2 * COPYRIGHT: See COPYING in the top level directory
3 * PROJECT: ReactOS kernel
4 * PURPOSE: Run-Time Library
5 * FILE: lib/rtl/i386/allrem.S
6 * PROGRAMER: Alex Ionescu (alex@relsoft.net)
7 * Eric Kohl (ekohl@rz-online.de)
9 * Copyright (C) 2002 Michael Ringgaard.
10 * All rights reserved.
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 * 3. Neither the name of the project nor the names of its contributors
22 * may be used to endorse or promote products derived from this software
23 * without specific prior written permission.
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES// LOSS OF USE, DATA, OR PROFITS// OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40 /* DATA ********************************************************************/
43 .long 0 // Floating point zero
44 .long 0 // Floating point zero
49 .intel_syntax noprefix
51 /* FUNCTIONS ***************************************************************/
54 // llrem - signed long remainder
57 // Does a signed long remainder of the arguments. Arguments are
61 // Arguments are passed on the stack:
62 // 1st pushed: divisor (QWORD)
63 // 2nd pushed: dividend (QWORD)
66 // EDX:EAX contains the remainder (dividend%divisor)
67 // NOTE: this routine removes the parameters from the stack.
78 // Set up the local stack and save the index registers. When this is done
79 // the stack frame will look as follows (assuming that the expression a%b will
80 // generate a call to lrem(a, b)):
105 #define DVNDLO [esp + 12] // stack address of dividend (a)
106 #define DVNDHI [esp + 16] // stack address of dividend (a)
107 #define DVSRLO [esp + 20] // stack address of divisor (b)
108 #define DVSRHI [esp + 24] // stack address of divisor (b)
110 // Determine sign of the result (edi = 0 if result is positive, non-zero
111 // otherwise) and make operands positive.
113 xor edi,edi // result sign assumed positive
115 mov eax,DVNDHI // hi word of a
116 or eax,eax // test to see if signed
117 jge short .L1 // skip rest if a is already positive
118 inc edi // complement result sign flag bit
119 mov edx,DVNDLO // lo word of a
120 neg eax // make a positive
123 mov DVNDHI,eax // save positive value
126 mov eax,DVSRHI // hi word of b
127 or eax,eax // test to see if signed
128 jge short .L2 // skip rest if b is already positive
129 mov edx,DVSRLO // lo word of b
130 neg eax // make b positive
133 mov DVSRHI,eax // save positive value
138 // Now do the divide. First look to see if the divisor is less than 4194304K.
139 // If so, then we can use a simple algorithm with word divides, otherwise
140 // things get a little more complex.
142 // NOTE - eax currently contains the high order word of DVSR
145 or eax,eax // check to see if divisor < 4194304K
146 jnz short .L3 // nope, gotta do this the hard way
147 mov ecx,DVSRLO // load divisor
148 mov eax,DVNDHI // load high word of dividend
150 div ecx // edx <- remainder
151 mov eax,DVNDLO // edx:eax <- remainder:lo word of dividend
152 div ecx // edx <- final remainder
153 mov eax,edx // edx:eax <- remainder
155 dec edi // check result sign flag
156 jns short .L4 // negate result, restore stack and return
157 jmp short .L8 // result sign ok, restore stack and return
160 // Here we do it the hard way. Remember, eax contains the high word of DVSR
164 mov ebx,eax // ebx:ecx <- divisor
166 mov edx,DVNDHI // edx:eax <- dividend
169 shr ebx,1 // shift divisor right one bit
171 shr edx,1 // shift dividend right one bit
174 jnz short .L5 // loop until divisor < 4194304K
175 div ecx // now divide, ignore remainder
178 // We may be off by one, so to check, we will multiply the quotient
179 // by the divisor and check the result against the orignal dividend
180 // Note that we must also check for overflow, which can occur if the
181 // dividend is close to 2**64 and the quotient is off by 1.
184 mov ecx,eax // save a copy of quotient in ECX
186 xchg ecx,eax // save product, get quotient in EAX
188 add edx,ecx // EDX:EAX = QUOT * DVSR
189 jc short .L6 // carry means Quotient is off by 1
192 // do long compare here between original dividend and the result of the
193 // multiply in edx:eax. If original is larger or equal, we are ok, otherwise
194 // subtract the original divisor from the result.
197 cmp edx,DVNDHI // compare hi words of result and original
198 ja short .L6 // if result > original, do subtract
199 jb short .L7 // if result < original, we are ok
200 cmp eax,DVNDLO // hi words are equal, compare lo words
201 jbe short .L7 // if less or equal we are ok, else subtract
203 sub eax,DVSRLO // subtract divisor from result
208 // Calculate remainder by subtracting the result from the original dividend.
209 // Since the result is already in a register, we will do the subtract in the
210 // opposite direction and negate the result if necessary.
213 sub eax,DVNDLO // subtract dividend from result
217 // Now check the result sign flag to see if the result is supposed to be positive
218 // or negative. It is currently negated (because we subtracted in the 'wrong'
219 // direction), so if the sign flag is set we are done, otherwise we must negate
220 // the result to make it positive again.
223 dec edi // check result sign flag
224 jns short .L8 // result is ok, restore stack and return
226 neg edx // otherwise, negate the result
231 // Just the cleanup left to do. edx:eax contains the quotient.
232 // Restore the saved registers and return.