- support of [Strings.LanguageID]-sections for inf-files added in setupapi
[reactos.git] / reactos / nls / 3rdparty / icu / source / common / uhash.c
1 /*
2 ******************************************************************************
3 * Copyright (C) 1997-2006, International Business Machines
4 * Corporation and others. All Rights Reserved.
5 ******************************************************************************
6 * Date Name Description
7 * 03/22/00 aliu Adapted from original C++ ICU Hashtable.
8 * 07/06/01 aliu Modified to support int32_t keys on
9 * platforms with sizeof(void*) < 32.
10 ******************************************************************************
11 */
12
13 #include "uhash.h"
14 #include "unicode/ustring.h"
15 #include "cstring.h"
16 #include "cmemory.h"
17 #include "uassert.h"
18
19 /* This hashtable is implemented as a double hash. All elements are
20 * stored in a single array with no secondary storage for collision
21 * resolution (no linked list, etc.). When there is a hash collision
22 * (when two unequal keys have the same hashcode) we resolve this by
23 * using a secondary hash. The secondary hash is an increment
24 * computed as a hash function (a different one) of the primary
25 * hashcode. This increment is added to the initial hash value to
26 * obtain further slots assigned to the same hash code. For this to
27 * work, the length of the array and the increment must be relatively
28 * prime. The easiest way to achieve this is to have the length of
29 * the array be prime, and the increment be any value from
30 * 1..length-1.
31 *
32 * Hashcodes are 32-bit integers. We make sure all hashcodes are
33 * non-negative by masking off the top bit. This has two effects: (1)
34 * modulo arithmetic is simplified. If we allowed negative hashcodes,
35 * then when we computed hashcode % length, we could get a negative
36 * result, which we would then have to adjust back into range. It's
37 * simpler to just make hashcodes non-negative. (2) It makes it easy
38 * to check for empty vs. occupied slots in the table. We just mark
39 * empty or deleted slots with a negative hashcode.
40 *
41 * The central function is _uhash_find(). This function looks for a
42 * slot matching the given key and hashcode. If one is found, it
43 * returns a pointer to that slot. If the table is full, and no match
44 * is found, it returns NULL -- in theory. This would make the code
45 * more complicated, since all callers of _uhash_find() would then
46 * have to check for a NULL result. To keep this from happening, we
47 * don't allow the table to fill. When there is only one
48 * empty/deleted slot left, uhash_put() will refuse to increase the
49 * count, and fail. This simplifies the code. In practice, one will
50 * seldom encounter this using default UHashtables. However, if a
51 * hashtable is set to a U_FIXED resize policy, or if memory is
52 * exhausted, then the table may fill.
53 *
54 * High and low water ratios control rehashing. They establish levels
55 * of fullness (from 0 to 1) outside of which the data array is
56 * reallocated and repopulated. Setting the low water ratio to zero
57 * means the table will never shrink. Setting the high water ratio to
58 * one means the table will never grow. The ratios should be
59 * coordinated with the ratio between successive elements of the
60 * PRIMES table, so that when the primeIndex is incremented or
61 * decremented during rehashing, it brings the ratio of count / length
62 * back into the desired range (between low and high water ratios).
63 */
64
65 /********************************************************************
66 * PRIVATE Constants, Macros
67 ********************************************************************/
68
69 /* This is a list of non-consecutive primes chosen such that
70 * PRIMES[i+1] ~ 2*PRIMES[i]. (Currently, the ratio ranges from 1.81
71 * to 2.18; the inverse ratio ranges from 0.459 to 0.552.) If this
72 * ratio is changed, the low and high water ratios should also be
73 * adjusted to suit.
74 *
75 * These prime numbers were also chosen so that they are the largest
76 * prime number while being less than a power of two.
77 */
78 static const int32_t PRIMES[] = {
79 13, 31, 61, 127, 251, 509, 1021, 2039, 4093, 8191, 16381, 32749,
80 65521, 131071, 262139, 524287, 1048573, 2097143, 4194301, 8388593,
81 16777213, 33554393, 67108859, 134217689, 268435399, 536870909,
82 1073741789, 2147483647 /*, 4294967291 */
83 };
84
85 #define PRIMES_LENGTH (sizeof(PRIMES) / sizeof(PRIMES[0]))
86 #define DEFAULT_PRIME_INDEX 3
87
88 /* These ratios are tuned to the PRIMES array such that a resize
89 * places the table back into the zone of non-resizing. That is,
90 * after a call to _uhash_rehash(), a subsequent call to
91 * _uhash_rehash() should do nothing (should not churn). This is only
92 * a potential problem with U_GROW_AND_SHRINK.
93 */
94 static const float RESIZE_POLICY_RATIO_TABLE[6] = {
95 /* low, high water ratio */
96 0.0F, 0.5F, /* U_GROW: Grow on demand, do not shrink */
97 0.1F, 0.5F, /* U_GROW_AND_SHRINK: Grow and shrink on demand */
98 0.0F, 1.0F /* U_FIXED: Never change size */
99 };
100
101 /*
102 Invariants for hashcode values:
103
104 * DELETED < 0
105 * EMPTY < 0
106 * Real hashes >= 0
107
108 Hashcodes may not start out this way, but internally they are
109 adjusted so that they are always positive. We assume 32-bit
110 hashcodes; adjust these constants for other hashcode sizes.
111 */
112 #define HASH_DELETED ((int32_t) 0x80000000)
113 #define HASH_EMPTY ((int32_t) HASH_DELETED + 1)
114
115 #define IS_EMPTY_OR_DELETED(x) ((x) < 0)
116
117 /* This macro expects a UHashTok.pointer as its keypointer and
118 valuepointer parameters */
119 #define HASH_DELETE_KEY_VALUE(hash, keypointer, valuepointer) \
120 if (hash->keyDeleter != NULL && keypointer != NULL) { \
121 (*hash->keyDeleter)(keypointer); \
122 } \
123 if (hash->valueDeleter != NULL && valuepointer != NULL) { \
124 (*hash->valueDeleter)(valuepointer); \
125 }
126
127 /*
128 * Constants for hinting whether a key or value is an integer
129 * or a pointer. If a hint bit is zero, then the associated
130 * token is assumed to be an integer.
131 */
132 #define HINT_KEY_POINTER (1)
133 #define HINT_VALUE_POINTER (2)
134
135 /********************************************************************
136 * PRIVATE Implementation
137 ********************************************************************/
138
139 static UHashTok
140 _uhash_setElement(UHashtable *hash, UHashElement* e,
141 int32_t hashcode,
142 UHashTok key, UHashTok value, int8_t hint) {
143
144 UHashTok oldValue = e->value;
145 if (hash->keyDeleter != NULL && e->key.pointer != NULL &&
146 e->key.pointer != key.pointer) { /* Avoid double deletion */
147 (*hash->keyDeleter)(e->key.pointer);
148 }
149 if (hash->valueDeleter != NULL) {
150 if (oldValue.pointer != NULL &&
151 oldValue.pointer != value.pointer) { /* Avoid double deletion */
152 (*hash->valueDeleter)(oldValue.pointer);
153 }
154 oldValue.pointer = NULL;
155 }
156 /* Compilers should copy the UHashTok union correctly, but even if
157 * they do, memory heap tools (e.g. BoundsChecker) can get
158 * confused when a pointer is cloaked in a union and then copied.
159 * TO ALLEVIATE THIS, we use hints (based on what API the user is
160 * calling) to copy pointers when we know the user thinks
161 * something is a pointer. */
162 if (hint & HINT_KEY_POINTER) {
163 e->key.pointer = key.pointer;
164 } else {
165 e->key = key;
166 }
167 if (hint & HINT_VALUE_POINTER) {
168 e->value.pointer = value.pointer;
169 } else {
170 e->value = value;
171 }
172 e->hashcode = hashcode;
173 return oldValue;
174 }
175
176 /**
177 * Assumes that the given element is not empty or deleted.
178 */
179 static UHashTok
180 _uhash_internalRemoveElement(UHashtable *hash, UHashElement* e) {
181 UHashTok empty;
182 U_ASSERT(!IS_EMPTY_OR_DELETED(e->hashcode));
183 --hash->count;
184 empty.pointer = NULL; empty.integer = 0;
185 return _uhash_setElement(hash, e, HASH_DELETED, empty, empty, 0);
186 }
187
188 static void
189 _uhash_internalSetResizePolicy(UHashtable *hash, enum UHashResizePolicy policy) {
190 U_ASSERT(hash != NULL);
191 U_ASSERT(((int32_t)policy) >= 0);
192 U_ASSERT(((int32_t)policy) < 3);
193 hash->lowWaterRatio = RESIZE_POLICY_RATIO_TABLE[policy * 2];
194 hash->highWaterRatio = RESIZE_POLICY_RATIO_TABLE[policy * 2 + 1];
195 }
196
197 /**
198 * Allocate internal data array of a size determined by the given
199 * prime index. If the index is out of range it is pinned into range.
200 * If the allocation fails the status is set to
201 * U_MEMORY_ALLOCATION_ERROR and all array storage is freed. In
202 * either case the previous array pointer is overwritten.
203 *
204 * Caller must ensure primeIndex is in range 0..PRIME_LENGTH-1.
205 */
206 static void
207 _uhash_allocate(UHashtable *hash,
208 int32_t primeIndex,
209 UErrorCode *status) {
210
211 UHashElement *p, *limit;
212 UHashTok emptytok;
213
214 if (U_FAILURE(*status)) return;
215
216 U_ASSERT(primeIndex >= 0 && primeIndex < PRIMES_LENGTH);
217
218 hash->primeIndex = primeIndex;
219 hash->length = PRIMES[primeIndex];
220
221 p = hash->elements = (UHashElement*)
222 uprv_malloc(sizeof(UHashElement) * hash->length);
223
224 if (hash->elements == NULL) {
225 *status = U_MEMORY_ALLOCATION_ERROR;
226 return;
227 }
228
229 emptytok.pointer = NULL; /* Only one of these two is needed */
230 emptytok.integer = 0; /* but we don't know which one. */
231
232 limit = p + hash->length;
233 while (p < limit) {
234 p->key = emptytok;
235 p->value = emptytok;
236 p->hashcode = HASH_EMPTY;
237 ++p;
238 }
239
240 hash->count = 0;
241 hash->lowWaterMark = (int32_t)(hash->length * hash->lowWaterRatio);
242 hash->highWaterMark = (int32_t)(hash->length * hash->highWaterRatio);
243 }
244
245 static UHashtable*
246 _uhash_init(UHashtable *result,
247 UHashFunction *keyHash,
248 UKeyComparator *keyComp,
249 UValueComparator *valueComp,
250 int32_t primeIndex,
251 UErrorCode *status)
252 {
253 if (U_FAILURE(*status)) return NULL;
254 U_ASSERT(keyHash != NULL);
255 U_ASSERT(keyComp != NULL);
256
257 result->keyHasher = keyHash;
258 result->keyComparator = keyComp;
259 result->valueComparator = valueComp;
260 result->keyDeleter = NULL;
261 result->valueDeleter = NULL;
262 result->allocated = FALSE;
263 _uhash_internalSetResizePolicy(result, U_GROW);
264
265 _uhash_allocate(result, primeIndex, status);
266
267 if (U_FAILURE(*status)) {
268 return NULL;
269 }
270
271 return result;
272 }
273
274 static UHashtable*
275 _uhash_create(UHashFunction *keyHash,
276 UKeyComparator *keyComp,
277 UValueComparator *valueComp,
278 int32_t primeIndex,
279 UErrorCode *status) {
280 UHashtable *result;
281
282 if (U_FAILURE(*status)) return NULL;
283
284 result = (UHashtable*) uprv_malloc(sizeof(UHashtable));
285 if (result == NULL) {
286 *status = U_MEMORY_ALLOCATION_ERROR;
287 return NULL;
288 }
289
290 _uhash_init(result, keyHash, keyComp, valueComp, primeIndex, status);
291 result->allocated = TRUE;
292
293 if (U_FAILURE(*status)) {
294 uprv_free(result);
295 return NULL;
296 }
297
298 return result;
299 }
300
301 /**
302 * Look for a key in the table, or if no such key exists, the first
303 * empty slot matching the given hashcode. Keys are compared using
304 * the keyComparator function.
305 *
306 * First find the start position, which is the hashcode modulo
307 * the length. Test it to see if it is:
308 *
309 * a. identical: First check the hash values for a quick check,
310 * then compare keys for equality using keyComparator.
311 * b. deleted
312 * c. empty
313 *
314 * Stop if it is identical or empty, otherwise continue by adding a
315 * "jump" value (moduloing by the length again to keep it within
316 * range) and retesting. For efficiency, there need enough empty
317 * values so that the searchs stop within a reasonable amount of time.
318 * This can be changed by changing the high/low water marks.
319 *
320 * In theory, this function can return NULL, if it is full (no empty
321 * or deleted slots) and if no matching key is found. In practice, we
322 * prevent this elsewhere (in uhash_put) by making sure the last slot
323 * in the table is never filled.
324 *
325 * The size of the table should be prime for this algorithm to work;
326 * otherwise we are not guaranteed that the jump value (the secondary
327 * hash) is relatively prime to the table length.
328 */
329 static UHashElement*
330 _uhash_find(const UHashtable *hash, UHashTok key,
331 int32_t hashcode) {
332
333 int32_t firstDeleted = -1; /* assume invalid index */
334 int32_t theIndex, startIndex;
335 int32_t jump = 0; /* lazy evaluate */
336 int32_t tableHash;
337 UHashElement *elements = hash->elements;
338
339 hashcode &= 0x7FFFFFFF; /* must be positive */
340 startIndex = theIndex = (hashcode ^ 0x4000000) % hash->length;
341
342 do {
343 tableHash = elements[theIndex].hashcode;
344 if (tableHash == hashcode) { /* quick check */
345 if ((*hash->keyComparator)(key, elements[theIndex].key)) {
346 return &(elements[theIndex]);
347 }
348 } else if (!IS_EMPTY_OR_DELETED(tableHash)) {
349 /* We have hit a slot which contains a key-value pair,
350 * but for which the hash code does not match. Keep
351 * looking.
352 */
353 } else if (tableHash == HASH_EMPTY) { /* empty, end o' the line */
354 break;
355 } else if (firstDeleted < 0) { /* remember first deleted */
356 firstDeleted = theIndex;
357 }
358 if (jump == 0) { /* lazy compute jump */
359 /* The jump value must be relatively prime to the table
360 * length. As long as the length is prime, then any value
361 * 1..length-1 will be relatively prime to it.
362 */
363 jump = (hashcode % (hash->length - 1)) + 1;
364 }
365 theIndex = (theIndex + jump) % hash->length;
366 } while (theIndex != startIndex);
367
368 if (firstDeleted >= 0) {
369 theIndex = firstDeleted; /* reset if had deleted slot */
370 } else if (tableHash != HASH_EMPTY) {
371 /* We get to this point if the hashtable is full (no empty or
372 * deleted slots), and we've failed to find a match. THIS
373 * WILL NEVER HAPPEN as long as uhash_put() makes sure that
374 * count is always < length.
375 */
376 U_ASSERT(FALSE);
377 return NULL; /* Never happens if uhash_put() behaves */
378 }
379 return &(elements[theIndex]);
380 }
381
382 /**
383 * Attempt to grow or shrink the data arrays in order to make the
384 * count fit between the high and low water marks. hash_put() and
385 * hash_remove() call this method when the count exceeds the high or
386 * low water marks. This method may do nothing, if memory allocation
387 * fails, or if the count is already in range, or if the length is
388 * already at the low or high limit. In any case, upon return the
389 * arrays will be valid.
390 */
391 static void
392 _uhash_rehash(UHashtable *hash) {
393
394 UHashElement *old = hash->elements;
395 int32_t oldLength = hash->length;
396 int32_t newPrimeIndex = hash->primeIndex;
397 int32_t i;
398 UErrorCode status = U_ZERO_ERROR;
399
400 if (hash->count > hash->highWaterMark) {
401 if (++newPrimeIndex >= PRIMES_LENGTH) {
402 return;
403 }
404 } else if (hash->count < hash->lowWaterMark) {
405 if (--newPrimeIndex < 0) {
406 return;
407 }
408 } else {
409 return;
410 }
411
412 _uhash_allocate(hash, newPrimeIndex, &status);
413
414 if (U_FAILURE(status)) {
415 hash->elements = old;
416 hash->length = oldLength;
417 return;
418 }
419
420 for (i = oldLength - 1; i >= 0; --i) {
421 if (!IS_EMPTY_OR_DELETED(old[i].hashcode)) {
422 UHashElement *e = _uhash_find(hash, old[i].key, old[i].hashcode);
423 U_ASSERT(e != NULL);
424 U_ASSERT(e->hashcode == HASH_EMPTY);
425 e->key = old[i].key;
426 e->value = old[i].value;
427 e->hashcode = old[i].hashcode;
428 ++hash->count;
429 }
430 }
431
432 uprv_free(old);
433 }
434
435 static UHashTok
436 _uhash_remove(UHashtable *hash,
437 UHashTok key) {
438 /* First find the position of the key in the table. If the object
439 * has not been removed already, remove it. If the user wanted
440 * keys deleted, then delete it also. We have to put a special
441 * hashcode in that position that means that something has been
442 * deleted, since when we do a find, we have to continue PAST any
443 * deleted values.
444 */
445 UHashTok result;
446 UHashElement* e = _uhash_find(hash, key, hash->keyHasher(key));
447 U_ASSERT(e != NULL);
448 result.pointer = NULL; result.integer = 0;
449 if (!IS_EMPTY_OR_DELETED(e->hashcode)) {
450 result = _uhash_internalRemoveElement(hash, e);
451 if (hash->count < hash->lowWaterMark) {
452 _uhash_rehash(hash);
453 }
454 }
455 return result;
456 }
457
458 static UHashTok
459 _uhash_put(UHashtable *hash,
460 UHashTok key,
461 UHashTok value,
462 int8_t hint,
463 UErrorCode *status) {
464
465 /* Put finds the position in the table for the new value. If the
466 * key is already in the table, it is deleted, if there is a
467 * non-NULL keyDeleter. Then the key, the hash and the value are
468 * all put at the position in their respective arrays.
469 */
470 int32_t hashcode;
471 UHashElement* e;
472 UHashTok emptytok;
473
474 if (U_FAILURE(*status)) {
475 goto err;
476 }
477 U_ASSERT(hash != NULL);
478 /* Cannot always check pointer here or iSeries sees NULL every time. */
479 if ((hint & HINT_VALUE_POINTER) && value.pointer == NULL) {
480 /* Disallow storage of NULL values, since NULL is returned by
481 * get() to indicate an absent key. Storing NULL == removing.
482 */
483 return _uhash_remove(hash, key);
484 }
485 if (hash->count > hash->highWaterMark) {
486 _uhash_rehash(hash);
487 }
488
489 hashcode = (*hash->keyHasher)(key);
490 e = _uhash_find(hash, key, hashcode);
491 U_ASSERT(e != NULL);
492
493 if (IS_EMPTY_OR_DELETED(e->hashcode)) {
494 /* Important: We must never actually fill the table up. If we
495 * do so, then _uhash_find() will return NULL, and we'll have
496 * to check for NULL after every call to _uhash_find(). To
497 * avoid this we make sure there is always at least one empty
498 * or deleted slot in the table. This only is a problem if we
499 * are out of memory and rehash isn't working.
500 */
501 ++hash->count;
502 if (hash->count == hash->length) {
503 /* Don't allow count to reach length */
504 --hash->count;
505 *status = U_MEMORY_ALLOCATION_ERROR;
506 goto err;
507 }
508 }
509
510 /* We must in all cases handle storage properly. If there was an
511 * old key, then it must be deleted (if the deleter != NULL).
512 * Make hashcodes stored in table positive.
513 */
514 return _uhash_setElement(hash, e, hashcode & 0x7FFFFFFF, key, value, hint);
515
516 err:
517 /* If the deleters are non-NULL, this method adopts its key and/or
518 * value arguments, and we must be sure to delete the key and/or
519 * value in all cases, even upon failure.
520 */
521 HASH_DELETE_KEY_VALUE(hash, key.pointer, value.pointer);
522 emptytok.pointer = NULL; emptytok.integer = 0;
523 return emptytok;
524 }
525
526
527 /********************************************************************
528 * PUBLIC API
529 ********************************************************************/
530
531 U_CAPI UHashtable* U_EXPORT2
532 uhash_open(UHashFunction *keyHash,
533 UKeyComparator *keyComp,
534 UValueComparator *valueComp,
535 UErrorCode *status) {
536
537 return _uhash_create(keyHash, keyComp, valueComp, DEFAULT_PRIME_INDEX, status);
538 }
539
540 U_CAPI UHashtable* U_EXPORT2
541 uhash_openSize(UHashFunction *keyHash,
542 UKeyComparator *keyComp,
543 UValueComparator *valueComp,
544 int32_t size,
545 UErrorCode *status) {
546
547 /* Find the smallest index i for which PRIMES[i] >= size. */
548 int32_t i = 0;
549 while (i<(PRIMES_LENGTH-1) && PRIMES[i]<size) {
550 ++i;
551 }
552
553 return _uhash_create(keyHash, keyComp, valueComp, i, status);
554 }
555
556 U_CAPI UHashtable* U_EXPORT2
557 uhash_init(UHashtable *fillinResult,
558 UHashFunction *keyHash,
559 UKeyComparator *keyComp,
560 UValueComparator *valueComp,
561 UErrorCode *status) {
562
563 return _uhash_init(fillinResult, keyHash, keyComp, valueComp, DEFAULT_PRIME_INDEX, status);
564 }
565
566 U_CAPI void U_EXPORT2
567 uhash_close(UHashtable *hash) {
568 U_ASSERT(hash != NULL);
569 if (hash->elements != NULL) {
570 if (hash->keyDeleter != NULL || hash->valueDeleter != NULL) {
571 int32_t pos=-1;
572 UHashElement *e;
573 while ((e = (UHashElement*) uhash_nextElement(hash, &pos)) != NULL) {
574 HASH_DELETE_KEY_VALUE(hash, e->key.pointer, e->value.pointer);
575 }
576 }
577 uprv_free(hash->elements);
578 hash->elements = NULL;
579 }
580 if (hash->allocated) {
581 uprv_free(hash);
582 }
583 }
584
585 U_CAPI UHashFunction *U_EXPORT2
586 uhash_setKeyHasher(UHashtable *hash, UHashFunction *fn) {
587 UHashFunction *result = hash->keyHasher;
588 hash->keyHasher = fn;
589 return result;
590 }
591
592 U_CAPI UKeyComparator *U_EXPORT2
593 uhash_setKeyComparator(UHashtable *hash, UKeyComparator *fn) {
594 UKeyComparator *result = hash->keyComparator;
595 hash->keyComparator = fn;
596 return result;
597 }
598 U_CAPI UValueComparator *U_EXPORT2
599 uhash_setValueComparator(UHashtable *hash, UValueComparator *fn){
600 UValueComparator *result = hash->valueComparator;
601 hash->valueComparator = fn;
602 return result;
603 }
604
605 U_CAPI UObjectDeleter *U_EXPORT2
606 uhash_setKeyDeleter(UHashtable *hash, UObjectDeleter *fn) {
607 UObjectDeleter *result = hash->keyDeleter;
608 hash->keyDeleter = fn;
609 return result;
610 }
611
612 U_CAPI UObjectDeleter *U_EXPORT2
613 uhash_setValueDeleter(UHashtable *hash, UObjectDeleter *fn) {
614 UObjectDeleter *result = hash->valueDeleter;
615 hash->valueDeleter = fn;
616 return result;
617 }
618
619 U_CAPI void U_EXPORT2
620 uhash_setResizePolicy(UHashtable *hash, enum UHashResizePolicy policy) {
621 _uhash_internalSetResizePolicy(hash, policy);
622 hash->lowWaterMark = (int32_t)(hash->length * hash->lowWaterRatio);
623 hash->highWaterMark = (int32_t)(hash->length * hash->highWaterRatio);
624 _uhash_rehash(hash);
625 }
626
627 U_CAPI int32_t U_EXPORT2
628 uhash_count(const UHashtable *hash) {
629 return hash->count;
630 }
631
632 U_CAPI void* U_EXPORT2
633 uhash_get(const UHashtable *hash,
634 const void* key) {
635 UHashTok keyholder;
636 keyholder.pointer = (void*) key;
637 return _uhash_find(hash, keyholder, hash->keyHasher(keyholder))->value.pointer;
638 }
639
640 U_CAPI void* U_EXPORT2
641 uhash_iget(const UHashtable *hash,
642 int32_t key) {
643 UHashTok keyholder;
644 keyholder.integer = key;
645 return _uhash_find(hash, keyholder, hash->keyHasher(keyholder))->value.pointer;
646 }
647
648 U_CAPI int32_t U_EXPORT2
649 uhash_geti(const UHashtable *hash,
650 const void* key) {
651 UHashTok keyholder;
652 keyholder.pointer = (void*) key;
653 return _uhash_find(hash, keyholder, hash->keyHasher(keyholder))->value.integer;
654 }
655
656 U_CAPI int32_t U_EXPORT2
657 uhash_igeti(const UHashtable *hash,
658 int32_t key) {
659 UHashTok keyholder;
660 keyholder.integer = key;
661 return _uhash_find(hash, keyholder, hash->keyHasher(keyholder))->value.integer;
662 }
663
664 U_CAPI void* U_EXPORT2
665 uhash_put(UHashtable *hash,
666 void* key,
667 void* value,
668 UErrorCode *status) {
669 UHashTok keyholder, valueholder;
670 keyholder.pointer = key;
671 valueholder.pointer = value;
672 return _uhash_put(hash, keyholder, valueholder,
673 HINT_KEY_POINTER | HINT_VALUE_POINTER,
674 status).pointer;
675 }
676
677 U_CAPI void* U_EXPORT2
678 uhash_iput(UHashtable *hash,
679 int32_t key,
680 void* value,
681 UErrorCode *status) {
682 UHashTok keyholder, valueholder;
683 keyholder.integer = key;
684 valueholder.pointer = value;
685 return _uhash_put(hash, keyholder, valueholder,
686 HINT_VALUE_POINTER,
687 status).pointer;
688 }
689
690 U_CAPI int32_t U_EXPORT2
691 uhash_puti(UHashtable *hash,
692 void* key,
693 int32_t value,
694 UErrorCode *status) {
695 UHashTok keyholder, valueholder;
696 keyholder.pointer = key;
697 valueholder.integer = value;
698 return _uhash_put(hash, keyholder, valueholder,
699 HINT_KEY_POINTER,
700 status).integer;
701 }
702
703
704 U_CAPI int32_t U_EXPORT2
705 uhash_iputi(UHashtable *hash,
706 int32_t key,
707 int32_t value,
708 UErrorCode *status) {
709 UHashTok keyholder, valueholder;
710 keyholder.integer = key;
711 valueholder.integer = value;
712 return _uhash_put(hash, keyholder, valueholder,
713 0, /* neither is a ptr */
714 status).integer;
715 }
716
717 U_CAPI void* U_EXPORT2
718 uhash_remove(UHashtable *hash,
719 const void* key) {
720 UHashTok keyholder;
721 keyholder.pointer = (void*) key;
722 return _uhash_remove(hash, keyholder).pointer;
723 }
724
725 U_CAPI void* U_EXPORT2
726 uhash_iremove(UHashtable *hash,
727 int32_t key) {
728 UHashTok keyholder;
729 keyholder.integer = key;
730 return _uhash_remove(hash, keyholder).pointer;
731 }
732
733 U_CAPI int32_t U_EXPORT2
734 uhash_removei(UHashtable *hash,
735 const void* key) {
736 UHashTok keyholder;
737 keyholder.pointer = (void*) key;
738 return _uhash_remove(hash, keyholder).integer;
739 }
740
741 U_CAPI int32_t U_EXPORT2
742 uhash_iremovei(UHashtable *hash,
743 int32_t key) {
744 UHashTok keyholder;
745 keyholder.integer = key;
746 return _uhash_remove(hash, keyholder).integer;
747 }
748
749 U_CAPI void U_EXPORT2
750 uhash_removeAll(UHashtable *hash) {
751 int32_t pos = -1;
752 const UHashElement *e;
753 U_ASSERT(hash != NULL);
754 if (hash->count != 0) {
755 while ((e = uhash_nextElement(hash, &pos)) != NULL) {
756 uhash_removeElement(hash, e);
757 }
758 }
759 U_ASSERT(hash->count == 0);
760 }
761
762 U_CAPI const UHashElement* U_EXPORT2
763 uhash_find(const UHashtable *hash, const void* key) {
764 UHashTok keyholder;
765 const UHashElement *e;
766 keyholder.pointer = (void*) key;
767 e = _uhash_find(hash, keyholder, hash->keyHasher(keyholder));
768 return IS_EMPTY_OR_DELETED(e->hashcode) ? NULL : e;
769 }
770
771 U_CAPI const UHashElement* U_EXPORT2
772 uhash_nextElement(const UHashtable *hash, int32_t *pos) {
773 /* Walk through the array until we find an element that is not
774 * EMPTY and not DELETED.
775 */
776 int32_t i;
777 U_ASSERT(hash != NULL);
778 for (i = *pos + 1; i < hash->length; ++i) {
779 if (!IS_EMPTY_OR_DELETED(hash->elements[i].hashcode)) {
780 *pos = i;
781 return &(hash->elements[i]);
782 }
783 }
784
785 /* No more elements */
786 return NULL;
787 }
788
789 U_CAPI void* U_EXPORT2
790 uhash_removeElement(UHashtable *hash, const UHashElement* e) {
791 U_ASSERT(hash != NULL);
792 U_ASSERT(e != NULL);
793 if (!IS_EMPTY_OR_DELETED(e->hashcode)) {
794 return _uhash_internalRemoveElement(hash, (UHashElement*) e).pointer;
795 }
796 return NULL;
797 }
798
799 /********************************************************************
800 * UHashTok convenience
801 ********************************************************************/
802
803 /**
804 * Return a UHashTok for an integer.
805 */
806 /*U_CAPI UHashTok U_EXPORT2
807 uhash_toki(int32_t i) {
808 UHashTok tok;
809 tok.integer = i;
810 return tok;
811 }*/
812
813 /**
814 * Return a UHashTok for a pointer.
815 */
816 /*U_CAPI UHashTok U_EXPORT2
817 uhash_tokp(void* p) {
818 UHashTok tok;
819 tok.pointer = p;
820 return tok;
821 }*/
822
823 /********************************************************************
824 * PUBLIC Key Hash Functions
825 ********************************************************************/
826
827 /*
828 Compute the hash by iterating sparsely over about 32 (up to 63)
829 characters spaced evenly through the string. For each character,
830 multiply the previous hash value by a prime number and add the new
831 character in, like a linear congruential random number generator,
832 producing a pseudorandom deterministic value well distributed over
833 the output range. [LIU]
834 */
835
836 #define STRING_HASH(TYPE, STR, STRLEN, DEREF) \
837 int32_t hash = 0; \
838 const TYPE *p = (const TYPE*) STR; \
839 if (p != NULL) { \
840 int32_t len = (int32_t)(STRLEN); \
841 int32_t inc = ((len - 32) / 32) + 1; \
842 const TYPE *limit = p + len; \
843 while (p<limit) { \
844 hash = (hash * 37) + DEREF; \
845 p += inc; \
846 } \
847 } \
848 return hash
849
850 U_CAPI int32_t U_EXPORT2
851 uhash_hashUChars(const UHashTok key) {
852 STRING_HASH(UChar, key.pointer, u_strlen(p), *p);
853 }
854
855 /* Used by UnicodeString to compute its hashcode - Not public API. */
856 U_CAPI int32_t U_EXPORT2
857 uhash_hashUCharsN(const UChar *str, int32_t length) {
858 STRING_HASH(UChar, str, length, *p);
859 }
860
861 U_CAPI int32_t U_EXPORT2
862 uhash_hashChars(const UHashTok key) {
863 STRING_HASH(uint8_t, key.pointer, uprv_strlen((char*)p), *p);
864 }
865
866 U_CAPI int32_t U_EXPORT2
867 uhash_hashIChars(const UHashTok key) {
868 STRING_HASH(uint8_t, key.pointer, uprv_strlen((char*)p), uprv_tolower(*p));
869 }
870
871 U_CAPI UBool U_EXPORT2
872 uhash_equals(const UHashtable* hash1, const UHashtable* hash2){
873
874 int32_t count1, count2, pos, i;
875
876 if(hash1==hash2){
877 return TRUE;
878 }
879
880 /*
881 * Make sure that we are comparing 2 valid hashes of the same type
882 * with valid comparison functions.
883 * Without valid comparison functions, a binary comparison
884 * of the hash values will yield random results on machines
885 * with 64-bit pointers and 32-bit integer hashes.
886 * A valueComparator is normally optional.
887 */
888 if (hash1==NULL || hash2==NULL ||
889 hash1->keyComparator != hash2->keyComparator ||
890 hash1->valueComparator != hash2->valueComparator ||
891 hash1->valueComparator == NULL)
892 {
893 /*
894 Normally we would return an error here about incompatible hash tables,
895 but we return FALSE instead.
896 */
897 return FALSE;
898 }
899
900 count1 = uhash_count(hash1);
901 count2 = uhash_count(hash2);
902 if(count1!=count2){
903 return FALSE;
904 }
905
906 pos=-1;
907 for(i=0; i<count1; i++){
908 const UHashElement* elem1 = uhash_nextElement(hash1, &pos);
909 const UHashTok key1 = elem1->key;
910 const UHashTok val1 = elem1->value;
911 /* here the keys are not compared, instead the key form hash1 is used to fetch
912 * value from hash2. If the hashes are equal then then both hashes should
913 * contain equal values for the same key!
914 */
915 const UHashElement* elem2 = _uhash_find(hash2, key1, hash2->keyHasher(key1));
916 const UHashTok val2 = elem2->value;
917 if(hash1->valueComparator(val1, val2)==FALSE){
918 return FALSE;
919 }
920 }
921 return TRUE;
922 }
923
924 /********************************************************************
925 * PUBLIC Comparator Functions
926 ********************************************************************/
927
928 U_CAPI UBool U_EXPORT2
929 uhash_compareUChars(const UHashTok key1, const UHashTok key2) {
930 const UChar *p1 = (const UChar*) key1.pointer;
931 const UChar *p2 = (const UChar*) key2.pointer;
932 if (p1 == p2) {
933 return TRUE;
934 }
935 if (p1 == NULL || p2 == NULL) {
936 return FALSE;
937 }
938 while (*p1 != 0 && *p1 == *p2) {
939 ++p1;
940 ++p2;
941 }
942 return (UBool)(*p1 == *p2);
943 }
944
945 U_CAPI UBool U_EXPORT2
946 uhash_compareChars(const UHashTok key1, const UHashTok key2) {
947 const char *p1 = (const char*) key1.pointer;
948 const char *p2 = (const char*) key2.pointer;
949 if (p1 == p2) {
950 return TRUE;
951 }
952 if (p1 == NULL || p2 == NULL) {
953 return FALSE;
954 }
955 while (*p1 != 0 && *p1 == *p2) {
956 ++p1;
957 ++p2;
958 }
959 return (UBool)(*p1 == *p2);
960 }
961
962 U_CAPI UBool U_EXPORT2
963 uhash_compareIChars(const UHashTok key1, const UHashTok key2) {
964 const char *p1 = (const char*) key1.pointer;
965 const char *p2 = (const char*) key2.pointer;
966 if (p1 == p2) {
967 return TRUE;
968 }
969 if (p1 == NULL || p2 == NULL) {
970 return FALSE;
971 }
972 while (*p1 != 0 && uprv_tolower(*p1) == uprv_tolower(*p2)) {
973 ++p1;
974 ++p2;
975 }
976 return (UBool)(*p1 == *p2);
977 }
978
979 /********************************************************************
980 * PUBLIC int32_t Support Functions
981 ********************************************************************/
982
983 U_CAPI int32_t U_EXPORT2
984 uhash_hashLong(const UHashTok key) {
985 return key.integer;
986 }
987
988 U_CAPI UBool U_EXPORT2
989 uhash_compareLong(const UHashTok key1, const UHashTok key2) {
990 return (UBool)(key1.integer == key2.integer);
991 }
992
993 /********************************************************************
994 * PUBLIC Deleter Functions
995 ********************************************************************/
996
997 U_CAPI void U_EXPORT2
998 uhash_freeBlock(void *obj) {
999 uprv_free(obj);
1000 }
1001