V_VT(pVarDst) = VT_I2;
2202 V_I2(pVarDst) = -ul64;
2203 return S_OK;
2204 }
2205 else if (dwVtBits & VTBIT_I4 && ul64 <= -((LONGLONG)I4_MIN))
2206 {
2207 V_VT(pVarDst) = VT_I4;
2208 V_I4(pVarDst) = -ul64;
2209 return S_OK;
2210 }
2211 else if (dwVtBits & VTBIT_I8 && ul64 <= (ULONGLONG)I8_MAX + 1)
2212 {
2213 V_VT(pVarDst) = VT_I8;
2214 V_I8(pVarDst) = -ul64;
2215 return S_OK;
2216 }
2217 else if ((dwVtBits & REAL_VTBITS) == VTBIT_DECIMAL)
2218 {
2219 /* Decimal is only output choice left - fast path */
2220 V_VT(pVarDst) = VT_DECIMAL;
2221 DEC_SIGNSCALE(&V_DECIMAL(pVarDst)) = SIGNSCALE(DECIMAL_NEG,0);
2222 DEC_HI32(&V_DECIMAL(pVarDst)) = 0;
2223 DEC_LO64(&V_DECIMAL(pVarDst)) = -ul64;
2224 return S_OK;
2225 }
2226 }
2227 }
2228 else if (!bOverflow)
2229 {
2230 /* For positive integers, try signed then unsigned types in size order */
2231 if (dwVtBits & VTBIT_I1 && ul64 <= I1_MAX)
2232 {
2233 V_VT(pVarDst) = VT_I1;
2234 V_I1(pVarDst) = ul64;
2235 return S_OK;
2236 }
2237 else if (dwVtBits & VTBIT_UI1 && ul64 <= UI1_MAX)
2238 {
2239 V_VT(pVarDst) = VT_UI1;
2240 V_UI1(pVarDst) = ul64;
2241 return S_OK;
2242 }
2243 else if (dwVtBits & VTBIT_I2 && ul64 <= I2_MAX)
2244 {
2245 V_VT(pVarDst) = VT_I2;
2246 V_I2(pVarDst) = ul64;
2247 return S_OK;
2248 }
2249 else if (dwVtBits & VTBIT_UI2 && ul64 <= UI2_MAX)
2250 {
2251 V_VT(pVarDst) = VT_UI2;
2252 V_UI2(pVarDst) = ul64;
2253 return S_OK;
2254 }
2255 else if (dwVtBits & VTBIT_I4 && ul64 <= I4_MAX)
2256 {
2257 V_VT(pVarDst) = VT_I4;
2258 V_I4(pVarDst) = ul64;
2259 return S_OK;
2260 }
2261 else if (dwVtBits & VTBIT_UI4 && ul64 <= UI4_MAX)
2262 {
2263 V_VT(pVarDst) = VT_UI4;
2264 V_UI4(pVarDst) = ul64;
2265 return S_OK;
2266 }
2267 else if (dwVtBits & VTBIT_I8 && ul64 <= I8_MAX)
2268 {
2269 V_VT(pVarDst) = VT_I8;
2270 V_I8(pVarDst) = ul64;
2271 return S_OK;
2272 }
2273 else if (dwVtBits & VTBIT_UI8)
2274 {
2275 V_VT(pVarDst) = VT_UI8;
2276 V_UI8(pVarDst) = ul64;
2277 return S_OK;
2278 }
2279 else if ((dwVtBits & REAL_VTBITS) == VTBIT_DECIMAL)
2280 {
2281 /* Decimal is only output choice left - fast path */
2282 V_VT(pVarDst) = VT_DECIMAL;
2283 DEC_SIGNSCALE(&V_DECIMAL(pVarDst)) = SIGNSCALE(DECIMAL_POS,0);
2284 DEC_HI32(&V_DECIMAL(pVarDst)) = 0;
2285 DEC_LO64(&V_DECIMAL(pVarDst)) = ul64;
2286 return S_OK;
2287 }
2288 }
2289 }
2290
2291 if (dwVtBits & REAL_VTBITS)
2292 {
2293 /* Try to put the number into a float or real */
2294 BOOL bOverflow = FALSE, bNegative = pNumprs->dwOutFlags & NUMPRS_NEG;
2295 double whole = 0.0;
2296 int i;
2297
2298 /* Convert the number into a double */
2299 for (i = 0; i < pNumprs->cDig; i++)
2300 whole = whole * 10.0 + rgbDig[i];
2301
2302 TRACE("Whole double value is %16.16g\n", whole);
2303
2304 /* Account for the scale */
2305 while (multiplier10 > 10)
2306 {
2307 if (whole > dblMaximums[10])
2308 {
2309 dwVtBits &= ~(VTBIT_R4|VTBIT_R8|VTBIT_CY);
2310 bOverflow = TRUE;
2311 break;
2312 }
2313 whole = whole * dblMultipliers[10];
2314 multiplier10 -= 10;
2315 }
2316 if (multiplier10)
2317 {
2318 if (whole > dblMaximums[multiplier10])
2319 {
2320 dwVtBits &= ~(VTBIT_R4|VTBIT_R8|VTBIT_CY);
2321 bOverflow = TRUE;
2322 }
2323 else
2324 whole = whole * dblMultipliers[multiplier10];
2325 }
2326
2327 TRACE("Scaled double value is %16.16g\n", whole);
2328
2329 while (divisor10 > 10)
2330 {
2331 if (whole < dblMinimums[10] && whole != 0)
2332 {
2333 dwVtBits &= ~(VTBIT_R4|VTBIT_R8|VTBIT_CY); /* Underflow */
2334 bOverflow = TRUE;
2335 break;
2336 }
2337 whole = whole / dblMultipliers[10];
2338 divisor10 -= 10;
2339 }
2340 if (divisor10)
2341 {
2342 if (whole < dblMinimums[divisor10] && whole != 0)
2343 {
2344 dwVtBits &= ~(VTBIT_R4|VTBIT_R8|VTBIT_CY); /* Underflow */
2345 bOverflow = TRUE;
2346 }
2347 else
2348 whole = whole / dblMultipliers[divisor10];
2349 }
2350 if (!bOverflow)
2351 TRACE("Final double value is %16.16g\n", whole);
2352
2353 if (dwVtBits & VTBIT_R4 &&
2354 ((whole <= R4_MAX && whole >= R4_MIN) || whole == 0.0))
2355 {
2356 TRACE("Set R4 to final value\n");
2357 V_VT(pVarDst) = VT_R4; /* Fits into a float */
2358 V_R4(pVarDst) = pNumprs->dwOutFlags & NUMPRS_NEG ? -whole : whole;
2359 return S_OK;
2360 }
2361
2362 if (dwVtBits & VTBIT_R8)
2363 {
2364 TRACE("Set R8 to final value\n");
2365 V_VT(pVarDst) = VT_R8; /* Fits into a double */
2366 V_R8(pVarDst) = pNumprs->dwOutFlags & NUMPRS_NEG ? -whole : whole;
2367 return S_OK;
2368 }
2369
2370 if (dwVtBits & VTBIT_CY)
2371 {
2372 if (SUCCEEDED(VarCyFromR8(bNegative ? -whole : whole, &V_CY(pVarDst))))
2373 {
2374 V_VT(pVarDst) = VT_CY; /* Fits into a currency */
2375 TRACE("Set CY to final value\n");
2376 return S_OK;
2377 }
2378 TRACE("Value Overflows CY\n");
2379 }
2380 }
2381
2382 if (dwVtBits & VTBIT_DECIMAL)
2383 {
2384 int i;
2385 ULONG carry;
2386 ULONG64 tmp;
2387 DECIMAL* pDec = &V_DECIMAL(pVarDst);
2388
2389 DECIMAL_SETZERO(*pDec);
2390 DEC_LO32(pDec) = 0;
2391
2392 if (pNumprs->dwOutFlags & NUMPRS_NEG)
2393 DEC_SIGN(pDec) = DECIMAL_NEG;
2394 else
2395 DEC_SIGN(pDec) = DECIMAL_POS;
2396
2397 /* Factor the significant digits */
2398 for (i = 0; i < pNumprs->cDig; i++)
2399 {
2400 tmp = (ULONG64)DEC_LO32(pDec) * 10 + rgbDig[i];
2401 carry = (ULONG)(tmp >> 32);
2402 DEC_LO32(pDec) = (ULONG)(tmp & UI4_MAX);
2403 tmp = (ULONG64)DEC_MID32(pDec) * 10 + carry;
2404 carry = (ULONG)(tmp >> 32);
2405 DEC_MID32(pDec) = (ULONG)(tmp & UI4_MAX);
2406 tmp = (ULONG64)DEC_HI32(pDec) * 10 + carry;
2407 DEC_HI32(pDec) = (ULONG)(tmp & UI4_MAX);
2408
2409 if (tmp >> 32 & UI4_MAX)
2410 {
2411 VarNumFromParseNum_DecOverflow:
2412 TRACE("Overflow\n");
2413 DEC_LO32(pDec) = DEC_MID32(pDec) = DEC_HI32(pDec) = UI4_MAX;
2414 return DISP_E_OVERFLOW;
2415 }
2416 }
2417
2418 /* Account for the scale of the number */
2419 while (multiplier10 > 0)
2420 {
2421 tmp = (ULONG64)DEC_LO32(pDec) * 10;
2422 carry = (ULONG)(tmp >> 32);
2423 DEC_LO32(pDec) = (ULONG)(tmp & UI4_MAX);
2424 tmp = (ULONG64)DEC_MID32(pDec) * 10 + carry;
2425 carry = (ULONG)(tmp >> 32);
2426 DEC_MID32(pDec) = (ULONG)(tmp & UI4_MAX);
2427 tmp = (ULONG64)DEC_HI32(pDec) * 10 + carry;
2428 DEC_HI32(pDec) = (ULONG)(tmp & UI4_MAX);
2429
2430 if (tmp >> 32 & UI4_MAX)
2431 goto VarNumFromParseNum_DecOverflow;
2432 multiplier10--;
2433 }
2434 DEC_SCALE(pDec) = divisor10;
2435
2436 V_VT(pVarDst) = VT_DECIMAL;
2437 return S_OK;
2438 }
2439 return DISP_E_OVERFLOW; /* No more output choices */
2440 }
2441
2442 /**********************************************************************
2443 * VarCat [OLEAUT32.318]
2444 */
2445 HRESULT WINAPI VarCat(LPVARIANT left, LPVARIANT right, LPVARIANT out)
2446 {
2447 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left, debugstr_VT(left),
2448 debugstr_VF(left), right, debugstr_VT(right), debugstr_VF(right), out);
2449
2450 /* Should we VariantClear out? */
2451 /* Can we handle array, vector, by ref etc. */
2452 if ((V_VT(left)&VT_TYPEMASK) == VT_NULL &&
2453 (V_VT(right)&VT_TYPEMASK) == VT_NULL)
2454 {
2455 V_VT(out) = VT_NULL;
2456 return S_OK;
2457 }
2458
2459 if (V_VT(left) == VT_BSTR && V_VT(right) == VT_BSTR)
2460 {
2461 V_VT(out) = VT_BSTR;
2462 VarBstrCat (V_BSTR(left), V_BSTR(right), &V_BSTR(out));
2463 return S_OK;
2464 }
2465 if (V_VT(left) == VT_BSTR) {
2466 VARIANT bstrvar;
2467 HRESULT hres;
2468
2469 V_VT(out) = VT_BSTR;
2470 VariantInit(&bstrvar);
2471 hres = VariantChangeTypeEx(&bstrvar,right,0,0,VT_BSTR);
2472 if (hres) {
2473 FIXME("Failed to convert right side from vt %d to VT_BSTR?\n",V_VT(right));
2474 return hres;
2475 }
2476 VarBstrCat (V_BSTR(left), V_BSTR(&bstrvar), &V_BSTR(out));
2477 return S_OK;
2478 }
2479 if (V_VT(right) == VT_BSTR) {
2480 VARIANT bstrvar;
2481 HRESULT hres;
2482
2483 V_VT(out) = VT_BSTR;
2484 VariantInit(&bstrvar);
2485 hres = VariantChangeTypeEx(&bstrvar,left,0,0,VT_BSTR);
2486 if (hres) {
2487 FIXME("Failed to convert right side from vt %d to VT_BSTR?\n",V_VT(right));
2488 return hres;
2489 }
2490 VarBstrCat (V_BSTR(&bstrvar), V_BSTR(right), &V_BSTR(out));
2491 return S_OK;
2492 }
2493 FIXME ("types %d / %d not supported\n",V_VT(left)&VT_TYPEMASK, V_VT(right)&VT_TYPEMASK);
2494 return S_OK;
2495 }
2496
2497 /**********************************************************************
2498 * VarCmp [OLEAUT32.176]
2499 *
2500 * flags can be:
2501 * NORM_IGNORECASE, NORM_IGNORENONSPACE, NORM_IGNORESYMBOLS
2502 * NORM_IGNOREWIDTH, NORM_IGNOREKANATYPE, NORM_IGNOREKASHIDA
2503 *
2504 */
2505 HRESULT WINAPI VarCmp(LPVARIANT left, LPVARIANT right, LCID lcid, DWORD flags)
2506 {
2507 BOOL lOk = TRUE;
2508 BOOL rOk = TRUE;
2509 LONGLONG lVal = -1;
2510 LONGLONG rVal = -1;
2511 VARIANT rv,lv;
2512 DWORD xmask;
2513 HRESULT rc;
2514
2515 TRACE("(%p->(%s%s),%p->(%s%s),0x%08lx,0x%08lx)\n", left, debugstr_VT(left),
2516 debugstr_VF(left), right, debugstr_VT(right), debugstr_VF(right), lcid, flags);
2517
2518 VariantInit(&lv);VariantInit(&rv);
2519 V_VT(right) &= ~0x8000; /* hack since we sometime get this flag. */
2520 V_VT(left) &= ~0x8000; /* hack since we sometime get this flag. */
2521
2522 /* If either are null, then return VARCMP_NULL */
2523 if ((V_VT(left)&VT_TYPEMASK) == VT_NULL ||
2524 (V_VT(right)&VT_TYPEMASK) == VT_NULL)
2525 return VARCMP_NULL;
2526
2527 /* Strings - use VarBstrCmp */
2528 if ((V_VT(left)&VT_TYPEMASK) == VT_BSTR &&
2529 (V_VT(right)&VT_TYPEMASK) == VT_BSTR) {
2530 return VarBstrCmp(V_BSTR(left), V_BSTR(right), lcid, flags);
2531 }
2532
2533 xmask = (1<<(V_VT(left)&VT_TYPEMASK))|(1<<(V_VT(right)&VT_TYPEMASK));
2534 if (xmask & VTBIT_R8) {
2535 rc = VariantChangeType(&lv,left,0,VT_R8);
2536 if (FAILED(rc)) return rc;
2537 rc = VariantChangeType(&rv,right,0,VT_R8);
2538 if (FAILED(rc)) return rc;
2539
2540 if (V_R8(&lv) == V_R8(&rv)) return VARCMP_EQ;
2541 if (V_R8(&lv) < V_R8(&rv)) return VARCMP_LT;
2542 if (V_R8(&lv) > V_R8(&rv)) return VARCMP_GT;
2543 return E_FAIL; /* can't get here */
2544 }
2545 if (xmask & VTBIT_R4) {
2546 rc = VariantChangeType(&lv,left,0,VT_R4);
2547 if (FAILED(rc)) return rc;
2548 rc = VariantChangeType(&rv,right,0,VT_R4);
2549 if (FAILED(rc)) return rc;
2550
2551 if (V_R4(&lv) == V_R4(&rv)) return VARCMP_EQ;
2552 if (V_R4(&lv) < V_R4(&rv)) return VARCMP_LT;
2553 if (V_R4(&lv) > V_R4(&rv)) return VARCMP_GT;
2554 return E_FAIL; /* can't get here */
2555 }
2556
2557 /* Integers - Ideally like to use VarDecCmp, but no Dec support yet
2558 Use LONGLONG to maximize ranges */
2559 lOk = TRUE;
2560 switch (V_VT(left)&VT_TYPEMASK) {
2561 case VT_I1 : lVal = V_I1(left); break;
2562 case VT_I2 : lVal = V_I2(left); break;
2563 case VT_I4 :
2564 case VT_INT : lVal = V_I4(left); break;
2565 case VT_UI1 : lVal = V_UI1(left); break;
2566 case VT_UI2 : lVal = V_UI2(left); break;
2567 case VT_UI4 :
2568 case VT_UINT : lVal = V_UI4(left); break;
2569 case VT_BOOL : lVal = V_BOOL(left); break;
2570 default: lOk = FALSE;
2571 }
2572
2573 rOk = TRUE;
2574 switch (V_VT(right)&VT_TYPEMASK) {
2575 case VT_I1 : rVal = V_I1(right); break;
2576 case VT_I2 : rVal = V_I2(right); break;
2577 case VT_I4 :
2578 case VT_INT : rVal = V_I4(right); break;
2579 case VT_UI1 : rVal = V_UI1(right); break;
2580 case VT_UI2 : rVal = V_UI2(right); break;
2581 case VT_UI4 :
2582 case VT_UINT : rVal = V_UI4(right); break;
2583 case VT_BOOL : rVal = V_BOOL(right); break;
2584 default: rOk = FALSE;
2585 }
2586
2587 if (lOk && rOk) {
2588 if (lVal < rVal) {
2589 return VARCMP_LT;
2590 } else if (lVal > rVal) {
2591 return VARCMP_GT;
2592 } else {
2593 return VARCMP_EQ;
2594 }
2595 }
2596
2597 /* Strings - use VarBstrCmp */
2598 if ((V_VT(left)&VT_TYPEMASK) == VT_DATE &&
2599 (V_VT(right)&VT_TYPEMASK) == VT_DATE) {
2600
2601 if (floor(V_DATE(left)) == floor(V_DATE(right))) {
2602 /* Due to floating point rounding errors, calculate varDate in whole numbers) */
2603 double wholePart = 0.0;
2604 double leftR;
2605 double rightR;
2606
2607 /* Get the fraction * 24*60*60 to make it into whole seconds */
2608 wholePart = (double) floor( V_DATE(left) );
2609 if (wholePart == 0) wholePart = 1;
2610 leftR = floor(fmod( V_DATE(left), wholePart ) * (24*60*60));
2611
2612 wholePart = (double) floor( V_DATE(right) );
2613 if (wholePart == 0) wholePart = 1;
2614 rightR = floor(fmod( V_DATE(right), wholePart ) * (24*60*60));
2615
2616 if (leftR < rightR) {
2617 return VARCMP_LT;
2618 } else if (leftR > rightR) {
2619 return VARCMP_GT;
2620 } else {
2621 return VARCMP_EQ;
2622 }
2623
2624 } else if (V_DATE(left) < V_DATE(right)) {
2625 return VARCMP_LT;
2626 } else if (V_DATE(left) > V_DATE(right)) {
2627 return VARCMP_GT;
2628 }
2629 }
2630 FIXME("VarCmp partial implementation, doesn't support vt 0x%x / 0x%x\n",V_VT(left), V_VT(right));
2631 return E_FAIL;
2632 }
2633
2634 /**********************************************************************
2635 * VarAnd [OLEAUT32.142]
2636 *
2637 */
2638 HRESULT WINAPI VarAnd(LPVARIANT left, LPVARIANT right, LPVARIANT result)
2639 {
2640 HRESULT rc = E_FAIL;
2641
2642 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left, debugstr_VT(left),
2643 debugstr_VF(left), right, debugstr_VT(right), debugstr_VF(right), result);
2644
2645 if ((V_VT(left)&VT_TYPEMASK) == VT_BOOL &&
2646 (V_VT(right)&VT_TYPEMASK) == VT_BOOL) {
2647
2648 V_VT(result) = VT_BOOL;
2649 if (V_BOOL(left) && V_BOOL(right)) {
2650 V_BOOL(result) = VARIANT_TRUE;
2651 } else {
2652 V_BOOL(result) = VARIANT_FALSE;
2653 }
2654 rc = S_OK;
2655
2656 } else {
2657 /* Integers */
2658 BOOL lOk = TRUE;
2659 BOOL rOk = TRUE;
2660 LONGLONG lVal = -1;
2661 LONGLONG rVal = -1;
2662 LONGLONG res = -1;
2663 int resT = 0; /* Testing has shown I2 & I2 == I2, all else
2664 becomes I4, even unsigned ints (incl. UI2) */
2665
2666 lOk = TRUE;
2667 switch (V_VT(left)&VT_TYPEMASK) {
2668 case VT_I1 : lVal = V_I1(left); resT=VT_I4; break;
2669 case VT_I2 : lVal = V_I2(left); resT=VT_I2; break;
2670 case VT_I4 :
2671 case VT_INT : lVal = V_I4(left); resT=VT_I4; break;
2672 case VT_UI1 : lVal = V_UI1(left); resT=VT_I4; break;
2673 case VT_UI2 : lVal = V_UI2(left); resT=VT_I4; break;
2674 case VT_UI4 :
2675 case VT_UINT : lVal = V_UI4(left); resT=VT_I4; break;
2676 case VT_BOOL : rVal = V_BOOL(left); resT=VT_I4; break;
2677 default: lOk = FALSE;
2678 }
2679
2680 rOk = TRUE;
2681 switch (V_VT(right)&VT_TYPEMASK) {
2682 case VT_I1 : rVal = V_I1(right); resT=VT_I4; break;
2683 case VT_I2 : rVal = V_I2(right); resT=max(VT_I2, resT); break;
2684 case VT_I4 :
2685 case VT_INT : rVal = V_I4(right); resT=VT_I4; break;
2686 case VT_UI1 : rVal = V_UI1(right); resT=VT_I4; break;
2687 case VT_UI2 : rVal = V_UI2(right); resT=VT_I4; break;
2688 case VT_UI4 :
2689 case VT_UINT : rVal = V_UI4(right); resT=VT_I4; break;
2690 case VT_BOOL : rVal = V_BOOL(right); resT=VT_I4; break;
2691 default: rOk = FALSE;
2692 }
2693
2694 if (lOk && rOk) {
2695 res = (lVal & rVal);
2696 V_VT(result) = resT;
2697 switch (resT) {
2698 case VT_I2 : V_I2(result) = res; break;
2699 case VT_I4 : V_I4(result) = res; break;
2700 default:
2701 FIXME("Unexpected result variant type %x\n", resT);
2702 V_I4(result) = res;
2703 }
2704 rc = S_OK;
2705
2706 } else {
2707 FIXME("VarAnd stub\n");
2708 }
2709 }
2710
2711 TRACE("returning 0x%8lx (%s%s),%ld\n", rc, debugstr_VT(result),
2712 debugstr_VF(result), V_VT(result) == VT_I4 ? V_I4(result) : V_I2(result));
2713 return rc;
2714 }
2715
2716 /**********************************************************************
2717 * VarAdd [OLEAUT32.141]
2718 * FIXME: From MSDN: If ... Then
2719 * Both expressions are of the string type Concatenated.
2720 * One expression is a string type and the other a character Addition.
2721 * One expression is numeric and the other is a string Addition.
2722 * Both expressions are numeric Addition.
2723 * Either expression is NULL NULL is returned.
2724 * Both expressions are empty Integer subtype is returned.
2725 *
2726 */
2727 HRESULT WINAPI VarAdd(LPVARIANT left, LPVARIANT right, LPVARIANT result)
2728 {
2729 HRESULT rc = E_FAIL;
2730
2731 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left, debugstr_VT(left),
2732 debugstr_VF(left), right, debugstr_VT(right), debugstr_VF(right), result);
2733
2734 if ((V_VT(left)&VT_TYPEMASK) == VT_EMPTY)
2735 return VariantCopy(result,right);
2736
2737 if ((V_VT(right)&VT_TYPEMASK) == VT_EMPTY)
2738 return VariantCopy(result,left);
2739
2740 /* check if we add doubles */
2741 if (((V_VT(left)&VT_TYPEMASK) == VT_R8) || ((V_VT(right)&VT_TYPEMASK) == VT_R8)) {
2742 BOOL lOk = TRUE;
2743 BOOL rOk = TRUE;
2744 double lVal = -1;
2745 double rVal = -1;
2746 double res = -1;
2747
2748 lOk = TRUE;
2749 switch (V_VT(left)&VT_TYPEMASK) {
2750 case VT_I1 : lVal = V_I1(left); break;
2751 case VT_I2 : lVal = V_I2(left); break;
2752 case VT_I4 :
2753 case VT_INT : lVal = V_I4(left); break;
2754 case VT_UI1 : lVal = V_UI1(left); break;
2755 case VT_UI2 : lVal = V_UI2(left); break;
2756 case VT_UI4 :
2757 case VT_UINT : lVal = V_UI4(left); break;
2758 case VT_R4 : lVal = V_R4(left); break;
2759 case VT_R8 : lVal = V_R8(left); break;
2760 case VT_NULL : lVal = 0.0; break;
2761 default: lOk = FALSE;
2762 }
2763
2764 rOk = TRUE;
2765 switch (V_VT(right)&VT_TYPEMASK) {
2766 case VT_I1 : rVal = V_I1(right); break;
2767 case VT_I2 : rVal = V_I2(right); break;
2768 case VT_I4 :
2769 case VT_INT : rVal = V_I4(right); break;
2770 case VT_UI1 : rVal = V_UI1(right); break;
2771 case VT_UI2 : rVal = V_UI2(right); break;
2772 case VT_UI4 :
2773 case VT_UINT : rVal = V_UI4(right); break;
2774 case VT_R4 : rVal = V_R4(right);break;
2775 case VT_R8 : rVal = V_R8(right);break;
2776 case VT_NULL : rVal = 0.0; break;
2777 default: rOk = FALSE;
2778 }
2779
2780 if (lOk && rOk) {
2781 res = (lVal + rVal);
2782 V_VT(result) = VT_R8;
2783 V_R8(result) = res;
2784 rc = S_OK;
2785 } else {
2786 FIXME("Unhandled type pair %d / %d in double addition.\n",
2787 (V_VT(left)&VT_TYPEMASK),
2788 (V_VT(right)&VT_TYPEMASK)
2789 );
2790 }
2791 return rc;
2792 }
2793
2794 /* now check if we add floats. VT_R8 can no longer happen here! */
2795 if (((V_VT(left)&VT_TYPEMASK) == VT_R4) || ((V_VT(right)&VT_TYPEMASK) == VT_R4)) {
2796 BOOL lOk = TRUE;
2797 BOOL rOk = TRUE;
2798 float lVal = -1;
2799 float rVal = -1;
2800 float res = -1;
2801
2802 lOk = TRUE;
2803 switch (V_VT(left)&VT_TYPEMASK) {
2804 case VT_I1 : lVal = V_I1(left); break;
2805 case VT_I2 : lVal = V_I2(left); break;
2806 case VT_I4 :
2807 case VT_INT : lVal = V_I4(left); break;
2808 case VT_UI1 : lVal = V_UI1(left); break;
2809 case VT_UI2 : lVal = V_UI2(left); break;
2810 case VT_UI4 :
2811 case VT_UINT : lVal = V_UI4(left); break;
2812 case VT_R4 : lVal = V_R4(left); break;
2813 case VT_NULL : lVal = 0.0; break;
2814 default: lOk = FALSE;
2815 }
2816
2817 rOk = TRUE;
2818 switch (V_VT(right)&VT_TYPEMASK) {
2819 case VT_I1 : rVal = V_I1(right); break;
2820 case VT_I2 : rVal = V_I2(right); break;
2821 case VT_I4 :
2822 case VT_INT : rVal = V_I4(right); break;
2823 case VT_UI1 : rVal = V_UI1(right); break;
2824 case VT_UI2 : rVal = V_UI2(right); break;
2825 case VT_UI4 :
2826 case VT_UINT : rVal = V_UI4(right); break;
2827 case VT_R4 : rVal = V_R4(right);break;
2828 case VT_NULL : rVal = 0.0; break;
2829 default: rOk = FALSE;
2830 }
2831
2832 if (lOk && rOk) {
2833 res = (lVal + rVal);
2834 V_VT(result) = VT_R4;
2835 V_R4(result) = res;
2836 rc = S_OK;
2837 } else {
2838 FIXME("Unhandled type pair %d / %d in float addition.\n",
2839 (V_VT(left)&VT_TYPEMASK),
2840 (V_VT(right)&VT_TYPEMASK)
2841 );
2842 }
2843 return rc;
2844 }
2845
2846 /* Handle strings as concat */
2847 if ((V_VT(left)&VT_TYPEMASK) == VT_BSTR &&
2848 (V_VT(right)&VT_TYPEMASK) == VT_BSTR) {
2849 V_VT(result) = VT_BSTR;
2850 return VarBstrCat(V_BSTR(left), V_BSTR(right), &V_BSTR(result));
2851 } else {
2852
2853 /* Integers */
2854 BOOL lOk = TRUE;
2855 BOOL rOk = TRUE;
2856 LONGLONG lVal = -1;
2857 LONGLONG rVal = -1;
2858 LONGLONG res = -1;
2859 int resT = 0; /* Testing has shown I2 + I2 == I2, all else
2860 becomes I4 */
2861
2862 lOk = TRUE;
2863 switch (V_VT(left)&VT_TYPEMASK) {
2864 case VT_I1 : lVal = V_I1(left); resT=VT_I4; break;
2865 case VT_I2 : lVal = V_I2(left); resT=VT_I2; break;
2866 case VT_I4 :
2867 case VT_INT : lVal = V_I4(left); resT=VT_I4; break;
2868 case VT_UI1 : lVal = V_UI1(left); resT=VT_I4; break;
2869 case VT_UI2 : lVal = V_UI2(left); resT=VT_I4; break;
2870 case VT_UI4 :
2871 case VT_UINT : lVal = V_UI4(left); resT=VT_I4; break;
2872 case VT_NULL : lVal = 0; resT = VT_I4; break;
2873 default: lOk = FALSE;
2874 }
2875
2876 rOk = TRUE;
2877 switch (V_VT(right)&VT_TYPEMASK) {
2878 case VT_I1 : rVal = V_I1(right); resT=VT_I4; break;
2879 case VT_I2 : rVal = V_I2(right); resT=max(VT_I2, resT); break;
2880 case VT_I4 :
2881 case VT_INT : rVal = V_I4(right); resT=VT_I4; break;
2882 case VT_UI1 : rVal = V_UI1(right); resT=VT_I4; break;
2883 case VT_UI2 : rVal = V_UI2(right); resT=VT_I4; break;
2884 case VT_UI4 :
2885 case VT_UINT : rVal = V_UI4(right); resT=VT_I4; break;
2886 case VT_NULL : rVal = 0; resT=VT_I4; break;
2887 default: rOk = FALSE;
2888 }
2889
2890 if (lOk && rOk) {
2891 res = (lVal + rVal);
2892 V_VT(result) = resT;
2893 switch (resT) {
2894 case VT_I2 : V_I2(result) = res; break;
2895 case VT_I4 : V_I4(result) = res; break;
2896 default:
2897 FIXME("Unexpected result variant type %x\n", resT);
2898 V_I4(result) = res;
2899 }
2900 rc = S_OK;
2901
2902 } else {
2903 FIXME("unimplemented part (0x%x + 0x%x)\n",V_VT(left), V_VT(right));
2904 }
2905 }
2906
2907 TRACE("returning 0x%8lx (%s%s),%ld\n", rc, debugstr_VT(result),
2908 debugstr_VF(result), V_VT(result) == VT_I4 ? V_I4(result) : V_I2(result));
2909 return rc;
2910 }
2911
2912 /**********************************************************************
2913 * VarMul [OLEAUT32.156]
2914 *
2915 */
2916 HRESULT WINAPI VarMul(LPVARIANT left, LPVARIANT right, LPVARIANT result)
2917 {
2918 HRESULT rc = E_FAIL;
2919 VARTYPE lvt,rvt,resvt;
2920 VARIANT lv,rv;
2921 BOOL found;
2922
2923 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left, debugstr_VT(left),
2924 debugstr_VF(left), right, debugstr_VT(right), debugstr_VF(right), result);
2925
2926 VariantInit(&lv);VariantInit(&rv);
2927 lvt = V_VT(left)&VT_TYPEMASK;
2928 rvt = V_VT(right)&VT_TYPEMASK;
2929 found = FALSE;resvt=VT_VOID;
2930 if (((1<<lvt) | (1<<rvt)) & (VTBIT_R4|VTBIT_R8)) {
2931 found = TRUE;
2932 resvt = VT_R8;
2933 }
2934 if (!found && (((1<<lvt) | (1<<rvt)) & (VTBIT_I1|VTBIT_I2|VTBIT_UI1|VTBIT_UI2|VTBIT_I4|VTBIT_UI4|(1<<VT_INT)|(1<<VT_UINT)))) {
2935 found = TRUE;
2936 resvt = VT_I4;
2937 }
2938 if (!found) {
2939 FIXME("can't expand vt %d vs %d to a target type.\n",lvt,rvt);
2940 return E_FAIL;
2941 }
2942 rc = VariantChangeType(&lv, left, 0, resvt);
2943 if (FAILED(rc)) {
2944 FIXME("Could not convert 0x%x to %d?\n",V_VT(left),resvt);
2945 return rc;
2946 }
2947 rc = VariantChangeType(&rv, right, 0, resvt);
2948 if (FAILED(rc)) {
2949 FIXME("Could not convert 0x%x to %d?\n",V_VT(right),resvt);
2950 return rc;
2951 }
2952 switch (resvt) {
2953 case VT_R8:
2954 V_VT(result) = resvt;
2955 V_R8(result) = V_R8(&lv) * V_R8(&rv);
2956 rc = S_OK;
2957 break;
2958 case VT_I4:
2959 V_VT(result) = resvt;
2960 V_I4(result) = V_I4(&lv) * V_I4(&rv);
2961 rc = S_OK;
2962 break;
2963 }
2964 TRACE("returning 0x%8lx (%s%s),%g\n", rc, debugstr_VT(result),
2965 debugstr_VF(result), V_VT(result) == VT_R8 ? V_R8(result) : (double)V_I4(result));
2966 return rc;
2967 }
2968
2969 /**********************************************************************
2970 * VarDiv [OLEAUT32.143]
2971 *
2972 */
2973 HRESULT WINAPI VarDiv(LPVARIANT left, LPVARIANT right, LPVARIANT result)
2974 {
2975 HRESULT rc = E_FAIL;
2976 VARTYPE lvt,rvt,resvt;
2977 VARIANT lv,rv;
2978 BOOL found;
2979
2980 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left, debugstr_VT(left),
2981 debugstr_VF(left), right, debugstr_VT(right), debugstr_VF(right), result);
2982
2983 VariantInit(&lv);VariantInit(&rv);
2984 lvt = V_VT(left)&VT_TYPEMASK;
2985 rvt = V_VT(right)&VT_TYPEMASK;
2986 found = FALSE;resvt = VT_VOID;
2987 if (((1<<lvt) | (1<<rvt)) & (VTBIT_R4|VTBIT_R8)) {
2988 found = TRUE;
2989 resvt = VT_R8;
2990 }
2991 if (!found && (((1<<lvt) | (1<<rvt)) & (VTBIT_I1|VTBIT_I2|VTBIT_UI1|VTBIT_UI2|VTBIT_I4|VTBIT_UI4|(1<<VT_INT)|(1<<VT_UINT)))) {
2992 found = TRUE;
2993 resvt = VT_I4;
2994 }
2995 if (!found) {
2996 FIXME("can't expand vt %d vs %d to a target type.\n",lvt,rvt);
2997 return E_FAIL;
2998 }
2999 rc = VariantChangeType(&lv, left, 0, resvt);
3000 if (FAILED(rc)) {
3001 FIXME("Could not convert 0x%x to %d?\n",V_VT(left),resvt);
3002 return rc;
3003 }
3004 rc = VariantChangeType(&rv, right, 0, resvt);
3005 if (FAILED(rc)) {
3006 FIXME("Could not convert 0x%x to %d?\n",V_VT(right),resvt);
3007 return rc;
3008 }
3009 switch (resvt) {
3010 case VT_R8:
3011 V_VT(result) = resvt;
3012 V_R8(result) = V_R8(&lv) / V_R8(&rv);
3013 rc = S_OK;
3014 break;
3015 case VT_I4:
3016 V_VT(result) = resvt;
3017 V_I4(result) = V_I4(&lv) / V_I4(&rv);
3018 rc = S_OK;
3019 break;
3020 }
3021 TRACE("returning 0x%8lx (%s%s),%g\n", rc, debugstr_VT(result),
3022 debugstr_VF(result), V_VT(result) == VT_R8 ? V_R8(result) : (double)V_I4(result));
3023 return rc;
3024 }
3025
3026 /**********************************************************************
3027 * VarSub [OLEAUT32.159]
3028 *
3029 */
3030 HRESULT WINAPI VarSub(LPVARIANT left, LPVARIANT right, LPVARIANT result)
3031 {
3032 HRESULT rc = E_FAIL;
3033 VARTYPE lvt,rvt,resvt;
3034 VARIANT lv,rv;
3035 BOOL found;
3036
3037 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left, debugstr_VT(left),
3038 debugstr_VF(left), right, debugstr_VT(right), debugstr_VF(right), result);
3039
3040 VariantInit(&lv);VariantInit(&rv);
3041 lvt = V_VT(left)&VT_TYPEMASK;
3042 rvt = V_VT(right)&VT_TYPEMASK;
3043 found = FALSE;resvt = VT_VOID;
3044 if (((1<<lvt) | (1<<rvt)) & ((1<<VT_DATE)|(1<<VT_R4)|(1<<VT_R8))) {
3045 found = TRUE;
3046 resvt = VT_R8;
3047 }
3048 if (!found && (((1<<lvt) | (1<<rvt)) & (VTBIT_I1|VTBIT_I2|VTBIT_UI1|VTBIT_UI2|VTBIT_I4|VTBIT_UI4|(1<<VT_INT)|(1<<VT_UINT)))) {
3049 found = TRUE;
3050 resvt = VT_I4;
3051 }
3052 if (!found) {
3053 FIXME("can't expand vt %d vs %d to a target type.\n",lvt,rvt);
3054 return E_FAIL;
3055 }
3056 rc = VariantChangeType(&lv, left, 0, resvt);
3057 if (FAILED(rc)) {
3058 FIXME("Could not convert 0x%x to %d?\n",V_VT(left),resvt);
3059 return rc;
3060 }
3061 rc = VariantChangeType(&rv, right, 0, resvt);
3062 if (FAILED(rc)) {
3063 FIXME("Could not convert 0x%x to %d?\n",V_VT(right),resvt);
3064 return rc;
3065 }
3066 switch (resvt) {
3067 case VT_R8:
3068 V_VT(result) = resvt;
3069 V_R8(result) = V_R8(&lv) - V_R8(&rv);
3070 rc = S_OK;
3071 break;
3072 case VT_I4:
3073 V_VT(result) = resvt;
3074 V_I4(result) = V_I4(&lv) - V_I4(&rv);
3075 rc = S_OK;
3076 break;
3077 }
3078 TRACE("returning 0x%8lx (%s%s),%g\n", rc, debugstr_VT(result),
3079 debugstr_VF(result), V_VT(result) == VT_R8 ? V_R8(result) : (double)V_I4(result));
3080 return rc;
3081 }
3082
3083 /**********************************************************************
3084 * VarOr [OLEAUT32.157]
3085 *
3086 * Perform a logical or (OR) operation on two variants.
3087 *
3088 * PARAMS
3089 * pVarLeft [I] First variant
3090 * pVarRight [I] Variant to OR with pVarLeft
3091 * pVarOut [O] Destination for OR result
3092 *
3093 * RETURNS
3094 * Success: S_OK. pVarOut contains the result of the operation with its type
3095 * taken from the table listed under VarXor().
3096 * Failure: An HRESULT error code indicating the error.
3097 *
3098 * NOTES
3099 * See the Notes section of VarXor() for further information.
3100 */
3101 HRESULT WINAPI VarOr(LPVARIANT pVarLeft, LPVARIANT pVarRight, LPVARIANT pVarOut)
3102 {
3103 VARTYPE vt = VT_I4;
3104 VARIANT varLeft, varRight, varStr;
3105 HRESULT hRet;
3106
3107 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", pVarLeft, debugstr_VT(pVarLeft),
3108 debugstr_VF(pVarLeft), pVarRight, debugstr_VT(pVarRight),
3109 debugstr_VF(pVarRight), pVarOut);
3110
3111 if (V_EXTRA_TYPE(pVarLeft) || V_EXTRA_TYPE(pVarRight) ||
3112 V_VT(pVarLeft) == VT_UNKNOWN || V_VT(pVarRight) == VT_UNKNOWN ||
3113 V_VT(pVarLeft) == VT_DISPATCH || V_VT(pVarRight) == VT_DISPATCH ||
3114 V_VT(pVarLeft) == VT_RECORD || V_VT(pVarRight) == VT_RECORD)
3115 return DISP_E_BADVARTYPE;
3116
3117 V_VT(&varLeft) = V_VT(&varRight) = V_VT(&varStr) = VT_EMPTY;
3118
3119 if (V_VT(pVarLeft) == VT_NULL || V_VT(pVarRight) == VT_NULL)
3120 {
3121 /* NULL OR Zero is NULL, NULL OR value is value */
3122 if (V_VT(pVarLeft) == VT_NULL)
3123 pVarLeft = pVarRight; /* point to the non-NULL var */
3124
3125 V_VT(pVarOut) = VT_NULL;
3126 V_I4(pVarOut) = 0;
3127
3128 switch (V_VT(pVarLeft))
3129 {
3130 case VT_DATE: case VT_R8:
3131 if (V_R8(pVarLeft))
3132 goto VarOr_AsEmpty;
3133 return S_OK;
3134 case VT_BOOL:
3135 if (V_BOOL(pVarLeft))
3136 *pVarOut = *pVarLeft;
3137 return S_OK;
3138 case VT_I2: case VT_UI2:
3139 if (V_I2(pVarLeft))
3140 goto VarOr_AsEmpty;
3141 return S_OK;
3142 case VT_I1:
3143 if (V_I1(pVarLeft))
3144 goto VarOr_AsEmpty;
3145 return S_OK;
3146 case VT_UI1:
3147 if (V_UI1(pVarLeft))
3148 *pVarOut = *pVarLeft;
3149 return S_OK;
3150 case VT_R4:
3151 if (V_R4(pVarLeft))
3152 goto VarOr_AsEmpty;
3153 return S_OK;
3154 case VT_I4: case VT_UI4: case VT_INT: case VT_UINT:
3155 if (V_I4(pVarLeft))
3156 goto VarOr_AsEmpty;
3157 return S_OK;
3158 case VT_CY:
3159 if (V_CY(pVarLeft).int64)
3160 goto VarOr_AsEmpty;
3161 return S_OK;
3162 case VT_I8: case VT_UI8:
3163 if (V_I8(pVarLeft))
3164 goto VarOr_AsEmpty;
3165 return S_OK;
3166 case VT_DECIMAL:
3167 if (DEC_HI32(&V_DECIMAL(pVarLeft)) || DEC_LO64(&V_DECIMAL(pVarLeft)))
3168 goto VarOr_AsEmpty;
3169 return S_OK;
3170 case VT_BSTR:
3171 {
3172 VARIANT_BOOL b;
3173
3174 if (!V_BSTR(pVarLeft))
3175 return DISP_E_BADVARTYPE;
3176
3177 hRet = VarBoolFromStr(V_BSTR(pVarLeft), LOCALE_USER_DEFAULT, VAR_LOCALBOOL, &b);
3178 if (SUCCEEDED(hRet) && b)
3179 {
3180 V_VT(pVarOut) = VT_BOOL;
3181 V_BOOL(pVarOut) = b;
3182 }
3183 return hRet;
3184 }
3185 case VT_NULL: case VT_EMPTY:
3186 V_VT(pVarOut) = VT_NULL;
3187 return S_OK;
3188 default:
3189 return DISP_E_BADVARTYPE;
3190 }
3191 }
3192
3193 if (V_VT(pVarLeft) == VT_EMPTY || V_VT(pVarRight) == VT_EMPTY)
3194 {
3195 if (V_VT(pVarLeft) == VT_EMPTY)
3196 pVarLeft = pVarRight; /* point to the non-EMPTY var */
3197
3198 VarOr_AsEmpty:
3199 /* Since one argument is empty (0), OR'ing it with the other simply
3200 * gives the others value (as 0|x => x). So just convert the other
3201 * argument to the required result type.
3202 */
3203 switch (V_VT(pVarLeft))
3204 {
3205 case VT_BSTR:
3206 if (!V_BSTR(pVarLeft))
3207 return DISP_E_BADVARTYPE;
3208
3209 hRet = VariantCopy(&varStr, pVarLeft);
3210 if (FAILED(hRet))
3211 goto VarOr_Exit;
3212 pVarLeft = &varStr;
3213 hRet = VariantChangeType(pVarLeft, pVarLeft, 0, VT_BOOL);
3214 if (FAILED(hRet))
3215 goto VarOr_Exit;
3216 /* Fall Through ... */
3217 case VT_EMPTY: case VT_UI1: case VT_BOOL: case VT_I2:
3218 V_VT(pVarOut) = VT_I2;
3219 break;
3220 case VT_DATE: case VT_CY: case VT_DECIMAL: case VT_R4: case VT_R8:
3221 case VT_I1: case VT_UI2: case VT_I4: case VT_UI4:
3222 case VT_INT: case VT_UINT: case VT_UI8:
3223 V_VT(pVarOut) = VT_I4;
3224 break;
3225 case VT_I8:
3226 V_VT(pVarOut) = VT_I8;
3227 break;
3228 default:
3229 return DISP_E_BADVARTYPE;
3230 }
3231 hRet = VariantCopy(&varLeft, pVarLeft);
3232 if (FAILED(hRet))
3233 goto VarOr_Exit;
3234 pVarLeft = &varLeft;
3235 hRet = VariantChangeType(pVarOut, pVarLeft, 0, V_VT(pVarOut));
3236 goto VarOr_Exit;
3237 }
3238
3239 if (V_VT(pVarLeft) == VT_BOOL && V_VT(pVarRight) == VT_BOOL)
3240 {
3241 V_VT(pVarOut) = VT_BOOL;
3242 V_BOOL(pVarOut) = V_BOOL(pVarLeft) | V_BOOL(pVarRight);
3243 return S_OK;
3244 }
3245
3246 if (V_VT(pVarLeft) == VT_UI1 && V_VT(pVarRight) == VT_UI1)
3247 {
3248 V_VT(pVarOut) = VT_UI1;
3249 V_UI1(pVarOut) = V_UI1(pVarLeft) | V_UI1(pVarRight);
3250 return S_OK;
3251 }
3252
3253 if (V_VT(pVarLeft) == VT_BSTR)
3254 {
3255 hRet = VariantCopy(&varStr, pVarLeft);
3256 if (FAILED(hRet))
3257 goto VarOr_Exit;
3258 pVarLeft = &varStr;
3259 hRet = VariantChangeType(pVarLeft, pVarLeft, 0, VT_BOOL);
3260 if (FAILED(hRet))
3261 goto VarOr_Exit;
3262 }
3263
3264 if (V_VT(pVarLeft) == VT_BOOL &&
3265 (V_VT(pVarRight) == VT_BOOL || V_VT(pVarRight) == VT_BSTR))
3266 {
3267 vt = VT_BOOL;
3268 }
3269 else if ((V_VT(pVarLeft) == VT_BOOL || V_VT(pVarLeft) == VT_UI1 ||
3270 V_VT(pVarLeft) == VT_I2 || V_VT(pVarLeft) == VT_BSTR) &&
3271 (V_VT(pVarRight) == VT_BOOL || V_VT(pVarRight) == VT_UI1 ||
3272 V_VT(pVarRight) == VT_I2 || V_VT(pVarRight) == VT_BSTR))
3273 {
3274 vt = VT_I2;
3275 }
3276 else if (V_VT(pVarLeft) == VT_I8 || V_VT(pVarRight) == VT_I8)
3277 {
3278 if (V_VT(pVarLeft) == VT_INT || V_VT(pVarRight) == VT_INT)
3279 return DISP_E_TYPEMISMATCH;
3280 vt = VT_I8;
3281 }
3282
3283 hRet = VariantCopy(&varLeft, pVarLeft);
3284 if (FAILED(hRet))
3285 goto VarOr_Exit;
3286
3287 hRet = VariantCopy(&varRight, pVarRight);
3288 if (FAILED(hRet))
3289 goto VarOr_Exit;
3290
3291 if (vt == VT_I4 && V_VT(&varLeft) == VT_UI4)
3292 V_VT(&varLeft) = VT_I4; /* Don't overflow */
3293 else
3294 {
3295 double d;
3296
3297 if (V_VT(&varLeft) == VT_BSTR &&
3298 FAILED(VarR8FromStr(V_BSTR(&varLeft), LOCALE_USER_DEFAULT, 0, &d)))
3299 hRet = VariantChangeType(&varLeft, &varLeft, VARIANT_LOCALBOOL, VT_BOOL);
3300 if (SUCCEEDED(hRet) && V_VT(&varLeft) != vt)
3301 hRet = VariantChangeType(&varLeft, &varLeft, 0, vt);
3302 if (FAILED(hRet))
3303 goto VarOr_Exit;
3304 }
3305
3306 if (vt == VT_I4 && V_VT(&varRight) == VT_UI4)
3307 V_VT(&varRight) = VT_I4; /* Don't overflow */
3308 else
3309 {
3310 double d;
3311
3312 if (V_VT(&varRight) == VT_BSTR &&
3313 FAILED(VarR8FromStr(V_BSTR(&varRight), LOCALE_USER_DEFAULT, 0, &d)))
3314 hRet = VariantChangeType(&varRight, &varRight, VARIANT_LOCALBOOL, VT_BOOL);
3315 if (SUCCEEDED(hRet) && V_VT(&varRight) != vt)
3316 hRet = VariantChangeType(&varRight, &varRight, 0, vt);
3317 if (FAILED(hRet))
3318 goto VarOr_Exit;
3319 }
3320
3321 V_VT(pVarOut) = vt;
3322 if (vt == VT_I8)
3323 {
3324 V_I8(pVarOut) = V_I8(&varLeft) | V_I8(&varRight);
3325 }
3326 else if (vt == VT_I4)
3327 {
3328 V_I4(pVarOut) = V_I4(&varLeft) | V_I4(&varRight);
3329 }
3330 else
3331 {
3332 V_I2(pVarOut) = V_I2(&varLeft) | V_I2(&varRight);
3333 }
3334
3335 VarOr_Exit:
3336 VariantClear(&varStr);
3337 VariantClear(&varLeft);
3338 VariantClear(&varRight);
3339 return hRet;
3340 }
3341
3342 /**********************************************************************
3343 * VarAbs [OLEAUT32.168]
3344 *
3345 * Convert a variant to its absolute value.
3346 *
3347 * PARAMS
3348 * pVarIn [I] Source variant
3349 * pVarOut [O] Destination for converted value
3350 *
3351 * RETURNS
3352 * Success: S_OK. pVarOut contains the absolute value of pVarIn.
3353 * Failure: An HRESULT error code indicating the error.
3354 *
3355 * NOTES
3356 * - This function does not process by-reference variants.
3357 * - The type of the value stored in pVarOut depends on the type of pVarIn,
3358 * according to the following table:
3359 *| Input Type Output Type
3360 *| ---------- -----------
3361 *| VT_BOOL VT_I2
3362 *| VT_BSTR VT_R8
3363 *| (All others) Unchanged
3364 */
3365 HRESULT WINAPI VarAbs(LPVARIANT pVarIn, LPVARIANT pVarOut)
3366 {
3367 VARIANT varIn;
3368 HRESULT hRet = S_OK;
3369
3370 TRACE("(%p->(%s%s),%p)\n", pVarIn, debugstr_VT(pVarIn),
3371 debugstr_VF(pVarIn), pVarOut);
3372
3373 if (V_ISARRAY(pVarIn) || V_VT(pVarIn) == VT_UNKNOWN ||
3374 V_VT(pVarIn) == VT_DISPATCH || V_VT(pVarIn) == VT_RECORD ||
3375 V_VT(pVarIn) == VT_ERROR)
3376 return DISP_E_TYPEMISMATCH;
3377
3378 *pVarOut = *pVarIn; /* Shallow copy the value, and invert it if needed */
3379
3380 #define ABS_CASE(typ,min) \
3381 case VT_##typ: if (V_##typ(pVarIn) == min) hRet = DISP_E_OVERFLOW; \
3382 else if (V_##typ(pVarIn) < 0) V_##typ(pVarOut) = -V_##typ(pVarIn); \
3383 break
3384
3385 switch (V_VT(pVarIn))
3386 {
3387 ABS_CASE(I1,I1_MIN);
3388 case VT_BOOL:
3389 V_VT(pVarOut) = VT_I2;
3390 /* BOOL->I2, Fall through ... */
3391 ABS_CASE(I2,I2_MIN);
3392 case VT_INT:
3393 ABS_CASE(I4,I4_MIN);
3394 ABS_CASE(I8,I8_MIN);
3395 ABS_CASE(R4,R4_MIN);
3396 case VT_BSTR:
3397 hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(&varIn));
3398 if (FAILED(hRet))
3399 break;
3400 V_VT(pVarOut) = VT_R8;
3401 pVarIn = &varIn;
3402 /* Fall through ... */
3403 case VT_DATE:
3404 ABS_CASE(R8,R8_MIN);
3405 case VT_CY:
3406 hRet = VarCyAbs(V_CY(pVarIn), & V_CY(pVarOut));
3407 break;
3408 case VT_DECIMAL:
3409 DEC_SIGN(&V_DECIMAL(pVarOut)) &= ~DECIMAL_NEG;
3410 break;
3411 case VT_UI1:
3412 case VT_UI2:
3413 case VT_UINT:
3414 case VT_UI4:
3415 case VT_UI8:
3416 /* No-Op */
3417 break;
3418 case VT_EMPTY:
3419 V_VT(pVarOut) = VT_I2;
3420 case VT_NULL:
3421 V_I2(pVarOut) = 0;
3422 break;
3423 default:
3424 hRet = DISP_E_BADVARTYPE;
3425 }
3426
3427 return hRet;
3428 }
3429
3430 /**********************************************************************
3431 * VarFix [OLEAUT32.169]
3432 *
3433 * Truncate a variants value to a whole number.
3434 *
3435 * PARAMS
3436 * pVarIn [I] Source variant
3437 * pVarOut [O] Destination for converted value
3438 *
3439 * RETURNS
3440 * Success: S_OK. pVarOut contains the converted value.
3441 * Failure: An HRESULT error code indicating the error.
3442 *
3443 * NOTES
3444 * - The type of the value stored in pVarOut depends on the type of pVarIn,
3445 * according to the following table:
3446 *| Input Type Output Type
3447 *| ---------- -----------
3448 *| VT_BOOL VT_I2
3449 *| VT_EMPTY VT_I2
3450 *| VT_BSTR VT_R8
3451 *| All Others Unchanged
3452 * - The difference between this function and VarInt() is that VarInt() rounds
3453 * negative numbers away from 0, while this function rounds them towards zero.
3454 */
3455 HRESULT WINAPI VarFix(LPVARIANT pVarIn, LPVARIANT pVarOut)
3456 {
3457 HRESULT hRet = S_OK;
3458
3459 TRACE("(%p->(%s%s),%p)\n", pVarIn, debugstr_VT(pVarIn),
3460 debugstr_VF(pVarIn), pVarOut);
3461
3462 V_VT(pVarOut) = V_VT(pVarIn);
3463
3464 switch (V_VT(pVarIn))
3465 {
3466 case VT_UI1:
3467 V_UI1(pVarOut) = V_UI1(pVarIn);
3468 break;
3469 case VT_BOOL:
3470 V_VT(pVarOut) = VT_I2;
3471 /* Fall through */
3472 case VT_I2:
3473 V_I2(pVarOut) = V_I2(pVarIn);
3474 break;
3475 case VT_I4:
3476 V_I4(pVarOut) = V_I4(pVarIn);
3477 break;
3478 case VT_I8:
3479 V_I8(pVarOut) = V_I8(pVarIn);
3480 break;
3481 case VT_R4:
3482 if (V_R4(pVarIn) < 0.0f)
3483 V_R4(pVarOut) = (float)ceil(V_R4(pVarIn));
3484 else
3485 V_R4(pVarOut) = (float)floor(V_R4(pVarIn));
3486 break;
3487 case VT_BSTR:
3488 V_VT(pVarOut) = VT_R8;
3489 hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(pVarOut));
3490 pVarIn = pVarOut;
3491 /* Fall through */
3492 case VT_DATE:
3493 case VT_R8:
3494 if (V_R8(pVarIn) < 0.0)
3495 V_R8(pVarOut) = ceil(V_R8(pVarIn));
3496 else
3497 V_R8(pVarOut) = floor(V_R8(pVarIn));
3498 break;
3499 case VT_CY:
3500 hRet = VarCyFix(V_CY(pVarIn), &V_CY(pVarOut));
3501 break;
3502 case VT_DECIMAL:
3503 hRet = VarDecFix(&V_DECIMAL(pVarIn), &V_DECIMAL(pVarOut));
3504 break;
3505 case VT_EMPTY:
3506 V_VT(pVarOut) = VT_I2;
3507 V_I2(pVarOut) = 0;
3508 break;
3509 case VT_NULL:
3510 /* No-Op */
3511 break;
3512 default:
3513 if (V_TYPE(pVarIn) == VT_CLSID || /* VT_CLSID is a special case */
3514 FAILED(VARIANT_ValidateType(V_VT(pVarIn))))
3515 hRet = DISP_E_BADVARTYPE;
3516 else
3517 hRet = DISP_E_TYPEMISMATCH;
3518 }
3519 if (FAILED(hRet))
3520 V_VT(pVarOut) = VT_EMPTY;
3521
3522 return hRet;
3523 }
3524
3525 /**********************************************************************
3526 * VarInt [OLEAUT32.172]
3527 *
3528 * Truncate a variants value to a whole number.
3529 *
3530 * PARAMS
3531 * pVarIn [I] Source variant
3532 * pVarOut [O] Destination for converted value
3533 *
3534 * RETURNS
3535 * Success: S_OK. pVarOut contains the converted value.
3536 * Failure: An HRESULT error code indicating the error.
3537 *
3538 * NOTES
3539 * - The type of the value stored in pVarOut depends on the type of pVarIn,
3540 * according to the following table:
3541 *| Input Type Output Type
3542 *| ---------- -----------
3543 *| VT_BOOL VT_I2
3544 *| VT_EMPTY VT_I2
3545 *| VT_BSTR VT_R8
3546 *| All Others Unchanged
3547 * - The difference between this function and VarFix() is that VarFix() rounds
3548 * negative numbers towards 0, while this function rounds them away from zero.
3549 */
3550 HRESULT WINAPI VarInt(LPVARIANT pVarIn, LPVARIANT pVarOut)
3551 {
3552 HRESULT hRet = S_OK;
3553
3554 TRACE("(%p->(%s%s),%p)\n", pVarIn, debugstr_VT(pVarIn),
3555 debugstr_VF(pVarIn), pVarOut);
3556
3557 V_VT(pVarOut) = V_VT(pVarIn);
3558
3559 switch (V_VT(pVarIn))
3560 {
3561 case VT_R4:
3562 V_R4(pVarOut) = (float)floor(V_R4(pVarIn));
3563 break;
3564 case VT_BSTR:
3565 V_VT(pVarOut) = VT_R8;
3566 hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(pVarOut));
3567 pVarIn = pVarOut;
3568 /* Fall through */
3569 case VT_DATE:
3570 case VT_R8:
3571 V_R8(pVarOut) = floor(V_R8(pVarIn));
3572 break;
3573 case VT_CY:
3574 hRet = VarCyInt(V_CY(pVarIn), &V_CY(pVarOut));
3575 break;
3576 case VT_DECIMAL:
3577 hRet = VarDecInt(&V_DECIMAL(pVarIn), &V_DECIMAL(pVarOut));
3578 break;
3579 default:
3580 return VarFix(pVarIn, pVarOut);
3581 }
3582
3583 return hRet;
3584 }
3585
3586 /**********************************************************************
3587 * VarXor [OLEAUT32.167]
3588 *
3589 * Perform a logical exclusive-or (XOR) operation on two variants.
3590 *
3591 * PARAMS
3592 * pVarLeft [I] First variant
3593 * pVarRight [I] Variant to XOR with pVarLeft
3594 * pVarOut [O] Destination for XOR result
3595 *
3596 * RETURNS
3597 * Success: S_OK. pVarOut contains the result of the operation with its type
3598 * taken from the table below).
3599 * Failure: An HRESULT error code indicating the error.
3600 *
3601 * NOTES
3602 * - Neither pVarLeft or pVarRight are modified by this function.
3603 * - This function does not process by-reference variants.
3604 * - Input types of VT_BSTR may be numeric strings or boolean text.
3605 * - The type of result stored in pVarOut depends on the types of pVarLeft
3606 * and pVarRight, and will be one of VT_UI1, VT_I2, VT_I4, VT_I8, VT_BOOL,
3607 * or VT_NULL if the function succeeds.
3608 * - Type promotion is inconsistent and as a result certain combinations of
3609 * values will return DISP_E_OVERFLOW even when they could be represented.
3610 * This matches the behaviour of native oleaut32.
3611 */
3612 HRESULT WINAPI VarXor(LPVARIANT pVarLeft, LPVARIANT pVarRight, LPVARIANT pVarOut)
3613 {
3614 VARTYPE vt;
3615 VARIANT varLeft, varRight;
3616 double d;
3617 HRESULT hRet;
3618
3619 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", pVarLeft, debugstr_VT(pVarLeft),
3620 debugstr_VF(pVarLeft), pVarRight, debugstr_VT(pVarRight),
3621 debugstr_VF(pVarRight), pVarOut);
3622
3623 if (V_EXTRA_TYPE(pVarLeft) || V_EXTRA_TYPE(pVarRight) ||
3624 V_VT(pVarLeft) > VT_UINT || V_VT(pVarRight) > VT_UINT ||
3625 V_VT(pVarLeft) == VT_VARIANT || V_VT(pVarRight) == VT_VARIANT ||
3626 V_VT(pVarLeft) == VT_UNKNOWN || V_VT(pVarRight) == VT_UNKNOWN ||
3627 V_VT(pVarLeft) == (VARTYPE)15 || V_VT(pVarRight) == (VARTYPE)15 ||
3628 V_VT(pVarLeft) == VT_ERROR || V_VT(pVarRight) == VT_ERROR)
3629 return DISP_E_BADVARTYPE;
3630
3631 if (V_VT(pVarLeft) == VT_NULL || V_VT(pVarRight) == VT_NULL)
3632 {
3633 /* NULL XOR anything valid is NULL */
3634 V_VT(pVarOut) = VT_NULL;
3635 return S_OK;
3636 }
3637
3638 /* Copy our inputs so we don't disturb anything */
3639 V_VT(&varLeft) = V_VT(&varRight) = VT_EMPTY;
3640
3641 hRet = VariantCopy(&varLeft, pVarLeft);
3642 if (FAILED(hRet))
3643 goto VarXor_Exit;
3644
3645 hRet = VariantCopy(&varRight, pVarRight);
3646 if (FAILED(hRet))
3647 goto VarXor_Exit;
3648
3649 /* Try any strings first as numbers, then as VT_BOOL */
3650 if (V_VT(&varLeft) == VT_BSTR)
3651 {
3652 hRet = VarR8FromStr(V_BSTR(&varLeft), LOCALE_USER_DEFAULT, 0, &d);
3653 hRet = VariantChangeType(&varLeft, &varLeft, VARIANT_LOCALBOOL,
3654 FAILED(hRet) ? VT_BOOL : VT_I4);
3655 if (FAILED(hRet))
3656 goto VarXor_Exit;
3657 }
3658
3659 if (V_VT(&varRight) == VT_BSTR)
3660 {
3661 hRet = VarR8FromStr(V_BSTR(&varRight), LOCALE_USER_DEFAULT, 0, &d);
3662 hRet = VariantChangeType(&varRight, &varRight, VARIANT_LOCALBOOL,
3663 FAILED(hRet) ? VT_BOOL : VT_I4);
3664 if (FAILED(hRet))
3665 goto VarXor_Exit;
3666 }
3667
3668 /* Determine the result type */
3669 if (V_VT(&varLeft) == VT_I8 || V_VT(&varRight) == VT_I8)
3670 {
3671 if (V_VT(pVarLeft) == VT_INT || V_VT(pVarRight) == VT_INT)
3672 return DISP_E_TYPEMISMATCH;
3673 vt = VT_I8;
3674 }
3675 else
3676 {
3677 switch ((V_VT(&varLeft) << 16) | V_VT(&varRight))
3678 {
3679 case (VT_BOOL << 16) | VT_BOOL:
3680 vt = VT_BOOL;
3681 break;
3682 case (VT_UI1 << 16) | VT_UI1:
3683 vt = VT_UI1;
3684 break;
3685 case (VT_EMPTY << 16) | VT_EMPTY:
3686 case (VT_EMPTY << 16) | VT_UI1:
3687 case (VT_EMPTY << 16) | VT_I2:
3688 case (VT_EMPTY << 16) | VT_BOOL:
3689 case (VT_UI1 << 16) | VT_EMPTY:
3690 case (VT_UI1 << 16) | VT_I2:
3691 case (VT_UI1 << 16) | VT_BOOL:
3692 case (VT_I2 << 16) | VT_EMPTY:
3693 case (VT_I2 << 16) | VT_UI1:
3694 case (VT_I2 << 16) | VT_I2:
3695 case (VT_I2 << 16) | VT_BOOL:
3696 case (VT_BOOL << 16) | VT_EMPTY:
3697 case (VT_BOOL << 16) | VT_UI1:
3698 case (VT_BOOL << 16) | VT_I2:
3699 vt = VT_I2;
3700 break;
3701 default:
3702 vt = VT_I4;
3703 break;
3704 }
3705 }
3706
3707 /* VT_UI4 does not overflow */
3708 if (vt != VT_I8)
3709 {
3710 if (V_VT(&varLeft) == VT_UI4)
3711 V_VT(&varLeft) = VT_I4;
3712 if (V_VT(&varRight) == VT_UI4)
3713 V_VT(&varRight) = VT_I4;
3714 }
3715
3716 /* Convert our input copies to the result type */
3717 if (V_VT(&varLeft) != vt)
3718 hRet = VariantChangeType(&varLeft, &varLeft, 0, vt);
3719 if (FAILED(hRet))
3720 goto VarXor_Exit;
3721
3722 if (V_VT(&varRight) != vt)
3723 hRet = VariantChangeType(&varRight, &varRight, 0, vt);
3724 if (FAILED(hRet))
3725 goto VarXor_Exit;
3726
3727 V_VT(pVarOut) = vt;
3728
3729 /* Calculate the result */
3730 switch (vt)
3731 {
3732 case VT_I8:
3733 V_I8(pVarOut) = V_I8(&varLeft) ^ V_I8(&varRight);
3734 break;
3735 case VT_I4:
3736 V_I4(pVarOut) = V_I4(&varLeft) ^ V_I4(&varRight);
3737 break;
3738 case VT_BOOL:
3739 case VT_I2:
3740 V_I2(pVarOut) = V_I2(&varLeft) ^ V_I2(&varRight);
3741 break;
3742 case VT_UI1:
3743 V_UI1(pVarOut) = V_UI1(&varLeft) ^ V_UI1(&varRight);
3744 break;
3745 }
3746
3747 VarXor_Exit:
3748 VariantClear(&varLeft);
3749 VariantClear(&varRight);
3750 return hRet;
3751 }
3752
3753 /**********************************************************************
3754 * VarEqv [OLEAUT32.172]
3755 *
3756 * Determine if two variants contain the same value.
3757 *
3758 * PARAMS
3759 * pVarLeft [I] First variant to compare
3760 * pVarRight [I] Variant to compare to pVarLeft
3761 * pVarOut [O] Destination for comparison result
3762 *
3763 * RETURNS
3764 * Success: S_OK. pVarOut contains the result of the comparison (VARIANT_TRUE
3765 * if equivalent or non-zero otherwise.
3766 * Failure: An HRESULT error code indicating the error.
3767 *
3768 * NOTES
3769 * - This function simply calls VarXor() on pVarLeft and pVarRight and inverts
3770 * the result.
3771 */
3772 HRESULT WINAPI VarEqv(LPVARIANT pVarLeft, LPVARIANT pVarRight, LPVARIANT pVarOut)
3773 {
3774 HRESULT hRet;
3775
3776 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", pVarLeft, debugstr_VT(pVarLeft),
3777 debugstr_VF(pVarLeft), pVarRight, debugstr_VT(pVarRight),
3778 debugstr_VF(pVarRight), pVarOut);
3779
3780 hRet = VarXor(pVarLeft, pVarRight, pVarOut);
3781 if (SUCCEEDED(hRet))
3782 {
3783 if (V_VT(pVarOut) == VT_I8)
3784 V_I8(pVarOut) = ~V_I8(pVarOut);
3785 else
3786 V_UI4(pVarOut) = ~V_UI4(pVarOut);
3787 }
3788 return hRet;
3789 }
3790
3791 /**********************************************************************
3792 * VarNeg [OLEAUT32.173]
3793 *
3794 * Negate the value of a variant.
3795 *
3796 * PARAMS
3797 * pVarIn [I] Source variant
3798 * pVarOut [O] Destination for converted value
3799 *
3800 * RETURNS
3801 * Success: S_OK. pVarOut contains the converted value.
3802 * Failure: An HRESULT error code indicating the error.
3803 *
3804 * NOTES
3805 * - The type of the value stored in pVarOut depends on the type of pVarIn,
3806 * according to the following table:
3807 *| Input Type Output Type
3808 *| ---------- -----------
3809 *| VT_EMPTY VT_I2
3810 *| VT_UI1 VT_I2
3811 *| VT_BOOL VT_I2
3812 *| VT_BSTR VT_R8
3813 *| All Others Unchanged (unless promoted)
3814 * - Where the negated value of a variant does not fit in its base type, the type
3815 * is promoted according to the following table:
3816 *| Input Type Promoted To
3817 *| ---------- -----------
3818 *| VT_I2 VT_I4
3819 *| VT_I4 VT_R8
3820 *| VT_I8 VT_R8
3821 * - The native version of this function returns DISP_E_BADVARTYPE for valid
3822 * variant types that cannot be negated, and returns DISP_E_TYPEMISMATCH
3823 * for types which are not valid. Since this is in contravention of the
3824 * meaning of those error codes and unlikely to be relied on by applications,
3825 * this implementation returns errors consistent with the other high level
3826 * variant math functions.
3827 */
3828 HRESULT WINAPI VarNeg(LPVARIANT pVarIn, LPVARIANT pVarOut)
3829 {
3830 HRESULT hRet = S_OK;
3831
3832 TRACE("(%p->(%s%s),%p)\n", pVarIn, debugstr_VT(pVarIn),
3833 debugstr_VF(pVarIn), pVarOut);
3834
3835 V_VT(pVarOut) = V_VT(pVarIn);
3836
3837 switch (V_VT(pVarIn))
3838 {
3839 case VT_UI1:
3840 V_VT(pVarOut) = VT_I2;
3841 V_I2(pVarOut) = -V_UI1(pVarIn);
3842 break;
3843 case VT_BOOL:
3844 V_VT(pVarOut) = VT_I2;
3845 /* Fall through */
3846 case VT_I2:
3847 if (V_I2(pVarIn) == I2_MIN)
3848 {
3849 V_VT(pVarOut) = VT_I4;
3850 V_I4(pVarOut) = -(int)V_I2(pVarIn);
3851 }
3852 else
3853 V_I2(pVarOut) = -V_I2(pVarIn);
3854 break;
3855 case VT_I4:
3856 if (V_I4(pVarIn) == I4_MIN)
3857 {
3858 V_VT(pVarOut) = VT_R8;
3859 V_R8(pVarOut) = -(double)V_I4(pVarIn);
3860 }
3861 else
3862 V_I4(pVarOut) = -V_I4(pVarIn);
3863 break;
3864 case VT_I8:
3865 if (V_I8(pVarIn) == I8_MIN)
3866 {
3867 V_VT(pVarOut) = VT_R8;
3868 hRet = VarR8FromI8(V_I8(pVarIn), &V_R8(pVarOut));
3869 V_R8(pVarOut) *= -1.0;
3870 }
3871 else
3872 V_I8(pVarOut) = -V_I8(pVarIn);
3873 break;
3874 case VT_R4:
3875 V_R4(pVarOut) = -V_R4(pVarIn);
3876 break;
3877 case VT_DATE:
3878 case VT_R8:
3879 V_R8(pVarOut) = -V_R8(pVarIn);
3880 break;
3881 case VT_CY:
3882 hRet = VarCyNeg(V_CY(pVarIn), &V_CY(pVarOut));
3883 break;
3884 case VT_DECIMAL:
3885 hRet = VarDecNeg(&V_DECIMAL(pVarIn), &V_DECIMAL(pVarOut));
3886 break;
3887 case VT_BSTR:
3888 V_VT(pVarOut) = VT_R8;
3889 hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(pVarOut));
3890 V_R8(pVarOut) = -V_R8(pVarOut);
3891 break;
3892 case VT_EMPTY:
3893 V_VT(pVarOut) = VT_I2;
3894 V_I2(pVarOut) = 0;
3895 break;
3896 case VT_NULL:
3897 /* No-Op */
3898 break;
3899 default:
3900 if (V_TYPE(pVarIn) == VT_CLSID || /* VT_CLSID is a special case */
3901 FAILED(VARIANT_ValidateType(V_VT(pVarIn))))
3902 hRet = DISP_E_BADVARTYPE;
3903 else
3904 hRet = DISP_E_TYPEMISMATCH;
3905 }
3906 if (FAILED(hRet))
3907 V_VT(pVarOut) = VT_EMPTY;
3908
3909 return hRet;
3910 }
3911
3912 /**********************************************************************
3913 * VarNot [OLEAUT32.174]
3914 *
3915 * Perform a not operation on a variant.
3916 *
3917 * PARAMS
3918 * pVarIn [I] Source variant
3919 * pVarOut [O] Destination for converted value
3920 *
3921 * RETURNS
3922 * Success: S_OK. pVarOut contains the converted value.
3923 * Failure: An HRESULT error code indicating the error.
3924 *
3925 * NOTES
3926 * - Strictly speaking, this function performs a bitwise ones complement
3927 * on the variants value (after possibly converting to VT_I4, see below).
3928 * This only behaves like a boolean not operation if the value in
3929 * pVarIn is either VARIANT_TRUE or VARIANT_FALSE and the type is signed.
3930 * - To perform a genuine not operation, convert the variant to a VT_BOOL
3931 * before calling this function.
3932 * - This function does not process by-reference variants.
3933 * - The type of the value stored in pVarOut depends on the type of pVarIn,
3934 * according to the following table:
3935 *| Input Type Output Type
3936 *| ---------- -----------
3937 *| VT_EMPTY VT_I2
3938 *| VT_R4 VT_I4
3939 *| VT_R8 VT_I4
3940 *| VT_BSTR VT_I4
3941 *| VT_DECIMAL VT_I4
3942 *| VT_CY VT_I4
3943 *| (All others) Unchanged
3944 */
3945 HRESULT WINAPI VarNot(LPVARIANT pVarIn, LPVARIANT pVarOut)
3946 {
3947 VARIANT varIn;
3948 HRESULT hRet = S_OK;
3949
3950 TRACE("(%p->(%s%s),%p)\n", pVarIn, debugstr_VT(pVarIn),
3951 debugstr_VF(pVarIn), pVarOut);
3952
3953 V_VT(pVarOut) = V_VT(pVarIn);
3954
3955 switch (V_VT(pVarIn))
3956 {
3957 case VT_I1:
3958 V_I4(pVarOut) = ~V_I1(pVarIn);
3959 V_VT(pVarOut) = VT_I4;
3960 break;
3961 case VT_UI1: V_UI1(pVarOut) = ~V_UI1(pVarIn); break;
3962 case VT_BOOL:
3963 case VT_I2: V_I2(pVarOut) = ~V_I2(pVarIn); break;
3964 case VT_UI2:
3965 V_I4(pVarOut) = ~V_UI2(pVarIn);
3966 V_VT(pVarOut) = VT_I4;
3967 break;
3968 case VT_DECIMAL:
3969 hRet = VarI4FromDec(&V_DECIMAL(pVarIn), &V_I4(&varIn));
3970 if (FAILED(hRet))
3971 break;
3972 pVarIn = &varIn;
3973 /* Fall through ... */
3974 case VT_INT:
3975 V_VT(pVarOut) = VT_I4;
3976 /* Fall through ... */
3977 case VT_I4: V_I4(pVarOut) = ~V_I4(pVarIn); break;
3978 case VT_UINT:
3979 case VT_UI4:
3980 V_I4(pVarOut) = ~V_UI4(pVarIn);
3981 V_VT(pVarOut) = VT_I4;
3982 break;
3983 case VT_I8: V_I8(pVarOut) = ~V_I8(pVarIn); break;
3984 case VT_UI8:
3985 V_I4(pVarOut) = ~V_UI8(pVarIn);
3986 V_VT(pVarOut) = VT_I4;
3987 break;
3988 case VT_R4:
3989 hRet = VarI4FromR4(V_R4(pVarIn), &V_I4(pVarOut));
3990 V_I4(pVarOut) = ~V_I4(pVarOut);
3991 V_VT(pVarOut) = VT_I4;
3992 break;
3993 case VT_BSTR:
3994 hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(&varIn));
3995 if (FAILED(hRet))
3996 break;
3997 pVarIn = &varIn;
3998 /* Fall through ... */
3999 case VT_DATE:
4000 case VT_R8:
4001 hRet = VarI4FromR8(V_R8(pVarIn), &V_I4(pVarOut));
4002 V_I4(pVarOut) = ~V_I4(pVarOut);
4003 V_VT(pVarOut) = VT_I4;
4004 break;
4005 case VT_CY:
4006 hRet = VarI4FromCy(V_CY(pVarIn), &V_I4(pVarOut));
4007 V_I4(pVarOut) = ~V_I4(pVarOut);
4008 V_VT(pVarOut) = VT_I4;
4009 break;
4010 case VT_EMPTY:
4011 V_I2(pVarOut) = ~0;
4012 V_VT(pVarOut) = VT_I2;
4013 break;
4014 case VT_NULL:
4015 /* No-Op */
4016 break;
4017 default:
4018 if (V_TYPE(pVarIn) == VT_CLSID || /* VT_CLSID is a special case */
4019 FAILED(VARIANT_ValidateType(V_VT(pVarIn))))
4020 hRet = DISP_E_BADVARTYPE;
4021 else
4022 hRet = DISP_E_TYPEMISMATCH;
4023 }
4024 if (FAILED(hRet))
4025 V_VT(pVarOut) = VT_EMPTY;
4026
4027 return hRet;
4028 }
4029
4030 /**********************************************************************
4031 * VarRound [OLEAUT32.175]
4032 *
4033 * Perform a round operation on a variant.
4034 *
4035 * PARAMS
4036 * pVarIn [I] Source variant
4037 * deci [I] Number of decimals to round to
4038 * pVarOut [O] Destination for converted value
4039 *
4040 * RETURNS
4041 * Success: S_OK. pVarOut contains the converted value.
4042 * Failure: An HRESULT error code indicating the error.
4043 *
4044 * NOTES
4045 * - Floating point values are rounded to the desired number of decimals.
4046 * - Some integer types are just copied to the return variable.
4047 * - Some other integer types are not handled and fail.
4048 */
4049 HRESULT WINAPI VarRound(LPVARIANT pVarIn, int deci, LPVARIANT pVarOut)
4050 {
4051 VARIANT varIn;
4052 HRESULT hRet = S_OK;
4053 float factor;
4054
4055 TRACE("(%p->(%s%s),%d)\n", pVarIn, debugstr_VT(pVarIn), debugstr_VF(pVarIn), deci);
4056
4057 switch (V_VT(pVarIn))
4058 {
4059 /* cases that fail on windows */
4060 case VT_I1:
4061 case VT_I8:
4062 case VT_UI2:
4063 case VT_UI4:
4064 hRet = DISP_E_BADVARTYPE;
4065 break;
4066
4067 /* cases just copying in to out */
4068 case VT_UI1:
4069 V_VT(pVarOut) = V_VT(pVarIn);
4070 V_UI1(pVarOut) = V_UI1(pVarIn);
4071 break;
4072 case VT_I2:
4073 V_VT(pVarOut) = V_VT(pVarIn);
4074 V_I2(pVarOut) = V_I2(pVarIn);
4075 break;
4076 case VT_I4:
4077 V_VT(pVarOut) = V_VT(pVarIn);
4078 V_I4(pVarOut) = V_I4(pVarIn);
4079 break;
4080 case VT_NULL:
4081 V_VT(pVarOut) = V_VT(pVarIn);
4082 /* value unchanged */
4083 break;
4084
4085 /* cases that change type */
4086 case VT_EMPTY:
4087 V_VT(pVarOut) = VT_I2;
4088 V_I2(pVarOut) = 0;
4089 break;
4090 case VT_BOOL:
4091 V_VT(pVarOut) = VT_I2;
4092 V_I2(pVarOut) = V_BOOL(pVarIn);
4093 break;
4094 case VT_BSTR:
4095 hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(&varIn));
4096 if (FAILED(hRet))
4097 break;
4098 V_VT(&varIn)=VT_R8;
4099 pVarIn = &varIn;
4100 /* Fall through ... */
4101
4102 /* cases we need to do math */
4103 case VT_R8:
4104 if (V_R8(pVarIn)>0) {
4105 V_R8(pVarOut)=floor(V_R8(pVarIn)*pow(10, deci)+0.5)/pow(10, deci);
4106 } else {
4107 V_R8(pVarOut)=ceil(V_R8(pVarIn)*pow(10, deci)-0.5)/pow(10, deci);
4108 }
4109 V_VT(pVarOut) = V_VT(pVarIn);
4110 break;
4111 case VT_R4:
4112 if (V_R4(pVarIn)>0) {
4113 V_R4(pVarOut)=floor(V_R4(pVarIn)*pow(10, deci)+0.5)/pow(10, deci);
4114 } else {
4115 V_R4(pVarOut)=ceil(V_R4(pVarIn)*pow(10, deci)-0.5)/pow(10, deci);
4116 }
4117 V_VT(pVarOut) = V_VT(pVarIn);
4118 break;
4119 case VT_DATE:
4120 if (V_DATE(pVarIn)>0) {
4121 V_DATE(pVarOut)=floor(V_DATE(pVarIn)*pow(10, deci)+0.5)/pow(10, deci);
4122 } else {
4123 V_DATE(pVarOut)=ceil(V_DATE(pVarIn)*pow(10, deci)-0.5)/pow(10, deci);
4124 }
4125 V_VT(pVarOut) = V_VT(pVarIn);
4126 break;
4127 case VT_CY:
4128 if (deci>3)
4129 factor=1;
4130 else
4131 factor=pow(10, 4-deci);
4132
4133 if (V_CY(pVarIn).int64>0) {
4134 V_CY(pVarOut).int64=floor(V_CY(pVarIn).int64/factor)*factor;
4135 } else {
4136 V_CY(pVarOut).int64=ceil(V_CY(pVarIn).int64/factor)*factor;
4137 }
4138 V_VT(pVarOut) = V_VT(pVarIn);
4139 break;
4140
4141 /* cases we don't know yet */
4142 default:
4143 FIXME("unimplemented part, V_VT(pVarIn) == 0x%X, deci == %d\n",
4144 V_VT(pVarIn) & VT_TYPEMASK, deci);
4145 hRet = DISP_E_BADVARTYPE;
4146 }
4147
4148 if (FAILED(hRet))
4149 V_VT(pVarOut) = VT_EMPTY;
4150
4151 TRACE("returning 0x%08lx (%s%s),%f\n", hRet, debugstr_VT(pVarOut),
4152 debugstr_VF(pVarOut), (V_VT(pVarOut) == VT_R4) ? V_R4(pVarOut) :
4153 (V_VT(pVarOut) == VT_R8) ? V_R8(pVarOut) : 0);
4154
4155 return hRet;
4156 }
4157
4158
4159 /**********************************************************************
4160 * VarMod [OLEAUT32.154]
4161 *
4162 * Perform the modulus operation of the right hand variant on the left
4163 *
4164 * PARAMS
4165 * left [I] Left hand variant
4166 * right [I] Right hand variant
4167 * result [O] Destination for converted value
4168 *
4169 * RETURNS
4170 * Success: S_OK. result contains the remainder.
4171 * Failure: An HRESULT error code indicating the error.
4172 *
4173 * NOTE:
4174 * If an error occurs the type of result will be modified but the value will not be.
4175 * Doesn't support arrays or any special flags yet.
4176 */
4177 HRESULT WINAPI VarMod(LPVARIANT left, LPVARIANT right, LPVARIANT result)
4178 {
4179 BOOL lOk = TRUE;
4180 BOOL rOk = TRUE;
4181 HRESULT rc = E_FAIL;
4182 int resT = 0;
4183 VARIANT lv,rv;
4184
4185 VariantInit(&lv);
4186 VariantInit(&rv);
4187
4188 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left, debugstr_VT(left),
4189 debugstr_VF(left), right, debugstr_VT(right), debugstr_VF(right), result);
4190
4191 /* check for invalid inputs */
4192 lOk = TRUE;
4193 switch (V_VT(left) & VT_TYPEMASK) {
4194 case VT_BOOL :
4195 case VT_I1 :
4196 case VT_I2 :
4197 case VT_I4 :
4198 case VT_I8 :
4199 case VT_INT :
4200 case VT_UI1 :
4201 case VT_UI2 :
4202 case VT_UI4 :
4203 case VT_UI8 :
4204 case VT_UINT :
4205 case VT_R4 :
4206 case VT_R8 :
4207 case VT_CY :
4208 case VT_EMPTY:
4209 case VT_DATE :
4210 case VT_BSTR :
4211 break;
4212 case VT_VARIANT:
4213 case VT_UNKNOWN:
4214 V_VT(result) = VT_EMPTY;
4215 return DISP_E_TYPEMISMATCH;
4216 case VT_DECIMAL:
4217 V_VT(result) = VT_EMPTY;
4218 return E_INVALIDARG;
4219 case VT_ERROR:
4220 return DISP_E_TYPEMISMATCH;
4221 case VT_RECORD:
4222 V_VT(result) = VT_EMPTY;
4223 return DISP_E_TYPEMISMATCH;
4224 case VT_NULL:
4225 break;
4226 default:
4227 V_VT(result) = VT_EMPTY;
4228 return DISP_E_BADVARTYPE;
4229 }
4230
4231
4232 rOk = TRUE;
4233 switch (V_VT(right) & VT_TYPEMASK) {
4234 case VT_BOOL :
4235 case VT_I1 :
4236 case VT_I2 :
4237 case VT_I4 :
4238 case VT_I8 :
4239 if((V_VT(left) == VT_INT) && (V_VT(right) == VT_I8))
4240 {
4241 V_VT(result) = VT_EMPTY;
4242 return DISP_E_TYPEMISMATCH;
4243 }
4244 case VT_INT :
4245 if((V_VT(right) == VT_INT) && (V_VT(left) == VT_I8))
4246 {
4247 V_VT(result) = VT_EMPTY;
4248 return DISP_E_TYPEMISMATCH;
4249 }
4250 case VT_UI1 :
4251 case VT_UI2 :
4252 case VT_UI4 :
4253 case VT_UI8 :
4254 case VT_UINT :
4255 case VT_R4 :
4256 case VT_R8 :
4257 case VT_CY :
4258 if(V_VT(left) == VT_EMPTY)
4259 {
4260 V_VT(result) = VT_I4;
4261 return S_OK;
4262 }
4263 case VT_EMPTY:
4264 case VT_DATE :
4265 case VT_BSTR:
4266 if(V_VT(left) == VT_NULL)
4267 {
4268 V_VT(result) = VT_NULL;
4269 return S_OK;
4270 }
4271 break;
4272
4273 case VT_VOID:
4274 V_VT(result) = VT_EMPTY;
4275 return DISP_E_BADVARTYPE;
4276 case VT_NULL:
4277 if(V_VT(left) == VT_VOID)
4278 {
4279 V_VT(result) = VT_EMPTY;
4280 return DISP_E_BADVARTYPE;
4281 } else if((V_VT(left) == VT_NULL) || (V_VT(left) == VT_EMPTY) || (V_VT(left) == VT_ERROR) ||
4282 lOk)
4283 {
4284 V_VT(result) = VT_NULL;
4285 return S_OK;
4286 } else
4287 {
4288 V_VT(result) = VT_NULL;
4289 return DISP_E_BADVARTYPE;
4290 }
4291 case VT_VARIANT:
4292 case VT_UNKNOWN:
4293 V_VT(result) = VT_EMPTY;
4294 return DISP_E_TYPEMISMATCH;
4295 case VT_DECIMAL:
4296 if(V_VT(left) == VT_ERROR)
4297 {
4298 V_VT(result) = VT_EMPTY;
4299 return DISP_E_TYPEMISMATCH;
4300 } else
4301 {
4302 V_VT(result) = VT_EMPTY;
4303 return E_INVALIDARG;
4304 }
4305 case VT_ERROR:
4306 return DISP_E_TYPEMISMATCH;
4307 case VT_RECORD:
4308 if((V_VT(left) == 15) || ((V_VT(left) >= 24) && (V_VT(left) <= 35)) || !lOk)
4309 {
4310 V_VT(result) = VT_EMPTY;
4311 return DISP_E_BADVARTYPE;
4312 } else
4313 {
4314 V_VT(result) = VT_EMPTY;
4315 return DISP_E_TYPEMISMATCH;
4316 }
4317 default:
4318 V_VT(result) = VT_EMPTY;
4319 return DISP_E_BADVARTYPE;
4320 }
4321
4322 /* determine the result type */
4323 if((V_VT(left) == VT_I8) || (V_VT(right) == VT_I8)) resT = VT_I8;
4324 else if((V_VT(left) == VT_UI1) && (V_VT(right) == VT_BOOL)) resT = VT_I2;
4325 else if((V_VT(left) == VT_UI1) && (V_VT(right) == VT_UI1)) resT = VT_UI1;
4326 else if((V_VT(left) == VT_UI1) && (V_VT(right) == VT_I2)) resT = VT_I2;
4327 else if((V_VT(left) == VT_I2) && (V_VT(right) == VT_BOOL)) resT = VT_I2;
4328 else if((V_VT(left) == VT_I2) && (V_VT(right) == VT_UI1)) resT = VT_I2;
4329 else if((V_VT(left) == VT_I2) && (V_VT(right) == VT_I2)) resT = VT_I2;
4330 else if((V_VT(left) == VT_BOOL) && (V_VT(right) == VT_BOOL)) resT = VT_I2;
4331 else if((V_VT(left) == VT_BOOL) && (V_VT(right) == VT_UI1)) resT = VT_I2;
4332 else if((V_VT(left) == VT_BOOL) && (V_VT(right) == VT_I2)) resT = VT_I2;
4333 else resT = VT_I4; /* most outputs are I4 */
4334
4335 /* convert to I8 for the modulo */
4336 rc = VariantChangeType(&lv, left, 0, VT_I8);
4337 if(FAILED(rc))
4338 {
4339 FIXME("Could not convert left type %d to %d? rc == 0x%lX\n", V_VT(left), VT_I8, rc);
4340 return rc;
4341 }
4342
4343 rc = VariantChangeType(&rv, right, 0, VT_I8);
4344 if(FAILED(rc))
4345 {
4346 FIXME("Could not convert right type %d to %d? rc == 0x%lX\n", V_VT(right), VT_I8, rc);
4347 return rc;
4348 }
4349
4350 /* if right is zero set VT_EMPTY and return divide by zero */
4351 if(V_I8(&rv) == 0)
4352 {
4353 V_VT(result) = VT_EMPTY;
4354 return DISP_E_DIVBYZERO;
4355 }
4356
4357 /* perform the modulo operation */
4358 V_VT(result) = VT_I8;
4359 V_I8(result) = V_I8(&lv) % V_I8(&rv);
4360
4361 TRACE("V_I8(left) == %ld, V_I8(right) == %ld, V_I8(result) == %ld\n", (long)V_I8(&lv), (long)V_I8(&rv), (long)V_I8(result));
4362
4363 /* convert left and right to the destination type */
4364 rc = VariantChangeType(result, result, 0, resT);
4365 if(FAILED(rc))
4366 {
4367 FIXME("Could not convert 0x%x to %d?\n", V_VT(result), resT);
4368 return rc;
4369 }
4370
4371 return S_OK;
4372 }
4373
4374 /**********************************************************************
4375 * VarPow [OLEAUT32.158]
4376 *
4377 */
4378 HRESULT WINAPI VarPow(LPVARIANT left, LPVARIANT right, LPVARIANT result)
4379 {
4380 HRESULT hr;
4381 VARIANT dl,dr;
4382
4383 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left, debugstr_VT(left), debugstr_VF(left),
4384 right, debugstr_VT(right), debugstr_VF(right), result);
4385
4386 hr = VariantChangeType(&dl,left,0,VT_R8);
4387 if (!SUCCEEDED(hr)) {
4388 ERR("Could not change passed left argument to VT_R8, handle it differently.\n");
4389 return E_FAIL;
4390 }
4391 hr = VariantChangeType(&dr,right,0,VT_R8);
4392 if (!SUCCEEDED(hr)) {
4393 ERR("Could not change passed right argument to VT_R8, handle it differently.\n");
4394 return E_FAIL;
4395 }
4396 V_VT(result) = VT_R8;
4397 V_R8(result) = pow(V_R8(&dl),V_R8(&dr));
4398 return S_OK;
4399 }