[NTOSKRNL/FREELDR/NDK]
[reactos.git] / reactos / ntoskrnl / include / internal / amd64 / mm.h
1 /*
2 * kernel internal memory management definitions for amd64
3 */
4 #pragma once
5
6 #define _MI_PAGING_LEVELS 4
7
8 /* Memory layout base addresses */
9 #define MI_USER_PROBE_ADDRESS (PVOID)0x000007FFFFFF0000ULL
10 #define MI_DEFAULT_SYSTEM_RANGE_START (PVOID)0xFFFF080000000000ULL
11 #define MI_REAL_SYSTEM_RANGE_START 0xFFFF800000000000ULL
12 #define HYPER_SPACE 0xFFFFF70000000000ULL
13 #define HYPER_SPACE_END 0xFFFFF77FFFFFFFFFULL
14 #define MI_SYSTEM_CACHE_WS_START 0xFFFFF78000001000ULL
15 #define MI_PAGED_POOL_START (PVOID)0xFFFFF8A000000000ULL
16 //#define MI_PAGED_POOL_END 0xFFFFF8BFFFFFFFFFULL
17 //#define MI_SESSION_SPACE_START 0xFFFFF90000000000ULL
18 #define MI_SESSION_VIEW_END 0xFFFFF97FFF000000ULL
19 #define MI_SESSION_SPACE_END 0xFFFFF97FFFFFFFFFULL
20 #define MM_SYSTEM_SPACE_START 0xFFFFF98000000000ULL
21 #define MI_PFN_DATABASE 0xFFFFFA8000000000ULL
22 #define MI_DEBUG_MAPPING (PVOID)0xFFFFFFFF80000000ULL // FIXME
23 #define MI_NONPAGED_POOL_END (PVOID)0xFFFFFFFFFFBFFFFFULL
24 #define MI_HIGHEST_SYSTEM_ADDRESS (PVOID)0xFFFFFFFFFFFFFFFFULL
25 #define MmSystemRangeStart ((PVOID)MI_REAL_SYSTEM_RANGE_START)
26
27 /* WOW64 address definitions */
28 #define MM_HIGHEST_USER_ADDRESS_WOW64 0x7FFEFFFF
29 #define MM_SYSTEM_RANGE_START_WOW64 0x80000000
30
31 /* Misc address definitions */
32 //#define MI_NON_PAGED_SYSTEM_START_MIN MM_SYSTEM_SPACE_START // FIXME
33 //#define MI_SYSTEM_PTE_START MM_SYSTEM_SPACE_START
34 //#define MI_SYSTEM_PTE_END (MI_SYSTEM_PTE_START + MI_NUMBER_SYSTEM_PTES * PAGE_SIZE - 1)
35 #define MI_SYSTEM_PTE_BASE (PVOID)MiAddressToPte(KSEG0_BASE)
36 #define MM_HIGHEST_VAD_ADDRESS (PVOID)((ULONG_PTR)MM_HIGHEST_USER_ADDRESS - (16 * PAGE_SIZE))
37 #define MI_MAPPING_RANGE_START HYPER_SPACE
38 #define MI_MAPPING_RANGE_END (MI_MAPPING_RANGE_START + MI_HYPERSPACE_PTES * PAGE_SIZE)
39 #define MI_DUMMY_PTE (MI_MAPPING_RANGE_END + PAGE_SIZE)
40 #define MI_VAD_BITMAP (MI_DUMMY_PTE + PAGE_SIZE)
41 #define MI_WORKING_SET_LIST (MI_VAD_BITMAP + PAGE_SIZE)
42
43 /* Memory sizes */
44 #define MI_MIN_PAGES_FOR_NONPAGED_POOL_TUNING ((255 * _1MB) >> PAGE_SHIFT)
45 #define MI_MIN_PAGES_FOR_SYSPTE_TUNING ((19 * _1MB) >> PAGE_SHIFT)
46 #define MI_MIN_PAGES_FOR_SYSPTE_BOOST ((32 * _1MB) >> PAGE_SHIFT)
47 #define MI_MIN_PAGES_FOR_SYSPTE_BOOST_BOOST ((256 * _1MB) >> PAGE_SHIFT)
48 #define MI_MIN_INIT_PAGED_POOLSIZE (32 * _1MB)
49 #define MI_MAX_INIT_NONPAGED_POOL_SIZE (128ULL * 1024 * 1024 * 1024)
50 #define MI_MAX_NONPAGED_POOL_SIZE (128ULL * 1024 * 1024 * 1024)
51 #define MI_SYSTEM_VIEW_SIZE (16 * _1MB)
52 #define MI_SESSION_VIEW_SIZE (20 * _1MB)
53 #define MI_SESSION_POOL_SIZE (16 * _1MB)
54 #define MI_SESSION_IMAGE_SIZE (8 * _1MB)
55 #define MI_SESSION_WORKING_SET_SIZE (4 * _1MB)
56 #define MI_SESSION_SIZE (MI_SESSION_VIEW_SIZE + \
57 MI_SESSION_POOL_SIZE + \
58 MI_SESSION_IMAGE_SIZE + \
59 MI_SESSION_WORKING_SET_SIZE)
60 #define MI_MIN_ALLOCATION_FRAGMENT (4 * _1KB)
61 #define MI_ALLOCATION_FRAGMENT (64 * _1KB)
62 #define MI_MAX_ALLOCATION_FRAGMENT (2 * _1MB)
63
64 /* Misc constants */
65 #define MM_PTE_SOFTWARE_PROTECTION_BITS 5
66 #define MI_MIN_SECONDARY_COLORS 8
67 #define MI_SECONDARY_COLORS 64
68 #define MI_MAX_SECONDARY_COLORS 1024
69 #define MI_NUMBER_SYSTEM_PTES 22000
70 #define MI_MAX_FREE_PAGE_LISTS 4
71 #define MI_HYPERSPACE_PTES (256 - 1)
72 #define MI_ZERO_PTES (32)
73 #define MI_MAX_ZERO_BITS 53
74 #define SESSION_POOL_LOOKASIDES 21
75
76 /* MMPTE related defines */
77 #define MM_EMPTY_PTE_LIST ((ULONG64)0xFFFFFFFF)
78 #define MM_EMPTY_LIST ((ULONG_PTR)-1)
79
80
81 /* Easy accessing PFN in PTE */
82 #define PFN_FROM_PTE(v) ((v)->u.Hard.PageFrameNumber)
83 #define PFN_FROM_PDE(v) ((v)->u.Hard.PageFrameNumber)
84 #define PFN_FROM_PPE(v) ((v)->u.Hard.PageFrameNumber)
85 #define PFN_FROM_PXE(v) ((v)->u.Hard.PageFrameNumber)
86
87 /* Macros for portable PTE modification */
88 #define MI_MAKE_LOCAL_PAGE(x) ((x)->u.Hard.Global = 0)
89 #define MI_MAKE_DIRTY_PAGE(x) ((x)->u.Hard.Dirty = 1)
90 #define MI_MAKE_ACCESSED_PAGE(x) ((x)->u.Hard.Accessed = 1)
91 #define MI_PAGE_DISABLE_CACHE(x) ((x)->u.Hard.CacheDisable = 1)
92 #define MI_PAGE_WRITE_THROUGH(x) ((x)->u.Hard.WriteThrough = 1)
93 #define MI_PAGE_WRITE_COMBINED(x) ((x)->u.Hard.WriteThrough = 0)
94 #define MI_IS_PAGE_LARGE(x) ((x)->u.Hard.LargePage == 1)
95 #if !defined(CONFIG_SMP)
96 #define MI_IS_PAGE_WRITEABLE(x) ((x)->u.Hard.Write == 1)
97 #else
98 #define MI_IS_PAGE_WRITEABLE(x) ((x)->u.Hard.Writable == 1)
99 #endif
100 #define MI_IS_PAGE_COPY_ON_WRITE(x)((x)->u.Hard.CopyOnWrite == 1)
101 #define MI_IS_PAGE_DIRTY(x) ((x)->u.Hard.Dirty == 1)
102 #define MI_MAKE_OWNER_PAGE(x) ((x)->u.Hard.Owner = 1)
103 #if !defined(CONFIG_SMP)
104 #define MI_MAKE_WRITE_PAGE(x) ((x)->u.Hard.Write = 1)
105 #else
106 #define MI_MAKE_WRITE_PAGE(x) ((x)->u.Hard.Writable = 1)
107 #endif
108
109 /* On x64, these are the same */
110 #define MI_WRITE_VALID_PPE MI_WRITE_VALID_PTE
111 #define ValidKernelPpe ValidKernelPde
112
113 /* Convert an address to a corresponding PTE */
114 PMMPTE
115 FORCEINLINE
116 _MiAddressToPte(PVOID Address)
117 {
118 ULONG64 Offset = (ULONG64)Address >> (PTI_SHIFT - 3);
119 Offset &= 0xFFFFFFFFFULL << 3;
120 return (PMMPTE)(PTE_BASE + Offset);
121 }
122 #define MiAddressToPte(x) _MiAddressToPte((PVOID)(x))
123
124 /* Convert an address to a corresponding PDE */
125 PMMPTE
126 FORCEINLINE
127 _MiAddressToPde(PVOID Address)
128 {
129 ULONG64 Offset = (ULONG64)Address >> (PDI_SHIFT - 3);
130 Offset &= 0x7FFFFFF << 3;
131 return (PMMPTE)(PDE_BASE + Offset);
132 }
133 #define MiAddressToPde(x) _MiAddressToPde((PVOID)(x))
134
135 /* Convert an address to a corresponding PPE */
136 PMMPTE
137 FORCEINLINE
138 MiAddressToPpe(PVOID Address)
139 {
140 ULONG64 Offset = (ULONG64)Address >> (PPI_SHIFT - 3);
141 Offset &= 0x3FFFF << 3;
142 return (PMMPTE)(PPE_BASE + Offset);
143 }
144
145 /* Convert an address to a corresponding PXE */
146 PMMPTE
147 FORCEINLINE
148 MiAddressToPxe(PVOID Address)
149 {
150 ULONG64 Offset = (ULONG64)Address >> (PXI_SHIFT - 3);
151 Offset &= PXI_MASK << 3;
152 return (PMMPTE)(PXE_BASE + Offset);
153 }
154
155 /* Convert an address to a corresponding PTE offset/index */
156 ULONG
157 FORCEINLINE
158 MiAddressToPti(PVOID Address)
159 {
160 return ((((ULONG64)Address) >> PTI_SHIFT) & 0x1FF);
161 }
162 #define MiAddressToPteOffset(x) MiAddressToPti(x) // FIXME: bad name
163
164 /* Convert an address to a corresponding PDE offset/index */
165 ULONG
166 FORCEINLINE
167 MiAddressToPdi(PVOID Address)
168 {
169 return ((((ULONG64)Address) >> PDI_SHIFT) & 0x1FF);
170 }
171 #define MiAddressToPdeOffset(x) MiAddressToPdi(x)
172 #define MiGetPdeOffset(x) MiAddressToPdi(x)
173
174 /* Convert an address to a corresponding PXE offset/index */
175 ULONG
176 FORCEINLINE
177 MiAddressToPxi(PVOID Address)
178 {
179 return ((((ULONG64)Address) >> PXI_SHIFT) & 0x1FF);
180 }
181
182 /* Convert a PTE into a corresponding address */
183 PVOID
184 FORCEINLINE
185 MiPteToAddress(PMMPTE PointerPte)
186 {
187 /* Use signed math */
188 return (PVOID)(((LONG64)PointerPte << 25) >> 16);
189 }
190
191 /* Convert a PDE into a corresponding address */
192 PVOID
193 FORCEINLINE
194 MiPdeToAddress(PMMPTE PointerPde)
195 {
196 /* Use signed math */
197 return (PVOID)(((LONG64)PointerPde << 34) >> 16);
198 }
199
200 /* Convert a PPE into a corresponding address */
201 PVOID
202 FORCEINLINE
203 MiPpeToAddress(PMMPTE PointerPpe)
204 {
205 /* Use signed math */
206 return (PVOID)(((LONG64)PointerPpe << 43) >> 16);
207 }
208
209 /* Convert a PXE into a corresponding address */
210 PVOID
211 FORCEINLINE
212 MiPxeToAddress(PMMPTE PointerPxe)
213 {
214 /* Use signed math */
215 return (PVOID)(((LONG64)PointerPxe << 52) >> 16);
216 }
217
218 /* Translate between P*Es */
219 #define MiPdeToPte(_Pde) ((PMMPTE)MiPteToAddress(_Pde))
220 #define MiPteToPde(_Pte) ((PMMPDE)MiAddressToPte(_Pte))
221 #define MiPdeToPpe(_Pde) ((PMMPPE)MiAddressToPte(_Pde))
222
223 /* Check P*E boundaries */
224 #define MiIsPteOnPdeBoundary(PointerPte) \
225 ((((ULONG_PTR)PointerPte) & (PAGE_SIZE - 1)) == 0)
226 #define MiIsPteOnPpeBoundary(PointerPte) \
227 ((((ULONG_PTR)PointerPte) & (PDE_PER_PAGE * PAGE_SIZE - 1)) == 0)
228 #define MiIsPteOnPxeBoundary(PointerPte) \
229 ((((ULONG_PTR)PointerPte) & (PPE_PER_PAGE * PDE_PER_PAGE * PAGE_SIZE - 1)) == 0)
230
231 //
232 // Decodes a Prototype PTE into the underlying PTE
233 //
234 #define MiProtoPteToPte(x) \
235 (PMMPTE)(((LONG64)(x)->u.Long) >> 16) /* Sign extend 48 bits */
236
237 //
238 // Decodes a Prototype PTE into the underlying PTE
239 //
240 #define MiSubsectionPteToSubsection(x) \
241 (PMMPTE)((x)->u.Subsect.SubsectionAddress >> 16)
242
243 FORCEINLINE
244 VOID
245 MI_MAKE_SUBSECTION_PTE(IN PMMPTE NewPte,
246 IN PVOID Segment)
247 {
248 ASSERT(FALSE);
249 }
250
251 FORCEINLINE
252 VOID
253 MI_MAKE_PROTOTYPE_PTE(IN PMMPTE NewPte,
254 IN PMMPTE PointerPte)
255 {
256 /* Store the Address */
257 NewPte->u.Long = (ULONG64)PointerPte << 16;
258
259 /* Mark this as a prototype PTE */
260 NewPte->u.Proto.Prototype = 1;
261
262 ASSERT(MiProtoPteToPte(NewPte) == PointerPte);
263 }
264
265 FORCEINLINE
266 BOOLEAN
267 MI_IS_MAPPED_PTE(PMMPTE PointerPte)
268 {
269 /// FIXME
270 __debugbreak();
271 return ((PointerPte->u.Long & 0xFFFFFC01) != 0);
272 }
273
274 VOID
275 FORCEINLINE
276 MmInitGlobalKernelPageDirectory(VOID)
277 {
278 /* Nothing to do */
279 }
280
281 BOOLEAN
282 FORCEINLINE
283 MiIsPdeForAddressValid(PVOID Address)
284 {
285 return ((MiAddressToPxe(Address)->u.Hard.Valid) &&
286 (MiAddressToPpe(Address)->u.Hard.Valid) &&
287 (MiAddressToPde(Address)->u.Hard.Valid));
288 }
289