[RXCE]
[reactos.git] / reactos / sdk / lib / cryptlib / md4.c
1 /*
2 * Copyright (C) 2001 Nikos Mavroyanopoulos
3 * Copyright (C) 2004 Hans Leidekker
4 *
5 * This library is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU Lesser General Public
7 * License as published by the Free Software Foundation; either
8 * version 2.1 of the License, or (at your option) any later version.
9 *
10 * This library is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * Lesser General Public License for more details.
14 *
15 * You should have received a copy of the GNU Lesser General Public
16 * License along with this library; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
18 */
19
20 /*
21 * This code implements the MD4 message-digest algorithm.
22 * It is based on code in the public domain written by Colin
23 * Plumb in 1993. The algorithm is due to Ron Rivest.
24 *
25 * Equivalent code is available from RSA Data Security, Inc.
26 * This code has been tested against that, and is equivalent,
27 * except that you don't need to include two pages of legalese
28 * with every copy.
29 *
30 * To compute the message digest of a chunk of bytes, declare an
31 * MD4_CTX structure, pass it to MD4Init, call MD4Update as
32 * needed on buffers full of bytes, and then call MD4Final, which
33 * will fill a supplied 16-byte array with the digest.
34 */
35
36 #include "md4.h"
37 #include "util.h"
38
39 static void MD4Transform( unsigned int buf[4], unsigned int const in[16] );
40
41 /*
42 * Start MD4 accumulation. Set bit count to 0 and buffer to mysterious
43 * initialization constants.
44 */
45 VOID NTAPI MD4Init( MD4_CTX *ctx )
46 {
47 ctx->buf[0] = 0x67452301;
48 ctx->buf[1] = 0xefcdab89;
49 ctx->buf[2] = 0x98badcfe;
50 ctx->buf[3] = 0x10325476;
51
52 ctx->i[0] = ctx->i[1] = 0;
53 }
54
55 /*
56 * Update context to reflect the concatenation of another buffer full
57 * of bytes.
58 */
59 VOID NTAPI MD4Update( MD4_CTX *ctx, const unsigned char *buf, unsigned int len )
60 {
61 register unsigned int t;
62
63 /* Update bitcount */
64 t = ctx->i[0];
65
66 if ((ctx->i[0] = t + (len << 3)) < t)
67 ctx->i[1]++; /* Carry from low to high */
68
69 ctx->i[1] += len >> 29;
70 t = (t >> 3) & 0x3f;
71
72 /* Handle any leading odd-sized chunks */
73 if (t)
74 {
75 unsigned char *p = (unsigned char *)ctx->in + t;
76 t = 64 - t;
77
78 if (len < t)
79 {
80 memcpy( p, buf, len );
81 return;
82 }
83
84 memcpy( p, buf, t );
85 byteReverse( ctx->in, 16 );
86
87 MD4Transform( ctx->buf, (unsigned int *)ctx->in );
88
89 buf += t;
90 len -= t;
91 }
92
93 /* Process data in 64-byte chunks */
94 while (len >= 64)
95 {
96 memcpy( ctx->in, buf, 64 );
97 byteReverse( ctx->in, 16 );
98
99 MD4Transform( ctx->buf, (unsigned int *)ctx->in );
100
101 buf += 64;
102 len -= 64;
103 }
104
105 /* Handle any remaining bytes of data. */
106 memcpy( ctx->in, buf, len );
107 }
108
109 /*
110 * Final wrapup - pad to 64-byte boundary with the bit pattern
111 * 1 0* (64-bit count of bits processed, MSB-first)
112 */
113 VOID NTAPI MD4Final( MD4_CTX *ctx )
114 {
115 unsigned int count;
116 unsigned char *p;
117
118 /* Compute number of bytes mod 64 */
119 count = (ctx->i[0] >> 3) & 0x3F;
120
121 /* Set the first char of padding to 0x80. This is safe since there is
122 always at least one byte free */
123 p = ctx->in + count;
124 *p++ = 0x80;
125
126 /* Bytes of padding needed to make 64 bytes */
127 count = 64 - 1 - count;
128
129 /* Pad out to 56 mod 64 */
130 if (count < 8)
131 {
132 /* Two lots of padding: Pad the first block to 64 bytes */
133 memset( p, 0, count );
134 byteReverse( ctx->in, 16 );
135 MD4Transform( ctx->buf, (unsigned int *)ctx->in );
136
137 /* Now fill the next block with 56 bytes */
138 memset( ctx->in, 0, 56 );
139 }
140 else
141 {
142 /* Pad block to 56 bytes */
143 memset( p, 0, count - 8 );
144 }
145
146 byteReverse( ctx->in, 14 );
147
148 /* Append length in bits and transform */
149 ((unsigned int *)ctx->in)[14] = ctx->i[0];
150 ((unsigned int *)ctx->in)[15] = ctx->i[1];
151
152 MD4Transform( ctx->buf, (unsigned int *)ctx->in );
153 byteReverse( (unsigned char *)ctx->buf, 4 );
154 memcpy( ctx->digest, ctx->buf, 16 );
155 }
156
157 /* The three core functions */
158
159 #define rotl32(x,n) (((x) << ((unsigned int)(n))) | ((x) >> (32 - (unsigned int)(n))))
160
161 #define F( x, y, z ) (((x) & (y)) | ((~x) & (z)))
162 #define G( x, y, z ) (((x) & (y)) | ((x) & (z)) | ((y) & (z)))
163 #define H( x, y, z ) ((x) ^ (y) ^ (z))
164
165 #define FF( a, b, c, d, x, s ) { \
166 (a) += F( (b), (c), (d) ) + (x); \
167 (a) = rotl32( (a), (s) ); \
168 }
169 #define GG( a, b, c, d, x, s ) { \
170 (a) += G( (b), (c), (d) ) + (x) + (unsigned int)0x5a827999; \
171 (a) = rotl32( (a), (s) ); \
172 }
173 #define HH( a, b, c, d, x, s ) { \
174 (a) += H( (b), (c), (d) ) + (x) + (unsigned int)0x6ed9eba1; \
175 (a) = rotl32( (a), (s) ); \
176 }
177
178 /*
179 * The core of the MD4 algorithm
180 */
181 static void MD4Transform( unsigned int buf[4], const unsigned int in[16] )
182 {
183 register unsigned int a, b, c, d;
184
185 a = buf[0];
186 b = buf[1];
187 c = buf[2];
188 d = buf[3];
189
190 FF( a, b, c, d, in[0], 3 );
191 FF( d, a, b, c, in[1], 7 );
192 FF( c, d, a, b, in[2], 11 );
193 FF( b, c, d, a, in[3], 19 );
194 FF( a, b, c, d, in[4], 3 );
195 FF( d, a, b, c, in[5], 7 );
196 FF( c, d, a, b, in[6], 11 );
197 FF( b, c, d, a, in[7], 19 );
198 FF( a, b, c, d, in[8], 3 );
199 FF( d, a, b, c, in[9], 7 );
200 FF( c, d, a, b, in[10], 11 );
201 FF( b, c, d, a, in[11], 19 );
202 FF( a, b, c, d, in[12], 3 );
203 FF( d, a, b, c, in[13], 7 );
204 FF( c, d, a, b, in[14], 11 );
205 FF( b, c, d, a, in[15], 19 );
206
207 GG( a, b, c, d, in[0], 3 );
208 GG( d, a, b, c, in[4], 5 );
209 GG( c, d, a, b, in[8], 9 );
210 GG( b, c, d, a, in[12], 13 );
211 GG( a, b, c, d, in[1], 3 );
212 GG( d, a, b, c, in[5], 5 );
213 GG( c, d, a, b, in[9], 9 );
214 GG( b, c, d, a, in[13], 13 );
215 GG( a, b, c, d, in[2], 3 );
216 GG( d, a, b, c, in[6], 5 );
217 GG( c, d, a, b, in[10], 9 );
218 GG( b, c, d, a, in[14], 13 );
219 GG( a, b, c, d, in[3], 3 );
220 GG( d, a, b, c, in[7], 5 );
221 GG( c, d, a, b, in[11], 9 );
222 GG( b, c, d, a, in[15], 13 );
223
224 HH( a, b, c, d, in[0], 3 );
225 HH( d, a, b, c, in[8], 9 );
226 HH( c, d, a, b, in[4], 11 );
227 HH( b, c, d, a, in[12], 15 );
228 HH( a, b, c, d, in[2], 3 );
229 HH( d, a, b, c, in[10], 9 );
230 HH( c, d, a, b, in[6], 11 );
231 HH( b, c, d, a, in[14], 15 );
232 HH( a, b, c, d, in[1], 3 );
233 HH( d, a, b, c, in[9], 9 );
234 HH( c, d, a, b, in[5], 11 );
235 HH( b, c, d, a, in[13], 15 );
236 HH( a, b, c, d, in[3], 3 );
237 HH( d, a, b, c, in[11], 9 );
238 HH( c, d, a, b, in[7], 11 );
239 HH( b, c, d, a, in[15], 15 );
240
241 buf[0] += a;
242 buf[1] += b;
243 buf[2] += c;
244 buf[3] += d;
245 }
246