[SDK] One step further towards ReactOS source code tree restructure: the sdk folder...
[reactos.git] / reactos / sdk / include / c++ / stlport / stl / pointers / _tools.h
1 /*
2 * Copyright (c) 2003
3 * Francois Dumont
4 *
5 * This material is provided "as is", with absolutely no warranty expressed
6 * or implied. Any use is at your own risk.
7 *
8 * Permission to use or copy this software for any purpose is hereby granted
9 * without fee, provided the above notices are retained on all copies.
10 * Permission to modify the code and to distribute modified code is granted,
11 * provided the above notices are retained, and a notice that the code was
12 * modified is included with the above copyright notice.
13 *
14 */
15
16 /* NOTE: This is an internal header file, included by other STL headers.
17 * You should not attempt to use it directly.
18 */
19
20 #ifndef _STLP_POINTERS_SPEC_TOOLS_H
21 #define _STLP_POINTERS_SPEC_TOOLS_H
22
23 #ifndef _STLP_TYPE_TRAITS_H
24 # include <stl/type_traits.h>
25 #endif
26
27 _STLP_BEGIN_NAMESPACE
28
29 //Some usefull declarations:
30 template <class _Tp> struct less;
31
32 _STLP_MOVE_TO_PRIV_NAMESPACE
33
34 template <class _StorageT, class _ValueT, class _BinaryPredicate>
35 struct _BinaryPredWrapper;
36
37 /*
38 * Since the compiler only allows at most one non-trivial
39 * implicit conversion we can make use of a shim class to
40 * be sure that functions below doesn't accept classes with
41 * implicit pointer conversion operators
42 */
43 struct _VoidPointerShim
44 { _VoidPointerShim(void*); };
45 struct _ConstVoidPointerShim
46 { _ConstVoidPointerShim(const void*); };
47 struct _VolatileVoidPointerShim
48 { _VolatileVoidPointerShim(volatile void*); };
49 struct _ConstVolatileVoidPointerShim
50 { _ConstVolatileVoidPointerShim(const volatile void*); };
51
52 //The dispatch functions:
53 template <class _Tp>
54 char _UseVoidPtrStorageType(const __false_type& /*POD*/, const _Tp&);
55 char _UseVoidPtrStorageType(const __true_type& /*POD*/, ...);
56 char* _UseVoidPtrStorageType(const __true_type& /*POD*/, _VoidPointerShim);
57
58 template <class _Tp>
59 char _UseConstVoidPtrStorageType(const __false_type& /*POD*/, const _Tp&);
60 char _UseConstVoidPtrStorageType(const __true_type& /*POD*/, ...);
61 char* _UseConstVoidPtrStorageType(const __true_type& /*POD*/, _ConstVoidPointerShim);
62
63 template <class _Tp>
64 char _UseVolatileVoidPtrStorageType(const __false_type& /*POD*/, const _Tp&);
65 char _UseVolatileVoidPtrStorageType(const __true_type& /*POD*/, ...);
66 char* _UseVolatileVoidPtrStorageType(const __true_type& /*POD*/, _VolatileVoidPointerShim);
67
68 template <class _Tp>
69 char _UseConstVolatileVoidPtrStorageType(const __false_type& /*POD*/, const _Tp&);
70 char _UseConstVolatileVoidPtrStorageType(const __true_type& /*POD*/, ...);
71 char* _UseConstVolatileVoidPtrStorageType(const __true_type& /*POD*/, _ConstVolatileVoidPointerShim);
72
73 #if defined (_STLP_CLASS_PARTIAL_SPECIALIZATION)
74 /* Thanks to class partial specialization the pointer specialization feature can even be used in
75 * presence of incomplete type:
76 * struct MyStruct {
77 * typedef vector<MyStruct> MyStructContainer;
78 * typedef MyStructContainer::iterator MyStructIterator;
79 * };
80 */
81
82 template <class _Tp>
83 struct _StorageType {
84 typedef _Tp _QualifiedType;
85 typedef _Tp _Type;
86 enum { use_const_volatile_void_ptr = 0 };
87 };
88
89 template <class _Tp>
90 struct _StorageType<_Tp*> {
91 // Even if we detect a pointer type we use dispatch function to consider if it can be stored as a void*.
92 // For instance function pointer might not necessarily be convertible to void*.
93 enum { use_void_ptr = (sizeof(_UseVoidPtrStorageType(__true_type(),
94 __STATIC_CAST(_Tp*, 0))) == sizeof(char*)) };
95 enum { use_const_volatile_void_ptr = use_void_ptr };
96 typedef typename __select<use_void_ptr,
97 void*,
98 _Tp*>::_Ret _QualifiedType;
99 typedef _QualifiedType _Type;
100 };
101
102 template <class _Tp>
103 struct _StorageType<_Tp const*> {
104 enum { use_void_ptr = (sizeof(_UseConstVoidPtrStorageType(__true_type(),
105 __STATIC_CAST(const _Tp*, 0))) == sizeof(char*)) };
106 enum { use_const_volatile_void_ptr = use_void_ptr };
107 typedef typename __select<use_void_ptr,
108 const void*,
109 const _Tp*>::_Ret _QualifiedType;
110 typedef typename __select<use_void_ptr,
111 void*,
112 const _Tp*>::_Ret _Type;
113 };
114
115 template <class _Tp>
116 struct _StorageType<_Tp volatile*> {
117 enum { use_void_ptr = (sizeof(_UseVolatileVoidPtrStorageType(__true_type(),
118 __STATIC_CAST(_Tp volatile*, 0))) == sizeof(char*)) };
119 enum { use_const_volatile_void_ptr = use_void_ptr };
120 typedef typename __select<use_void_ptr,
121 volatile void*,
122 volatile _Tp*>::_Ret _QualifiedType;
123 typedef typename __select<use_void_ptr,
124 void*,
125 volatile _Tp*>::_Ret _Type;
126 };
127
128 template <class _Tp>
129 struct _StorageType<_Tp const volatile*> {
130 enum { use_void_ptr = (sizeof(_UseConstVolatileVoidPtrStorageType(__true_type(),
131 __STATIC_CAST(_Tp const volatile*, 0))) == sizeof(char*)) };
132 enum { use_const_volatile_void_ptr = use_void_ptr };
133 typedef typename __select<use_void_ptr,
134 const volatile void*,
135 const volatile _Tp*>::_Ret _QualifiedType;
136 typedef typename __select<use_void_ptr,
137 void*,
138 const volatile _Tp*>::_Ret _Type;
139 };
140 #else
141 template <class _Tp>
142 struct _StorageType {
143 typedef typename __type_traits<_Tp>::is_POD_type _PODType;
144
145 #if !defined (__BORLANDC__) || (__BORLANDC__ != 0x560)
146 static _Tp __null_rep();
147 #else
148 static _Tp __null_rep;
149 #endif
150 enum { use_void_ptr = (sizeof(_UseVoidPtrStorageType(_PODType(), __null_rep())) == sizeof(char*)) };
151 enum { use_const_void_ptr = (sizeof(_UseConstVoidPtrStorageType(_PODType(), __null_rep())) == sizeof(char*)) };
152 enum { use_volatile_void_ptr = (sizeof(_UseVolatileVoidPtrStorageType(_PODType(), __null_rep())) == sizeof(char*)) };
153 enum { use_const_volatile_void_ptr = (sizeof(_UseConstVolatileVoidPtrStorageType(_PODType(), __null_rep())) == sizeof(char*)) };
154
155 typedef typename __select<!use_const_volatile_void_ptr,
156 _Tp,
157 typename __select<use_void_ptr,
158 void*,
159 typename __select<use_const_void_ptr,
160 const void*,
161 typename __select<use_volatile_void_ptr,
162 volatile void*,
163 const volatile void*>::_Ret >::_Ret >::_Ret >::_Ret _QualifiedType;
164
165 #if !defined (_STLP_CLASS_PARTIAL_SPECIALIZATION)
166 /* If the compiler do not support the iterator_traits structure we cannot wrap
167 * iterators pass to container template methods. The iterator dereferenced value
168 * has to be storable without any cast in the chosen storage type. To guaranty
169 * that the void pointer has to be correctly qualified.
170 */
171 typedef _QualifiedType _Type;
172 #else
173 /* With iterator_traits we can wrap passed iterators and make the necessary casts.
174 * We can always use a simple void* storage type:
175 */
176 typedef typename __select<use_const_volatile_void_ptr,
177 void*,
178 _Tp>::_Ret _Type;
179 #endif
180 };
181 #endif
182
183 template <class _Tp, class _Compare>
184 struct _AssocStorageTypes {
185 typedef _StorageType<_Tp> _StorageTypeInfo;
186 typedef typename _StorageTypeInfo::_Type _SType;
187
188 //We need to also check that the comparison functor used to instanciate the assoc container
189 //is the default Standard less implementation:
190 enum { ptr_type = _StorageTypeInfo::use_const_volatile_void_ptr };
191 typedef typename _IsSTLportClass<_Compare>::_Ret _STLportLess;
192 enum { is_default_less = __type2bool<_STLportLess>::_Ret };
193 typedef typename __select<is_default_less, _SType, _Tp>::_Ret _KeyStorageType;
194 typedef typename __select<is_default_less && ptr_type,
195 _BinaryPredWrapper<_KeyStorageType, _Tp, _Compare>,
196 _Compare>::_Ret _CompareStorageType;
197 };
198
199
200 #if defined (_STLP_CLASS_PARTIAL_SPECIALIZATION)
201 /*
202 * Base struct to deal with qualifiers
203 */
204 template <class _StorageT, class _QualifiedStorageT>
205 struct _VoidCastTraitsAux {
206 typedef _QualifiedStorageT void_cv_type;
207 typedef _StorageT void_type;
208
209 static void_type * uncv_ptr(void_cv_type *__ptr)
210 { return __ptr; }
211 static void_type const* uncv_cptr(void_cv_type const*__ptr)
212 { return __ptr; }
213 static void_type ** uncv_pptr(void_cv_type **__ptr)
214 { return __ptr; }
215 static void_type & uncv_ref(void_cv_type & __ref)
216 { return __ref; }
217 static void_type const& uncv_cref(void_cv_type const& __ref)
218 { return __ref; }
219 static void_cv_type* cv_ptr(void_type *__ptr)
220 { return __ptr; }
221 static void_cv_type const* cv_cptr(void_type const*__ptr)
222 { return __ptr; }
223 static void_cv_type ** cv_pptr(void_type **__ptr)
224 { return __ptr; }
225 static void_cv_type & cv_ref(void_type & __ref)
226 { return __ref; }
227 static void_cv_type const& cv_cref(void_type const& __ref)
228 { return __ref; }
229 };
230
231 template <class _VoidCVType>
232 struct _VoidCastTraitsAuxBase {
233 typedef _VoidCVType* void_cv_type;
234 typedef void* void_type;
235
236 static void_type* uncv_ptr(void_cv_type *__ptr)
237 { return __CONST_CAST(void_type*, __ptr); }
238 static void_type const* uncv_cptr(void_cv_type const*__ptr)
239 { return __CONST_CAST(void_type const*, __ptr); }
240 static void_type** uncv_pptr(void_cv_type **__ptr)
241 { return __CONST_CAST(void_type**, __ptr); }
242 static void_type& uncv_ref(void_cv_type &__ref)
243 { return __CONST_CAST(void_type&, __ref); }
244 static void_type const& uncv_cref(void_cv_type const& __ptr)
245 { return __CONST_CAST(void_type const&, __ptr); }
246 // The reverse versions
247 static void_cv_type * cv_ptr(void_type *__ptr)
248 { return __CONST_CAST(void_cv_type *, __ptr); }
249 static void_cv_type const* cv_cptr(void_type const*__ptr)
250 { return __CONST_CAST(void_cv_type const*, __ptr); }
251 static void_cv_type ** cv_pptr(void_type **__ptr)
252 { return __CONST_CAST(void_cv_type**, __ptr); }
253 static void_cv_type & cv_ref(void_type &__ref)
254 { return __CONST_CAST(void_cv_type &, __ref); }
255 static void_cv_type const& cv_cref(void_type const& __ref)
256 { return __CONST_CAST(void_cv_type const&, __ref); }
257 };
258
259 _STLP_TEMPLATE_NULL
260 struct _VoidCastTraitsAux<void*, const void*> : _VoidCastTraitsAuxBase<void const>
261 {};
262 _STLP_TEMPLATE_NULL
263 struct _VoidCastTraitsAux<void*, volatile void*> : _VoidCastTraitsAuxBase<void volatile>
264 {};
265 _STLP_TEMPLATE_NULL
266 struct _VoidCastTraitsAux<void*, const volatile void*> : _VoidCastTraitsAuxBase<void const volatile>
267 {};
268
269 template <class _StorageT, class _ValueT>
270 struct _CastTraits {
271 typedef _ValueT value_type;
272 typedef typename _StorageType<_ValueT>::_QualifiedType _QualifiedStorageT;
273 typedef _VoidCastTraitsAux<_StorageT, _QualifiedStorageT> cv_traits;
274 typedef typename cv_traits::void_type void_type;
275 typedef typename cv_traits::void_cv_type void_cv_type;
276
277 static value_type * to_value_type_ptr(void_type *__ptr)
278 { return __REINTERPRET_CAST(value_type *, cv_traits::cv_ptr(__ptr)); }
279 static value_type const* to_value_type_cptr(void_type const*__ptr)
280 { return __REINTERPRET_CAST(value_type const*, cv_traits::cv_cptr(__ptr)); }
281 static value_type ** to_value_type_pptr(void_type **__ptr)
282 { return __REINTERPRET_CAST(value_type **, cv_traits::cv_pptr(__ptr)); }
283 static value_type & to_value_type_ref(void_type &__ref)
284 { return __REINTERPRET_CAST(value_type &, cv_traits::cv_ref(__ref)); }
285 static value_type const& to_value_type_cref(void_type const& __ptr)
286 { return __REINTERPRET_CAST(value_type const&, cv_traits::cv_cref(__ptr)); }
287 // Reverse versions
288 static void_type * to_storage_type_ptr(value_type *__ptr)
289 { return cv_traits::uncv_ptr(__REINTERPRET_CAST(void_cv_type *, __ptr)); }
290 static void_type const* to_storage_type_cptr(value_type const*__ptr)
291 { return cv_traits::uncv_cptr(__REINTERPRET_CAST(void_cv_type const*, __ptr)); }
292 static void_type ** to_storage_type_pptr(value_type **__ptr)
293 { return cv_traits::uncv_pptr(__REINTERPRET_CAST(void_cv_type **, __ptr)); }
294 static void_type const& to_storage_type_cref(value_type const& __ref)
295 { return cv_traits::uncv_cref(__REINTERPRET_CAST(void_cv_type const&, __ref)); }
296
297 //Method used to treat set container template method extension
298 static void_type const& to_storage_type_crefT(value_type const& __ref)
299 { return to_storage_type_cref(__ref); }
300 };
301
302 template <class _Tp>
303 struct _CastTraits<_Tp, _Tp> {
304 typedef _Tp storage_type;
305 typedef _Tp value_type;
306
307 static value_type * to_value_type_ptr(storage_type *__ptr)
308 { return __ptr; }
309 static value_type const* to_value_type_cptr(storage_type const*__ptr)
310 { return __ptr; }
311 static value_type ** to_value_type_pptr(storage_type **__ptr)
312 { return __ptr; }
313 static value_type & to_value_type_ref(storage_type &__ref)
314 { return __ref; }
315 static value_type const& to_value_type_cref(storage_type const&__ref)
316 { return __ref; }
317 // Reverse versions
318 static storage_type * to_storage_type_ptr(value_type *__ptr)
319 { return __ptr; }
320 static storage_type const* to_storage_type_cptr(value_type const*__ptr)
321 { return __ptr; }
322 static storage_type ** to_storage_type_pptr(value_type **__ptr)
323 { return __ptr; }
324 static storage_type const& to_storage_type_cref(value_type const& __ref)
325 { return __ref; }
326
327 //Method used to treat set container template method extension
328 template <class _Tp1>
329 static _Tp1 const& to_storage_type_crefT(_Tp1 const& __ref)
330 { return __ref; }
331 };
332
333 #define _STLP_USE_ITERATOR_WRAPPER
334
335 template <class _StorageT, class _ValueT, class _Iterator>
336 struct _IteWrapper {
337 typedef _CastTraits<_StorageT, _ValueT> cast_traits;
338 typedef iterator_traits<_Iterator> _IteTraits;
339
340 typedef typename _IteTraits::iterator_category iterator_category;
341 typedef _StorageT value_type;
342 typedef typename _IteTraits::difference_type difference_type;
343 typedef value_type* pointer;
344 typedef value_type const& const_reference;
345 //This wrapper won't be used for input so to avoid surprise
346 //the reference type will be a const reference:
347 typedef const_reference reference;
348
349 typedef _IteWrapper<_StorageT, _ValueT, _Iterator> _Self;
350 typedef _Self _Ite;
351
352 _IteWrapper(_Iterator &__ite) : _M_ite(__ite) {}
353
354 const_reference operator*() const { return cast_traits::to_storage_type_cref(*_M_ite); }
355
356 _Self& operator= (_Self const& __rhs) {
357 _M_ite = __rhs._M_ite;
358 return *this;
359 }
360
361 _Self& operator++() {
362 ++_M_ite;
363 return *this;
364 }
365
366 _Self& operator--() {
367 --_M_ite;
368 return *this;
369 }
370
371 _Self& operator += (difference_type __offset) {
372 _M_ite += __offset;
373 return *this;
374 }
375 difference_type operator -(_Self const& __other) const
376 { return _M_ite - __other._M_ite; }
377
378 bool operator == (_Self const& __other) const
379 { return _M_ite == __other._M_ite; }
380
381 bool operator != (_Self const& __other) const
382 { return _M_ite != __other._M_ite; }
383
384 bool operator < (_Self const& __rhs) const
385 { return _M_ite < __rhs._M_ite; }
386
387 private:
388 _Iterator _M_ite;
389 };
390
391 template <class _Tp, class _Iterator>
392 struct _IteWrapper<_Tp, _Tp, _Iterator>
393 { typedef _Iterator _Ite; };
394
395 #else
396
397 /*
398 * In this config the storage type is qualified in respect of the
399 * value_type qualification. Simple reinterpret_cast is enough.
400 */
401 template <class _StorageT, class _ValueT>
402 struct _CastTraits {
403 typedef _StorageT storage_type;
404 typedef _ValueT value_type;
405
406 static value_type * to_value_type_ptr(storage_type *__ptr)
407 { return __REINTERPRET_CAST(value_type*, __ptr); }
408 static value_type const* to_value_type_cptr(storage_type const*__ptr)
409 { return __REINTERPRET_CAST(value_type const*, __ptr); }
410 static value_type ** to_value_type_pptr(storage_type **__ptr)
411 { return __REINTERPRET_CAST(value_type **, __ptr); }
412 static value_type & to_value_type_ref(storage_type &__ref)
413 { return __REINTERPRET_CAST(value_type&, __ref); }
414 static value_type const& to_value_type_cref(storage_type const&__ref)
415 { return __REINTERPRET_CAST(value_type const&, __ref); }
416 // Reverse versions
417 static storage_type * to_storage_type_ptr(value_type *__ptr)
418 { return __REINTERPRET_CAST(storage_type*, __ptr); }
419 static storage_type const* to_storage_type_cptr(value_type const*__ptr)
420 { return __REINTERPRET_CAST(storage_type const*, __ptr); }
421 static storage_type ** to_storage_type_pptr(value_type **__ptr)
422 { return __REINTERPRET_CAST(storage_type **, __ptr); }
423 static storage_type const& to_storage_type_cref(value_type const&__ref)
424 { return __REINTERPRET_CAST(storage_type const&, __ref); }
425 template <class _Tp1>
426 static _Tp1 const& to_storage_type_crefT(_Tp1 const& __ref)
427 { return __ref; }
428 };
429
430 #endif
431
432 //Wrapper functors:
433 template <class _StorageT, class _ValueT, class _UnaryPredicate>
434 struct _UnaryPredWrapper {
435 typedef _CastTraits<_StorageT, _ValueT> cast_traits;
436
437 _UnaryPredWrapper (_UnaryPredicate const& __pred) : _M_pred(__pred) {}
438
439 bool operator () (_StorageT const& __ref) const
440 { return _M_pred(cast_traits::to_value_type_cref(__ref)); }
441
442 private:
443 _UnaryPredicate _M_pred;
444 };
445
446 template <class _StorageT, class _ValueT, class _BinaryPredicate>
447 struct _BinaryPredWrapper {
448 typedef _CastTraits<_StorageT, _ValueT> cast_traits;
449
450 _BinaryPredWrapper () {}
451 _BinaryPredWrapper (_BinaryPredicate const& __pred) : _M_pred(__pred) {}
452
453 _BinaryPredicate get_pred() const { return _M_pred; }
454
455 bool operator () (_StorageT const& __fst, _StorageT const& __snd) const
456 { return _M_pred(cast_traits::to_value_type_cref(__fst), cast_traits::to_value_type_cref(__snd)); }
457
458 //Cast operator used to transparently access underlying predicate
459 //in set::key_comp() method
460 operator _BinaryPredicate() const
461 { return _M_pred; }
462
463 private:
464 _BinaryPredicate _M_pred;
465 };
466
467 _STLP_MOVE_TO_STD_NAMESPACE
468
469 _STLP_END_NAMESPACE
470
471 #endif /* _STLP_POINTERS_SPEC_TOOLS_H */