Merge my current work done on the kd++ branch:
[reactos.git] / reactos / ntoskrnl / include / internal / ke_x.h
1 /*
2 * PROJECT: ReactOS Kernel
3 * LICENSE: GPL - See COPYING in the top level directory
4 * FILE: ntoskrnl/include/ke_x.h
5 * PURPOSE: Internal Inlined Functions for the Kernel
6 * PROGRAMMERS: Alex Ionescu (alex.ionescu@reactos.org)
7 */
8
9 #ifndef _M_ARM
10 FORCEINLINE
11 KPROCESSOR_MODE
12 KeGetPreviousMode(VOID)
13 {
14 /* Return the current mode */
15 return KeGetCurrentThread()->PreviousMode;
16 }
17 #endif
18
19 //
20 // Enters a Guarded Region
21 //
22 #define KeEnterGuardedRegion() \
23 { \
24 PKTHREAD _Thread = KeGetCurrentThread(); \
25 \
26 /* Sanity checks */ \
27 ASSERT(KeGetCurrentIrql() <= APC_LEVEL); \
28 ASSERT(_Thread == KeGetCurrentThread()); \
29 ASSERT((_Thread->SpecialApcDisable <= 0) && \
30 (_Thread->SpecialApcDisable != -32768)); \
31 \
32 /* Disable Special APCs */ \
33 _Thread->SpecialApcDisable--; \
34 }
35
36 //
37 // Leaves a Guarded Region
38 //
39 #define KeLeaveGuardedRegion() \
40 { \
41 PKTHREAD _Thread = KeGetCurrentThread(); \
42 \
43 /* Sanity checks */ \
44 ASSERT(KeGetCurrentIrql() <= APC_LEVEL); \
45 ASSERT(_Thread == KeGetCurrentThread()); \
46 ASSERT(_Thread->SpecialApcDisable < 0); \
47 \
48 /* Leave region and check if APCs are OK now */ \
49 if (!(++_Thread->SpecialApcDisable)) \
50 { \
51 /* Check for Kernel APCs on the list */ \
52 if (!IsListEmpty(&_Thread->ApcState. \
53 ApcListHead[KernelMode])) \
54 { \
55 /* Check for APC Delivery */ \
56 KiCheckForKernelApcDelivery(); \
57 } \
58 } \
59 }
60
61 //
62 // Enters a Critical Region
63 //
64 #define KeEnterCriticalRegion() \
65 { \
66 PKTHREAD _Thread = KeGetCurrentThread(); \
67 \
68 /* Sanity checks */ \
69 ASSERT(_Thread == KeGetCurrentThread()); \
70 ASSERT((_Thread->KernelApcDisable <= 0) && \
71 (_Thread->KernelApcDisable != -32768)); \
72 \
73 /* Disable Kernel APCs */ \
74 _Thread->KernelApcDisable--; \
75 }
76
77 //
78 // Leaves a Critical Region
79 //
80 #define KeLeaveCriticalRegion() \
81 { \
82 PKTHREAD _Thread = KeGetCurrentThread(); \
83 \
84 /* Sanity checks */ \
85 ASSERT(_Thread == KeGetCurrentThread()); \
86 ASSERT(_Thread->KernelApcDisable < 0); \
87 \
88 /* Enable Kernel APCs */ \
89 _Thread->KernelApcDisable++; \
90 \
91 /* Check if Kernel APCs are now enabled */ \
92 if (!(_Thread->KernelApcDisable)) \
93 { \
94 /* Check if we need to request an APC Delivery */ \
95 if (!(IsListEmpty(&_Thread->ApcState.ApcListHead[KernelMode])) && \
96 !(_Thread->SpecialApcDisable)) \
97 { \
98 /* Check for the right environment */ \
99 KiCheckForKernelApcDelivery(); \
100 } \
101 } \
102 }
103
104 #ifndef CONFIG_SMP
105
106 //
107 // This routine protects against multiple CPU acquires, it's meaningless on UP.
108 //
109 FORCEINLINE
110 VOID
111 KiAcquireDispatcherObject(IN DISPATCHER_HEADER* Object)
112 {
113 UNREFERENCED_PARAMETER(Object);
114 }
115
116 //
117 // This routine protects against multiple CPU acquires, it's meaningless on UP.
118 //
119 FORCEINLINE
120 VOID
121 KiReleaseDispatcherObject(IN DISPATCHER_HEADER* Object)
122 {
123 UNREFERENCED_PARAMETER(Object);
124 }
125
126 FORCEINLINE
127 KIRQL
128 KiAcquireDispatcherLock(VOID)
129 {
130 /* Raise to synch level */
131 return KfRaiseIrql(SYNCH_LEVEL);
132 }
133
134 FORCEINLINE
135 VOID
136 KiReleaseDispatcherLock(IN KIRQL OldIrql)
137 {
138 /* Just exit the dispatcher */
139 KiExitDispatcher(OldIrql);
140 }
141
142 FORCEINLINE
143 VOID
144 KiAcquireDispatcherLockAtDpcLevel(VOID)
145 {
146 /* This is a no-op at DPC Level for UP systems */
147 return;
148 }
149
150 FORCEINLINE
151 VOID
152 KiReleaseDispatcherLockFromDpcLevel(VOID)
153 {
154 /* This is a no-op at DPC Level for UP systems */
155 return;
156 }
157
158 //
159 // This routine makes the thread deferred ready on the boot CPU.
160 //
161 FORCEINLINE
162 VOID
163 KiInsertDeferredReadyList(IN PKTHREAD Thread)
164 {
165 /* Set the thread to deferred state and boot CPU */
166 Thread->State = DeferredReady;
167 Thread->DeferredProcessor = 0;
168
169 /* Make the thread ready immediately */
170 KiDeferredReadyThread(Thread);
171 }
172
173 FORCEINLINE
174 VOID
175 KiRescheduleThread(IN BOOLEAN NewThread,
176 IN ULONG Cpu)
177 {
178 /* This is meaningless on UP systems */
179 UNREFERENCED_PARAMETER(NewThread);
180 UNREFERENCED_PARAMETER(Cpu);
181 }
182
183 //
184 // This routine protects against multiple CPU acquires, it's meaningless on UP.
185 //
186 FORCEINLINE
187 VOID
188 KiSetThreadSwapBusy(IN PKTHREAD Thread)
189 {
190 UNREFERENCED_PARAMETER(Thread);
191 }
192
193 //
194 // This routine protects against multiple CPU acquires, it's meaningless on UP.
195 //
196 FORCEINLINE
197 VOID
198 KiAcquirePrcbLock(IN PKPRCB Prcb)
199 {
200 UNREFERENCED_PARAMETER(Prcb);
201 }
202
203 //
204 // This routine protects against multiple CPU acquires, it's meaningless on UP.
205 //
206 FORCEINLINE
207 VOID
208 KiReleasePrcbLock(IN PKPRCB Prcb)
209 {
210 UNREFERENCED_PARAMETER(Prcb);
211 }
212
213 //
214 // This routine protects against multiple CPU acquires, it's meaningless on UP.
215 //
216 FORCEINLINE
217 VOID
218 KiAcquireThreadLock(IN PKTHREAD Thread)
219 {
220 UNREFERENCED_PARAMETER(Thread);
221 }
222
223 //
224 // This routine protects against multiple CPU acquires, it's meaningless on UP.
225 //
226 FORCEINLINE
227 VOID
228 KiReleaseThreadLock(IN PKTHREAD Thread)
229 {
230 UNREFERENCED_PARAMETER(Thread);
231 }
232
233 //
234 // This routine protects against multiple CPU acquires, it's meaningless on UP.
235 //
236 FORCEINLINE
237 BOOLEAN
238 KiTryThreadLock(IN PKTHREAD Thread)
239 {
240 UNREFERENCED_PARAMETER(Thread);
241 return FALSE;
242 }
243
244 FORCEINLINE
245 VOID
246 KiCheckDeferredReadyList(IN PKPRCB Prcb)
247 {
248 /* There are no deferred ready lists on UP systems */
249 UNREFERENCED_PARAMETER(Prcb);
250 }
251
252 FORCEINLINE
253 VOID
254 KiRequestApcInterrupt(IN BOOLEAN NeedApc,
255 IN UCHAR Processor)
256 {
257 /* We deliver instantly on UP */
258 UNREFERENCED_PARAMETER(NeedApc);
259 UNREFERENCED_PARAMETER(Processor);
260 }
261
262 FORCEINLINE
263 PKSPIN_LOCK_QUEUE
264 KiAcquireTimerLock(IN ULONG Hand)
265 {
266 ASSERT(KeGetCurrentIrql() >= DISPATCH_LEVEL);
267
268 /* Nothing to do on UP */
269 UNREFERENCED_PARAMETER(Hand);
270 return NULL;
271 }
272
273 FORCEINLINE
274 VOID
275 KiReleaseTimerLock(IN PKSPIN_LOCK_QUEUE LockQueue)
276 {
277 ASSERT(KeGetCurrentIrql() >= DISPATCH_LEVEL);
278
279 /* Nothing to do on UP */
280 UNREFERENCED_PARAMETER(LockQueue);
281 }
282
283 #else
284
285 FORCEINLINE
286 VOID
287 KiAcquireDispatcherObject(IN DISPATCHER_HEADER* Object)
288 {
289 LONG OldValue;
290
291 /* Make sure we're at a safe level to touch the lock */
292 ASSERT(KeGetCurrentIrql() >= DISPATCH_LEVEL);
293
294 /* Start acquire loop */
295 do
296 {
297 /* Loop until the other CPU releases it */
298 while (TRUE)
299 {
300 /* Check if it got released */
301 OldValue = Object->Lock;
302 if ((OldValue & KOBJECT_LOCK_BIT) == 0) break;
303
304 /* Let the CPU know that this is a loop */
305 YieldProcessor();
306 }
307
308 /* Try acquiring the lock now */
309 } while (InterlockedCompareExchange(&Object->Lock,
310 OldValue | KOBJECT_LOCK_BIT,
311 OldValue) != OldValue);
312 }
313
314 FORCEINLINE
315 VOID
316 KiReleaseDispatcherObject(IN DISPATCHER_HEADER* Object)
317 {
318 /* Make sure we're at a safe level to touch the lock */
319 ASSERT(KeGetCurrentIrql() >= DISPATCH_LEVEL);
320
321 /* Release it */
322 InterlockedAnd(&Object->Lock, ~KOBJECT_LOCK_BIT);
323 }
324
325 FORCEINLINE
326 KIRQL
327 KiAcquireDispatcherLock(VOID)
328 {
329 /* Raise to synchronization level and acquire the dispatcher lock */
330 return KeAcquireQueuedSpinLockRaiseToSynch(LockQueueDispatcherLock);
331 }
332
333 FORCEINLINE
334 VOID
335 KiReleaseDispatcherLock(IN KIRQL OldIrql)
336 {
337 /* First release the lock */
338 KeReleaseQueuedSpinLockFromDpcLevel(&KeGetCurrentPrcb()->
339 LockQueue[LockQueueDispatcherLock]);
340
341 /* Then exit the dispatcher */
342 KiExitDispatcher(OldIrql);
343 }
344
345 FORCEINLINE
346 VOID
347 KiAcquireDispatcherLockAtDpcLevel(VOID)
348 {
349 /* Acquire the dispatcher lock */
350 KeAcquireQueuedSpinLockAtDpcLevel(&KeGetCurrentPrcb()->
351 LockQueue[LockQueueDispatcherLock]);
352 }
353
354 FORCEINLINE
355 VOID
356 KiReleaseDispatcherLockFromDpcLevel(VOID)
357 {
358 /* Release the dispatcher lock */
359 KeReleaseQueuedSpinLockFromDpcLevel(&KeGetCurrentPrcb()->
360 LockQueue[LockQueueDispatcherLock]);
361 }
362
363 //
364 // This routine inserts a thread into the deferred ready list of the current CPU
365 //
366 FORCEINLINE
367 VOID
368 KiInsertDeferredReadyList(IN PKTHREAD Thread)
369 {
370 PKPRCB Prcb = KeGetCurrentPrcb();
371
372 /* Set the thread to deferred state and CPU */
373 Thread->State = DeferredReady;
374 Thread->DeferredProcessor = Prcb->Number;
375
376 /* Add it on the list */
377 PushEntryList(&Prcb->DeferredReadyListHead, &Thread->SwapListEntry);
378 }
379
380 FORCEINLINE
381 VOID
382 KiRescheduleThread(IN BOOLEAN NewThread,
383 IN ULONG Cpu)
384 {
385 /* Check if a new thread needs to be scheduled on a different CPU */
386 if ((NewThread) && !(KeGetPcr()->Number == Cpu))
387 {
388 /* Send an IPI to request delivery */
389 KiIpiSend(AFFINITY_MASK(Cpu), IPI_DPC);
390 }
391 }
392
393 //
394 // This routine sets the current thread in a swap busy state, which ensure that
395 // nobody else tries to swap it concurrently.
396 //
397 FORCEINLINE
398 VOID
399 KiSetThreadSwapBusy(IN PKTHREAD Thread)
400 {
401 /* Make sure nobody already set it */
402 ASSERT(Thread->SwapBusy == FALSE);
403
404 /* Set it ourselves */
405 Thread->SwapBusy = TRUE;
406 }
407
408 //
409 // This routine acquires the PRCB lock so that only one caller can touch
410 // volatile PRCB data.
411 //
412 // Since this is a simple optimized spin-lock, it must only be acquired
413 // at dispatcher level or higher!
414 //
415 FORCEINLINE
416 VOID
417 KiAcquirePrcbLock(IN PKPRCB Prcb)
418 {
419 /* Make sure we're at a safe level to touch the PRCB lock */
420 ASSERT(KeGetCurrentIrql() >= DISPATCH_LEVEL);
421
422 /* Start acquire loop */
423 for (;;)
424 {
425 /* Acquire the lock and break out if we acquired it first */
426 if (!InterlockedExchange((PLONG)&Prcb->PrcbLock, 1)) break;
427
428 /* Loop until the other CPU releases it */
429 do
430 {
431 /* Let the CPU know that this is a loop */
432 YieldProcessor();
433 } while (Prcb->PrcbLock);
434 }
435 }
436
437 //
438 // This routine releases the PRCB lock so that other callers can touch
439 // volatile PRCB data.
440 //
441 // Since this is a simple optimized spin-lock, it must be be only acquired
442 // at dispatcher level or higher!
443 //
444 FORCEINLINE
445 VOID
446 KiReleasePrcbLock(IN PKPRCB Prcb)
447 {
448 /* Make sure we are above dispatch and the lock is acquired! */
449 ASSERT(KeGetCurrentIrql() >= DISPATCH_LEVEL);
450 ASSERT(Prcb->PrcbLock != 0);
451
452 /* Release it */
453 InterlockedAnd((PLONG)&Prcb->PrcbLock, 0);
454 }
455
456 //
457 // This routine acquires the thread lock so that only one caller can touch
458 // volatile thread data.
459 //
460 // Since this is a simple optimized spin-lock, it must be be only acquired
461 // at dispatcher level or higher!
462 //
463 FORCEINLINE
464 VOID
465 KiAcquireThreadLock(IN PKTHREAD Thread)
466 {
467 /* Make sure we're at a safe level to touch the thread lock */
468 ASSERT(KeGetCurrentIrql() >= DISPATCH_LEVEL);
469
470 /* Start acquire loop */
471 for (;;)
472 {
473 /* Acquire the lock and break out if we acquired it first */
474 if (!InterlockedExchange((PLONG)&Thread->ThreadLock, 1)) break;
475
476 /* Loop until the other CPU releases it */
477 do
478 {
479 /* Let the CPU know that this is a loop */
480 YieldProcessor();
481 } while (Thread->ThreadLock);
482 }
483 }
484
485 //
486 // This routine releases the thread lock so that other callers can touch
487 // volatile thread data.
488 //
489 // Since this is a simple optimized spin-lock, it must be be only acquired
490 // at dispatcher level or higher!
491 //
492 FORCEINLINE
493 VOID
494 KiReleaseThreadLock(IN PKTHREAD Thread)
495 {
496 /* Make sure we are still above dispatch */
497 ASSERT(KeGetCurrentIrql() >= DISPATCH_LEVEL);
498
499 /* Release it */
500 InterlockedAnd((PLONG)&Thread->ThreadLock, 0);
501 }
502
503 FORCEINLINE
504 BOOLEAN
505 KiTryThreadLock(IN PKTHREAD Thread)
506 {
507 LONG Value;
508
509 /* If the lock isn't acquired, return false */
510 if (!Thread->ThreadLock) return FALSE;
511
512 /* Otherwise, try to acquire it and check the result */
513 Value = 1;
514 Value = InterlockedExchange((PLONG)&Thread->ThreadLock, Value);
515
516 /* Return the lock state */
517 return (Value == TRUE);
518 }
519
520 FORCEINLINE
521 VOID
522 KiCheckDeferredReadyList(IN PKPRCB Prcb)
523 {
524 /* Scan the deferred ready lists if required */
525 if (Prcb->DeferredReadyListHead.Next) KiProcessDeferredReadyList(Prcb);
526 }
527
528 FORCEINLINE
529 VOID
530 KiRequestApcInterrupt(IN BOOLEAN NeedApc,
531 IN UCHAR Processor)
532 {
533 /* Check if we need to request APC delivery */
534 if (NeedApc)
535 {
536 /* Check if it's on another CPU */
537 if (KeGetPcr()->Number != Processor)
538 {
539 /* Send an IPI to request delivery */
540 KiIpiSend(AFFINITY_MASK(Processor), IPI_APC);
541 }
542 else
543 {
544 /* Request a software interrupt */
545 HalRequestSoftwareInterrupt(APC_LEVEL);
546 }
547 }
548 }
549
550 FORCEINLINE
551 PKSPIN_LOCK_QUEUE
552 KiAcquireTimerLock(IN ULONG Hand)
553 {
554 PKSPIN_LOCK_QUEUE LockQueue;
555 ULONG LockIndex;
556 ASSERT(KeGetCurrentIrql() >= DISPATCH_LEVEL);
557
558 /* Get the lock index */
559 LockIndex = Hand >> LOCK_QUEUE_TIMER_LOCK_SHIFT;
560 LockIndex &= (LOCK_QUEUE_TIMER_TABLE_LOCKS - 1);
561
562 /* Now get the lock */
563 LockQueue = &KeGetCurrentPrcb()->LockQueue[LockQueueTimerTableLock + LockIndex];
564
565 /* Acquire it and return */
566 KeAcquireQueuedSpinLockAtDpcLevel(LockQueue);
567 return LockQueue;
568 }
569
570 FORCEINLINE
571 VOID
572 KiReleaseTimerLock(IN PKSPIN_LOCK_QUEUE LockQueue)
573 {
574 ASSERT(KeGetCurrentIrql() >= DISPATCH_LEVEL);
575
576 /* Release the lock */
577 KeReleaseQueuedSpinLockFromDpcLevel(LockQueue);
578 }
579
580 #endif
581
582 FORCEINLINE
583 VOID
584 KiAcquireApcLock(IN PKTHREAD Thread,
585 IN PKLOCK_QUEUE_HANDLE Handle)
586 {
587 /* Acquire the lock and raise to synchronization level */
588 KeAcquireInStackQueuedSpinLockRaiseToSynch(&Thread->ApcQueueLock, Handle);
589 }
590
591 FORCEINLINE
592 VOID
593 KiAcquireApcLockAtDpcLevel(IN PKTHREAD Thread,
594 IN PKLOCK_QUEUE_HANDLE Handle)
595 {
596 /* Acquire the lock */
597 KeAcquireInStackQueuedSpinLockAtDpcLevel(&Thread->ApcQueueLock, Handle);
598 }
599
600 FORCEINLINE
601 VOID
602 KiAcquireApcLockAtApcLevel(IN PKTHREAD Thread,
603 IN PKLOCK_QUEUE_HANDLE Handle)
604 {
605 /* Acquire the lock */
606 KeAcquireInStackQueuedSpinLock(&Thread->ApcQueueLock, Handle);
607 }
608
609 FORCEINLINE
610 VOID
611 KiReleaseApcLock(IN PKLOCK_QUEUE_HANDLE Handle)
612 {
613 /* Release the lock */
614 KeReleaseInStackQueuedSpinLock(Handle);
615 }
616
617 FORCEINLINE
618 VOID
619 KiReleaseApcLockFromDpcLevel(IN PKLOCK_QUEUE_HANDLE Handle)
620 {
621 /* Release the lock */
622 KeReleaseInStackQueuedSpinLockFromDpcLevel(Handle);
623 }
624
625 FORCEINLINE
626 VOID
627 KiAcquireProcessLock(IN PKPROCESS Process,
628 IN PKLOCK_QUEUE_HANDLE Handle)
629 {
630 /* Acquire the lock and raise to synchronization level */
631 KeAcquireInStackQueuedSpinLockRaiseToSynch(&Process->ProcessLock, Handle);
632 }
633
634 FORCEINLINE
635 VOID
636 KiReleaseProcessLock(IN PKLOCK_QUEUE_HANDLE Handle)
637 {
638 /* Release the lock */
639 KeReleaseInStackQueuedSpinLock(Handle);
640 }
641
642 FORCEINLINE
643 VOID
644 KiReleaseProcessLockFromDpcLevel(IN PKLOCK_QUEUE_HANDLE Handle)
645 {
646 /* Release the lock */
647 KeReleaseInStackQueuedSpinLockFromDpcLevel(Handle);
648 }
649
650 FORCEINLINE
651 VOID
652 KiAcquireDeviceQueueLock(IN PKDEVICE_QUEUE DeviceQueue,
653 IN PKLOCK_QUEUE_HANDLE DeviceLock)
654 {
655 /* Check if we were called from a threaded DPC */
656 if (KeGetCurrentPrcb()->DpcThreadActive)
657 {
658 /* Lock the Queue, we're not at DPC level */
659 KeAcquireInStackQueuedSpinLock(&DeviceQueue->Lock, DeviceLock);
660 }
661 else
662 {
663 /* We must be at DPC level, acquire the lock safely */
664 ASSERT(KeGetCurrentIrql() == DISPATCH_LEVEL);
665 KeAcquireInStackQueuedSpinLockAtDpcLevel(&DeviceQueue->Lock,
666 DeviceLock);
667 }
668 }
669
670 FORCEINLINE
671 VOID
672 KiReleaseDeviceQueueLock(IN PKLOCK_QUEUE_HANDLE DeviceLock)
673 {
674 /* Check if we were called from a threaded DPC */
675 if (KeGetCurrentPrcb()->DpcThreadActive)
676 {
677 /* Unlock the Queue, we're not at DPC level */
678 KeReleaseInStackQueuedSpinLock(DeviceLock);
679 }
680 else
681 {
682 /* We must be at DPC level, release the lock safely */
683 ASSERT(KeGetCurrentIrql() == DISPATCH_LEVEL);
684 KeReleaseInStackQueuedSpinLockFromDpcLevel(DeviceLock);
685 }
686 }
687
688 //
689 // Satisfies the wait of a mutant dispatcher object
690 //
691 #define KiSatisfyMutantWait(Object, Thread) \
692 { \
693 /* Decrease the Signal State */ \
694 (Object)->Header.SignalState--; \
695 \
696 /* Check if it's now non-signaled */ \
697 if (!(Object)->Header.SignalState) \
698 { \
699 /* Set the Owner Thread */ \
700 (Object)->OwnerThread = Thread; \
701 \
702 /* Disable APCs if needed */ \
703 Thread->KernelApcDisable = Thread->KernelApcDisable - \
704 (Object)->ApcDisable; \
705 \
706 /* Check if it's abandoned */ \
707 if ((Object)->Abandoned) \
708 { \
709 /* Unabandon it */ \
710 (Object)->Abandoned = FALSE; \
711 \
712 /* Return Status */ \
713 Thread->WaitStatus = STATUS_ABANDONED; \
714 } \
715 \
716 /* Insert it into the Mutant List */ \
717 InsertHeadList(Thread->MutantListHead.Blink, \
718 &(Object)->MutantListEntry); \
719 } \
720 }
721
722 //
723 // Satisfies the wait of any nonmutant dispatcher object
724 //
725 #define KiSatisfyNonMutantWait(Object) \
726 { \
727 if (((Object)->Header.Type & TIMER_OR_EVENT_TYPE) == \
728 EventSynchronizationObject) \
729 { \
730 /* Synchronization Timers and Events just get un-signaled */ \
731 (Object)->Header.SignalState = 0; \
732 } \
733 else if ((Object)->Header.Type == SemaphoreObject) \
734 { \
735 /* These ones can have multiple states, so we only decrease it */ \
736 (Object)->Header.SignalState--; \
737 } \
738 }
739
740 //
741 // Satisfies the wait of any dispatcher object
742 //
743 #define KiSatisfyObjectWait(Object, Thread) \
744 { \
745 /* Special case for Mutants */ \
746 if ((Object)->Header.Type == MutantObject) \
747 { \
748 KiSatisfyMutantWait((Object), (Thread)); \
749 } \
750 else \
751 { \
752 KiSatisfyNonMutantWait(Object); \
753 } \
754 }
755
756 //
757 // Recalculates the due time
758 //
759 FORCEINLINE
760 PLARGE_INTEGER
761 KiRecalculateDueTime(IN PLARGE_INTEGER OriginalDueTime,
762 IN PLARGE_INTEGER DueTime,
763 IN OUT PLARGE_INTEGER NewDueTime)
764 {
765 /* Don't do anything for absolute waits */
766 if (OriginalDueTime->QuadPart >= 0) return OriginalDueTime;
767
768 /* Otherwise, query the interrupt time and recalculate */
769 NewDueTime->QuadPart = KeQueryInterruptTime();
770 NewDueTime->QuadPart -= DueTime->QuadPart;
771 return NewDueTime;
772 }
773
774 //
775 // Determines whether a thread should be added to the wait list
776 //
777 FORCEINLINE
778 BOOLEAN
779 KiCheckThreadStackSwap(IN PKTHREAD Thread,
780 IN KPROCESSOR_MODE WaitMode)
781 {
782 /* Check the required conditions */
783 if ((WaitMode != KernelMode) &&
784 (Thread->EnableStackSwap) &&
785 (Thread->Priority >= (LOW_REALTIME_PRIORITY + 9)))
786 {
787 /* We are go for swap */
788 return TRUE;
789 }
790 else
791 {
792 /* Don't swap the thread */
793 return FALSE;
794 }
795 }
796
797 //
798 // Adds a thread to the wait list
799 //
800 #define KiAddThreadToWaitList(Thread, Swappable) \
801 { \
802 /* Make sure it's swappable */ \
803 if (Swappable) \
804 { \
805 /* Insert it into the PRCB's List */ \
806 InsertTailList(&KeGetCurrentPrcb()->WaitListHead, \
807 &Thread->WaitListEntry); \
808 } \
809 }
810
811 //
812 // Checks if a wait in progress should be interrupted by APCs or an alertable
813 // state.
814 //
815 FORCEINLINE
816 NTSTATUS
817 KiCheckAlertability(IN PKTHREAD Thread,
818 IN BOOLEAN Alertable,
819 IN KPROCESSOR_MODE WaitMode)
820 {
821 /* Check if the wait is alertable */
822 if (Alertable)
823 {
824 /* It is, first check if the thread is alerted in this mode */
825 if (Thread->Alerted[WaitMode])
826 {
827 /* It is, so bail out of the wait */
828 Thread->Alerted[WaitMode] = FALSE;
829 return STATUS_ALERTED;
830 }
831 else if ((WaitMode != KernelMode) &&
832 (!IsListEmpty(&Thread->ApcState.ApcListHead[UserMode])))
833 {
834 /* It's isn't, but this is a user wait with queued user APCs */
835 Thread->ApcState.UserApcPending = TRUE;
836 return STATUS_USER_APC;
837 }
838 else if (Thread->Alerted[KernelMode])
839 {
840 /* It isn't that either, but we're alered in kernel mode */
841 Thread->Alerted[KernelMode] = FALSE;
842 return STATUS_ALERTED;
843 }
844 }
845 else if ((WaitMode != KernelMode) && (Thread->ApcState.UserApcPending))
846 {
847 /* Not alertable, but this is a user wait with pending user APCs */
848 return STATUS_USER_APC;
849 }
850
851 /* Otherwise, we're fine */
852 return STATUS_WAIT_0;
853 }
854
855 ULONG
856 FORCEINLINE
857 KiComputeTimerTableIndex(IN ULONGLONG DueTime)
858 {
859 return (DueTime / KeMaximumIncrement) & (TIMER_TABLE_SIZE - 1);
860 }
861
862 //
863 // Called from KiCompleteTimer, KiInsertTreeTimer, KeSetSystemTime
864 // to remove timer entries
865 // See Windows HPI blog for more information.
866 FORCEINLINE
867 VOID
868 KiRemoveEntryTimer(IN PKTIMER Timer)
869 {
870 ULONG Hand;
871 PKTIMER_TABLE_ENTRY TableEntry;
872
873 /* Remove the timer from the timer list and check if it's empty */
874 Hand = Timer->Header.Hand;
875 if (RemoveEntryList(&Timer->TimerListEntry))
876 {
877 /* Get the respective timer table entry */
878 TableEntry = &KiTimerTableListHead[Hand];
879 if (&TableEntry->Entry == TableEntry->Entry.Flink)
880 {
881 /* Set the entry to an infinite absolute time */
882 TableEntry->Time.HighPart = 0xFFFFFFFF;
883 }
884 }
885
886 /* Clear the list entries on dbg builds so we can tell the timer is gone */
887 #if DBG
888 Timer->TimerListEntry.Flink = NULL;
889 Timer->TimerListEntry.Blink = NULL;
890 #endif
891 }
892
893 //
894 // Called by Wait and Queue code to insert a timer for dispatching.
895 // Also called by KeSetTimerEx to insert a timer from the caller.
896 //
897 FORCEINLINE
898 VOID
899 KxInsertTimer(IN PKTIMER Timer,
900 IN ULONG Hand)
901 {
902 PKSPIN_LOCK_QUEUE LockQueue;
903
904 /* Acquire the lock and release the dispatcher lock */
905 LockQueue = KiAcquireTimerLock(Hand);
906 KiReleaseDispatcherLockFromDpcLevel();
907
908 /* Try to insert the timer */
909 if (KiInsertTimerTable(Timer, Hand))
910 {
911 /* Complete it */
912 KiCompleteTimer(Timer, LockQueue);
913 }
914 else
915 {
916 /* Do nothing, just release the lock */
917 KiReleaseTimerLock(LockQueue);
918 }
919 }
920
921 //
922 // Called by KeSetTimerEx and KiInsertTreeTimer to calculate Due Time
923 // See the Windows HPI Blog for more information
924 //
925 FORCEINLINE
926 BOOLEAN
927 KiComputeDueTime(IN PKTIMER Timer,
928 IN LARGE_INTEGER DueTime,
929 OUT PULONG Hand)
930 {
931 LARGE_INTEGER InterruptTime, SystemTime, DifferenceTime;
932
933 /* Convert to relative time if needed */
934 Timer->Header.Absolute = FALSE;
935 if (DueTime.HighPart >= 0)
936 {
937 /* Get System Time */
938 KeQuerySystemTime(&SystemTime);
939
940 /* Do the conversion */
941 DifferenceTime.QuadPart = SystemTime.QuadPart - DueTime.QuadPart;
942
943 /* Make sure it hasn't already expired */
944 Timer->Header.Absolute = TRUE;
945 if (DifferenceTime.HighPart >= 0)
946 {
947 /* Cancel everything */
948 Timer->Header.SignalState = TRUE;
949 Timer->Header.Hand = 0;
950 Timer->DueTime.QuadPart = 0;
951 *Hand = 0;
952 return FALSE;
953 }
954
955 /* Set the time as Absolute */
956 DueTime = DifferenceTime;
957 }
958
959 /* Get the Interrupt Time */
960 InterruptTime.QuadPart = KeQueryInterruptTime();
961
962 /* Recalculate due time */
963 Timer->DueTime.QuadPart = InterruptTime.QuadPart - DueTime.QuadPart;
964
965 /* Get the handle */
966 *Hand = KiComputeTimerTableIndex(Timer->DueTime.QuadPart);
967 Timer->Header.Hand = (UCHAR)*Hand;
968 Timer->Header.Inserted = TRUE;
969 return TRUE;
970 }
971
972 //
973 // Called from Unlink and Queue Insert Code.
974 // Also called by timer code when canceling an inserted timer.
975 // Removes a timer from it's tree.
976 //
977 FORCEINLINE
978 VOID
979 KxRemoveTreeTimer(IN PKTIMER Timer)
980 {
981 ULONG Hand = Timer->Header.Hand;
982 PKSPIN_LOCK_QUEUE LockQueue;
983 PKTIMER_TABLE_ENTRY TimerEntry;
984
985 /* Acquire timer lock */
986 LockQueue = KiAcquireTimerLock(Hand);
987
988 /* Set the timer as non-inserted */
989 Timer->Header.Inserted = FALSE;
990
991 /* Remove it from the timer list */
992 if (RemoveEntryList(&Timer->TimerListEntry))
993 {
994 /* Get the entry and check if it's empty */
995 TimerEntry = &KiTimerTableListHead[Hand];
996 if (IsListEmpty(&TimerEntry->Entry))
997 {
998 /* Clear the time then */
999 TimerEntry->Time.HighPart = 0xFFFFFFFF;
1000 }
1001 }
1002
1003 /* Release the timer lock */
1004 KiReleaseTimerLock(LockQueue);
1005 }
1006
1007 FORCEINLINE
1008 VOID
1009 KxSetTimerForThreadWait(IN PKTIMER Timer,
1010 IN LARGE_INTEGER Interval,
1011 OUT PULONG Hand)
1012 {
1013 ULONGLONG DueTime;
1014 LARGE_INTEGER InterruptTime, SystemTime, TimeDifference;
1015
1016 /* Check the timer's interval to see if it's absolute */
1017 Timer->Header.Absolute = FALSE;
1018 if (Interval.HighPart >= 0)
1019 {
1020 /* Get the system time and calculate the relative time */
1021 KeQuerySystemTime(&SystemTime);
1022 TimeDifference.QuadPart = SystemTime.QuadPart - Interval.QuadPart;
1023 Timer->Header.Absolute = TRUE;
1024
1025 /* Check if we've already expired */
1026 if (TimeDifference.HighPart >= 0)
1027 {
1028 /* Reset everything */
1029 Timer->DueTime.QuadPart = 0;
1030 *Hand = 0;
1031 Timer->Header.Hand = 0;
1032 return;
1033 }
1034 else
1035 {
1036 /* Update the interval */
1037 Interval = TimeDifference;
1038 }
1039 }
1040
1041 /* Calculate the due time */
1042 InterruptTime.QuadPart = KeQueryInterruptTime();
1043 DueTime = InterruptTime.QuadPart - Interval.QuadPart;
1044 Timer->DueTime.QuadPart = DueTime;
1045
1046 /* Calculate the timer handle */
1047 *Hand = KiComputeTimerTableIndex(DueTime);
1048 Timer->Header.Hand = (UCHAR)*Hand;
1049 }
1050
1051 #define KxDelayThreadWait() \
1052 \
1053 /* Setup the Wait Block */ \
1054 Thread->WaitBlockList = TimerBlock; \
1055 \
1056 /* Setup the timer */ \
1057 KxSetTimerForThreadWait(Timer, *Interval, &Hand); \
1058 \
1059 /* Save the due time for the caller */ \
1060 DueTime.QuadPart = Timer->DueTime.QuadPart; \
1061 \
1062 /* Link the timer to this Wait Block */ \
1063 TimerBlock->NextWaitBlock = TimerBlock; \
1064 Timer->Header.WaitListHead.Flink = &TimerBlock->WaitListEntry; \
1065 Timer->Header.WaitListHead.Blink = &TimerBlock->WaitListEntry; \
1066 \
1067 /* Clear wait status */ \
1068 Thread->WaitStatus = STATUS_SUCCESS; \
1069 \
1070 /* Setup wait fields */ \
1071 Thread->Alertable = Alertable; \
1072 Thread->WaitReason = DelayExecution; \
1073 Thread->WaitMode = WaitMode; \
1074 \
1075 /* Check if we can swap the thread's stack */ \
1076 Thread->WaitListEntry.Flink = NULL; \
1077 Swappable = KiCheckThreadStackSwap(Thread, WaitMode); \
1078 \
1079 /* Set the wait time */ \
1080 Thread->WaitTime = KeTickCount.LowPart;
1081
1082 #define KxMultiThreadWait() \
1083 /* Link wait block array to the thread */ \
1084 Thread->WaitBlockList = WaitBlockArray; \
1085 \
1086 /* Reset the index */ \
1087 Index = 0; \
1088 \
1089 /* Loop wait blocks */ \
1090 do \
1091 { \
1092 /* Fill out the wait block */ \
1093 WaitBlock = &WaitBlockArray[Index]; \
1094 WaitBlock->Object = Object[Index]; \
1095 WaitBlock->WaitKey = (USHORT)Index; \
1096 WaitBlock->WaitType = WaitType; \
1097 WaitBlock->Thread = Thread; \
1098 \
1099 /* Link to next block */ \
1100 WaitBlock->NextWaitBlock = &WaitBlockArray[Index + 1]; \
1101 Index++; \
1102 } while (Index < Count); \
1103 \
1104 /* Link the last block */ \
1105 WaitBlock->NextWaitBlock = WaitBlockArray; \
1106 \
1107 /* Set default wait status */ \
1108 Thread->WaitStatus = STATUS_WAIT_0; \
1109 \
1110 /* Check if we have a timer */ \
1111 if (Timeout) \
1112 { \
1113 /* Link to the block */ \
1114 TimerBlock->NextWaitBlock = WaitBlockArray; \
1115 \
1116 /* Setup the timer */ \
1117 KxSetTimerForThreadWait(Timer, *Timeout, &Hand); \
1118 \
1119 /* Save the due time for the caller */ \
1120 DueTime.QuadPart = Timer->DueTime.QuadPart; \
1121 \
1122 /* Initialize the list */ \
1123 InitializeListHead(&Timer->Header.WaitListHead); \
1124 } \
1125 \
1126 /* Set wait settings */ \
1127 Thread->Alertable = Alertable; \
1128 Thread->WaitMode = WaitMode; \
1129 Thread->WaitReason = WaitReason; \
1130 \
1131 /* Check if we can swap the thread's stack */ \
1132 Thread->WaitListEntry.Flink = NULL; \
1133 Swappable = KiCheckThreadStackSwap(Thread, WaitMode); \
1134 \
1135 /* Set the wait time */ \
1136 Thread->WaitTime = KeTickCount.LowPart;
1137
1138 #define KxSingleThreadWait() \
1139 /* Setup the Wait Block */ \
1140 Thread->WaitBlockList = WaitBlock; \
1141 WaitBlock->WaitKey = STATUS_SUCCESS; \
1142 WaitBlock->Object = Object; \
1143 WaitBlock->WaitType = WaitAny; \
1144 \
1145 /* Clear wait status */ \
1146 Thread->WaitStatus = STATUS_SUCCESS; \
1147 \
1148 /* Check if we have a timer */ \
1149 if (Timeout) \
1150 { \
1151 /* Setup the timer */ \
1152 KxSetTimerForThreadWait(Timer, *Timeout, &Hand); \
1153 \
1154 /* Save the due time for the caller */ \
1155 DueTime.QuadPart = Timer->DueTime.QuadPart; \
1156 \
1157 /* Pointer to timer block */ \
1158 WaitBlock->NextWaitBlock = TimerBlock; \
1159 TimerBlock->NextWaitBlock = WaitBlock; \
1160 \
1161 /* Link the timer to this Wait Block */ \
1162 Timer->Header.WaitListHead.Flink = &TimerBlock->WaitListEntry; \
1163 Timer->Header.WaitListHead.Blink = &TimerBlock->WaitListEntry; \
1164 } \
1165 else \
1166 { \
1167 /* No timer block, just ourselves */ \
1168 WaitBlock->NextWaitBlock = WaitBlock; \
1169 } \
1170 \
1171 /* Set wait settings */ \
1172 Thread->Alertable = Alertable; \
1173 Thread->WaitMode = WaitMode; \
1174 Thread->WaitReason = WaitReason; \
1175 \
1176 /* Check if we can swap the thread's stack */ \
1177 Thread->WaitListEntry.Flink = NULL; \
1178 Swappable = KiCheckThreadStackSwap(Thread, WaitMode); \
1179 \
1180 /* Set the wait time */ \
1181 Thread->WaitTime = KeTickCount.LowPart;
1182
1183 #define KxQueueThreadWait() \
1184 /* Setup the Wait Block */ \
1185 Thread->WaitBlockList = WaitBlock; \
1186 WaitBlock->WaitKey = STATUS_SUCCESS; \
1187 WaitBlock->Object = Queue; \
1188 WaitBlock->WaitType = WaitAny; \
1189 WaitBlock->Thread = Thread; \
1190 \
1191 /* Clear wait status */ \
1192 Thread->WaitStatus = STATUS_SUCCESS; \
1193 \
1194 /* Check if we have a timer */ \
1195 if (Timeout) \
1196 { \
1197 /* Setup the timer */ \
1198 KxSetTimerForThreadWait(Timer, *Timeout, &Hand); \
1199 \
1200 /* Save the due time for the caller */ \
1201 DueTime.QuadPart = Timer->DueTime.QuadPart; \
1202 \
1203 /* Pointer to timer block */ \
1204 WaitBlock->NextWaitBlock = TimerBlock; \
1205 TimerBlock->NextWaitBlock = WaitBlock; \
1206 \
1207 /* Link the timer to this Wait Block */ \
1208 Timer->Header.WaitListHead.Flink = &TimerBlock->WaitListEntry; \
1209 Timer->Header.WaitListHead.Blink = &TimerBlock->WaitListEntry; \
1210 } \
1211 else \
1212 { \
1213 /* No timer block, just ourselves */ \
1214 WaitBlock->NextWaitBlock = WaitBlock; \
1215 } \
1216 \
1217 /* Set wait settings */ \
1218 Thread->Alertable = FALSE; \
1219 Thread->WaitMode = WaitMode; \
1220 Thread->WaitReason = WrQueue; \
1221 \
1222 /* Check if we can swap the thread's stack */ \
1223 Thread->WaitListEntry.Flink = NULL; \
1224 Swappable = KiCheckThreadStackSwap(Thread, WaitMode); \
1225 \
1226 /* Set the wait time */ \
1227 Thread->WaitTime = KeTickCount.LowPart;
1228
1229 //
1230 // Unwaits a Thread
1231 //
1232 FORCEINLINE
1233 VOID
1234 KxUnwaitThread(IN DISPATCHER_HEADER *Object,
1235 IN KPRIORITY Increment)
1236 {
1237 PLIST_ENTRY WaitEntry, WaitList;
1238 PKWAIT_BLOCK WaitBlock;
1239 PKTHREAD WaitThread;
1240 ULONG WaitKey;
1241
1242 /* Loop the Wait Entries */
1243 WaitList = &Object->WaitListHead;
1244 ASSERT(IsListEmpty(&Object->WaitListHead) == FALSE);
1245 WaitEntry = WaitList->Flink;
1246 do
1247 {
1248 /* Get the current wait block */
1249 WaitBlock = CONTAINING_RECORD(WaitEntry, KWAIT_BLOCK, WaitListEntry);
1250
1251 /* Get the waiting thread */
1252 WaitThread = WaitBlock->Thread;
1253
1254 /* Check the current Wait Mode */
1255 if (WaitBlock->WaitType == WaitAny)
1256 {
1257 /* Use the actual wait key */
1258 WaitKey = WaitBlock->WaitKey;
1259 }
1260 else
1261 {
1262 /* Otherwise, use STATUS_KERNEL_APC */
1263 WaitKey = STATUS_KERNEL_APC;
1264 }
1265
1266 /* Unwait the thread */
1267 KiUnwaitThread(WaitThread, WaitKey, Increment);
1268
1269 /* Next entry */
1270 WaitEntry = WaitList->Flink;
1271 } while (WaitEntry != WaitList);
1272 }
1273
1274 //
1275 // Unwaits a Thread waiting on an event
1276 //
1277 FORCEINLINE
1278 VOID
1279 KxUnwaitThreadForEvent(IN PKEVENT Event,
1280 IN KPRIORITY Increment)
1281 {
1282 PLIST_ENTRY WaitEntry, WaitList;
1283 PKWAIT_BLOCK WaitBlock;
1284 PKTHREAD WaitThread;
1285
1286 /* Loop the Wait Entries */
1287 WaitList = &Event->Header.WaitListHead;
1288 ASSERT(IsListEmpty(&Event->Header.WaitListHead) == FALSE);
1289 WaitEntry = WaitList->Flink;
1290 do
1291 {
1292 /* Get the current wait block */
1293 WaitBlock = CONTAINING_RECORD(WaitEntry, KWAIT_BLOCK, WaitListEntry);
1294
1295 /* Get the waiting thread */
1296 WaitThread = WaitBlock->Thread;
1297
1298 /* Check the current Wait Mode */
1299 if (WaitBlock->WaitType == WaitAny)
1300 {
1301 /* Un-signal it */
1302 Event->Header.SignalState = 0;
1303
1304 /* Un-signal the event and unwait the thread */
1305 KiUnwaitThread(WaitThread, WaitBlock->WaitKey, Increment);
1306 break;
1307 }
1308
1309 /* Unwait the thread with STATUS_KERNEL_APC */
1310 KiUnwaitThread(WaitThread, STATUS_KERNEL_APC, Increment);
1311
1312 /* Next entry */
1313 WaitEntry = WaitList->Flink;
1314 } while (WaitEntry != WaitList);
1315 }
1316
1317 //
1318 // This routine queues a thread that is ready on the PRCB's ready lists.
1319 // If this thread cannot currently run on this CPU, then the thread is
1320 // added to the deferred ready list instead.
1321 //
1322 // This routine must be entered with the PRCB lock held and it will exit
1323 // with the PRCB lock released!
1324 //
1325 FORCEINLINE
1326 VOID
1327 KxQueueReadyThread(IN PKTHREAD Thread,
1328 IN PKPRCB Prcb)
1329 {
1330 BOOLEAN Preempted;
1331 KPRIORITY Priority;
1332
1333 /* Sanity checks */
1334 ASSERT(Prcb == KeGetCurrentPrcb());
1335 ASSERT(Thread->State == Running);
1336 ASSERT(Thread->NextProcessor == Prcb->Number);
1337
1338 /* Check if this thread is allowed to run in this CPU */
1339 #ifdef CONFIG_SMP
1340 if ((Thread->Affinity) & (Prcb->SetMember))
1341 #else
1342 if (TRUE)
1343 #endif
1344 {
1345 /* Set thread ready for execution */
1346 Thread->State = Ready;
1347
1348 /* Save current priority and if someone had pre-empted it */
1349 Priority = Thread->Priority;
1350 Preempted = Thread->Preempted;
1351
1352 /* We're not pre-empting now, and set the wait time */
1353 Thread->Preempted = FALSE;
1354 Thread->WaitTime = KeTickCount.LowPart;
1355
1356 /* Sanity check */
1357 ASSERT((Priority >= 0) && (Priority <= HIGH_PRIORITY));
1358
1359 /* Insert this thread in the appropriate order */
1360 Preempted ? InsertHeadList(&Prcb->DispatcherReadyListHead[Priority],
1361 &Thread->WaitListEntry) :
1362 InsertTailList(&Prcb->DispatcherReadyListHead[Priority],
1363 &Thread->WaitListEntry);
1364
1365 /* Update the ready summary */
1366 Prcb->ReadySummary |= PRIORITY_MASK(Priority);
1367
1368 /* Sanity check */
1369 ASSERT(Priority == Thread->Priority);
1370
1371 /* Release the PRCB lock */
1372 KiReleasePrcbLock(Prcb);
1373 }
1374 else
1375 {
1376 /* Otherwise, prepare this thread to be deferred */
1377 Thread->State = DeferredReady;
1378 Thread->DeferredProcessor = Prcb->Number;
1379
1380 /* Release the lock and defer scheduling */
1381 KiReleasePrcbLock(Prcb);
1382 KiDeferredReadyThread(Thread);
1383 }
1384 }
1385
1386 //
1387 // This routine scans for an appropriate ready thread to select at the
1388 // given priority and for the given CPU.
1389 //
1390 FORCEINLINE
1391 PKTHREAD
1392 KiSelectReadyThread(IN KPRIORITY Priority,
1393 IN PKPRCB Prcb)
1394 {
1395 ULONG PrioritySet;
1396 LONG HighPriority;
1397 PLIST_ENTRY ListEntry;
1398 PKTHREAD Thread = NULL;
1399
1400 /* Save the current mask and get the priority set for the CPU */
1401 PrioritySet = Prcb->ReadySummary >> Priority;
1402 if (!PrioritySet) goto Quickie;
1403
1404 /* Get the highest priority possible */
1405 BitScanReverse((PULONG)&HighPriority, PrioritySet);
1406 ASSERT((PrioritySet & PRIORITY_MASK(HighPriority)) != 0);
1407 HighPriority += Priority;
1408
1409 /* Make sure the list isn't empty at the highest priority */
1410 ASSERT(IsListEmpty(&Prcb->DispatcherReadyListHead[HighPriority]) == FALSE);
1411
1412 /* Get the first thread on the list */
1413 ListEntry = Prcb->DispatcherReadyListHead[HighPriority].Flink;
1414 Thread = CONTAINING_RECORD(ListEntry, KTHREAD, WaitListEntry);
1415
1416 /* Make sure this thread is here for a reason */
1417 ASSERT(HighPriority == Thread->Priority);
1418 ASSERT(Thread->Affinity & AFFINITY_MASK(Prcb->Number));
1419 ASSERT(Thread->NextProcessor == Prcb->Number);
1420
1421 /* Remove it from the list */
1422 if (RemoveEntryList(&Thread->WaitListEntry))
1423 {
1424 /* The list is empty now, reset the ready summary */
1425 Prcb->ReadySummary ^= PRIORITY_MASK(HighPriority);
1426 }
1427
1428 /* Sanity check and return the thread */
1429 Quickie:
1430 ASSERT((Thread == NULL) ||
1431 (Thread->BasePriority == 0) ||
1432 (Thread->Priority != 0));
1433 return Thread;
1434 }
1435
1436 //
1437 // This routine computes the new priority for a thread. It is only valid for
1438 // threads with priorities in the dynamic priority range.
1439 //
1440 FORCEINLINE
1441 SCHAR
1442 KiComputeNewPriority(IN PKTHREAD Thread,
1443 IN SCHAR Adjustment)
1444 {
1445 SCHAR Priority;
1446
1447 /* Priority sanity checks */
1448 ASSERT((Thread->PriorityDecrement >= 0) &&
1449 (Thread->PriorityDecrement <= Thread->Priority));
1450 ASSERT((Thread->Priority < LOW_REALTIME_PRIORITY) ?
1451 TRUE : (Thread->PriorityDecrement == 0));
1452
1453 /* Get the current priority */
1454 Priority = Thread->Priority;
1455 if (Priority < LOW_REALTIME_PRIORITY)
1456 {
1457 /* Decrease priority by the priority decrement */
1458 Priority -= (Thread->PriorityDecrement + Adjustment);
1459
1460 /* Don't go out of bounds */
1461 if (Priority < Thread->BasePriority) Priority = Thread->BasePriority;
1462
1463 /* Reset the priority decrement */
1464 Thread->PriorityDecrement = 0;
1465 }
1466
1467 /* Sanity check */
1468 ASSERT((Thread->BasePriority == 0) || (Priority != 0));
1469
1470 /* Return the new priority */
1471 return Priority;
1472 }
1473
1474 //
1475 // Guarded Mutex Routines
1476 //
1477 FORCEINLINE
1478 VOID
1479 _KeInitializeGuardedMutex(OUT PKGUARDED_MUTEX GuardedMutex)
1480 {
1481 /* Setup the Initial Data */
1482 GuardedMutex->Count = GM_LOCK_BIT;
1483 GuardedMutex->Owner = NULL;
1484 GuardedMutex->Contention = 0;
1485
1486 /* Initialize the Wait Gate */
1487 KeInitializeGate(&GuardedMutex->Gate);
1488 }
1489
1490 FORCEINLINE
1491 VOID
1492 _KeAcquireGuardedMutexUnsafe(IN OUT PKGUARDED_MUTEX GuardedMutex)
1493 {
1494 PKTHREAD Thread = KeGetCurrentThread();
1495
1496 /* Sanity checks */
1497 ASSERT((KeGetCurrentIrql() == APC_LEVEL) ||
1498 (Thread->SpecialApcDisable < 0) ||
1499 (Thread->Teb == NULL) ||
1500 (Thread->Teb >= (PTEB)MM_SYSTEM_RANGE_START));
1501 ASSERT(GuardedMutex->Owner != Thread);
1502
1503 /* Remove the lock */
1504 if (!InterlockedBitTestAndReset(&GuardedMutex->Count, GM_LOCK_BIT_V))
1505 {
1506 /* The Guarded Mutex was already locked, enter contented case */
1507 KiAcquireGuardedMutex(GuardedMutex);
1508 }
1509
1510 /* Set the Owner */
1511 GuardedMutex->Owner = Thread;
1512 }
1513
1514 FORCEINLINE
1515 VOID
1516 _KeReleaseGuardedMutexUnsafe(IN OUT PKGUARDED_MUTEX GuardedMutex)
1517 {
1518 LONG OldValue, NewValue;
1519
1520 /* Sanity checks */
1521 ASSERT((KeGetCurrentIrql() == APC_LEVEL) ||
1522 (KeGetCurrentThread()->SpecialApcDisable < 0) ||
1523 (KeGetCurrentThread()->Teb == NULL) ||
1524 (KeGetCurrentThread()->Teb >= (PTEB)MM_SYSTEM_RANGE_START));
1525 ASSERT(GuardedMutex->Owner == KeGetCurrentThread());
1526
1527 /* Destroy the Owner */
1528 GuardedMutex->Owner = NULL;
1529
1530 /* Add the Lock Bit */
1531 OldValue = InterlockedExchangeAdd(&GuardedMutex->Count, GM_LOCK_BIT);
1532 ASSERT((OldValue & GM_LOCK_BIT) == 0);
1533
1534 /* Check if it was already locked, but not woken */
1535 if ((OldValue) && !(OldValue & GM_LOCK_WAITER_WOKEN))
1536 {
1537 /* Update the Oldvalue to what it should be now */
1538 OldValue += GM_LOCK_BIT;
1539
1540 /* The mutex will be woken, minus one waiter */
1541 NewValue = OldValue + GM_LOCK_WAITER_WOKEN -
1542 GM_LOCK_WAITER_INC;
1543
1544 /* Remove the Woken bit */
1545 if (InterlockedCompareExchange(&GuardedMutex->Count,
1546 NewValue,
1547 OldValue) == OldValue)
1548 {
1549 /* Signal the Gate */
1550 KeSignalGateBoostPriority(&GuardedMutex->Gate);
1551 }
1552 }
1553 }
1554
1555 FORCEINLINE
1556 VOID
1557 _KeAcquireGuardedMutex(IN PKGUARDED_MUTEX GuardedMutex)
1558 {
1559 PKTHREAD Thread = KeGetCurrentThread();
1560
1561 /* Sanity checks */
1562 ASSERT(KeGetCurrentIrql() <= APC_LEVEL);
1563 ASSERT(GuardedMutex->Owner != Thread);
1564
1565 /* Disable Special APCs */
1566 KeEnterGuardedRegion();
1567
1568 /* Remove the lock */
1569 if (!InterlockedBitTestAndReset(&GuardedMutex->Count, GM_LOCK_BIT_V))
1570 {
1571 /* The Guarded Mutex was already locked, enter contented case */
1572 KiAcquireGuardedMutex(GuardedMutex);
1573 }
1574
1575 /* Set the Owner and Special APC Disable state */
1576 GuardedMutex->Owner = Thread;
1577 GuardedMutex->SpecialApcDisable = Thread->SpecialApcDisable;
1578 }
1579
1580 FORCEINLINE
1581 VOID
1582 _KeReleaseGuardedMutex(IN OUT PKGUARDED_MUTEX GuardedMutex)
1583 {
1584 LONG OldValue, NewValue;
1585
1586 /* Sanity checks */
1587 ASSERT(KeGetCurrentIrql() <= APC_LEVEL);
1588 ASSERT(GuardedMutex->Owner == KeGetCurrentThread());
1589 ASSERT(KeGetCurrentThread()->SpecialApcDisable ==
1590 GuardedMutex->SpecialApcDisable);
1591
1592 /* Destroy the Owner */
1593 GuardedMutex->Owner = NULL;
1594
1595 /* Add the Lock Bit */
1596 OldValue = InterlockedExchangeAdd(&GuardedMutex->Count, GM_LOCK_BIT);
1597 ASSERT((OldValue & GM_LOCK_BIT) == 0);
1598
1599 /* Check if it was already locked, but not woken */
1600 if ((OldValue) && !(OldValue & GM_LOCK_WAITER_WOKEN))
1601 {
1602 /* Update the Oldvalue to what it should be now */
1603 OldValue += GM_LOCK_BIT;
1604
1605 /* The mutex will be woken, minus one waiter */
1606 NewValue = OldValue + GM_LOCK_WAITER_WOKEN -
1607 GM_LOCK_WAITER_INC;
1608
1609 /* Remove the Woken bit */
1610 if (InterlockedCompareExchange(&GuardedMutex->Count,
1611 NewValue,
1612 OldValue) == OldValue)
1613 {
1614 /* Signal the Gate */
1615 KeSignalGateBoostPriority(&GuardedMutex->Gate);
1616 }
1617 }
1618
1619 /* Re-enable APCs */
1620 KeLeaveGuardedRegion();
1621 }
1622
1623 FORCEINLINE
1624 BOOLEAN
1625 _KeTryToAcquireGuardedMutex(IN OUT PKGUARDED_MUTEX GuardedMutex)
1626 {
1627 PKTHREAD Thread = KeGetCurrentThread();
1628
1629 /* Block APCs */
1630 KeEnterGuardedRegion();
1631
1632 /* Remove the lock */
1633 if (!InterlockedBitTestAndReset(&GuardedMutex->Count, GM_LOCK_BIT_V))
1634 {
1635 /* Re-enable APCs */
1636 KeLeaveGuardedRegion();
1637 YieldProcessor();
1638
1639 /* Return failure */
1640 return FALSE;
1641 }
1642
1643 /* Set the Owner and APC State */
1644 GuardedMutex->Owner = Thread;
1645 GuardedMutex->SpecialApcDisable = Thread->SpecialApcDisable;
1646 return TRUE;
1647 }
1648
1649
1650 FORCEINLINE
1651 VOID
1652 KiAcquireNmiListLock(OUT PKIRQL OldIrql)
1653 {
1654 KeAcquireSpinLock(&KiNmiCallbackListLock, OldIrql);
1655 }
1656
1657 FORCEINLINE
1658 VOID
1659 KiReleaseNmiListLock(IN KIRQL OldIrql)
1660 {
1661 KeReleaseSpinLock(&KiNmiCallbackListLock, OldIrql);
1662 }