[DNSAPI_APITEST] Add more tests for DnsQuery_A/W. By Peter Hater. ROSTESTS-242
[reactos.git] / reactos / ntoskrnl / mm / ARM3 / mminit.c
1 /*
2 * PROJECT: ReactOS Kernel
3 * LICENSE: BSD - See COPYING.ARM in the top level directory
4 * FILE: ntoskrnl/mm/ARM3/mminit.c
5 * PURPOSE: ARM Memory Manager Initialization
6 * PROGRAMMERS: ReactOS Portable Systems Group
7 */
8
9 /* INCLUDES *******************************************************************/
10
11 #include <ntoskrnl.h>
12 #define NDEBUG
13 #include <debug.h>
14
15 #define MODULE_INVOLVED_IN_ARM3
16 #include "miarm.h"
17 #undef MmSystemRangeStart
18
19 /* GLOBALS ********************************************************************/
20
21 //
22 // These are all registry-configurable, but by default, the memory manager will
23 // figure out the most appropriate values.
24 //
25 ULONG MmMaximumNonPagedPoolPercent;
26 SIZE_T MmSizeOfNonPagedPoolInBytes;
27 SIZE_T MmMaximumNonPagedPoolInBytes;
28
29 /* Some of the same values, in pages */
30 PFN_NUMBER MmMaximumNonPagedPoolInPages;
31
32 //
33 // These numbers describe the discrete equation components of the nonpaged
34 // pool sizing algorithm.
35 //
36 // They are described on http://support.microsoft.com/default.aspx/kb/126402/ja
37 // along with the algorithm that uses them, which is implemented later below.
38 //
39 SIZE_T MmMinimumNonPagedPoolSize = 256 * 1024;
40 ULONG MmMinAdditionNonPagedPoolPerMb = 32 * 1024;
41 SIZE_T MmDefaultMaximumNonPagedPool = 1024 * 1024;
42 ULONG MmMaxAdditionNonPagedPoolPerMb = 400 * 1024;
43
44 //
45 // The memory layout (and especially variable names) of the NT kernel mode
46 // components can be a bit hard to twig, especially when it comes to the non
47 // paged area.
48 //
49 // There are really two components to the non-paged pool:
50 //
51 // - The initial nonpaged pool, sized dynamically up to a maximum.
52 // - The expansion nonpaged pool, sized dynamically up to a maximum.
53 //
54 // The initial nonpaged pool is physically continuous for performance, and
55 // immediately follows the PFN database, typically sharing the same PDE. It is
56 // a very small resource (32MB on a 1GB system), and capped at 128MB.
57 //
58 // Right now we call this the "ARM³ Nonpaged Pool" and it begins somewhere after
59 // the PFN database (which starts at 0xB0000000).
60 //
61 // The expansion nonpaged pool, on the other hand, can grow much bigger (400MB
62 // for a 1GB system). On ARM³ however, it is currently capped at 128MB.
63 //
64 // The address where the initial nonpaged pool starts is aptly named
65 // MmNonPagedPoolStart, and it describes a range of MmSizeOfNonPagedPoolInBytes
66 // bytes.
67 //
68 // Expansion nonpaged pool starts at an address described by the variable called
69 // MmNonPagedPoolExpansionStart, and it goes on for MmMaximumNonPagedPoolInBytes
70 // minus MmSizeOfNonPagedPoolInBytes bytes, always reaching MmNonPagedPoolEnd
71 // (because of the way it's calculated) at 0xFFBE0000.
72 //
73 // Initial nonpaged pool is allocated and mapped early-on during boot, but what
74 // about the expansion nonpaged pool? It is instead composed of special pages
75 // which belong to what are called System PTEs. These PTEs are the matter of a
76 // later discussion, but they are also considered part of the "nonpaged" OS, due
77 // to the fact that they are never paged out -- once an address is described by
78 // a System PTE, it is always valid, until the System PTE is torn down.
79 //
80 // System PTEs are actually composed of two "spaces", the system space proper,
81 // and the nonpaged pool expansion space. The latter, as we've already seen,
82 // begins at MmNonPagedPoolExpansionStart. Based on the number of System PTEs
83 // that the system will support, the remaining address space below this address
84 // is used to hold the system space PTEs. This address, in turn, is held in the
85 // variable named MmNonPagedSystemStart, which itself is never allowed to go
86 // below 0xEB000000 (thus creating an upper bound on the number of System PTEs).
87 //
88 // This means that 330MB are reserved for total nonpaged system VA, on top of
89 // whatever the initial nonpaged pool allocation is.
90 //
91 // The following URLs, valid as of April 23rd, 2008, support this evidence:
92 //
93 // http://www.cs.miami.edu/~burt/journal/NT/memory.html
94 // http://www.ditii.com/2007/09/28/windows-memory-management-x86-virtual-address-space/
95 //
96 PVOID MmNonPagedSystemStart;
97 SIZE_T MiNonPagedSystemSize;
98 PVOID MmNonPagedPoolStart;
99 PVOID MmNonPagedPoolExpansionStart;
100 PVOID MmNonPagedPoolEnd = MI_NONPAGED_POOL_END;
101
102 //
103 // This is where paged pool starts by default
104 //
105 PVOID MmPagedPoolStart = MI_PAGED_POOL_START;
106 PVOID MmPagedPoolEnd;
107
108 //
109 // And this is its default size
110 //
111 SIZE_T MmSizeOfPagedPoolInBytes = MI_MIN_INIT_PAGED_POOLSIZE;
112 PFN_NUMBER MmSizeOfPagedPoolInPages = MI_MIN_INIT_PAGED_POOLSIZE / PAGE_SIZE;
113
114 //
115 // Session space starts at 0xBFFFFFFF and grows downwards
116 // By default, it includes an 8MB image area where we map win32k and video card
117 // drivers, followed by a 4MB area containing the session's working set. This is
118 // then followed by a 20MB mapped view area and finally by the session's paged
119 // pool, by default 16MB.
120 //
121 // On a normal system, this results in session space occupying the region from
122 // 0xBD000000 to 0xC0000000
123 //
124 // See miarm.h for the defines that determine the sizing of this region. On an
125 // NT system, some of these can be configured through the registry, but we don't
126 // support that yet.
127 //
128 PVOID MiSessionSpaceEnd; // 0xC0000000
129 PVOID MiSessionImageEnd; // 0xC0000000
130 PVOID MiSessionImageStart; // 0xBF800000
131 PVOID MiSessionSpaceWs;
132 PVOID MiSessionViewStart; // 0xBE000000
133 PVOID MiSessionPoolEnd; // 0xBE000000
134 PVOID MiSessionPoolStart; // 0xBD000000
135 PVOID MmSessionBase; // 0xBD000000
136 SIZE_T MmSessionSize;
137 SIZE_T MmSessionViewSize;
138 SIZE_T MmSessionPoolSize;
139 SIZE_T MmSessionImageSize;
140
141 /*
142 * These are the PTE addresses of the boundaries carved out above
143 */
144 PMMPTE MiSessionImagePteStart;
145 PMMPTE MiSessionImagePteEnd;
146 PMMPTE MiSessionBasePte;
147 PMMPTE MiSessionLastPte;
148
149 //
150 // The system view space, on the other hand, is where sections that are memory
151 // mapped into "system space" end up.
152 //
153 // By default, it is a 16MB region, but we hack it to be 32MB for ReactOS
154 //
155 PVOID MiSystemViewStart;
156 SIZE_T MmSystemViewSize;
157
158 #if (_MI_PAGING_LEVELS == 2)
159 //
160 // A copy of the system page directory (the page directory associated with the
161 // System process) is kept (double-mapped) by the manager in order to lazily
162 // map paged pool PDEs into external processes when they fault on a paged pool
163 // address.
164 //
165 PFN_NUMBER MmSystemPageDirectory[PD_COUNT];
166 PMMPDE MmSystemPagePtes;
167 #endif
168
169 //
170 // The system cache starts right after hyperspace. The first few pages are for
171 // keeping track of the system working set list.
172 //
173 // This should be 0xC0C00000 -- the cache itself starts at 0xC1000000
174 //
175 PMMWSL MmSystemCacheWorkingSetList = (PVOID)MI_SYSTEM_CACHE_WS_START;
176
177 //
178 // Windows NT seems to choose between 7000, 11000 and 50000
179 // On systems with more than 32MB, this number is then doubled, and further
180 // aligned up to a PDE boundary (4MB).
181 //
182 PFN_COUNT MmNumberOfSystemPtes;
183
184 //
185 // This is how many pages the PFN database will take up
186 // In Windows, this includes the Quark Color Table, but not in ARM³
187 //
188 PFN_NUMBER MxPfnAllocation;
189
190 //
191 // Unlike the old ReactOS Memory Manager, ARM³ (and Windows) does not keep track
192 // of pages that are not actually valid physical memory, such as ACPI reserved
193 // regions, BIOS address ranges, or holes in physical memory address space which
194 // could indicate device-mapped I/O memory.
195 //
196 // In fact, the lack of a PFN entry for a page usually indicates that this is
197 // I/O space instead.
198 //
199 // A bitmap, called the PFN bitmap, keeps track of all page frames by assigning
200 // a bit to each. If the bit is set, then the page is valid physical RAM.
201 //
202 RTL_BITMAP MiPfnBitMap;
203
204 //
205 // This structure describes the different pieces of RAM-backed address space
206 //
207 PPHYSICAL_MEMORY_DESCRIPTOR MmPhysicalMemoryBlock;
208
209 //
210 // This is where we keep track of the most basic physical layout markers
211 //
212 PFN_NUMBER MmHighestPhysicalPage, MmLowestPhysicalPage = -1;
213 PFN_COUNT MmNumberOfPhysicalPages;
214
215 //
216 // The total number of pages mapped by the boot loader, which include the kernel
217 // HAL, boot drivers, registry, NLS files and other loader data structures is
218 // kept track of here. This depends on "LoaderPagesSpanned" being correct when
219 // coming from the loader.
220 //
221 // This number is later aligned up to a PDE boundary.
222 //
223 SIZE_T MmBootImageSize;
224
225 //
226 // These three variables keep track of the core separation of address space that
227 // exists between kernel mode and user mode.
228 //
229 ULONG_PTR MmUserProbeAddress;
230 PVOID MmHighestUserAddress;
231 PVOID MmSystemRangeStart;
232
233 /* And these store the respective highest PTE/PDE address */
234 PMMPTE MiHighestUserPte;
235 PMMPDE MiHighestUserPde;
236 #if (_MI_PAGING_LEVELS >= 3)
237 PMMPTE MiHighestUserPpe;
238 #if (_MI_PAGING_LEVELS >= 4)
239 PMMPTE MiHighestUserPxe;
240 #endif
241 #endif
242
243 /* These variables define the system cache address space */
244 PVOID MmSystemCacheStart;
245 PVOID MmSystemCacheEnd;
246 MMSUPPORT MmSystemCacheWs;
247
248 //
249 // This is where hyperspace ends (followed by the system cache working set)
250 //
251 PVOID MmHyperSpaceEnd;
252
253 //
254 // Page coloring algorithm data
255 //
256 ULONG MmSecondaryColors;
257 ULONG MmSecondaryColorMask;
258
259 //
260 // Actual (registry-configurable) size of a GUI thread's stack
261 //
262 ULONG MmLargeStackSize = KERNEL_LARGE_STACK_SIZE;
263
264 //
265 // Before we have a PFN database, memory comes straight from our physical memory
266 // blocks, which is nice because it's guaranteed contiguous and also because once
267 // we take a page from here, the system doesn't see it anymore.
268 // However, once the fun is over, those pages must be re-integrated back into
269 // PFN society life, and that requires us keeping a copy of the original layout
270 // so that we can parse it later.
271 //
272 PMEMORY_ALLOCATION_DESCRIPTOR MxFreeDescriptor;
273 MEMORY_ALLOCATION_DESCRIPTOR MxOldFreeDescriptor;
274
275 /*
276 * For each page's worth bytes of L2 cache in a given set/way line, the zero and
277 * free lists are organized in what is called a "color".
278 *
279 * This array points to the two lists, so it can be thought of as a multi-dimensional
280 * array of MmFreePagesByColor[2][MmSecondaryColors]. Since the number is dynamic,
281 * we describe the array in pointer form instead.
282 *
283 * On a final note, the color tables themselves are right after the PFN database.
284 */
285 C_ASSERT(FreePageList == 1);
286 PMMCOLOR_TABLES MmFreePagesByColor[FreePageList + 1];
287
288 /* An event used in Phase 0 before the rest of the system is ready to go */
289 KEVENT MiTempEvent;
290
291 /* All the events used for memory threshold notifications */
292 PKEVENT MiLowMemoryEvent;
293 PKEVENT MiHighMemoryEvent;
294 PKEVENT MiLowPagedPoolEvent;
295 PKEVENT MiHighPagedPoolEvent;
296 PKEVENT MiLowNonPagedPoolEvent;
297 PKEVENT MiHighNonPagedPoolEvent;
298
299 /* The actual thresholds themselves, in page numbers */
300 PFN_NUMBER MmLowMemoryThreshold;
301 PFN_NUMBER MmHighMemoryThreshold;
302 PFN_NUMBER MiLowPagedPoolThreshold;
303 PFN_NUMBER MiHighPagedPoolThreshold;
304 PFN_NUMBER MiLowNonPagedPoolThreshold;
305 PFN_NUMBER MiHighNonPagedPoolThreshold;
306
307 /*
308 * This number determines how many free pages must exist, at minimum, until we
309 * start trimming working sets and flushing modified pages to obtain more free
310 * pages.
311 *
312 * This number changes if the system detects that this is a server product
313 */
314 PFN_NUMBER MmMinimumFreePages = 26;
315
316 /*
317 * This number indicates how many pages we consider to be a low limit of having
318 * "plenty" of free memory.
319 *
320 * It is doubled on systems that have more than 63MB of memory
321 */
322 PFN_NUMBER MmPlentyFreePages = 400;
323
324 /* These values store the type of system this is (small, med, large) and if server */
325 ULONG MmProductType;
326 MM_SYSTEMSIZE MmSystemSize;
327
328 /*
329 * These values store the cache working set minimums and maximums, in pages
330 *
331 * The minimum value is boosted on systems with more than 24MB of RAM, and cut
332 * down to only 32 pages on embedded (<24MB RAM) systems.
333 *
334 * An extra boost of 2MB is given on systems with more than 33MB of RAM.
335 */
336 PFN_NUMBER MmSystemCacheWsMinimum = 288;
337 PFN_NUMBER MmSystemCacheWsMaximum = 350;
338
339 /* FIXME: Move to cache/working set code later */
340 BOOLEAN MmLargeSystemCache;
341
342 /*
343 * This value determines in how many fragments/chunks the subsection prototype
344 * PTEs should be allocated when mapping a section object. It is configurable in
345 * the registry through the MapAllocationFragment parameter.
346 *
347 * The default is 64KB on systems with more than 1GB of RAM, 32KB on systems with
348 * more than 256MB of RAM, and 16KB on systems with less than 256MB of RAM.
349 *
350 * The maximum it can be set to is 2MB, and the minimum is 4KB.
351 */
352 SIZE_T MmAllocationFragment;
353
354 /*
355 * These two values track how much virtual memory can be committed, and when
356 * expansion should happen.
357 */
358 // FIXME: They should be moved elsewhere since it's not an "init" setting?
359 SIZE_T MmTotalCommitLimit;
360 SIZE_T MmTotalCommitLimitMaximum;
361
362 /*
363 * These values tune certain user parameters. They have default values set here,
364 * as well as in the code, and can be overwritten by registry settings.
365 */
366 SIZE_T MmHeapSegmentReserve = 1 * _1MB;
367 SIZE_T MmHeapSegmentCommit = 2 * PAGE_SIZE;
368 SIZE_T MmHeapDeCommitTotalFreeThreshold = 64 * _1KB;
369 SIZE_T MmHeapDeCommitFreeBlockThreshold = PAGE_SIZE;
370 SIZE_T MmMinimumStackCommitInBytes = 0;
371
372 /* Internal setting used for debugging memory descriptors */
373 BOOLEAN MiDbgEnableMdDump =
374 #ifdef _ARM_
375 TRUE;
376 #else
377 FALSE;
378 #endif
379
380 /* Number of memory descriptors in the loader block */
381 ULONG MiNumberDescriptors = 0;
382
383 /* Number of free pages in the loader block */
384 PFN_NUMBER MiNumberOfFreePages = 0;
385
386 /* Timeout value for critical sections (2.5 minutes) */
387 ULONG MmCritsectTimeoutSeconds = 150; // NT value: 720 * 60 * 60; (30 days)
388 LARGE_INTEGER MmCriticalSectionTimeout;
389
390 /* PRIVATE FUNCTIONS **********************************************************/
391
392 VOID
393 NTAPI
394 MiScanMemoryDescriptors(IN PLOADER_PARAMETER_BLOCK LoaderBlock)
395 {
396 PLIST_ENTRY ListEntry;
397 PMEMORY_ALLOCATION_DESCRIPTOR Descriptor;
398 PFN_NUMBER PageFrameIndex, FreePages = 0;
399
400 /* Loop the memory descriptors */
401 for (ListEntry = LoaderBlock->MemoryDescriptorListHead.Flink;
402 ListEntry != &LoaderBlock->MemoryDescriptorListHead;
403 ListEntry = ListEntry->Flink)
404 {
405 /* Get the descriptor */
406 Descriptor = CONTAINING_RECORD(ListEntry,
407 MEMORY_ALLOCATION_DESCRIPTOR,
408 ListEntry);
409 DPRINT("MD Type: %lx Base: %lx Count: %lx\n",
410 Descriptor->MemoryType, Descriptor->BasePage, Descriptor->PageCount);
411
412 /* Count this descriptor */
413 MiNumberDescriptors++;
414
415 /* Check if this is invisible memory */
416 if ((Descriptor->MemoryType == LoaderFirmwarePermanent) ||
417 (Descriptor->MemoryType == LoaderSpecialMemory) ||
418 (Descriptor->MemoryType == LoaderHALCachedMemory) ||
419 (Descriptor->MemoryType == LoaderBBTMemory))
420 {
421 /* Skip this descriptor */
422 continue;
423 }
424
425 /* Check if this is bad memory */
426 if (Descriptor->MemoryType != LoaderBad)
427 {
428 /* Count this in the total of pages */
429 MmNumberOfPhysicalPages += (PFN_COUNT)Descriptor->PageCount;
430 }
431
432 /* Check if this is the new lowest page */
433 if (Descriptor->BasePage < MmLowestPhysicalPage)
434 {
435 /* Update the lowest page */
436 MmLowestPhysicalPage = Descriptor->BasePage;
437 }
438
439 /* Check if this is the new highest page */
440 PageFrameIndex = Descriptor->BasePage + Descriptor->PageCount;
441 if (PageFrameIndex > MmHighestPhysicalPage)
442 {
443 /* Update the highest page */
444 MmHighestPhysicalPage = PageFrameIndex - 1;
445 }
446
447 /* Check if this is free memory */
448 if ((Descriptor->MemoryType == LoaderFree) ||
449 (Descriptor->MemoryType == LoaderLoadedProgram) ||
450 (Descriptor->MemoryType == LoaderFirmwareTemporary) ||
451 (Descriptor->MemoryType == LoaderOsloaderStack))
452 {
453 /* Count it too free pages */
454 MiNumberOfFreePages += Descriptor->PageCount;
455
456 /* Check if this is the largest memory descriptor */
457 if (Descriptor->PageCount > FreePages)
458 {
459 /* Remember it */
460 MxFreeDescriptor = Descriptor;
461 FreePages = Descriptor->PageCount;
462 }
463 }
464 }
465
466 /* Save original values of the free descriptor, since it'll be
467 * altered by early allocations */
468 MxOldFreeDescriptor = *MxFreeDescriptor;
469 }
470
471 PFN_NUMBER
472 NTAPI
473 INIT_FUNCTION
474 MxGetNextPage(IN PFN_NUMBER PageCount)
475 {
476 PFN_NUMBER Pfn;
477
478 /* Make sure we have enough pages */
479 if (PageCount > MxFreeDescriptor->PageCount)
480 {
481 /* Crash the system */
482 KeBugCheckEx(INSTALL_MORE_MEMORY,
483 MmNumberOfPhysicalPages,
484 MxFreeDescriptor->PageCount,
485 MxOldFreeDescriptor.PageCount,
486 PageCount);
487 }
488
489 /* Use our lowest usable free pages */
490 Pfn = MxFreeDescriptor->BasePage;
491 MxFreeDescriptor->BasePage += PageCount;
492 MxFreeDescriptor->PageCount -= PageCount;
493 return Pfn;
494 }
495
496 VOID
497 NTAPI
498 INIT_FUNCTION
499 MiComputeColorInformation(VOID)
500 {
501 ULONG L2Associativity;
502
503 /* Check if no setting was provided already */
504 if (!MmSecondaryColors)
505 {
506 /* Get L2 cache information */
507 L2Associativity = KeGetPcr()->SecondLevelCacheAssociativity;
508
509 /* The number of colors is the number of cache bytes by set/way */
510 MmSecondaryColors = KeGetPcr()->SecondLevelCacheSize;
511 if (L2Associativity) MmSecondaryColors /= L2Associativity;
512 }
513
514 /* Now convert cache bytes into pages */
515 MmSecondaryColors >>= PAGE_SHIFT;
516 if (!MmSecondaryColors)
517 {
518 /* If there was no cache data from the KPCR, use the default colors */
519 MmSecondaryColors = MI_SECONDARY_COLORS;
520 }
521 else
522 {
523 /* Otherwise, make sure there aren't too many colors */
524 if (MmSecondaryColors > MI_MAX_SECONDARY_COLORS)
525 {
526 /* Set the maximum */
527 MmSecondaryColors = MI_MAX_SECONDARY_COLORS;
528 }
529
530 /* Make sure there aren't too little colors */
531 if (MmSecondaryColors < MI_MIN_SECONDARY_COLORS)
532 {
533 /* Set the default */
534 MmSecondaryColors = MI_SECONDARY_COLORS;
535 }
536
537 /* Finally make sure the colors are a power of two */
538 if (MmSecondaryColors & (MmSecondaryColors - 1))
539 {
540 /* Set the default */
541 MmSecondaryColors = MI_SECONDARY_COLORS;
542 }
543 }
544
545 /* Compute the mask and store it */
546 MmSecondaryColorMask = MmSecondaryColors - 1;
547 KeGetCurrentPrcb()->SecondaryColorMask = MmSecondaryColorMask;
548 }
549
550 VOID
551 NTAPI
552 INIT_FUNCTION
553 MiInitializeColorTables(VOID)
554 {
555 ULONG i;
556 PMMPTE PointerPte, LastPte;
557 MMPTE TempPte = ValidKernelPte;
558
559 /* The color table starts after the ARM3 PFN database */
560 MmFreePagesByColor[0] = (PMMCOLOR_TABLES)&MmPfnDatabase[MmHighestPhysicalPage + 1];
561
562 /* Loop the PTEs. We have two color tables for each secondary color */
563 PointerPte = MiAddressToPte(&MmFreePagesByColor[0][0]);
564 LastPte = MiAddressToPte((ULONG_PTR)MmFreePagesByColor[0] +
565 (2 * MmSecondaryColors * sizeof(MMCOLOR_TABLES))
566 - 1);
567 while (PointerPte <= LastPte)
568 {
569 /* Check for valid PTE */
570 if (PointerPte->u.Hard.Valid == 0)
571 {
572 /* Get a page and map it */
573 TempPte.u.Hard.PageFrameNumber = MxGetNextPage(1);
574 MI_WRITE_VALID_PTE(PointerPte, TempPte);
575
576 /* Zero out the page */
577 RtlZeroMemory(MiPteToAddress(PointerPte), PAGE_SIZE);
578 }
579
580 /* Next */
581 PointerPte++;
582 }
583
584 /* Now set the address of the next list, right after this one */
585 MmFreePagesByColor[1] = &MmFreePagesByColor[0][MmSecondaryColors];
586
587 /* Now loop the lists to set them up */
588 for (i = 0; i < MmSecondaryColors; i++)
589 {
590 /* Set both free and zero lists for each color */
591 MmFreePagesByColor[ZeroedPageList][i].Flink = LIST_HEAD;
592 MmFreePagesByColor[ZeroedPageList][i].Blink = (PVOID)LIST_HEAD;
593 MmFreePagesByColor[ZeroedPageList][i].Count = 0;
594 MmFreePagesByColor[FreePageList][i].Flink = LIST_HEAD;
595 MmFreePagesByColor[FreePageList][i].Blink = (PVOID)LIST_HEAD;
596 MmFreePagesByColor[FreePageList][i].Count = 0;
597 }
598 }
599
600 #ifndef _M_AMD64
601 BOOLEAN
602 NTAPI
603 INIT_FUNCTION
604 MiIsRegularMemory(IN PLOADER_PARAMETER_BLOCK LoaderBlock,
605 IN PFN_NUMBER Pfn)
606 {
607 PLIST_ENTRY NextEntry;
608 PMEMORY_ALLOCATION_DESCRIPTOR MdBlock;
609
610 /* Loop the memory descriptors */
611 NextEntry = LoaderBlock->MemoryDescriptorListHead.Flink;
612 while (NextEntry != &LoaderBlock->MemoryDescriptorListHead)
613 {
614 /* Get the memory descriptor */
615 MdBlock = CONTAINING_RECORD(NextEntry,
616 MEMORY_ALLOCATION_DESCRIPTOR,
617 ListEntry);
618
619 /* Check if this PFN could be part of the block */
620 if (Pfn >= (MdBlock->BasePage))
621 {
622 /* Check if it really is part of the block */
623 if (Pfn < (MdBlock->BasePage + MdBlock->PageCount))
624 {
625 /* Check if the block is actually memory we don't map */
626 if ((MdBlock->MemoryType == LoaderFirmwarePermanent) ||
627 (MdBlock->MemoryType == LoaderBBTMemory) ||
628 (MdBlock->MemoryType == LoaderSpecialMemory))
629 {
630 /* We don't need PFN database entries for this memory */
631 break;
632 }
633
634 /* This is memory we want to map */
635 return TRUE;
636 }
637 }
638 else
639 {
640 /* Blocks are ordered, so if it's not here, it doesn't exist */
641 break;
642 }
643
644 /* Get to the next descriptor */
645 NextEntry = MdBlock->ListEntry.Flink;
646 }
647
648 /* Check if this PFN is actually from our free memory descriptor */
649 if ((Pfn >= MxOldFreeDescriptor.BasePage) &&
650 (Pfn < MxOldFreeDescriptor.BasePage + MxOldFreeDescriptor.PageCount))
651 {
652 /* We use these pages for initial mappings, so we do want to count them */
653 return TRUE;
654 }
655
656 /* Otherwise this isn't memory that we describe or care about */
657 return FALSE;
658 }
659
660 VOID
661 NTAPI
662 INIT_FUNCTION
663 MiMapPfnDatabase(IN PLOADER_PARAMETER_BLOCK LoaderBlock)
664 {
665 PFN_NUMBER FreePage, FreePageCount, PagesLeft, BasePage, PageCount;
666 PLIST_ENTRY NextEntry;
667 PMEMORY_ALLOCATION_DESCRIPTOR MdBlock;
668 PMMPTE PointerPte, LastPte;
669 MMPTE TempPte = ValidKernelPte;
670
671 /* Get current page data, since we won't be using MxGetNextPage as it would corrupt our state */
672 FreePage = MxFreeDescriptor->BasePage;
673 FreePageCount = MxFreeDescriptor->PageCount;
674 PagesLeft = 0;
675
676 /* Loop the memory descriptors */
677 NextEntry = LoaderBlock->MemoryDescriptorListHead.Flink;
678 while (NextEntry != &LoaderBlock->MemoryDescriptorListHead)
679 {
680 /* Get the descriptor */
681 MdBlock = CONTAINING_RECORD(NextEntry,
682 MEMORY_ALLOCATION_DESCRIPTOR,
683 ListEntry);
684 if ((MdBlock->MemoryType == LoaderFirmwarePermanent) ||
685 (MdBlock->MemoryType == LoaderBBTMemory) ||
686 (MdBlock->MemoryType == LoaderSpecialMemory))
687 {
688 /* These pages are not part of the PFN database */
689 NextEntry = MdBlock->ListEntry.Flink;
690 continue;
691 }
692
693 /* Next, check if this is our special free descriptor we've found */
694 if (MdBlock == MxFreeDescriptor)
695 {
696 /* Use the real numbers instead */
697 BasePage = MxOldFreeDescriptor.BasePage;
698 PageCount = MxOldFreeDescriptor.PageCount;
699 }
700 else
701 {
702 /* Use the descriptor's numbers */
703 BasePage = MdBlock->BasePage;
704 PageCount = MdBlock->PageCount;
705 }
706
707 /* Get the PTEs for this range */
708 PointerPte = MiAddressToPte(&MmPfnDatabase[BasePage]);
709 LastPte = MiAddressToPte(((ULONG_PTR)&MmPfnDatabase[BasePage + PageCount]) - 1);
710 DPRINT("MD Type: %lx Base: %lx Count: %lx\n", MdBlock->MemoryType, BasePage, PageCount);
711
712 /* Loop them */
713 while (PointerPte <= LastPte)
714 {
715 /* We'll only touch PTEs that aren't already valid */
716 if (PointerPte->u.Hard.Valid == 0)
717 {
718 /* Use the next free page */
719 TempPte.u.Hard.PageFrameNumber = FreePage;
720 ASSERT(FreePageCount != 0);
721
722 /* Consume free pages */
723 FreePage++;
724 FreePageCount--;
725 if (!FreePageCount)
726 {
727 /* Out of memory */
728 KeBugCheckEx(INSTALL_MORE_MEMORY,
729 MmNumberOfPhysicalPages,
730 FreePageCount,
731 MxOldFreeDescriptor.PageCount,
732 1);
733 }
734
735 /* Write out this PTE */
736 PagesLeft++;
737 MI_WRITE_VALID_PTE(PointerPte, TempPte);
738
739 /* Zero this page */
740 RtlZeroMemory(MiPteToAddress(PointerPte), PAGE_SIZE);
741 }
742
743 /* Next! */
744 PointerPte++;
745 }
746
747 /* Do the next address range */
748 NextEntry = MdBlock->ListEntry.Flink;
749 }
750
751 /* Now update the free descriptors to consume the pages we used up during the PFN allocation loop */
752 MxFreeDescriptor->BasePage = FreePage;
753 MxFreeDescriptor->PageCount = FreePageCount;
754 }
755
756 VOID
757 NTAPI
758 INIT_FUNCTION
759 MiBuildPfnDatabaseFromPages(IN PLOADER_PARAMETER_BLOCK LoaderBlock)
760 {
761 PMMPDE PointerPde;
762 PMMPTE PointerPte;
763 ULONG i, Count, j;
764 PFN_NUMBER PageFrameIndex, StartupPdIndex, PtePageIndex;
765 PMMPFN Pfn1, Pfn2;
766 ULONG_PTR BaseAddress = 0;
767
768 /* PFN of the startup page directory */
769 StartupPdIndex = PFN_FROM_PTE(MiAddressToPde(PDE_BASE));
770
771 /* Start with the first PDE and scan them all */
772 PointerPde = MiAddressToPde(NULL);
773 Count = PD_COUNT * PDE_COUNT;
774 for (i = 0; i < Count; i++)
775 {
776 /* Check for valid PDE */
777 if (PointerPde->u.Hard.Valid == 1)
778 {
779 /* Get the PFN from it */
780 PageFrameIndex = PFN_FROM_PTE(PointerPde);
781
782 /* Do we want a PFN entry for this page? */
783 if (MiIsRegularMemory(LoaderBlock, PageFrameIndex))
784 {
785 /* Yes we do, set it up */
786 Pfn1 = MiGetPfnEntry(PageFrameIndex);
787 Pfn1->u4.PteFrame = StartupPdIndex;
788 Pfn1->PteAddress = (PMMPTE)PointerPde;
789 Pfn1->u2.ShareCount++;
790 Pfn1->u3.e2.ReferenceCount = 1;
791 Pfn1->u3.e1.PageLocation = ActiveAndValid;
792 Pfn1->u3.e1.CacheAttribute = MiNonCached;
793 #if MI_TRACE_PFNS
794 Pfn1->PfnUsage = MI_USAGE_INIT_MEMORY;
795 memcpy(Pfn1->ProcessName, "Initial PDE", 16);
796 #endif
797 }
798 else
799 {
800 /* No PFN entry */
801 Pfn1 = NULL;
802 }
803
804 /* Now get the PTE and scan the pages */
805 PointerPte = MiAddressToPte(BaseAddress);
806 for (j = 0; j < PTE_COUNT; j++)
807 {
808 /* Check for a valid PTE */
809 if (PointerPte->u.Hard.Valid == 1)
810 {
811 /* Increase the shared count of the PFN entry for the PDE */
812 ASSERT(Pfn1 != NULL);
813 Pfn1->u2.ShareCount++;
814
815 /* Now check if the PTE is valid memory too */
816 PtePageIndex = PFN_FROM_PTE(PointerPte);
817 if (MiIsRegularMemory(LoaderBlock, PtePageIndex))
818 {
819 /*
820 * Only add pages above the end of system code or pages
821 * that are part of nonpaged pool
822 */
823 if ((BaseAddress >= 0xA0000000) ||
824 ((BaseAddress >= (ULONG_PTR)MmNonPagedPoolStart) &&
825 (BaseAddress < (ULONG_PTR)MmNonPagedPoolStart +
826 MmSizeOfNonPagedPoolInBytes)))
827 {
828 /* Get the PFN entry and make sure it too is valid */
829 Pfn2 = MiGetPfnEntry(PtePageIndex);
830 if ((MmIsAddressValid(Pfn2)) &&
831 (MmIsAddressValid(Pfn2 + 1)))
832 {
833 /* Setup the PFN entry */
834 Pfn2->u4.PteFrame = PageFrameIndex;
835 Pfn2->PteAddress = PointerPte;
836 Pfn2->u2.ShareCount++;
837 Pfn2->u3.e2.ReferenceCount = 1;
838 Pfn2->u3.e1.PageLocation = ActiveAndValid;
839 Pfn2->u3.e1.CacheAttribute = MiNonCached;
840 #if MI_TRACE_PFNS
841 Pfn2->PfnUsage = MI_USAGE_INIT_MEMORY;
842 memcpy(Pfn1->ProcessName, "Initial PTE", 16);
843 #endif
844 }
845 }
846 }
847 }
848
849 /* Next PTE */
850 PointerPte++;
851 BaseAddress += PAGE_SIZE;
852 }
853 }
854 else
855 {
856 /* Next PDE mapped address */
857 BaseAddress += PDE_MAPPED_VA;
858 }
859
860 /* Next PTE */
861 PointerPde++;
862 }
863 }
864
865 VOID
866 NTAPI
867 INIT_FUNCTION
868 MiBuildPfnDatabaseZeroPage(VOID)
869 {
870 PMMPFN Pfn1;
871 PMMPDE PointerPde;
872
873 /* Grab the lowest page and check if it has no real references */
874 Pfn1 = MiGetPfnEntry(MmLowestPhysicalPage);
875 if (!(MmLowestPhysicalPage) && !(Pfn1->u3.e2.ReferenceCount))
876 {
877 /* Make it a bogus page to catch errors */
878 PointerPde = MiAddressToPde(0xFFFFFFFF);
879 Pfn1->u4.PteFrame = PFN_FROM_PTE(PointerPde);
880 Pfn1->PteAddress = (PMMPTE)PointerPde;
881 Pfn1->u2.ShareCount++;
882 Pfn1->u3.e2.ReferenceCount = 0xFFF0;
883 Pfn1->u3.e1.PageLocation = ActiveAndValid;
884 Pfn1->u3.e1.CacheAttribute = MiNonCached;
885 }
886 }
887
888 VOID
889 NTAPI
890 INIT_FUNCTION
891 MiBuildPfnDatabaseFromLoaderBlock(IN PLOADER_PARAMETER_BLOCK LoaderBlock)
892 {
893 PLIST_ENTRY NextEntry;
894 PFN_NUMBER PageCount = 0;
895 PMEMORY_ALLOCATION_DESCRIPTOR MdBlock;
896 PFN_NUMBER PageFrameIndex;
897 PMMPFN Pfn1;
898 PMMPTE PointerPte;
899 PMMPDE PointerPde;
900 KIRQL OldIrql;
901
902 /* Now loop through the descriptors */
903 NextEntry = LoaderBlock->MemoryDescriptorListHead.Flink;
904 while (NextEntry != &LoaderBlock->MemoryDescriptorListHead)
905 {
906 /* Get the current descriptor */
907 MdBlock = CONTAINING_RECORD(NextEntry,
908 MEMORY_ALLOCATION_DESCRIPTOR,
909 ListEntry);
910
911 /* Read its data */
912 PageCount = MdBlock->PageCount;
913 PageFrameIndex = MdBlock->BasePage;
914
915 /* Don't allow memory above what the PFN database is mapping */
916 if (PageFrameIndex > MmHighestPhysicalPage)
917 {
918 /* Since they are ordered, everything past here will be larger */
919 break;
920 }
921
922 /* On the other hand, the end page might be higher up... */
923 if ((PageFrameIndex + PageCount) > (MmHighestPhysicalPage + 1))
924 {
925 /* In which case we'll trim the descriptor to go as high as we can */
926 PageCount = MmHighestPhysicalPage + 1 - PageFrameIndex;
927 MdBlock->PageCount = PageCount;
928
929 /* But if there's nothing left to trim, we got too high, so quit */
930 if (!PageCount) break;
931 }
932
933 /* Now check the descriptor type */
934 switch (MdBlock->MemoryType)
935 {
936 /* Check for bad RAM */
937 case LoaderBad:
938
939 DPRINT1("You either have specified /BURNMEMORY or damaged RAM modules.\n");
940 break;
941
942 /* Check for free RAM */
943 case LoaderFree:
944 case LoaderLoadedProgram:
945 case LoaderFirmwareTemporary:
946 case LoaderOsloaderStack:
947
948 /* Get the last page of this descriptor. Note we loop backwards */
949 PageFrameIndex += PageCount - 1;
950 Pfn1 = MiGetPfnEntry(PageFrameIndex);
951
952 /* Lock the PFN Database */
953 OldIrql = KeAcquireQueuedSpinLock(LockQueuePfnLock);
954 while (PageCount--)
955 {
956 /* If the page really has no references, mark it as free */
957 if (!Pfn1->u3.e2.ReferenceCount)
958 {
959 /* Add it to the free list */
960 Pfn1->u3.e1.CacheAttribute = MiNonCached;
961 MiInsertPageInFreeList(PageFrameIndex);
962 }
963
964 /* Go to the next page */
965 Pfn1--;
966 PageFrameIndex--;
967 }
968
969 /* Release PFN database */
970 KeReleaseQueuedSpinLock(LockQueuePfnLock, OldIrql);
971
972 /* Done with this block */
973 break;
974
975 /* Check for pages that are invisible to us */
976 case LoaderFirmwarePermanent:
977 case LoaderSpecialMemory:
978 case LoaderBBTMemory:
979
980 /* And skip them */
981 break;
982
983 default:
984
985 /* Map these pages with the KSEG0 mapping that adds 0x80000000 */
986 PointerPte = MiAddressToPte(KSEG0_BASE + (PageFrameIndex << PAGE_SHIFT));
987 Pfn1 = MiGetPfnEntry(PageFrameIndex);
988 while (PageCount--)
989 {
990 /* Check if the page is really unused */
991 PointerPde = MiAddressToPde(KSEG0_BASE + (PageFrameIndex << PAGE_SHIFT));
992 if (!Pfn1->u3.e2.ReferenceCount)
993 {
994 /* Mark it as being in-use */
995 Pfn1->u4.PteFrame = PFN_FROM_PTE(PointerPde);
996 Pfn1->PteAddress = PointerPte;
997 Pfn1->u2.ShareCount++;
998 Pfn1->u3.e2.ReferenceCount = 1;
999 Pfn1->u3.e1.PageLocation = ActiveAndValid;
1000 Pfn1->u3.e1.CacheAttribute = MiNonCached;
1001 #if MI_TRACE_PFNS
1002 Pfn1->PfnUsage = MI_USAGE_BOOT_DRIVER;
1003 #endif
1004
1005 /* Check for RAM disk page */
1006 if (MdBlock->MemoryType == LoaderXIPRom)
1007 {
1008 /* Make it a pseudo-I/O ROM mapping */
1009 Pfn1->u1.Flink = 0;
1010 Pfn1->u2.ShareCount = 0;
1011 Pfn1->u3.e2.ReferenceCount = 0;
1012 Pfn1->u3.e1.PageLocation = 0;
1013 Pfn1->u3.e1.Rom = 1;
1014 Pfn1->u4.InPageError = 0;
1015 Pfn1->u3.e1.PrototypePte = 1;
1016 }
1017 }
1018
1019 /* Advance page structures */
1020 Pfn1++;
1021 PageFrameIndex++;
1022 PointerPte++;
1023 }
1024 break;
1025 }
1026
1027 /* Next descriptor entry */
1028 NextEntry = MdBlock->ListEntry.Flink;
1029 }
1030 }
1031
1032 VOID
1033 NTAPI
1034 INIT_FUNCTION
1035 MiBuildPfnDatabaseSelf(VOID)
1036 {
1037 PMMPTE PointerPte, LastPte;
1038 PMMPFN Pfn1;
1039
1040 /* Loop the PFN database page */
1041 PointerPte = MiAddressToPte(MiGetPfnEntry(MmLowestPhysicalPage));
1042 LastPte = MiAddressToPte(MiGetPfnEntry(MmHighestPhysicalPage));
1043 while (PointerPte <= LastPte)
1044 {
1045 /* Make sure the page is valid */
1046 if (PointerPte->u.Hard.Valid == 1)
1047 {
1048 /* Get the PFN entry and just mark it referenced */
1049 Pfn1 = MiGetPfnEntry(PointerPte->u.Hard.PageFrameNumber);
1050 Pfn1->u2.ShareCount = 1;
1051 Pfn1->u3.e2.ReferenceCount = 1;
1052 #if MI_TRACE_PFNS
1053 Pfn1->PfnUsage = MI_USAGE_PFN_DATABASE;
1054 #endif
1055 }
1056
1057 /* Next */
1058 PointerPte++;
1059 }
1060 }
1061
1062 VOID
1063 NTAPI
1064 INIT_FUNCTION
1065 MiInitializePfnDatabase(IN PLOADER_PARAMETER_BLOCK LoaderBlock)
1066 {
1067 /* Scan memory and start setting up PFN entries */
1068 MiBuildPfnDatabaseFromPages(LoaderBlock);
1069
1070 /* Add the zero page */
1071 MiBuildPfnDatabaseZeroPage();
1072
1073 /* Scan the loader block and build the rest of the PFN database */
1074 MiBuildPfnDatabaseFromLoaderBlock(LoaderBlock);
1075
1076 /* Finally add the pages for the PFN database itself */
1077 MiBuildPfnDatabaseSelf();
1078 }
1079 #endif /* !_M_AMD64 */
1080
1081 VOID
1082 NTAPI
1083 INIT_FUNCTION
1084 MmFreeLoaderBlock(IN PLOADER_PARAMETER_BLOCK LoaderBlock)
1085 {
1086 PLIST_ENTRY NextMd;
1087 PMEMORY_ALLOCATION_DESCRIPTOR MdBlock;
1088 ULONG_PTR i;
1089 PFN_NUMBER BasePage, LoaderPages;
1090 PMMPFN Pfn1;
1091 KIRQL OldIrql;
1092 PPHYSICAL_MEMORY_RUN Buffer, Entry;
1093
1094 /* Loop the descriptors in order to count them */
1095 i = 0;
1096 NextMd = LoaderBlock->MemoryDescriptorListHead.Flink;
1097 while (NextMd != &LoaderBlock->MemoryDescriptorListHead)
1098 {
1099 MdBlock = CONTAINING_RECORD(NextMd,
1100 MEMORY_ALLOCATION_DESCRIPTOR,
1101 ListEntry);
1102 i++;
1103 NextMd = MdBlock->ListEntry.Flink;
1104 }
1105
1106 /* Allocate a structure to hold the physical runs */
1107 Buffer = ExAllocatePoolWithTag(NonPagedPool,
1108 i * sizeof(PHYSICAL_MEMORY_RUN),
1109 'lMmM');
1110 ASSERT(Buffer != NULL);
1111 Entry = Buffer;
1112
1113 /* Loop the descriptors again */
1114 NextMd = LoaderBlock->MemoryDescriptorListHead.Flink;
1115 while (NextMd != &LoaderBlock->MemoryDescriptorListHead)
1116 {
1117 /* Check what kind this was */
1118 MdBlock = CONTAINING_RECORD(NextMd,
1119 MEMORY_ALLOCATION_DESCRIPTOR,
1120 ListEntry);
1121 switch (MdBlock->MemoryType)
1122 {
1123 /* Registry, NLS, and heap data */
1124 case LoaderRegistryData:
1125 case LoaderOsloaderHeap:
1126 case LoaderNlsData:
1127 /* Are all a candidate for deletion */
1128 Entry->BasePage = MdBlock->BasePage;
1129 Entry->PageCount = MdBlock->PageCount;
1130 Entry++;
1131
1132 /* We keep the rest */
1133 default:
1134 break;
1135 }
1136
1137 /* Move to the next descriptor */
1138 NextMd = MdBlock->ListEntry.Flink;
1139 }
1140
1141 /* Acquire the PFN lock */
1142 OldIrql = KeAcquireQueuedSpinLock(LockQueuePfnLock);
1143
1144 /* Loop the runs */
1145 LoaderPages = 0;
1146 while (--Entry >= Buffer)
1147 {
1148 /* See how many pages are in this run */
1149 i = Entry->PageCount;
1150 BasePage = Entry->BasePage;
1151
1152 /* Loop each page */
1153 Pfn1 = MiGetPfnEntry(BasePage);
1154 while (i--)
1155 {
1156 /* Check if it has references or is in any kind of list */
1157 if (!(Pfn1->u3.e2.ReferenceCount) && (!Pfn1->u1.Flink))
1158 {
1159 /* Set the new PTE address and put this page into the free list */
1160 Pfn1->PteAddress = (PMMPTE)(BasePage << PAGE_SHIFT);
1161 MiInsertPageInFreeList(BasePage);
1162 LoaderPages++;
1163 }
1164 else if (BasePage)
1165 {
1166 /* It has a reference, so simply drop it */
1167 ASSERT(MI_IS_PHYSICAL_ADDRESS(MiPteToAddress(Pfn1->PteAddress)) == FALSE);
1168
1169 /* Drop a dereference on this page, which should delete it */
1170 Pfn1->PteAddress->u.Long = 0;
1171 MI_SET_PFN_DELETED(Pfn1);
1172 MiDecrementShareCount(Pfn1, BasePage);
1173 LoaderPages++;
1174 }
1175
1176 /* Move to the next page */
1177 Pfn1++;
1178 BasePage++;
1179 }
1180 }
1181
1182 /* Release the PFN lock and flush the TLB */
1183 DPRINT("Loader pages freed: %lx\n", LoaderPages);
1184 KeReleaseQueuedSpinLock(LockQueuePfnLock, OldIrql);
1185 KeFlushCurrentTb();
1186
1187 /* Free our run structure */
1188 ExFreePoolWithTag(Buffer, 'lMmM');
1189 }
1190
1191 VOID
1192 NTAPI
1193 INIT_FUNCTION
1194 MiAdjustWorkingSetManagerParameters(IN BOOLEAN Client)
1195 {
1196 /* This function needs to do more work, for now, we tune page minimums */
1197
1198 /* Check for a system with around 64MB RAM or more */
1199 if (MmNumberOfPhysicalPages >= (63 * _1MB) / PAGE_SIZE)
1200 {
1201 /* Double the minimum amount of pages we consider for a "plenty free" scenario */
1202 MmPlentyFreePages *= 2;
1203 }
1204 }
1205
1206 VOID
1207 NTAPI
1208 INIT_FUNCTION
1209 MiNotifyMemoryEvents(VOID)
1210 {
1211 /* Are we in a low-memory situation? */
1212 if (MmAvailablePages < MmLowMemoryThreshold)
1213 {
1214 /* Clear high, set low */
1215 if (KeReadStateEvent(MiHighMemoryEvent)) KeClearEvent(MiHighMemoryEvent);
1216 if (!KeReadStateEvent(MiLowMemoryEvent)) KeSetEvent(MiLowMemoryEvent, 0, FALSE);
1217 }
1218 else if (MmAvailablePages < MmHighMemoryThreshold)
1219 {
1220 /* We are in between, clear both */
1221 if (KeReadStateEvent(MiHighMemoryEvent)) KeClearEvent(MiHighMemoryEvent);
1222 if (KeReadStateEvent(MiLowMemoryEvent)) KeClearEvent(MiLowMemoryEvent);
1223 }
1224 else
1225 {
1226 /* Clear low, set high */
1227 if (KeReadStateEvent(MiLowMemoryEvent)) KeClearEvent(MiLowMemoryEvent);
1228 if (!KeReadStateEvent(MiHighMemoryEvent)) KeSetEvent(MiHighMemoryEvent, 0, FALSE);
1229 }
1230 }
1231
1232 NTSTATUS
1233 NTAPI
1234 INIT_FUNCTION
1235 MiCreateMemoryEvent(IN PUNICODE_STRING Name,
1236 OUT PKEVENT *Event)
1237 {
1238 PACL Dacl;
1239 HANDLE EventHandle;
1240 ULONG DaclLength;
1241 NTSTATUS Status;
1242 OBJECT_ATTRIBUTES ObjectAttributes;
1243 SECURITY_DESCRIPTOR SecurityDescriptor;
1244
1245 /* Create the SD */
1246 Status = RtlCreateSecurityDescriptor(&SecurityDescriptor,
1247 SECURITY_DESCRIPTOR_REVISION);
1248 if (!NT_SUCCESS(Status)) return Status;
1249
1250 /* One ACL with 3 ACEs, containing each one SID */
1251 DaclLength = sizeof(ACL) +
1252 3 * sizeof(ACCESS_ALLOWED_ACE) +
1253 RtlLengthSid(SeLocalSystemSid) +
1254 RtlLengthSid(SeAliasAdminsSid) +
1255 RtlLengthSid(SeWorldSid);
1256
1257 /* Allocate space for the DACL */
1258 Dacl = ExAllocatePoolWithTag(PagedPool, DaclLength, 'lcaD');
1259 if (!Dacl) return STATUS_INSUFFICIENT_RESOURCES;
1260
1261 /* Setup the ACL inside it */
1262 Status = RtlCreateAcl(Dacl, DaclLength, ACL_REVISION);
1263 if (!NT_SUCCESS(Status)) goto CleanUp;
1264
1265 /* Add query rights for everyone */
1266 Status = RtlAddAccessAllowedAce(Dacl,
1267 ACL_REVISION,
1268 SYNCHRONIZE | EVENT_QUERY_STATE | READ_CONTROL,
1269 SeWorldSid);
1270 if (!NT_SUCCESS(Status)) goto CleanUp;
1271
1272 /* Full rights for the admin */
1273 Status = RtlAddAccessAllowedAce(Dacl,
1274 ACL_REVISION,
1275 EVENT_ALL_ACCESS,
1276 SeAliasAdminsSid);
1277 if (!NT_SUCCESS(Status)) goto CleanUp;
1278
1279 /* As well as full rights for the system */
1280 Status = RtlAddAccessAllowedAce(Dacl,
1281 ACL_REVISION,
1282 EVENT_ALL_ACCESS,
1283 SeLocalSystemSid);
1284 if (!NT_SUCCESS(Status)) goto CleanUp;
1285
1286 /* Set this DACL inside the SD */
1287 Status = RtlSetDaclSecurityDescriptor(&SecurityDescriptor,
1288 TRUE,
1289 Dacl,
1290 FALSE);
1291 if (!NT_SUCCESS(Status)) goto CleanUp;
1292
1293 /* Setup the event attributes, making sure it's a permanent one */
1294 InitializeObjectAttributes(&ObjectAttributes,
1295 Name,
1296 OBJ_KERNEL_HANDLE | OBJ_PERMANENT,
1297 NULL,
1298 &SecurityDescriptor);
1299
1300 /* Create the event */
1301 Status = ZwCreateEvent(&EventHandle,
1302 EVENT_ALL_ACCESS,
1303 &ObjectAttributes,
1304 NotificationEvent,
1305 FALSE);
1306 CleanUp:
1307 /* Free the DACL */
1308 ExFreePoolWithTag(Dacl, 'lcaD');
1309
1310 /* Check if this is the success path */
1311 if (NT_SUCCESS(Status))
1312 {
1313 /* Add a reference to the object, then close the handle we had */
1314 Status = ObReferenceObjectByHandle(EventHandle,
1315 EVENT_MODIFY_STATE,
1316 ExEventObjectType,
1317 KernelMode,
1318 (PVOID*)Event,
1319 NULL);
1320 ZwClose (EventHandle);
1321 }
1322
1323 /* Return status */
1324 return Status;
1325 }
1326
1327 BOOLEAN
1328 NTAPI
1329 INIT_FUNCTION
1330 MiInitializeMemoryEvents(VOID)
1331 {
1332 UNICODE_STRING LowString = RTL_CONSTANT_STRING(L"\\KernelObjects\\LowMemoryCondition");
1333 UNICODE_STRING HighString = RTL_CONSTANT_STRING(L"\\KernelObjects\\HighMemoryCondition");
1334 UNICODE_STRING LowPagedPoolString = RTL_CONSTANT_STRING(L"\\KernelObjects\\LowPagedPoolCondition");
1335 UNICODE_STRING HighPagedPoolString = RTL_CONSTANT_STRING(L"\\KernelObjects\\HighPagedPoolCondition");
1336 UNICODE_STRING LowNonPagedPoolString = RTL_CONSTANT_STRING(L"\\KernelObjects\\LowNonPagedPoolCondition");
1337 UNICODE_STRING HighNonPagedPoolString = RTL_CONSTANT_STRING(L"\\KernelObjects\\HighNonPagedPoolCondition");
1338 NTSTATUS Status;
1339
1340 /* Check if we have a registry setting */
1341 if (MmLowMemoryThreshold)
1342 {
1343 /* Convert it to pages */
1344 MmLowMemoryThreshold *= (_1MB / PAGE_SIZE);
1345 }
1346 else
1347 {
1348 /* The low memory threshold is hit when we don't consider that we have "plenty" of free pages anymore */
1349 MmLowMemoryThreshold = MmPlentyFreePages;
1350
1351 /* More than one GB of memory? */
1352 if (MmNumberOfPhysicalPages > 0x40000)
1353 {
1354 /* Start at 32MB, and add another 16MB for each GB */
1355 MmLowMemoryThreshold = (32 * _1MB) / PAGE_SIZE;
1356 MmLowMemoryThreshold += ((MmNumberOfPhysicalPages - 0x40000) >> 7);
1357 }
1358 else if (MmNumberOfPhysicalPages > 0x8000)
1359 {
1360 /* For systems with > 128MB RAM, add another 4MB for each 128MB */
1361 MmLowMemoryThreshold += ((MmNumberOfPhysicalPages - 0x8000) >> 5);
1362 }
1363
1364 /* Don't let the minimum threshold go past 64MB */
1365 MmLowMemoryThreshold = min(MmLowMemoryThreshold, (64 * _1MB) / PAGE_SIZE);
1366 }
1367
1368 /* Check if we have a registry setting */
1369 if (MmHighMemoryThreshold)
1370 {
1371 /* Convert it into pages */
1372 MmHighMemoryThreshold *= (_1MB / PAGE_SIZE);
1373 }
1374 else
1375 {
1376 /* Otherwise, the default is three times the low memory threshold */
1377 MmHighMemoryThreshold = 3 * MmLowMemoryThreshold;
1378 ASSERT(MmHighMemoryThreshold > MmLowMemoryThreshold);
1379 }
1380
1381 /* Make sure high threshold is actually higher than the low */
1382 MmHighMemoryThreshold = max(MmHighMemoryThreshold, MmLowMemoryThreshold);
1383
1384 /* Create the memory events for all the thresholds */
1385 Status = MiCreateMemoryEvent(&LowString, &MiLowMemoryEvent);
1386 if (!NT_SUCCESS(Status)) return FALSE;
1387 Status = MiCreateMemoryEvent(&HighString, &MiHighMemoryEvent);
1388 if (!NT_SUCCESS(Status)) return FALSE;
1389 Status = MiCreateMemoryEvent(&LowPagedPoolString, &MiLowPagedPoolEvent);
1390 if (!NT_SUCCESS(Status)) return FALSE;
1391 Status = MiCreateMemoryEvent(&HighPagedPoolString, &MiHighPagedPoolEvent);
1392 if (!NT_SUCCESS(Status)) return FALSE;
1393 Status = MiCreateMemoryEvent(&LowNonPagedPoolString, &MiLowNonPagedPoolEvent);
1394 if (!NT_SUCCESS(Status)) return FALSE;
1395 Status = MiCreateMemoryEvent(&HighNonPagedPoolString, &MiHighNonPagedPoolEvent);
1396 if (!NT_SUCCESS(Status)) return FALSE;
1397
1398 /* Now setup the pool events */
1399 MiInitializePoolEvents();
1400
1401 /* Set the initial event state */
1402 MiNotifyMemoryEvents();
1403 return TRUE;
1404 }
1405
1406 VOID
1407 NTAPI
1408 INIT_FUNCTION
1409 MiAddHalIoMappings(VOID)
1410 {
1411 PVOID BaseAddress;
1412 PMMPDE PointerPde, LastPde;
1413 PMMPTE PointerPte;
1414 ULONG j;
1415 PFN_NUMBER PageFrameIndex;
1416
1417 /* HAL Heap address -- should be on a PDE boundary */
1418 BaseAddress = (PVOID)MM_HAL_VA_START;
1419 ASSERT(MiAddressToPteOffset(BaseAddress) == 0);
1420
1421 /* Check how many PDEs the heap has */
1422 PointerPde = MiAddressToPde(BaseAddress);
1423 LastPde = MiAddressToPde((PVOID)MM_HAL_VA_END);
1424
1425 while (PointerPde <= LastPde)
1426 {
1427 /* Does the HAL own this mapping? */
1428 if ((PointerPde->u.Hard.Valid == 1) &&
1429 (MI_IS_PAGE_LARGE(PointerPde) == FALSE))
1430 {
1431 /* Get the PTE for it and scan each page */
1432 PointerPte = MiAddressToPte(BaseAddress);
1433 for (j = 0 ; j < PTE_COUNT; j++)
1434 {
1435 /* Does the HAL own this page? */
1436 if (PointerPte->u.Hard.Valid == 1)
1437 {
1438 /* Is the HAL using it for device or I/O mapped memory? */
1439 PageFrameIndex = PFN_FROM_PTE(PointerPte);
1440 if (!MiGetPfnEntry(PageFrameIndex))
1441 {
1442 /* FIXME: For PAT, we need to track I/O cache attributes for coherency */
1443 DPRINT1("HAL I/O Mapping at %p is unsafe\n", BaseAddress);
1444 }
1445 }
1446
1447 /* Move to the next page */
1448 BaseAddress = (PVOID)((ULONG_PTR)BaseAddress + PAGE_SIZE);
1449 PointerPte++;
1450 }
1451 }
1452 else
1453 {
1454 /* Move to the next address */
1455 BaseAddress = (PVOID)((ULONG_PTR)BaseAddress + PDE_MAPPED_VA);
1456 }
1457
1458 /* Move to the next PDE */
1459 PointerPde++;
1460 }
1461 }
1462
1463 VOID
1464 NTAPI
1465 MmDumpArmPfnDatabase(IN BOOLEAN StatusOnly)
1466 {
1467 ULONG i;
1468 PMMPFN Pfn1;
1469 PCHAR Consumer = "Unknown";
1470 KIRQL OldIrql;
1471 ULONG ActivePages = 0, FreePages = 0, OtherPages = 0;
1472 #if MI_TRACE_PFNS
1473 ULONG UsageBucket[MI_USAGE_FREE_PAGE + 1] = {0};
1474 PCHAR MI_USAGE_TEXT[MI_USAGE_FREE_PAGE + 1] =
1475 {
1476 "Not set",
1477 "Paged Pool",
1478 "Nonpaged Pool",
1479 "Nonpaged Pool Ex",
1480 "Kernel Stack",
1481 "Kernel Stack Ex",
1482 "System PTE",
1483 "VAD",
1484 "PEB/TEB",
1485 "Section",
1486 "Page Table",
1487 "Page Directory",
1488 "Old Page Table",
1489 "Driver Page",
1490 "Contiguous Alloc",
1491 "MDL",
1492 "Demand Zero",
1493 "Zero Loop",
1494 "Cache",
1495 "PFN Database",
1496 "Boot Driver",
1497 "Initial Memory",
1498 "Free Page"
1499 };
1500 #endif
1501 //
1502 // Loop the PFN database
1503 //
1504 KeRaiseIrql(HIGH_LEVEL, &OldIrql);
1505 for (i = 0; i <= MmHighestPhysicalPage; i++)
1506 {
1507 Pfn1 = MiGetPfnEntry(i);
1508 if (!Pfn1) continue;
1509 #if MI_TRACE_PFNS
1510 ASSERT(Pfn1->PfnUsage <= MI_USAGE_FREE_PAGE);
1511 #endif
1512 //
1513 // Get the page location
1514 //
1515 switch (Pfn1->u3.e1.PageLocation)
1516 {
1517 case ActiveAndValid:
1518
1519 Consumer = "Active and Valid";
1520 ActivePages++;
1521 break;
1522
1523 case ZeroedPageList:
1524
1525 Consumer = "Zero Page List";
1526 FreePages++;
1527 break;//continue;
1528
1529 case FreePageList:
1530
1531 Consumer = "Free Page List";
1532 FreePages++;
1533 break;//continue;
1534
1535 default:
1536
1537 Consumer = "Other (ASSERT!)";
1538 OtherPages++;
1539 break;
1540 }
1541
1542 #if MI_TRACE_PFNS
1543 /* Add into bucket */
1544 UsageBucket[Pfn1->PfnUsage]++;
1545 #endif
1546
1547 //
1548 // Pretty-print the page
1549 //
1550 if (!StatusOnly)
1551 DbgPrint("0x%08p:\t%20s\t(%04d.%04d)\t[%16s - %16s])\n",
1552 i << PAGE_SHIFT,
1553 Consumer,
1554 Pfn1->u3.e2.ReferenceCount,
1555 Pfn1->u2.ShareCount == LIST_HEAD ? 0xFFFF : Pfn1->u2.ShareCount,
1556 #if MI_TRACE_PFNS
1557 MI_USAGE_TEXT[Pfn1->PfnUsage],
1558 Pfn1->ProcessName);
1559 #else
1560 "Page tracking",
1561 "is disabled");
1562 #endif
1563 }
1564
1565 DbgPrint("Active: %5d pages\t[%6d KB]\n", ActivePages, (ActivePages << PAGE_SHIFT) / 1024);
1566 DbgPrint("Free: %5d pages\t[%6d KB]\n", FreePages, (FreePages << PAGE_SHIFT) / 1024);
1567 DbgPrint("-----------------------------------------\n");
1568 #if MI_TRACE_PFNS
1569 OtherPages = UsageBucket[MI_USAGE_BOOT_DRIVER];
1570 DbgPrint("Boot Images: %5d pages\t[%6d KB]\n", OtherPages, (OtherPages << PAGE_SHIFT) / 1024);
1571 OtherPages = UsageBucket[MI_USAGE_DRIVER_PAGE];
1572 DbgPrint("System Drivers: %5d pages\t[%6d KB]\n", OtherPages, (OtherPages << PAGE_SHIFT) / 1024);
1573 OtherPages = UsageBucket[MI_USAGE_PFN_DATABASE];
1574 DbgPrint("PFN Database: %5d pages\t[%6d KB]\n", OtherPages, (OtherPages << PAGE_SHIFT) / 1024);
1575 OtherPages = UsageBucket[MI_USAGE_PAGE_TABLE] + UsageBucket[MI_USAGE_LEGACY_PAGE_DIRECTORY];
1576 DbgPrint("Page Tables: %5d pages\t[%6d KB]\n", OtherPages, (OtherPages << PAGE_SHIFT) / 1024);
1577 OtherPages = UsageBucket[MI_USAGE_NONPAGED_POOL] + UsageBucket[MI_USAGE_NONPAGED_POOL_EXPANSION];
1578 DbgPrint("NonPaged Pool: %5d pages\t[%6d KB]\n", OtherPages, (OtherPages << PAGE_SHIFT) / 1024);
1579 OtherPages = UsageBucket[MI_USAGE_PAGED_POOL];
1580 DbgPrint("Paged Pool: %5d pages\t[%6d KB]\n", OtherPages, (OtherPages << PAGE_SHIFT) / 1024);
1581 OtherPages = UsageBucket[MI_USAGE_KERNEL_STACK] + UsageBucket[MI_USAGE_KERNEL_STACK_EXPANSION];
1582 DbgPrint("Kernel Stack: %5d pages\t[%6d KB]\n", OtherPages, (OtherPages << PAGE_SHIFT) / 1024);
1583 OtherPages = UsageBucket[MI_USAGE_INIT_MEMORY];
1584 DbgPrint("Init Memory: %5d pages\t[%6d KB]\n", OtherPages, (OtherPages << PAGE_SHIFT) / 1024);
1585 OtherPages = UsageBucket[MI_USAGE_SECTION];
1586 DbgPrint("Sections: %5d pages\t[%6d KB]\n", OtherPages, (OtherPages << PAGE_SHIFT) / 1024);
1587 OtherPages = UsageBucket[MI_USAGE_CACHE];
1588 DbgPrint("Cache: %5d pages\t[%6d KB]\n", OtherPages, (OtherPages << PAGE_SHIFT) / 1024);
1589 #endif
1590 KeLowerIrql(OldIrql);
1591 }
1592
1593 PPHYSICAL_MEMORY_DESCRIPTOR
1594 NTAPI
1595 INIT_FUNCTION
1596 MmInitializeMemoryLimits(IN PLOADER_PARAMETER_BLOCK LoaderBlock,
1597 IN PBOOLEAN IncludeType)
1598 {
1599 PLIST_ENTRY NextEntry;
1600 ULONG Run = 0, InitialRuns;
1601 PFN_NUMBER NextPage = -1, PageCount = 0;
1602 PPHYSICAL_MEMORY_DESCRIPTOR Buffer, NewBuffer;
1603 PMEMORY_ALLOCATION_DESCRIPTOR MdBlock;
1604
1605 //
1606 // Start with the maximum we might need
1607 //
1608 InitialRuns = MiNumberDescriptors;
1609
1610 //
1611 // Allocate the maximum we'll ever need
1612 //
1613 Buffer = ExAllocatePoolWithTag(NonPagedPool,
1614 sizeof(PHYSICAL_MEMORY_DESCRIPTOR) +
1615 sizeof(PHYSICAL_MEMORY_RUN) *
1616 (InitialRuns - 1),
1617 'lMmM');
1618 if (!Buffer) return NULL;
1619
1620 //
1621 // For now that's how many runs we have
1622 //
1623 Buffer->NumberOfRuns = InitialRuns;
1624
1625 //
1626 // Now loop through the descriptors again
1627 //
1628 NextEntry = LoaderBlock->MemoryDescriptorListHead.Flink;
1629 while (NextEntry != &LoaderBlock->MemoryDescriptorListHead)
1630 {
1631 //
1632 // Grab each one, and check if it's one we should include
1633 //
1634 MdBlock = CONTAINING_RECORD(NextEntry,
1635 MEMORY_ALLOCATION_DESCRIPTOR,
1636 ListEntry);
1637 if ((MdBlock->MemoryType < LoaderMaximum) &&
1638 (IncludeType[MdBlock->MemoryType]))
1639 {
1640 //
1641 // Add this to our running total
1642 //
1643 PageCount += MdBlock->PageCount;
1644
1645 //
1646 // Check if the next page is described by the next descriptor
1647 //
1648 if (MdBlock->BasePage == NextPage)
1649 {
1650 //
1651 // Combine it into the same physical run
1652 //
1653 ASSERT(MdBlock->PageCount != 0);
1654 Buffer->Run[Run - 1].PageCount += MdBlock->PageCount;
1655 NextPage += MdBlock->PageCount;
1656 }
1657 else
1658 {
1659 //
1660 // Otherwise just duplicate the descriptor's contents
1661 //
1662 Buffer->Run[Run].BasePage = MdBlock->BasePage;
1663 Buffer->Run[Run].PageCount = MdBlock->PageCount;
1664 NextPage = Buffer->Run[Run].BasePage + Buffer->Run[Run].PageCount;
1665
1666 //
1667 // And in this case, increase the number of runs
1668 //
1669 Run++;
1670 }
1671 }
1672
1673 //
1674 // Try the next descriptor
1675 //
1676 NextEntry = MdBlock->ListEntry.Flink;
1677 }
1678
1679 //
1680 // We should not have been able to go past our initial estimate
1681 //
1682 ASSERT(Run <= Buffer->NumberOfRuns);
1683
1684 //
1685 // Our guess was probably exaggerated...
1686 //
1687 if (InitialRuns > Run)
1688 {
1689 //
1690 // Allocate a more accurately sized buffer
1691 //
1692 NewBuffer = ExAllocatePoolWithTag(NonPagedPool,
1693 sizeof(PHYSICAL_MEMORY_DESCRIPTOR) +
1694 sizeof(PHYSICAL_MEMORY_RUN) *
1695 (Run - 1),
1696 'lMmM');
1697 if (NewBuffer)
1698 {
1699 //
1700 // Copy the old buffer into the new, then free it
1701 //
1702 RtlCopyMemory(NewBuffer->Run,
1703 Buffer->Run,
1704 sizeof(PHYSICAL_MEMORY_RUN) * Run);
1705 ExFreePoolWithTag(Buffer, 'lMmM');
1706
1707 //
1708 // Now use the new buffer
1709 //
1710 Buffer = NewBuffer;
1711 }
1712 }
1713
1714 //
1715 // Write the final numbers, and return it
1716 //
1717 Buffer->NumberOfRuns = Run;
1718 Buffer->NumberOfPages = PageCount;
1719 return Buffer;
1720 }
1721
1722 VOID
1723 NTAPI
1724 INIT_FUNCTION
1725 MiBuildPagedPool(VOID)
1726 {
1727 PMMPTE PointerPte;
1728 PMMPDE PointerPde;
1729 MMPDE TempPde = ValidKernelPde;
1730 PFN_NUMBER PageFrameIndex;
1731 KIRQL OldIrql;
1732 SIZE_T Size;
1733 ULONG BitMapSize;
1734 #if (_MI_PAGING_LEVELS >= 3)
1735 MMPPE TempPpe = ValidKernelPpe;
1736 PMMPPE PointerPpe;
1737 #elif (_MI_PAGING_LEVELS == 2)
1738 MMPTE TempPte = ValidKernelPte;
1739
1740 //
1741 // Get the page frame number for the system page directory
1742 //
1743 PointerPte = MiAddressToPte(PDE_BASE);
1744 ASSERT(PD_COUNT == 1);
1745 MmSystemPageDirectory[0] = PFN_FROM_PTE(PointerPte);
1746
1747 //
1748 // Allocate a system PTE which will hold a copy of the page directory
1749 //
1750 PointerPte = MiReserveSystemPtes(1, SystemPteSpace);
1751 ASSERT(PointerPte);
1752 MmSystemPagePtes = MiPteToAddress(PointerPte);
1753
1754 //
1755 // Make this system PTE point to the system page directory.
1756 // It is now essentially double-mapped. This will be used later for lazy
1757 // evaluation of PDEs accross process switches, similarly to how the Global
1758 // page directory array in the old ReactOS Mm is used (but in a less hacky
1759 // way).
1760 //
1761 TempPte = ValidKernelPte;
1762 ASSERT(PD_COUNT == 1);
1763 TempPte.u.Hard.PageFrameNumber = MmSystemPageDirectory[0];
1764 MI_WRITE_VALID_PTE(PointerPte, TempPte);
1765 #endif
1766 //
1767 // Let's get back to paged pool work: size it up.
1768 // By default, it should be twice as big as nonpaged pool.
1769 //
1770 MmSizeOfPagedPoolInBytes = 2 * MmMaximumNonPagedPoolInBytes;
1771 if (MmSizeOfPagedPoolInBytes > ((ULONG_PTR)MmNonPagedSystemStart -
1772 (ULONG_PTR)MmPagedPoolStart))
1773 {
1774 //
1775 // On the other hand, we have limited VA space, so make sure that the VA
1776 // for paged pool doesn't overflow into nonpaged pool VA. Otherwise, set
1777 // whatever maximum is possible.
1778 //
1779 MmSizeOfPagedPoolInBytes = (ULONG_PTR)MmNonPagedSystemStart -
1780 (ULONG_PTR)MmPagedPoolStart;
1781 }
1782
1783 //
1784 // Get the size in pages and make sure paged pool is at least 32MB.
1785 //
1786 Size = MmSizeOfPagedPoolInBytes;
1787 if (Size < MI_MIN_INIT_PAGED_POOLSIZE) Size = MI_MIN_INIT_PAGED_POOLSIZE;
1788 Size = BYTES_TO_PAGES(Size);
1789
1790 //
1791 // Now check how many PTEs will be required for these many pages.
1792 //
1793 Size = (Size + (1024 - 1)) / 1024;
1794
1795 //
1796 // Recompute the page-aligned size of the paged pool, in bytes and pages.
1797 //
1798 MmSizeOfPagedPoolInBytes = Size * PAGE_SIZE * 1024;
1799 MmSizeOfPagedPoolInPages = MmSizeOfPagedPoolInBytes >> PAGE_SHIFT;
1800
1801 //
1802 // Let's be really sure this doesn't overflow into nonpaged system VA
1803 //
1804 ASSERT((MmSizeOfPagedPoolInBytes + (ULONG_PTR)MmPagedPoolStart) <=
1805 (ULONG_PTR)MmNonPagedSystemStart);
1806
1807 //
1808 // This is where paged pool ends
1809 //
1810 MmPagedPoolEnd = (PVOID)(((ULONG_PTR)MmPagedPoolStart +
1811 MmSizeOfPagedPoolInBytes) - 1);
1812
1813 //
1814 // Lock the PFN database
1815 //
1816 OldIrql = KeAcquireQueuedSpinLock(LockQueuePfnLock);
1817
1818 #if (_MI_PAGING_LEVELS >= 3)
1819 /* On these systems, there's no double-mapping, so instead, the PPEs
1820 * are setup to span the entire paged pool area, so there's no need for the
1821 * system PD */
1822 for (PointerPpe = MiAddressToPpe(MmPagedPoolStart);
1823 PointerPpe <= MiAddressToPpe(MmPagedPoolEnd);
1824 PointerPpe++)
1825 {
1826 /* Check if the PPE is already valid */
1827 if (!PointerPpe->u.Hard.Valid)
1828 {
1829 /* It is not, so map a fresh zeroed page */
1830 TempPpe.u.Hard.PageFrameNumber = MiRemoveZeroPage(0);
1831 MI_WRITE_VALID_PPE(PointerPpe, TempPpe);
1832 }
1833 }
1834 #endif
1835
1836 //
1837 // So now get the PDE for paged pool and zero it out
1838 //
1839 PointerPde = MiAddressToPde(MmPagedPoolStart);
1840 RtlZeroMemory(PointerPde,
1841 (1 + MiAddressToPde(MmPagedPoolEnd) - PointerPde) * sizeof(MMPDE));
1842
1843 //
1844 // Next, get the first and last PTE
1845 //
1846 PointerPte = MiAddressToPte(MmPagedPoolStart);
1847 MmPagedPoolInfo.FirstPteForPagedPool = PointerPte;
1848 MmPagedPoolInfo.LastPteForPagedPool = MiAddressToPte(MmPagedPoolEnd);
1849
1850 /* Allocate a page and map the first paged pool PDE */
1851 MI_SET_USAGE(MI_USAGE_PAGED_POOL);
1852 MI_SET_PROCESS2("Kernel");
1853 PageFrameIndex = MiRemoveZeroPage(0);
1854 TempPde.u.Hard.PageFrameNumber = PageFrameIndex;
1855 MI_WRITE_VALID_PDE(PointerPde, TempPde);
1856 #if (_MI_PAGING_LEVELS >= 3)
1857 /* Use the PPE of MmPagedPoolStart that was setup above */
1858 // Bla = PFN_FROM_PTE(PpeAddress(MmPagedPool...));
1859
1860 /* Initialize the PFN entry for it */
1861 MiInitializePfnForOtherProcess(PageFrameIndex,
1862 (PMMPTE)PointerPde,
1863 PFN_FROM_PTE(MiAddressToPpe(MmPagedPoolStart)));
1864 #else
1865 /* Do it this way */
1866 // Bla = MmSystemPageDirectory[(PointerPde - (PMMPTE)PDE_BASE) / PDE_COUNT]
1867
1868 /* Initialize the PFN entry for it */
1869 MiInitializePfnForOtherProcess(PageFrameIndex,
1870 (PMMPTE)PointerPde,
1871 MmSystemPageDirectory[(PointerPde - (PMMPDE)PDE_BASE) / PDE_COUNT]);
1872 #endif
1873
1874 //
1875 // Release the PFN database lock
1876 //
1877 KeReleaseQueuedSpinLock(LockQueuePfnLock, OldIrql);
1878
1879 //
1880 // We only have one PDE mapped for now... at fault time, additional PDEs
1881 // will be allocated to handle paged pool growth. This is where they'll have
1882 // to start.
1883 //
1884 MmPagedPoolInfo.NextPdeForPagedPoolExpansion = PointerPde + 1;
1885
1886 //
1887 // We keep track of each page via a bit, so check how big the bitmap will
1888 // have to be (make sure to align our page count such that it fits nicely
1889 // into a 4-byte aligned bitmap.
1890 //
1891 // We'll also allocate the bitmap header itself part of the same buffer.
1892 //
1893 Size = Size * 1024;
1894 ASSERT(Size == MmSizeOfPagedPoolInPages);
1895 BitMapSize = (ULONG)Size;
1896 Size = sizeof(RTL_BITMAP) + (((Size + 31) / 32) * sizeof(ULONG));
1897
1898 //
1899 // Allocate the allocation bitmap, which tells us which regions have not yet
1900 // been mapped into memory
1901 //
1902 MmPagedPoolInfo.PagedPoolAllocationMap = ExAllocatePoolWithTag(NonPagedPool,
1903 Size,
1904 TAG_MM);
1905 ASSERT(MmPagedPoolInfo.PagedPoolAllocationMap);
1906
1907 //
1908 // Initialize it such that at first, only the first page's worth of PTEs is
1909 // marked as allocated (incidentially, the first PDE we allocated earlier).
1910 //
1911 RtlInitializeBitMap(MmPagedPoolInfo.PagedPoolAllocationMap,
1912 (PULONG)(MmPagedPoolInfo.PagedPoolAllocationMap + 1),
1913 BitMapSize);
1914 RtlSetAllBits(MmPagedPoolInfo.PagedPoolAllocationMap);
1915 RtlClearBits(MmPagedPoolInfo.PagedPoolAllocationMap, 0, 1024);
1916
1917 //
1918 // We have a second bitmap, which keeps track of where allocations end.
1919 // Given the allocation bitmap and a base address, we can therefore figure
1920 // out which page is the last page of that allocation, and thus how big the
1921 // entire allocation is.
1922 //
1923 MmPagedPoolInfo.EndOfPagedPoolBitmap = ExAllocatePoolWithTag(NonPagedPool,
1924 Size,
1925 TAG_MM);
1926 ASSERT(MmPagedPoolInfo.EndOfPagedPoolBitmap);
1927 RtlInitializeBitMap(MmPagedPoolInfo.EndOfPagedPoolBitmap,
1928 (PULONG)(MmPagedPoolInfo.EndOfPagedPoolBitmap + 1),
1929 BitMapSize);
1930
1931 //
1932 // Since no allocations have been made yet, there are no bits set as the end
1933 //
1934 RtlClearAllBits(MmPagedPoolInfo.EndOfPagedPoolBitmap);
1935
1936 //
1937 // Initialize paged pool.
1938 //
1939 InitializePool(PagedPool, 0);
1940
1941 /* Initialize special pool */
1942 MiInitializeSpecialPool();
1943
1944 /* Default low threshold of 30MB or one fifth of paged pool */
1945 MiLowPagedPoolThreshold = (30 * _1MB) >> PAGE_SHIFT;
1946 MiLowPagedPoolThreshold = min(MiLowPagedPoolThreshold, Size / 5);
1947
1948 /* Default high threshold of 60MB or 25% */
1949 MiHighPagedPoolThreshold = (60 * _1MB) >> PAGE_SHIFT;
1950 MiHighPagedPoolThreshold = min(MiHighPagedPoolThreshold, (Size * 2) / 5);
1951 ASSERT(MiLowPagedPoolThreshold < MiHighPagedPoolThreshold);
1952
1953 /* Setup the global session space */
1954 MiInitializeSystemSpaceMap(NULL);
1955 }
1956
1957 VOID
1958 NTAPI
1959 INIT_FUNCTION
1960 MiDbgDumpMemoryDescriptors(VOID)
1961 {
1962 PLIST_ENTRY NextEntry;
1963 PMEMORY_ALLOCATION_DESCRIPTOR Md;
1964 PFN_NUMBER TotalPages = 0;
1965 PCHAR
1966 MemType[] =
1967 {
1968 "ExceptionBlock ",
1969 "SystemBlock ",
1970 "Free ",
1971 "Bad ",
1972 "LoadedProgram ",
1973 "FirmwareTemporary ",
1974 "FirmwarePermanent ",
1975 "OsloaderHeap ",
1976 "OsloaderStack ",
1977 "SystemCode ",
1978 "HalCode ",
1979 "BootDriver ",
1980 "ConsoleInDriver ",
1981 "ConsoleOutDriver ",
1982 "StartupDpcStack ",
1983 "StartupKernelStack",
1984 "StartupPanicStack ",
1985 "StartupPcrPage ",
1986 "StartupPdrPage ",
1987 "RegistryData ",
1988 "MemoryData ",
1989 "NlsData ",
1990 "SpecialMemory ",
1991 "BBTMemory ",
1992 "LoaderReserve ",
1993 "LoaderXIPRom "
1994 };
1995
1996 DPRINT1("Base\t\tLength\t\tType\n");
1997 for (NextEntry = KeLoaderBlock->MemoryDescriptorListHead.Flink;
1998 NextEntry != &KeLoaderBlock->MemoryDescriptorListHead;
1999 NextEntry = NextEntry->Flink)
2000 {
2001 Md = CONTAINING_RECORD(NextEntry, MEMORY_ALLOCATION_DESCRIPTOR, ListEntry);
2002 DPRINT1("%08lX\t%08lX\t%s\n", Md->BasePage, Md->PageCount, MemType[Md->MemoryType]);
2003 TotalPages += Md->PageCount;
2004 }
2005
2006 DPRINT1("Total: %08lX (%lu MB)\n", (ULONG)TotalPages, (ULONG)(TotalPages * PAGE_SIZE) / 1024 / 1024);
2007 }
2008
2009 BOOLEAN
2010 NTAPI
2011 INIT_FUNCTION
2012 MmArmInitSystem(IN ULONG Phase,
2013 IN PLOADER_PARAMETER_BLOCK LoaderBlock)
2014 {
2015 ULONG i;
2016 BOOLEAN IncludeType[LoaderMaximum];
2017 PVOID Bitmap;
2018 PPHYSICAL_MEMORY_RUN Run;
2019 PFN_NUMBER PageCount;
2020 #if DBG
2021 ULONG j;
2022 PMMPTE PointerPte, TestPte;
2023 MMPTE TempPte;
2024 #endif
2025
2026 /* Dump memory descriptors */
2027 if (MiDbgEnableMdDump) MiDbgDumpMemoryDescriptors();
2028
2029 //
2030 // Instantiate memory that we don't consider RAM/usable
2031 // We use the same exclusions that Windows does, in order to try to be
2032 // compatible with WinLDR-style booting
2033 //
2034 for (i = 0; i < LoaderMaximum; i++) IncludeType[i] = TRUE;
2035 IncludeType[LoaderBad] = FALSE;
2036 IncludeType[LoaderFirmwarePermanent] = FALSE;
2037 IncludeType[LoaderSpecialMemory] = FALSE;
2038 IncludeType[LoaderBBTMemory] = FALSE;
2039 if (Phase == 0)
2040 {
2041 /* Count physical pages on the system */
2042 MiScanMemoryDescriptors(LoaderBlock);
2043
2044 /* Initialize the phase 0 temporary event */
2045 KeInitializeEvent(&MiTempEvent, NotificationEvent, FALSE);
2046
2047 /* Set all the events to use the temporary event for now */
2048 MiLowMemoryEvent = &MiTempEvent;
2049 MiHighMemoryEvent = &MiTempEvent;
2050 MiLowPagedPoolEvent = &MiTempEvent;
2051 MiHighPagedPoolEvent = &MiTempEvent;
2052 MiLowNonPagedPoolEvent = &MiTempEvent;
2053 MiHighNonPagedPoolEvent = &MiTempEvent;
2054
2055 //
2056 // Define the basic user vs. kernel address space separation
2057 //
2058 MmSystemRangeStart = (PVOID)MI_DEFAULT_SYSTEM_RANGE_START;
2059 MmUserProbeAddress = (ULONG_PTR)MI_USER_PROBE_ADDRESS;
2060 MmHighestUserAddress = (PVOID)MI_HIGHEST_USER_ADDRESS;
2061
2062 /* Highest PTE and PDE based on the addresses above */
2063 MiHighestUserPte = MiAddressToPte(MmHighestUserAddress);
2064 MiHighestUserPde = MiAddressToPde(MmHighestUserAddress);
2065 #if (_MI_PAGING_LEVELS >= 3)
2066 MiHighestUserPpe = MiAddressToPpe(MmHighestUserAddress);
2067 #if (_MI_PAGING_LEVELS >= 4)
2068 MiHighestUserPxe = MiAddressToPxe(MmHighestUserAddress);
2069 #endif
2070 #endif
2071 //
2072 // Get the size of the boot loader's image allocations and then round
2073 // that region up to a PDE size, so that any PDEs we might create for
2074 // whatever follows are separate from the PDEs that boot loader might've
2075 // already created (and later, we can blow all that away if we want to).
2076 //
2077 MmBootImageSize = KeLoaderBlock->Extension->LoaderPagesSpanned;
2078 MmBootImageSize *= PAGE_SIZE;
2079 MmBootImageSize = (MmBootImageSize + PDE_MAPPED_VA - 1) & ~(PDE_MAPPED_VA - 1);
2080 ASSERT((MmBootImageSize % PDE_MAPPED_VA) == 0);
2081
2082 /* Initialize session space address layout */
2083 MiInitializeSessionSpaceLayout();
2084
2085 /* Set the based section highest address */
2086 MmHighSectionBase = (PVOID)((ULONG_PTR)MmHighestUserAddress - 0x800000);
2087
2088 #if DBG
2089 /* The subection PTE format depends on things being 8-byte aligned */
2090 ASSERT((sizeof(CONTROL_AREA) % 8) == 0);
2091 ASSERT((sizeof(SUBSECTION) % 8) == 0);
2092
2093 /* Prototype PTEs are assumed to be in paged pool, so check if the math works */
2094 PointerPte = (PMMPTE)MmPagedPoolStart;
2095 MI_MAKE_PROTOTYPE_PTE(&TempPte, PointerPte);
2096 TestPte = MiProtoPteToPte(&TempPte);
2097 ASSERT(PointerPte == TestPte);
2098
2099 /* Try the last nonpaged pool address */
2100 PointerPte = (PMMPTE)MI_NONPAGED_POOL_END;
2101 MI_MAKE_PROTOTYPE_PTE(&TempPte, PointerPte);
2102 TestPte = MiProtoPteToPte(&TempPte);
2103 ASSERT(PointerPte == TestPte);
2104
2105 /* Try a bunch of random addresses near the end of the address space */
2106 PointerPte = (PMMPTE)0xFFFC8000;
2107 for (j = 0; j < 20; j += 1)
2108 {
2109 MI_MAKE_PROTOTYPE_PTE(&TempPte, PointerPte);
2110 TestPte = MiProtoPteToPte(&TempPte);
2111 ASSERT(PointerPte == TestPte);
2112 PointerPte++;
2113 }
2114
2115 /* Subsection PTEs are always in nonpaged pool, pick a random address to try */
2116 PointerPte = (PMMPTE)0xFFAACBB8;
2117 MI_MAKE_SUBSECTION_PTE(&TempPte, PointerPte);
2118 TestPte = MiSubsectionPteToSubsection(&TempPte);
2119 ASSERT(PointerPte == TestPte);
2120 #endif
2121
2122 /* Loop all 8 standby lists */
2123 for (i = 0; i < 8; i++)
2124 {
2125 /* Initialize them */
2126 MmStandbyPageListByPriority[i].Total = 0;
2127 MmStandbyPageListByPriority[i].ListName = StandbyPageList;
2128 MmStandbyPageListByPriority[i].Flink = MM_EMPTY_LIST;
2129 MmStandbyPageListByPriority[i].Blink = MM_EMPTY_LIST;
2130 }
2131
2132 /* Initialize the user mode image list */
2133 InitializeListHead(&MmLoadedUserImageList);
2134
2135 /* Initialize critical section timeout value (relative time is negative) */
2136 MmCriticalSectionTimeout.QuadPart = MmCritsectTimeoutSeconds * (-10000000LL);
2137
2138 /* Initialize the paged pool mutex and the section commit mutex */
2139 KeInitializeGuardedMutex(&MmPagedPoolMutex);
2140 KeInitializeGuardedMutex(&MmSectionCommitMutex);
2141 KeInitializeGuardedMutex(&MmSectionBasedMutex);
2142
2143 /* Initialize the Loader Lock */
2144 KeInitializeMutant(&MmSystemLoadLock, FALSE);
2145
2146 /* Set the zero page event */
2147 KeInitializeEvent(&MmZeroingPageEvent, SynchronizationEvent, FALSE);
2148 MmZeroingPageThreadActive = FALSE;
2149
2150 /* Initialize the dead stack S-LIST */
2151 InitializeSListHead(&MmDeadStackSListHead);
2152
2153 //
2154 // Check if this is a machine with less than 19MB of RAM
2155 //
2156 PageCount = MmNumberOfPhysicalPages;
2157 if (PageCount < MI_MIN_PAGES_FOR_SYSPTE_TUNING)
2158 {
2159 //
2160 // Use the very minimum of system PTEs
2161 //
2162 MmNumberOfSystemPtes = 7000;
2163 }
2164 else
2165 {
2166 //
2167 // Use the default
2168 //
2169 MmNumberOfSystemPtes = 11000;
2170 if (PageCount > MI_MIN_PAGES_FOR_SYSPTE_BOOST)
2171 {
2172 //
2173 // Double the amount of system PTEs
2174 //
2175 MmNumberOfSystemPtes <<= 1;
2176 }
2177 if (PageCount > MI_MIN_PAGES_FOR_SYSPTE_BOOST_BOOST)
2178 {
2179 //
2180 // Double the amount of system PTEs
2181 //
2182 MmNumberOfSystemPtes <<= 1;
2183 }
2184 if (MmSpecialPoolTag != 0 && MmSpecialPoolTag != -1)
2185 {
2186 //
2187 // Add some extra PTEs for special pool
2188 //
2189 MmNumberOfSystemPtes += 0x6000;
2190 }
2191 }
2192
2193 DPRINT("System PTE count has been tuned to %lu (%lu bytes)\n",
2194 MmNumberOfSystemPtes, MmNumberOfSystemPtes * PAGE_SIZE);
2195
2196 /* Check if no values are set for the heap limits */
2197 if (MmHeapSegmentReserve == 0)
2198 {
2199 MmHeapSegmentReserve = 2 * _1MB;
2200 }
2201
2202 if (MmHeapSegmentCommit == 0)
2203 {
2204 MmHeapSegmentCommit = 2 * PAGE_SIZE;
2205 }
2206
2207 if (MmHeapDeCommitTotalFreeThreshold == 0)
2208 {
2209 MmHeapDeCommitTotalFreeThreshold = 64 * _1KB;
2210 }
2211
2212 if (MmHeapDeCommitFreeBlockThreshold == 0)
2213 {
2214 MmHeapDeCommitFreeBlockThreshold = PAGE_SIZE;
2215 }
2216
2217 /* Initialize the working set lock */
2218 ExInitializePushLock(&MmSystemCacheWs.WorkingSetMutex);
2219
2220 /* Set commit limit */
2221 MmTotalCommitLimit = 2 * _1GB;
2222 MmTotalCommitLimitMaximum = MmTotalCommitLimit;
2223
2224 /* Has the allocation fragment been setup? */
2225 if (!MmAllocationFragment)
2226 {
2227 /* Use the default value */
2228 MmAllocationFragment = MI_ALLOCATION_FRAGMENT;
2229 if (PageCount < ((256 * _1MB) / PAGE_SIZE))
2230 {
2231 /* On memory systems with less than 256MB, divide by 4 */
2232 MmAllocationFragment = MI_ALLOCATION_FRAGMENT / 4;
2233 }
2234 else if (PageCount < (_1GB / PAGE_SIZE))
2235 {
2236 /* On systems with less than 1GB, divide by 2 */
2237 MmAllocationFragment = MI_ALLOCATION_FRAGMENT / 2;
2238 }
2239 }
2240 else
2241 {
2242 /* Convert from 1KB fragments to pages */
2243 MmAllocationFragment *= _1KB;
2244 MmAllocationFragment = ROUND_TO_PAGES(MmAllocationFragment);
2245
2246 /* Don't let it past the maximum */
2247 MmAllocationFragment = min(MmAllocationFragment,
2248 MI_MAX_ALLOCATION_FRAGMENT);
2249
2250 /* Don't let it too small either */
2251 MmAllocationFragment = max(MmAllocationFragment,
2252 MI_MIN_ALLOCATION_FRAGMENT);
2253 }
2254
2255 /* Check for kernel stack size that's too big */
2256 if (MmLargeStackSize > (KERNEL_LARGE_STACK_SIZE / _1KB))
2257 {
2258 /* Sanitize to default value */
2259 MmLargeStackSize = KERNEL_LARGE_STACK_SIZE;
2260 }
2261 else
2262 {
2263 /* Take the registry setting, and convert it into bytes */
2264 MmLargeStackSize *= _1KB;
2265
2266 /* Now align it to a page boundary */
2267 MmLargeStackSize = PAGE_ROUND_UP(MmLargeStackSize);
2268
2269 /* Sanity checks */
2270 ASSERT(MmLargeStackSize <= KERNEL_LARGE_STACK_SIZE);
2271 ASSERT((MmLargeStackSize & (PAGE_SIZE - 1)) == 0);
2272
2273 /* Make sure it's not too low */
2274 if (MmLargeStackSize < KERNEL_STACK_SIZE) MmLargeStackSize = KERNEL_STACK_SIZE;
2275 }
2276
2277 /* Compute color information (L2 cache-separated paging lists) */
2278 MiComputeColorInformation();
2279
2280 // Calculate the number of bytes for the PFN database
2281 // then add the color tables and convert to pages
2282 MxPfnAllocation = (MmHighestPhysicalPage + 1) * sizeof(MMPFN);
2283 MxPfnAllocation += (MmSecondaryColors * sizeof(MMCOLOR_TABLES) * 2);
2284 MxPfnAllocation >>= PAGE_SHIFT;
2285
2286 // We have to add one to the count here, because in the process of
2287 // shifting down to the page size, we actually ended up getting the
2288 // lower aligned size (so say, 0x5FFFF bytes is now 0x5F pages).
2289 // Later on, we'll shift this number back into bytes, which would cause
2290 // us to end up with only 0x5F000 bytes -- when we actually want to have
2291 // 0x60000 bytes.
2292 MxPfnAllocation++;
2293
2294 /* Initialize the platform-specific parts */
2295 MiInitMachineDependent(LoaderBlock);
2296
2297 //
2298 // Build the physical memory block
2299 //
2300 MmPhysicalMemoryBlock = MmInitializeMemoryLimits(LoaderBlock,
2301 IncludeType);
2302
2303 //
2304 // Allocate enough buffer for the PFN bitmap
2305 // Align it up to a 32-bit boundary
2306 //
2307 Bitmap = ExAllocatePoolWithTag(NonPagedPool,
2308 (((MmHighestPhysicalPage + 1) + 31) / 32) * 4,
2309 TAG_MM);
2310 if (!Bitmap)
2311 {
2312 //
2313 // This is critical
2314 //
2315 KeBugCheckEx(INSTALL_MORE_MEMORY,
2316 MmNumberOfPhysicalPages,
2317 MmLowestPhysicalPage,
2318 MmHighestPhysicalPage,
2319 0x101);
2320 }
2321
2322 //
2323 // Initialize it and clear all the bits to begin with
2324 //
2325 RtlInitializeBitMap(&MiPfnBitMap,
2326 Bitmap,
2327 (ULONG)MmHighestPhysicalPage + 1);
2328 RtlClearAllBits(&MiPfnBitMap);
2329
2330 //
2331 // Loop physical memory runs
2332 //
2333 for (i = 0; i < MmPhysicalMemoryBlock->NumberOfRuns; i++)
2334 {
2335 //
2336 // Get the run
2337 //
2338 Run = &MmPhysicalMemoryBlock->Run[i];
2339 DPRINT("PHYSICAL RAM [0x%08p to 0x%08p]\n",
2340 Run->BasePage << PAGE_SHIFT,
2341 (Run->BasePage + Run->PageCount) << PAGE_SHIFT);
2342
2343 //
2344 // Make sure it has pages inside it
2345 //
2346 if (Run->PageCount)
2347 {
2348 //
2349 // Set the bits in the PFN bitmap
2350 //
2351 RtlSetBits(&MiPfnBitMap, (ULONG)Run->BasePage, (ULONG)Run->PageCount);
2352 }
2353 }
2354
2355 /* Look for large page cache entries that need caching */
2356 MiSyncCachedRanges();
2357
2358 /* Loop for HAL Heap I/O device mappings that need coherency tracking */
2359 MiAddHalIoMappings();
2360
2361 /* Set the initial resident page count */
2362 MmResidentAvailablePages = MmAvailablePages - 32;
2363
2364 /* Initialize large page structures on PAE/x64, and MmProcessList on x86 */
2365 MiInitializeLargePageSupport();
2366
2367 /* Check if the registry says any drivers should be loaded with large pages */
2368 MiInitializeDriverLargePageList();
2369
2370 /* Relocate the boot drivers into system PTE space and fixup their PFNs */
2371 MiReloadBootLoadedDrivers(LoaderBlock);
2372
2373 /* FIXME: Call out into Driver Verifier for initialization */
2374
2375 /* Check how many pages the system has */
2376 if (MmNumberOfPhysicalPages <= ((13 * _1MB) / PAGE_SIZE))
2377 {
2378 /* Set small system */
2379 MmSystemSize = MmSmallSystem;
2380 MmMaximumDeadKernelStacks = 0;
2381 }
2382 else if (MmNumberOfPhysicalPages <= ((19 * _1MB) / PAGE_SIZE))
2383 {
2384 /* Set small system and add 100 pages for the cache */
2385 MmSystemSize = MmSmallSystem;
2386 MmSystemCacheWsMinimum += 100;
2387 MmMaximumDeadKernelStacks = 2;
2388 }
2389 else
2390 {
2391 /* Set medium system and add 400 pages for the cache */
2392 MmSystemSize = MmMediumSystem;
2393 MmSystemCacheWsMinimum += 400;
2394 MmMaximumDeadKernelStacks = 5;
2395 }
2396
2397 /* Check for less than 24MB */
2398 if (MmNumberOfPhysicalPages < ((24 * _1MB) / PAGE_SIZE))
2399 {
2400 /* No more than 32 pages */
2401 MmSystemCacheWsMinimum = 32;
2402 }
2403
2404 /* Check for more than 32MB */
2405 if (MmNumberOfPhysicalPages >= ((32 * _1MB) / PAGE_SIZE))
2406 {
2407 /* Check for product type being "Wi" for WinNT */
2408 if (MmProductType == '\0i\0W')
2409 {
2410 /* Then this is a large system */
2411 MmSystemSize = MmLargeSystem;
2412 }
2413 else
2414 {
2415 /* For servers, we need 64MB to consider this as being large */
2416 if (MmNumberOfPhysicalPages >= ((64 * _1MB) / PAGE_SIZE))
2417 {
2418 /* Set it as large */
2419 MmSystemSize = MmLargeSystem;
2420 }
2421 }
2422 }
2423
2424 /* Check for more than 33 MB */
2425 if (MmNumberOfPhysicalPages > ((33 * _1MB) / PAGE_SIZE))
2426 {
2427 /* Add another 500 pages to the cache */
2428 MmSystemCacheWsMinimum += 500;
2429 }
2430
2431 /* Now setup the shared user data fields */
2432 ASSERT(SharedUserData->NumberOfPhysicalPages == 0);
2433 SharedUserData->NumberOfPhysicalPages = MmNumberOfPhysicalPages;
2434 SharedUserData->LargePageMinimum = 0;
2435
2436 /* Check for workstation (Wi for WinNT) */
2437 if (MmProductType == '\0i\0W')
2438 {
2439 /* Set Windows NT Workstation product type */
2440 SharedUserData->NtProductType = NtProductWinNt;
2441 MmProductType = 0;
2442 }
2443 else
2444 {
2445 /* Check for LanMan server (La for LanmanNT) */
2446 if (MmProductType == '\0a\0L')
2447 {
2448 /* This is a domain controller */
2449 SharedUserData->NtProductType = NtProductLanManNt;
2450 }
2451 else
2452 {
2453 /* Otherwise it must be a normal server (Se for ServerNT) */
2454 SharedUserData->NtProductType = NtProductServer;
2455 }
2456
2457 /* Set the product type, and make the system more aggressive with low memory */
2458 MmProductType = 1;
2459 MmMinimumFreePages = 81;
2460 }
2461
2462 /* Update working set tuning parameters */
2463 MiAdjustWorkingSetManagerParameters(!MmProductType);
2464
2465 /* Finetune the page count by removing working set and NP expansion */
2466 MmResidentAvailablePages -= MiExpansionPoolPagesInitialCharge;
2467 MmResidentAvailablePages -= MmSystemCacheWsMinimum;
2468 MmResidentAvailableAtInit = MmResidentAvailablePages;
2469 if (MmResidentAvailablePages <= 0)
2470 {
2471 /* This should not happen */
2472 DPRINT1("System cache working set too big\n");
2473 return FALSE;
2474 }
2475
2476 /* Initialize the system cache */
2477 //MiInitializeSystemCache(MmSystemCacheWsMinimum, MmAvailablePages);
2478
2479 /* Update the commit limit */
2480 MmTotalCommitLimit = MmAvailablePages;
2481 if (MmTotalCommitLimit > 1024) MmTotalCommitLimit -= 1024;
2482 MmTotalCommitLimitMaximum = MmTotalCommitLimit;
2483
2484 /* Size up paged pool and build the shadow system page directory */
2485 MiBuildPagedPool();
2486
2487 /* Debugger physical memory support is now ready to be used */
2488 MmDebugPte = MiAddressToPte(MiDebugMapping);
2489
2490 /* Initialize the loaded module list */
2491 MiInitializeLoadedModuleList(LoaderBlock);
2492 }
2493
2494 //
2495 // Always return success for now
2496 //
2497 return TRUE;
2498 }
2499
2500 /* EOF */