[WIN32K]
[reactos.git] / reactos / win32ss / gdi / ntgdi / region.c
1 /*
2 * ReactOS W32 Subsystem
3 * Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003 ReactOS Team
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 /*
21 * GDI region objects. Shamelessly ripped out from the X11 distribution
22 * Thanks for the nice licence.
23 *
24 * Copyright 1993, 1994, 1995 Alexandre Julliard
25 * Modifications and additions: Copyright 1998 Huw Davies
26 * 1999 Alex Korobka
27 *
28 * This library is free software; you can redistribute it and/or
29 * modify it under the terms of the GNU Lesser General Public
30 * License as published by the Free Software Foundation; either
31 * version 2.1 of the License, or (at your option) any later version.
32 *
33 * This library is distributed in the hope that it will be useful,
34 * but WITHOUT ANY WARRANTY; without even the implied warranty of
35 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
36 * Lesser General Public License for more details.
37 *
38 * You should have received a copy of the GNU Lesser General Public
39 * License along with this library; if not, write to the Free Software
40 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
41 */
42
43 /************************************************************************
44
45 Copyright (c) 1987, 1988 X Consortium
46
47 Permission is hereby granted, free of charge, to any person obtaining a copy
48 of this software and associated documentation files (the "Software"), to deal
49 in the Software without restriction, including without limitation the rights
50 to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
51 copies of the Software, and to permit persons to whom the Software is
52 furnished to do so, subject to the following conditions:
53
54 The above copyright notice and this permission notice shall be included in
55 all copies or substantial portions of the Software.
56
57 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
58 IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
59 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
60 X CONSORTIUM BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
61 AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
62 CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
63
64 Except as contained in this notice, the name of the X Consortium shall not be
65 used in advertising or otherwise to promote the sale, use or other dealings
66 in this Software without prior written authorization from the X Consortium.
67
68
69 Copyright 1987, 1988 by Digital Equipment Corporation, Maynard, Massachusetts.
70
71 All Rights Reserved
72
73 Permission to use, copy, modify, and distribute this software and its
74 documentation for any purpose and without fee is hereby granted,
75 provided that the above copyright notice appear in all copies and that
76 both that copyright notice and this permission notice appear in
77 supporting documentation, and that the name of Digital not be
78 used in advertising or publicity pertaining to distribution of the
79 software without specific, written prior permission.
80
81 DIGITAL DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING
82 ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL
83 DIGITAL BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR
84 ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
85 WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
86 ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
87 SOFTWARE.
88
89 ************************************************************************/
90 /*
91 * The functions in this file implement the Region abstraction, similar to one
92 * used in the X11 sample server. A Region is simply an area, as the name
93 * implies, and is implemented as a "y-x-banded" array of rectangles. To
94 * explain: Each Region is made up of a certain number of rectangles sorted
95 * by y coordinate first, and then by x coordinate.
96 *
97 * Furthermore, the rectangles are banded such that every rectangle with a
98 * given upper-left y coordinate (y1) will have the same lower-right y
99 * coordinate (y2) and vice versa. If a rectangle has scanlines in a band, it
100 * will span the entire vertical distance of the band. This means that some
101 * areas that could be merged into a taller rectangle will be represented as
102 * several shorter rectangles to account for shorter rectangles to its left
103 * or right but within its "vertical scope".
104 *
105 * An added constraint on the rectangles is that they must cover as much
106 * horizontal area as possible. E.g. no two rectangles in a band are allowed
107 * to touch.
108 *
109 * Whenever possible, bands will be merged together to cover a greater vertical
110 * distance (and thus reduce the number of rectangles). Two bands can be merged
111 * only if the bottom of one touches the top of the other and they have
112 * rectangles in the same places (of the same width, of course). This maintains
113 * the y-x-banding that's so nice to have...
114 */
115
116 #include <win32k.h>
117 #include <suppress.h>
118
119 #define NDEBUG
120 #include <debug.h>
121
122 PROSRGNDATA prgnDefault = NULL;
123 HRGN hrgnDefault = NULL;
124
125 // Internal Functions
126
127 #if 1
128 #define COPY_RECTS(dest, src, nRects) \
129 do { \
130 PRECTL xDest = (dest); \
131 PRECTL xSrc = (src); \
132 UINT xRects = (nRects); \
133 while(xRects-- > 0) { \
134 *(xDest++) = *(xSrc++); \
135 } \
136 } while(0)
137 #else
138 #define COPY_RECTS(dest, src, nRects) RtlCopyMemory(dest, src, (nRects) * sizeof(RECTL))
139 #endif
140
141 #define EMPTY_REGION(pReg) { \
142 (pReg)->rdh.nCount = 0; \
143 (pReg)->rdh.rcBound.left = (pReg)->rdh.rcBound.top = 0; \
144 (pReg)->rdh.rcBound.right = (pReg)->rdh.rcBound.bottom = 0; \
145 (pReg)->rdh.iType = RDH_RECTANGLES; \
146 }
147
148 #define REGION_NOT_EMPTY(pReg) pReg->rdh.nCount
149
150 #define INRECT(r, x, y) \
151 ( ( ((r).right > x)) && \
152 ( ((r).left <= x)) && \
153 ( ((r).bottom > y)) && \
154 ( ((r).top <= y)) )
155
156 /* 1 if two RECTs overlap.
157 * 0 if two RECTs do not overlap.
158 */
159 #define EXTENTCHECK(r1, r2) \
160 ((r1)->right > (r2)->left && \
161 (r1)->left < (r2)->right && \
162 (r1)->bottom > (r2)->top && \
163 (r1)->top < (r2)->bottom)
164
165 /*
166 * In scan converting polygons, we want to choose those pixels
167 * which are inside the polygon. Thus, we add .5 to the starting
168 * x coordinate for both left and right edges. Now we choose the
169 * first pixel which is inside the pgon for the left edge and the
170 * first pixel which is outside the pgon for the right edge.
171 * Draw the left pixel, but not the right.
172 *
173 * How to add .5 to the starting x coordinate:
174 * If the edge is moving to the right, then subtract dy from the
175 * error term from the general form of the algorithm.
176 * If the edge is moving to the left, then add dy to the error term.
177 *
178 * The reason for the difference between edges moving to the left
179 * and edges moving to the right is simple: If an edge is moving
180 * to the right, then we want the algorithm to flip immediately.
181 * If it is moving to the left, then we don't want it to flip until
182 * we traverse an entire pixel.
183 */
184 #define BRESINITPGON(dy, x1, x2, xStart, d, m, m1, incr1, incr2) { \
185 int dx; /* Local storage */ \
186 \
187 /* \
188 * If the edge is horizontal, then it is ignored \
189 * and assumed not to be processed. Otherwise, do this stuff. \
190 */ \
191 if ((dy) != 0) { \
192 xStart = (x1); \
193 dx = (x2) - xStart; \
194 if (dx < 0) { \
195 m = dx / (dy); \
196 m1 = m - 1; \
197 incr1 = -2 * dx + 2 * (dy) * m1; \
198 incr2 = -2 * dx + 2 * (dy) * m; \
199 d = 2 * m * (dy) - 2 * dx - 2 * (dy); \
200 } else { \
201 m = dx / (dy); \
202 m1 = m + 1; \
203 incr1 = 2 * dx - 2 * (dy) * m1; \
204 incr2 = 2 * dx - 2 * (dy) * m; \
205 d = -2 * m * (dy) + 2 * dx; \
206 } \
207 } \
208 }
209
210 #define BRESINCRPGON(d, minval, m, m1, incr1, incr2) { \
211 if (m1 > 0) { \
212 if (d > 0) { \
213 minval += m1; \
214 d += incr1; \
215 } \
216 else { \
217 minval += m; \
218 d += incr2; \
219 } \
220 } else {\
221 if (d >= 0) { \
222 minval += m1; \
223 d += incr1; \
224 } \
225 else { \
226 minval += m; \
227 d += incr2; \
228 } \
229 } \
230 }
231
232 /*
233 * This structure contains all of the information needed
234 * to run the bresenham algorithm.
235 * The variables may be hardcoded into the declarations
236 * instead of using this structure to make use of
237 * register declarations.
238 */
239 typedef struct
240 {
241 INT minor_axis; /* Minor axis */
242 INT d; /* Decision variable */
243 INT m, m1; /* Slope and slope+1 */
244 INT incr1, incr2; /* Error increments */
245 } BRESINFO;
246
247
248 #define BRESINITPGONSTRUCT(dmaj, min1, min2, bres) \
249 BRESINITPGON(dmaj, min1, min2, bres.minor_axis, bres.d, \
250 bres.m, bres.m1, bres.incr1, bres.incr2)
251
252 #define BRESINCRPGONSTRUCT(bres) \
253 BRESINCRPGON(bres.d, bres.minor_axis, bres.m, bres.m1, bres.incr1, bres.incr2)
254
255
256
257 /*
258 * These are the data structures needed to scan
259 * convert regions. Two different scan conversion
260 * methods are available -- the even-odd method, and
261 * the winding number method.
262 * The even-odd rule states that a point is inside
263 * the polygon if a ray drawn from that point in any
264 * direction will pass through an odd number of
265 * path segments.
266 * By the winding number rule, a point is decided
267 * to be inside the polygon if a ray drawn from that
268 * point in any direction passes through a different
269 * number of clockwise and counter-clockwise path
270 * segments.
271 *
272 * These data structures are adapted somewhat from
273 * the algorithm in (Foley/Van Dam) for scan converting
274 * polygons.
275 * The basic algorithm is to start at the top (smallest y)
276 * of the polygon, stepping down to the bottom of
277 * the polygon by incrementing the y coordinate. We
278 * keep a list of edges which the current scanline crosses,
279 * sorted by x. This list is called the Active Edge Table (AET)
280 * As we change the y-coordinate, we update each entry in
281 * in the active edge table to reflect the edges new xcoord.
282 * This list must be sorted at each scanline in case
283 * two edges intersect.
284 * We also keep a data structure known as the Edge Table (ET),
285 * which keeps track of all the edges which the current
286 * scanline has not yet reached. The ET is basically a
287 * list of ScanLineList structures containing a list of
288 * edges which are entered at a given scanline. There is one
289 * ScanLineList per scanline at which an edge is entered.
290 * When we enter a new edge, we move it from the ET to the AET.
291 *
292 * From the AET, we can implement the even-odd rule as in
293 * (Foley/Van Dam).
294 * The winding number rule is a little trickier. We also
295 * keep the EdgeTableEntries in the AET linked by the
296 * nextWETE (winding EdgeTableEntry) link. This allows
297 * the edges to be linked just as before for updating
298 * purposes, but only uses the edges linked by the nextWETE
299 * link as edges representing spans of the polygon to
300 * drawn (as with the even-odd rule).
301 */
302
303 /*
304 * For the winding number rule
305 */
306 #define CLOCKWISE 1
307 #define COUNTERCLOCKWISE -1
308
309 typedef struct _EdgeTableEntry
310 {
311 INT ymax; /* ycoord at which we exit this edge. */
312 BRESINFO bres; /* Bresenham info to run the edge */
313 struct _EdgeTableEntry *next; /* Next in the list */
314 struct _EdgeTableEntry *back; /* For insertion sort */
315 struct _EdgeTableEntry *nextWETE; /* For winding num rule */
316 int ClockWise; /* Flag for winding number rule */
317 } EdgeTableEntry;
318
319
320 typedef struct _ScanLineList
321 {
322 INT scanline; /* The scanline represented */
323 EdgeTableEntry *edgelist; /* Header node */
324 struct _ScanLineList *next; /* Next in the list */
325 } ScanLineList;
326
327
328 typedef struct
329 {
330 INT ymax; /* ymax for the polygon */
331 INT ymin; /* ymin for the polygon */
332 ScanLineList scanlines; /* Header node */
333 } EdgeTable;
334
335
336 /*
337 * Here is a struct to help with storage allocation
338 * so we can allocate a big chunk at a time, and then take
339 * pieces from this heap when we need to.
340 */
341 #define SLLSPERBLOCK 25
342
343 typedef struct _ScanLineListBlock
344 {
345 ScanLineList SLLs[SLLSPERBLOCK];
346 struct _ScanLineListBlock *next;
347 } ScanLineListBlock;
348
349
350 /*
351 * A few macros for the inner loops of the fill code where
352 * performance considerations don't allow a procedure call.
353 *
354 * Evaluate the given edge at the given scanline.
355 * If the edge has expired, then we leave it and fix up
356 * the active edge table; otherwise, we increment the
357 * x value to be ready for the next scanline.
358 * The winding number rule is in effect, so we must notify
359 * the caller when the edge has been removed so he
360 * can reorder the Winding Active Edge Table.
361 */
362 #define EVALUATEEDGEWINDING(pAET, pPrevAET, y, fixWAET) { \
363 if (pAET->ymax == y) { /* Leaving this edge */ \
364 pPrevAET->next = pAET->next; \
365 pAET = pPrevAET->next; \
366 fixWAET = 1; \
367 if (pAET) \
368 pAET->back = pPrevAET; \
369 } \
370 else { \
371 BRESINCRPGONSTRUCT(pAET->bres); \
372 pPrevAET = pAET; \
373 pAET = pAET->next; \
374 } \
375 }
376
377
378 /*
379 * Evaluate the given edge at the given scanline.
380 * If the edge has expired, then we leave it and fix up
381 * the active edge table; otherwise, we increment the
382 * x value to be ready for the next scanline.
383 * The even-odd rule is in effect.
384 */
385 #define EVALUATEEDGEEVENODD(pAET, pPrevAET, y) { \
386 if (pAET->ymax == y) { /* Leaving this edge */ \
387 pPrevAET->next = pAET->next; \
388 pAET = pPrevAET->next; \
389 if (pAET) \
390 pAET->back = pPrevAET; \
391 } \
392 else { \
393 BRESINCRPGONSTRUCT(pAET->bres); \
394 pPrevAET = pAET; \
395 pAET = pAET->next; \
396 } \
397 }
398
399 /**************************************************************************
400 *
401 * Poly Regions
402 *
403 *************************************************************************/
404
405 #define LARGE_COORDINATE 0x7fffffff /* FIXME */
406 #define SMALL_COORDINATE 0x80000000
407
408 /*
409 * Check to see if there is enough memory in the present region.
410 */
411 static __inline int xmemcheck(ROSRGNDATA *reg, PRECTL *rect, PRECTL *firstrect)
412 {
413 if ( (reg->rdh.nCount+1) * sizeof(RECT) >= reg->rdh.nRgnSize )
414 {
415 PRECTL temp;
416 DWORD NewSize = 2 * reg->rdh.nRgnSize;
417 if (NewSize < (reg->rdh.nCount + 1) * sizeof(RECT))
418 {
419 NewSize = (reg->rdh.nCount + 1) * sizeof(RECT);
420 }
421 temp = ExAllocatePoolWithTag(PagedPool, NewSize, TAG_REGION);
422
423 if (temp == NULL)
424 {
425 return 0;
426 }
427
428 /* Copy the rectangles */
429 COPY_RECTS(temp, *firstrect, reg->rdh.nCount);
430
431 reg->rdh.nRgnSize = NewSize;
432 if (*firstrect != &reg->rdh.rcBound)
433 {
434 ExFreePoolWithTag(*firstrect, TAG_REGION);
435 }
436 *firstrect = temp;
437 *rect = (*firstrect)+reg->rdh.nCount;
438 }
439 return 1;
440 }
441
442 #define MEMCHECK(reg, rect, firstrect) xmemcheck(reg,&(rect),(PRECTL *)&(firstrect))
443
444 typedef void (FASTCALL *overlapProcp)(PROSRGNDATA, PRECT, PRECT, PRECT, PRECT, INT, INT);
445 typedef void (FASTCALL *nonOverlapProcp)(PROSRGNDATA, PRECT, PRECT, INT, INT);
446
447 // Number of points to buffer before sending them off to scanlines() : Must be an even number
448 #define NUMPTSTOBUFFER 200
449
450 #define RGN_DEFAULT_RECTS 2
451
452 // Used to allocate buffers for points and link the buffers together
453
454 typedef struct _POINTBLOCK
455 {
456 POINT pts[NUMPTSTOBUFFER];
457 struct _POINTBLOCK *next;
458 } POINTBLOCK;
459
460 #ifndef NDEBUG
461 /*
462 * This function is left there for debugging purposes.
463 */
464
465 VOID FASTCALL
466 IntDumpRegion(HRGN hRgn)
467 {
468 ROSRGNDATA *Data;
469
470 Data = RGNOBJAPI_Lock(hRgn, NULL);
471 if (Data == NULL)
472 {
473 DbgPrint("IntDumpRegion called with invalid region!\n");
474 return;
475 }
476
477 DbgPrint("IntDumpRegion(%x): %d,%d-%d,%d %d\n",
478 hRgn,
479 Data->rdh.rcBound.left,
480 Data->rdh.rcBound.top,
481 Data->rdh.rcBound.right,
482 Data->rdh.rcBound.bottom,
483 Data->rdh.iType);
484
485 RGNOBJAPI_Unlock(Data);
486 }
487 #endif /* Not NDEBUG */
488
489
490 INT
491 FASTCALL
492 REGION_Complexity(PREGION prgn)
493 {
494 if (!prgn) return NULLREGION;
495 switch(prgn->rdh.nCount)
496 {
497 DPRINT("Region Complexity -> %lu", prgn->rdh.nCount);
498 case 0: return NULLREGION;
499 case 1: return SIMPLEREGION;
500 default: return COMPLEXREGION;
501 }
502 }
503
504 static
505 BOOL
506 FASTCALL
507 REGION_CopyRegion(
508 PROSRGNDATA dst,
509 PROSRGNDATA src
510 )
511 {
512 if (dst != src) // Don't want to copy to itself
513 {
514 if (dst->rdh.nRgnSize < src->rdh.nCount * sizeof(RECT))
515 {
516 PRECTL temp;
517
518 temp = ExAllocatePoolWithTag(PagedPool, src->rdh.nCount * sizeof(RECT), TAG_REGION );
519 if (!temp)
520 return FALSE;
521
522 if (dst->Buffer && dst->Buffer != &dst->rdh.rcBound)
523 ExFreePoolWithTag(dst->Buffer, TAG_REGION); // Free the old buffer
524 dst->Buffer = temp;
525 dst->rdh.nRgnSize = src->rdh.nCount * sizeof(RECT); // Size of region buffer
526 }
527 dst->rdh.nCount = src->rdh.nCount; // Number of rectangles present in Buffer
528 dst->rdh.rcBound.left = src->rdh.rcBound.left;
529 dst->rdh.rcBound.top = src->rdh.rcBound.top;
530 dst->rdh.rcBound.right = src->rdh.rcBound.right;
531 dst->rdh.rcBound.bottom = src->rdh.rcBound.bottom;
532 dst->rdh.iType = src->rdh.iType;
533 COPY_RECTS(dst->Buffer, src->Buffer, src->rdh.nCount);
534 }
535 return TRUE;
536 }
537
538 static void FASTCALL
539 REGION_SetExtents(ROSRGNDATA *pReg)
540 {
541 RECTL *pRect, *pRectEnd, *pExtents;
542
543 if (pReg->rdh.nCount == 0)
544 {
545 pReg->rdh.rcBound.left = 0;
546 pReg->rdh.rcBound.top = 0;
547 pReg->rdh.rcBound.right = 0;
548 pReg->rdh.rcBound.bottom = 0;
549 pReg->rdh.iType = RDH_RECTANGLES;
550 return;
551 }
552
553 pExtents = &pReg->rdh.rcBound;
554 pRect = pReg->Buffer;
555 pRectEnd = pReg->Buffer + pReg->rdh.nCount - 1;
556
557 /*
558 * Since pRect is the first rectangle in the region, it must have the
559 * smallest top and since pRectEnd is the last rectangle in the region,
560 * it must have the largest bottom, because of banding. Initialize left and
561 * right from pRect and pRectEnd, resp., as good things to initialize them
562 * to...
563 */
564 pExtents->left = pRect->left;
565 pExtents->top = pRect->top;
566 pExtents->right = pRectEnd->right;
567 pExtents->bottom = pRectEnd->bottom;
568
569 while (pRect <= pRectEnd)
570 {
571 if (pRect->left < pExtents->left)
572 pExtents->left = pRect->left;
573 if (pRect->right > pExtents->right)
574 pExtents->right = pRect->right;
575 pRect++;
576 }
577 pReg->rdh.iType = RDH_RECTANGLES;
578 }
579
580 // FIXME: This seems to be wrong
581 /***********************************************************************
582 * REGION_CropAndOffsetRegion
583 */
584 INT
585 FASTCALL
586 REGION_CropAndOffsetRegion(
587 PREGION rgnDst,
588 PREGION rgnSrc,
589 const RECTL *rect,
590 const POINTL *offset) // FIXME: we should probably remove offset from here
591 {
592 POINT pt = {0,0};
593 const POINT *off = offset;
594
595 if (!off) off = &pt;
596
597 if (!rect) // Just copy and offset
598 {
599 PRECTL xrect;
600 if (rgnDst == rgnSrc)
601 {
602 if (off->x || off->y)
603 xrect = rgnDst->Buffer;
604 else
605 return REGION_Complexity(rgnDst);
606 }
607 else
608 {
609 xrect = ExAllocatePoolWithTag(PagedPool, rgnSrc->rdh.nCount * sizeof(RECT), TAG_REGION);
610 if(!xrect)
611 return ERROR;
612 if (rgnDst->Buffer && rgnDst->Buffer != &rgnDst->rdh.rcBound)
613 ExFreePoolWithTag(rgnDst->Buffer, TAG_REGION); // Free the old buffer. Will be assigned to xrect below.
614 }
615
616 if (rgnDst != rgnSrc)
617 {
618 *rgnDst = *rgnSrc;
619 }
620
621 if (off->x || off->y)
622 {
623 ULONG i;
624 for (i = 0; i < rgnDst->rdh.nCount; i++)
625 {
626 xrect[i].left = (rgnSrc->Buffer + i)->left + off->x;
627 xrect[i].right = (rgnSrc->Buffer + i)->right + off->x;
628 xrect[i].top = (rgnSrc->Buffer + i)->top + off->y;
629 xrect[i].bottom = (rgnSrc->Buffer + i)->bottom + off->y;
630 }
631 rgnDst->rdh.rcBound.left += off->x;
632 rgnDst->rdh.rcBound.right += off->x;
633 rgnDst->rdh.rcBound.top += off->y;
634 rgnDst->rdh.rcBound.bottom += off->y;
635 }
636 else
637 {
638 COPY_RECTS(xrect, rgnSrc->Buffer, rgnDst->rdh.nCount);
639 }
640
641 rgnDst->Buffer = xrect;
642 }
643 else if ((rect->left >= rect->right) ||
644 (rect->top >= rect->bottom) ||
645 !EXTENTCHECK(rect, &rgnSrc->rdh.rcBound))
646 {
647 goto empty;
648 }
649 else // Region box and clipping rect appear to intersect
650 {
651 PRECTL lpr, rpr;
652 ULONG i, j, clipa, clipb;
653 INT left = rgnSrc->rdh.rcBound.right + off->x;
654 INT right = rgnSrc->rdh.rcBound.left + off->x;
655
656 for (clipa = 0; (rgnSrc->Buffer + clipa)->bottom <= rect->top; clipa++)
657 // Region and rect intersect so we stop before clipa > rgnSrc->rdh.nCount
658 ; // skip bands above the clipping rectangle
659
660 for (clipb = clipa; clipb < rgnSrc->rdh.nCount; clipb++)
661 if ((rgnSrc->Buffer + clipb)->top >= rect->bottom)
662 break; // and below it
663
664 // clipa - index of the first rect in the first intersecting band
665 // clipb - index of the last rect in the last intersecting band
666
667 if ((rgnDst != rgnSrc) && (rgnDst->rdh.nCount < (i = (clipb - clipa))))
668 {
669 PRECTL temp;
670 temp = ExAllocatePoolWithTag(PagedPool, i * sizeof(RECT), TAG_REGION);
671 if (!temp)
672 return ERROR;
673
674 if (rgnDst->Buffer && rgnDst->Buffer != &rgnDst->rdh.rcBound)
675 ExFreePoolWithTag(rgnDst->Buffer, TAG_REGION); // free the old buffer
676 rgnDst->Buffer = temp;
677 rgnDst->rdh.nCount = i;
678 rgnDst->rdh.nRgnSize = i * sizeof(RECT);
679 }
680
681 for (i = clipa, j = 0; i < clipb ; i++)
682 {
683 // i - src index, j - dst index, j is always <= i for obvious reasons
684
685 lpr = rgnSrc->Buffer + i;
686
687 if (lpr->left < rect->right && lpr->right > rect->left)
688 {
689 rpr = rgnDst->Buffer + j;
690
691 rpr->top = lpr->top + off->y;
692 rpr->bottom = lpr->bottom + off->y;
693 rpr->left = ((lpr->left > rect->left) ? lpr->left : rect->left) + off->x;
694 rpr->right = ((lpr->right < rect->right) ? lpr->right : rect->right) + off->x;
695
696 if (rpr->left < left) left = rpr->left;
697 if (rpr->right > right) right = rpr->right;
698
699 j++;
700 }
701 }
702
703 if (j == 0) goto empty;
704
705 rgnDst->rdh.rcBound.left = left;
706 rgnDst->rdh.rcBound.right = right;
707
708 left = rect->top + off->y;
709 right = rect->bottom + off->y;
710
711 rgnDst->rdh.nCount = j--;
712 for (i = 0; i <= j; i++) // Fixup top band
713 if ((rgnDst->Buffer + i)->top < left)
714 (rgnDst->Buffer + i)->top = left;
715 else
716 break;
717
718 for (i = j; i > 0; i--) // Fixup bottom band
719 if ((rgnDst->Buffer + i)->bottom > right)
720 (rgnDst->Buffer + i)->bottom = right;
721 else
722 break;
723
724 rgnDst->rdh.rcBound.top = (rgnDst->Buffer)->top;
725 rgnDst->rdh.rcBound.bottom = (rgnDst->Buffer + j)->bottom;
726
727 rgnDst->rdh.iType = RDH_RECTANGLES;
728 }
729
730 return REGION_Complexity(rgnDst);
731
732 empty:
733 if (!rgnDst->Buffer)
734 {
735 rgnDst->Buffer = ExAllocatePoolWithTag(PagedPool, RGN_DEFAULT_RECTS * sizeof(RECT), TAG_REGION);
736 if (rgnDst->Buffer)
737 {
738 rgnDst->rdh.nCount = RGN_DEFAULT_RECTS;
739 rgnDst->rdh.nRgnSize = RGN_DEFAULT_RECTS * sizeof(RECT);
740 }
741 else
742 return ERROR;
743 }
744 EMPTY_REGION(rgnDst);
745 return NULLREGION;
746 }
747
748
749 /*!
750 * Attempt to merge the rects in the current band with those in the
751 * previous one. Used only by REGION_RegionOp.
752 *
753 * Results:
754 * The new index for the previous band.
755 *
756 * \note Side Effects:
757 * If coalescing takes place:
758 * - rectangles in the previous band will have their bottom fields
759 * altered.
760 * - pReg->numRects will be decreased.
761 *
762 */
763 static INT FASTCALL
764 REGION_Coalesce(
765 PROSRGNDATA pReg, /* Region to coalesce */
766 INT prevStart, /* Index of start of previous band */
767 INT curStart /* Index of start of current band */
768 )
769 {
770 RECTL *pPrevRect; /* Current rect in previous band */
771 RECTL *pCurRect; /* Current rect in current band */
772 RECTL *pRegEnd; /* End of region */
773 INT curNumRects; /* Number of rectangles in current band */
774 INT prevNumRects; /* Number of rectangles in previous band */
775 INT bandtop; /* Top coordinate for current band */
776
777 pRegEnd = pReg->Buffer + pReg->rdh.nCount;
778 pPrevRect = pReg->Buffer + prevStart;
779 prevNumRects = curStart - prevStart;
780
781 /*
782 * Figure out how many rectangles are in the current band. Have to do
783 * this because multiple bands could have been added in REGION_RegionOp
784 * at the end when one region has been exhausted.
785 */
786 pCurRect = pReg->Buffer + curStart;
787 bandtop = pCurRect->top;
788 for (curNumRects = 0;
789 (pCurRect != pRegEnd) && (pCurRect->top == bandtop);
790 curNumRects++)
791 {
792 pCurRect++;
793 }
794
795 if (pCurRect != pRegEnd)
796 {
797 /*
798 * If more than one band was added, we have to find the start
799 * of the last band added so the next coalescing job can start
800 * at the right place... (given when multiple bands are added,
801 * this may be pointless -- see above).
802 */
803 pRegEnd--;
804 while ((pRegEnd-1)->top == pRegEnd->top)
805 {
806 pRegEnd--;
807 }
808 curStart = pRegEnd - pReg->Buffer;
809 pRegEnd = pReg->Buffer + pReg->rdh.nCount;
810 }
811
812 if ((curNumRects == prevNumRects) && (curNumRects != 0))
813 {
814 pCurRect -= curNumRects;
815 /*
816 * The bands may only be coalesced if the bottom of the previous
817 * matches the top scanline of the current.
818 */
819 if (pPrevRect->bottom == pCurRect->top)
820 {
821 /*
822 * Make sure the bands have rects in the same places. This
823 * assumes that rects have been added in such a way that they
824 * cover the most area possible. I.e. two rects in a band must
825 * have some horizontal space between them.
826 */
827 do
828 {
829 if ((pPrevRect->left != pCurRect->left) ||
830 (pPrevRect->right != pCurRect->right))
831 {
832 /*
833 * The bands don't line up so they can't be coalesced.
834 */
835 return (curStart);
836 }
837 pPrevRect++;
838 pCurRect++;
839 prevNumRects -= 1;
840 }
841 while (prevNumRects != 0);
842
843 pReg->rdh.nCount -= curNumRects;
844 pCurRect -= curNumRects;
845 pPrevRect -= curNumRects;
846
847 /*
848 * The bands may be merged, so set the bottom of each rect
849 * in the previous band to that of the corresponding rect in
850 * the current band.
851 */
852 do
853 {
854 pPrevRect->bottom = pCurRect->bottom;
855 pPrevRect++;
856 pCurRect++;
857 curNumRects -= 1;
858 }
859 while (curNumRects != 0);
860
861 /*
862 * If only one band was added to the region, we have to backup
863 * curStart to the start of the previous band.
864 *
865 * If more than one band was added to the region, copy the
866 * other bands down. The assumption here is that the other bands
867 * came from the same region as the current one and no further
868 * coalescing can be done on them since it's all been done
869 * already... curStart is already in the right place.
870 */
871 if (pCurRect == pRegEnd)
872 {
873 curStart = prevStart;
874 }
875 else
876 {
877 do
878 {
879 *pPrevRect++ = *pCurRect++;
880 }
881 while (pCurRect != pRegEnd);
882 }
883 }
884 }
885 return (curStart);
886 }
887
888 /*!
889 * Apply an operation to two regions. Called by REGION_Union,
890 * REGION_Inverse, REGION_Subtract, REGION_Intersect...
891 *
892 * Results:
893 * None.
894 *
895 * Side Effects:
896 * The new region is overwritten.
897 *
898 *\note The idea behind this function is to view the two regions as sets.
899 * Together they cover a rectangle of area that this function divides
900 * into horizontal bands where points are covered only by one region
901 * or by both. For the first case, the nonOverlapFunc is called with
902 * each the band and the band's upper and lower extents. For the
903 * second, the overlapFunc is called to process the entire band. It
904 * is responsible for clipping the rectangles in the band, though
905 * this function provides the boundaries.
906 * At the end of each band, the new region is coalesced, if possible,
907 * to reduce the number of rectangles in the region.
908 *
909 */
910 static void FASTCALL
911 REGION_RegionOp(
912 ROSRGNDATA *newReg, /* Place to store result */
913 ROSRGNDATA *reg1, /* First region in operation */
914 ROSRGNDATA *reg2, /* 2nd region in operation */
915 overlapProcp overlapFunc, /* Function to call for over-lapping bands */
916 nonOverlapProcp nonOverlap1Func, /* Function to call for non-overlapping bands in region 1 */
917 nonOverlapProcp nonOverlap2Func /* Function to call for non-overlapping bands in region 2 */
918 )
919 {
920 RECTL *r1; /* Pointer into first region */
921 RECTL *r2; /* Pointer into 2d region */
922 RECTL *r1End; /* End of 1st region */
923 RECTL *r2End; /* End of 2d region */
924 INT ybot; /* Bottom of intersection */
925 INT ytop; /* Top of intersection */
926 RECTL *oldRects; /* Old rects for newReg */
927 ULONG prevBand; /* Index of start of
928 * Previous band in newReg */
929 ULONG curBand; /* Index of start of current band in newReg */
930 RECTL *r1BandEnd; /* End of current band in r1 */
931 RECTL *r2BandEnd; /* End of current band in r2 */
932 ULONG top; /* Top of non-overlapping band */
933 ULONG bot; /* Bottom of non-overlapping band */
934
935 /*
936 * Initialization:
937 * set r1, r2, r1End and r2End appropriately, preserve the important
938 * parts of the destination region until the end in case it's one of
939 * the two source regions, then mark the "new" region empty, allocating
940 * another array of rectangles for it to use.
941 */
942 r1 = reg1->Buffer;
943 r2 = reg2->Buffer;
944 r1End = r1 + reg1->rdh.nCount;
945 r2End = r2 + reg2->rdh.nCount;
946
947
948 /*
949 * newReg may be one of the src regions so we can't empty it. We keep a
950 * note of its rects pointer (so that we can free them later), preserve its
951 * extents and simply set numRects to zero.
952 */
953
954 oldRects = newReg->Buffer;
955 newReg->rdh.nCount = 0;
956
957 /*
958 * Allocate a reasonable number of rectangles for the new region. The idea
959 * is to allocate enough so the individual functions don't need to
960 * reallocate and copy the array, which is time consuming, yet we don't
961 * have to worry about using too much memory. I hope to be able to
962 * nuke the Xrealloc() at the end of this function eventually.
963 */
964 newReg->rdh.nRgnSize = max(reg1->rdh.nCount + 1,reg2->rdh.nCount) * 2 * sizeof(RECT);
965
966 newReg->Buffer = ExAllocatePoolWithTag(PagedPool, newReg->rdh.nRgnSize, TAG_REGION);
967 if (!newReg->Buffer)
968 {
969 newReg->rdh.nRgnSize = 0;
970 return;
971 }
972
973 /*
974 * Initialize ybot and ytop.
975 * In the upcoming loop, ybot and ytop serve different functions depending
976 * on whether the band being handled is an overlapping or non-overlapping
977 * band.
978 * In the case of a non-overlapping band (only one of the regions
979 * has points in the band), ybot is the bottom of the most recent
980 * intersection and thus clips the top of the rectangles in that band.
981 * ytop is the top of the next intersection between the two regions and
982 * serves to clip the bottom of the rectangles in the current band.
983 * For an overlapping band (where the two regions intersect), ytop clips
984 * the top of the rectangles of both regions and ybot clips the bottoms.
985 */
986 if (reg1->rdh.rcBound.top < reg2->rdh.rcBound.top)
987 ybot = reg1->rdh.rcBound.top;
988 else
989 ybot = reg2->rdh.rcBound.top;
990
991 /*
992 * prevBand serves to mark the start of the previous band so rectangles
993 * can be coalesced into larger rectangles. qv. miCoalesce, above.
994 * In the beginning, there is no previous band, so prevBand == curBand
995 * (curBand is set later on, of course, but the first band will always
996 * start at index 0). prevBand and curBand must be indices because of
997 * the possible expansion, and resultant moving, of the new region's
998 * array of rectangles.
999 */
1000 prevBand = 0;
1001
1002 do
1003 {
1004 curBand = newReg->rdh.nCount;
1005
1006 /*
1007 * This algorithm proceeds one source-band (as opposed to a
1008 * destination band, which is determined by where the two regions
1009 * intersect) at a time. r1BandEnd and r2BandEnd serve to mark the
1010 * rectangle after the last one in the current band for their
1011 * respective regions.
1012 */
1013 r1BandEnd = r1;
1014 while ((r1BandEnd != r1End) && (r1BandEnd->top == r1->top))
1015 {
1016 r1BandEnd++;
1017 }
1018
1019 r2BandEnd = r2;
1020 while ((r2BandEnd != r2End) && (r2BandEnd->top == r2->top))
1021 {
1022 r2BandEnd++;
1023 }
1024
1025 /*
1026 * First handle the band that doesn't intersect, if any.
1027 *
1028 * Note that attention is restricted to one band in the
1029 * non-intersecting region at once, so if a region has n
1030 * bands between the current position and the next place it overlaps
1031 * the other, this entire loop will be passed through n times.
1032 */
1033 if (r1->top < r2->top)
1034 {
1035 top = max(r1->top,ybot);
1036 bot = min(r1->bottom,r2->top);
1037
1038 if ((top != bot) && (nonOverlap1Func != NULL))
1039 {
1040 (* nonOverlap1Func) (newReg, r1, r1BandEnd, top, bot);
1041 }
1042
1043 ytop = r2->top;
1044 }
1045 else if (r2->top < r1->top)
1046 {
1047 top = max(r2->top,ybot);
1048 bot = min(r2->bottom,r1->top);
1049
1050 if ((top != bot) && (nonOverlap2Func != NULL))
1051 {
1052 (* nonOverlap2Func) (newReg, r2, r2BandEnd, top, bot);
1053 }
1054
1055 ytop = r1->top;
1056 }
1057 else
1058 {
1059 ytop = r1->top;
1060 }
1061
1062 /*
1063 * If any rectangles got added to the region, try and coalesce them
1064 * with rectangles from the previous band. Note we could just do
1065 * this test in miCoalesce, but some machines incur a not
1066 * inconsiderable cost for function calls, so...
1067 */
1068 if (newReg->rdh.nCount != curBand)
1069 {
1070 prevBand = REGION_Coalesce (newReg, prevBand, curBand);
1071 }
1072
1073 /*
1074 * Now see if we've hit an intersecting band. The two bands only
1075 * intersect if ybot > ytop
1076 */
1077 ybot = min(r1->bottom, r2->bottom);
1078 curBand = newReg->rdh.nCount;
1079 if (ybot > ytop)
1080 {
1081 (* overlapFunc) (newReg, r1, r1BandEnd, r2, r2BandEnd, ytop, ybot);
1082 }
1083
1084 if (newReg->rdh.nCount != curBand)
1085 {
1086 prevBand = REGION_Coalesce (newReg, prevBand, curBand);
1087 }
1088
1089 /*
1090 * If we've finished with a band (bottom == ybot) we skip forward
1091 * in the region to the next band.
1092 */
1093 if (r1->bottom == ybot)
1094 {
1095 r1 = r1BandEnd;
1096 }
1097 if (r2->bottom == ybot)
1098 {
1099 r2 = r2BandEnd;
1100 }
1101 }
1102 while ((r1 != r1End) && (r2 != r2End));
1103
1104 /*
1105 * Deal with whichever region still has rectangles left.
1106 */
1107 curBand = newReg->rdh.nCount;
1108 if (r1 != r1End)
1109 {
1110 if (nonOverlap1Func != NULL)
1111 {
1112 do
1113 {
1114 r1BandEnd = r1;
1115 while ((r1BandEnd < r1End) && (r1BandEnd->top == r1->top))
1116 {
1117 r1BandEnd++;
1118 }
1119 (* nonOverlap1Func) (newReg, r1, r1BandEnd,
1120 max(r1->top,ybot), r1->bottom);
1121 r1 = r1BandEnd;
1122 }
1123 while (r1 != r1End);
1124 }
1125 }
1126 else if ((r2 != r2End) && (nonOverlap2Func != NULL))
1127 {
1128 do
1129 {
1130 r2BandEnd = r2;
1131 while ((r2BandEnd < r2End) && (r2BandEnd->top == r2->top))
1132 {
1133 r2BandEnd++;
1134 }
1135 (* nonOverlap2Func) (newReg, r2, r2BandEnd,
1136 max(r2->top,ybot), r2->bottom);
1137 r2 = r2BandEnd;
1138 }
1139 while (r2 != r2End);
1140 }
1141
1142 if (newReg->rdh.nCount != curBand)
1143 {
1144 (void) REGION_Coalesce (newReg, prevBand, curBand);
1145 }
1146
1147 /*
1148 * A bit of cleanup. To keep regions from growing without bound,
1149 * we shrink the array of rectangles to match the new number of
1150 * rectangles in the region. This never goes to 0, however...
1151 *
1152 * Only do this stuff if the number of rectangles allocated is more than
1153 * twice the number of rectangles in the region (a simple optimization...).
1154 */
1155 if ((2 * newReg->rdh.nCount*sizeof(RECT) < newReg->rdh.nRgnSize && (newReg->rdh.nCount > 2)))
1156 {
1157 if (REGION_NOT_EMPTY(newReg))
1158 {
1159 RECTL *prev_rects = newReg->Buffer;
1160 newReg->Buffer = ExAllocatePoolWithTag(PagedPool, newReg->rdh.nCount*sizeof(RECT), TAG_REGION);
1161
1162 if (! newReg->Buffer)
1163 newReg->Buffer = prev_rects;
1164 else
1165 {
1166 newReg->rdh.nRgnSize = newReg->rdh.nCount*sizeof(RECT);
1167 COPY_RECTS(newReg->Buffer, prev_rects, newReg->rdh.nCount);
1168 if (prev_rects != &newReg->rdh.rcBound)
1169 ExFreePoolWithTag(prev_rects, TAG_REGION);
1170 }
1171 }
1172 else
1173 {
1174 /*
1175 * No point in doing the extra work involved in an Xrealloc if
1176 * the region is empty
1177 */
1178 newReg->rdh.nRgnSize = sizeof(RECT);
1179 if (newReg->Buffer != &newReg->rdh.rcBound)
1180 ExFreePoolWithTag(newReg->Buffer, TAG_REGION);
1181 newReg->Buffer = ExAllocatePoolWithTag(PagedPool, sizeof(RECT), TAG_REGION);
1182 ASSERT(newReg->Buffer);
1183 }
1184 }
1185 newReg->rdh.iType = RDH_RECTANGLES;
1186
1187 if (oldRects != &newReg->rdh.rcBound)
1188 ExFreePoolWithTag(oldRects, TAG_REGION);
1189 return;
1190 }
1191
1192 /***********************************************************************
1193 * Region Intersection
1194 ***********************************************************************/
1195
1196
1197 /*!
1198 * Handle an overlapping band for REGION_Intersect.
1199 *
1200 * Results:
1201 * None.
1202 *
1203 * \note Side Effects:
1204 * Rectangles may be added to the region.
1205 *
1206 */
1207 static void FASTCALL
1208 REGION_IntersectO(
1209 PROSRGNDATA pReg,
1210 PRECTL r1,
1211 PRECTL r1End,
1212 PRECTL r2,
1213 PRECTL r2End,
1214 INT top,
1215 INT bottom
1216 )
1217 {
1218 INT left, right;
1219 RECTL *pNextRect;
1220
1221 pNextRect = pReg->Buffer + pReg->rdh.nCount;
1222
1223 while ((r1 != r1End) && (r2 != r2End))
1224 {
1225 left = max(r1->left, r2->left);
1226 right = min(r1->right, r2->right);
1227
1228 /*
1229 * If there's any overlap between the two rectangles, add that
1230 * overlap to the new region.
1231 * There's no need to check for subsumption because the only way
1232 * such a need could arise is if some region has two rectangles
1233 * right next to each other. Since that should never happen...
1234 */
1235 if (left < right)
1236 {
1237 MEMCHECK(pReg, pNextRect, pReg->Buffer);
1238 pNextRect->left = left;
1239 pNextRect->top = top;
1240 pNextRect->right = right;
1241 pNextRect->bottom = bottom;
1242 pReg->rdh.nCount += 1;
1243 pNextRect++;
1244 }
1245
1246 /*
1247 * Need to advance the pointers. Shift the one that extends
1248 * to the right the least, since the other still has a chance to
1249 * overlap with that region's next rectangle, if you see what I mean.
1250 */
1251 if (r1->right < r2->right)
1252 {
1253 r1++;
1254 }
1255 else if (r2->right < r1->right)
1256 {
1257 r2++;
1258 }
1259 else
1260 {
1261 r1++;
1262 r2++;
1263 }
1264 }
1265 return;
1266 }
1267
1268 /***********************************************************************
1269 * REGION_IntersectRegion
1270 */
1271 static void FASTCALL
1272 REGION_IntersectRegion(
1273 ROSRGNDATA *newReg,
1274 ROSRGNDATA *reg1,
1275 ROSRGNDATA *reg2
1276 )
1277 {
1278 /* Check for trivial reject */
1279 if ( (!(reg1->rdh.nCount)) || (!(reg2->rdh.nCount)) ||
1280 (!EXTENTCHECK(&reg1->rdh.rcBound, &reg2->rdh.rcBound)) )
1281 newReg->rdh.nCount = 0;
1282 else
1283 REGION_RegionOp (newReg, reg1, reg2,
1284 REGION_IntersectO, NULL, NULL);
1285
1286 /*
1287 * Can't alter newReg's extents before we call miRegionOp because
1288 * it might be one of the source regions and miRegionOp depends
1289 * on the extents of those regions being the same. Besides, this
1290 * way there's no checking against rectangles that will be nuked
1291 * due to coalescing, so we have to examine fewer rectangles.
1292 */
1293
1294 REGION_SetExtents(newReg);
1295 }
1296
1297 /***********************************************************************
1298 * Region Union
1299 ***********************************************************************/
1300
1301 /*!
1302 * Handle a non-overlapping band for the union operation. Just
1303 * Adds the rectangles into the region. Doesn't have to check for
1304 * subsumption or anything.
1305 *
1306 * Results:
1307 * None.
1308 *
1309 * \note Side Effects:
1310 * pReg->numRects is incremented and the final rectangles overwritten
1311 * with the rectangles we're passed.
1312 *
1313 */
1314 static void FASTCALL
1315 REGION_UnionNonO (
1316 PROSRGNDATA pReg,
1317 PRECTL r,
1318 PRECTL rEnd,
1319 INT top,
1320 INT bottom
1321 )
1322 {
1323 RECTL *pNextRect;
1324
1325 pNextRect = pReg->Buffer + pReg->rdh.nCount;
1326
1327 while (r != rEnd)
1328 {
1329 MEMCHECK(pReg, pNextRect, pReg->Buffer);
1330 pNextRect->left = r->left;
1331 pNextRect->top = top;
1332 pNextRect->right = r->right;
1333 pNextRect->bottom = bottom;
1334 pReg->rdh.nCount += 1;
1335 pNextRect++;
1336 r++;
1337 }
1338 return;
1339 }
1340
1341 /*!
1342 * Handle an overlapping band for the union operation. Picks the
1343 * left-most rectangle each time and merges it into the region.
1344 *
1345 * Results:
1346 * None.
1347 *
1348 * \note Side Effects:
1349 * Rectangles are overwritten in pReg->rects and pReg->numRects will
1350 * be changed.
1351 *
1352 */
1353 static void FASTCALL
1354 REGION_UnionO (
1355 PROSRGNDATA pReg,
1356 PRECTL r1,
1357 PRECTL r1End,
1358 PRECTL r2,
1359 PRECTL r2End,
1360 INT top,
1361 INT bottom
1362 )
1363 {
1364 RECTL *pNextRect;
1365
1366 pNextRect = pReg->Buffer + pReg->rdh.nCount;
1367
1368 #define MERGERECT(r) \
1369 if ((pReg->rdh.nCount != 0) && \
1370 ((pNextRect-1)->top == top) && \
1371 ((pNextRect-1)->bottom == bottom) && \
1372 ((pNextRect-1)->right >= r->left)) \
1373 { \
1374 if ((pNextRect-1)->right < r->right) \
1375 { \
1376 (pNextRect-1)->right = r->right; \
1377 } \
1378 } \
1379 else \
1380 { \
1381 MEMCHECK(pReg, pNextRect, pReg->Buffer); \
1382 pNextRect->top = top; \
1383 pNextRect->bottom = bottom; \
1384 pNextRect->left = r->left; \
1385 pNextRect->right = r->right; \
1386 pReg->rdh.nCount += 1; \
1387 pNextRect += 1; \
1388 } \
1389 r++;
1390
1391 while ((r1 != r1End) && (r2 != r2End))
1392 {
1393 if (r1->left < r2->left)
1394 {
1395 MERGERECT(r1);
1396 }
1397 else
1398 {
1399 MERGERECT(r2);
1400 }
1401 }
1402
1403 if (r1 != r1End)
1404 {
1405 do
1406 {
1407 MERGERECT(r1);
1408 }
1409 while (r1 != r1End);
1410 }
1411 else while (r2 != r2End)
1412 {
1413 MERGERECT(r2);
1414 }
1415 return;
1416 }
1417
1418 /***********************************************************************
1419 * REGION_UnionRegion
1420 */
1421 static void FASTCALL
1422 REGION_UnionRegion(
1423 ROSRGNDATA *newReg,
1424 ROSRGNDATA *reg1,
1425 ROSRGNDATA *reg2
1426 )
1427 {
1428 /* Checks all the simple cases */
1429
1430 /*
1431 * Region 1 and 2 are the same or region 1 is empty
1432 */
1433 if (reg1 == reg2 || 0 == reg1->rdh.nCount ||
1434 reg1->rdh.rcBound.right <= reg1->rdh.rcBound.left ||
1435 reg1->rdh.rcBound.bottom <= reg1->rdh.rcBound.top)
1436 {
1437 if (newReg != reg2)
1438 {
1439 REGION_CopyRegion(newReg, reg2);
1440 }
1441 return;
1442 }
1443
1444 /*
1445 * If nothing to union (region 2 empty)
1446 */
1447 if (0 == reg2->rdh.nCount ||
1448 reg2->rdh.rcBound.right <= reg2->rdh.rcBound.left ||
1449 reg2->rdh.rcBound.bottom <= reg2->rdh.rcBound.top)
1450 {
1451 if (newReg != reg1)
1452 {
1453 REGION_CopyRegion(newReg, reg1);
1454 }
1455 return;
1456 }
1457
1458 /*
1459 * Region 1 completely subsumes region 2
1460 */
1461 if (1 == reg1->rdh.nCount &&
1462 reg1->rdh.rcBound.left <= reg2->rdh.rcBound.left &&
1463 reg1->rdh.rcBound.top <= reg2->rdh.rcBound.top &&
1464 reg2->rdh.rcBound.right <= reg1->rdh.rcBound.right &&
1465 reg2->rdh.rcBound.bottom <= reg1->rdh.rcBound.bottom)
1466 {
1467 if (newReg != reg1)
1468 {
1469 REGION_CopyRegion(newReg, reg1);
1470 }
1471 return;
1472 }
1473
1474 /*
1475 * Region 2 completely subsumes region 1
1476 */
1477 if (1 == reg2->rdh.nCount &&
1478 reg2->rdh.rcBound.left <= reg1->rdh.rcBound.left &&
1479 reg2->rdh.rcBound.top <= reg1->rdh.rcBound.top &&
1480 reg1->rdh.rcBound.right <= reg2->rdh.rcBound.right &&
1481 reg1->rdh.rcBound.bottom <= reg2->rdh.rcBound.bottom)
1482 {
1483 if (newReg != reg2)
1484 {
1485 REGION_CopyRegion(newReg, reg2);
1486 }
1487 return;
1488 }
1489
1490 REGION_RegionOp (newReg, reg1, reg2, REGION_UnionO,
1491 REGION_UnionNonO, REGION_UnionNonO);
1492 newReg->rdh.rcBound.left = min(reg1->rdh.rcBound.left, reg2->rdh.rcBound.left);
1493 newReg->rdh.rcBound.top = min(reg1->rdh.rcBound.top, reg2->rdh.rcBound.top);
1494 newReg->rdh.rcBound.right = max(reg1->rdh.rcBound.right, reg2->rdh.rcBound.right);
1495 newReg->rdh.rcBound.bottom = max(reg1->rdh.rcBound.bottom, reg2->rdh.rcBound.bottom);
1496 }
1497
1498 /***********************************************************************
1499 * Region Subtraction
1500 ***********************************************************************/
1501
1502 /*!
1503 * Deal with non-overlapping band for subtraction. Any parts from
1504 * region 2 we discard. Anything from region 1 we add to the region.
1505 *
1506 * Results:
1507 * None.
1508 *
1509 * \note Side Effects:
1510 * pReg may be affected.
1511 *
1512 */
1513 static void FASTCALL
1514 REGION_SubtractNonO1(
1515 PROSRGNDATA pReg,
1516 PRECTL r,
1517 PRECTL rEnd,
1518 INT top,
1519 INT bottom
1520 )
1521 {
1522 RECTL *pNextRect;
1523
1524 pNextRect = pReg->Buffer + pReg->rdh.nCount;
1525
1526 while (r != rEnd)
1527 {
1528 MEMCHECK(pReg, pNextRect, pReg->Buffer);
1529 pNextRect->left = r->left;
1530 pNextRect->top = top;
1531 pNextRect->right = r->right;
1532 pNextRect->bottom = bottom;
1533 pReg->rdh.nCount += 1;
1534 pNextRect++;
1535 r++;
1536 }
1537 return;
1538 }
1539
1540
1541 /*!
1542 * Overlapping band subtraction. x1 is the left-most point not yet
1543 * checked.
1544 *
1545 * Results:
1546 * None.
1547 *
1548 * \note Side Effects:
1549 * pReg may have rectangles added to it.
1550 *
1551 */
1552 static void FASTCALL
1553 REGION_SubtractO(
1554 PROSRGNDATA pReg,
1555 PRECTL r1,
1556 PRECTL r1End,
1557 PRECTL r2,
1558 PRECTL r2End,
1559 INT top,
1560 INT bottom
1561 )
1562 {
1563 RECTL *pNextRect;
1564 INT left;
1565
1566 left = r1->left;
1567 pNextRect = pReg->Buffer + pReg->rdh.nCount;
1568
1569 while ((r1 != r1End) && (r2 != r2End))
1570 {
1571 if (r2->right <= left)
1572 {
1573 /*
1574 * Subtrahend missed the boat: go to next subtrahend.
1575 */
1576 r2++;
1577 }
1578 else if (r2->left <= left)
1579 {
1580 /*
1581 * Subtrahend preceeds minuend: nuke left edge of minuend.
1582 */
1583 left = r2->right;
1584 if (left >= r1->right)
1585 {
1586 /*
1587 * Minuend completely covered: advance to next minuend and
1588 * reset left fence to edge of new minuend.
1589 */
1590 r1++;
1591 if (r1 != r1End)
1592 left = r1->left;
1593 }
1594 else
1595 {
1596 /*
1597 * Subtrahend now used up since it doesn't extend beyond
1598 * minuend
1599 */
1600 r2++;
1601 }
1602 }
1603 else if (r2->left < r1->right)
1604 {
1605 /*
1606 * Left part of subtrahend covers part of minuend: add uncovered
1607 * part of minuend to region and skip to next subtrahend.
1608 */
1609 MEMCHECK(pReg, pNextRect, pReg->Buffer);
1610 pNextRect->left = left;
1611 pNextRect->top = top;
1612 pNextRect->right = r2->left;
1613 pNextRect->bottom = bottom;
1614 pReg->rdh.nCount += 1;
1615 pNextRect++;
1616 left = r2->right;
1617 if (left >= r1->right)
1618 {
1619 /*
1620 * Minuend used up: advance to new...
1621 */
1622 r1++;
1623 if (r1 != r1End)
1624 left = r1->left;
1625 }
1626 else
1627 {
1628 /*
1629 * Subtrahend used up
1630 */
1631 r2++;
1632 }
1633 }
1634 else
1635 {
1636 /*
1637 * Minuend used up: add any remaining piece before advancing.
1638 */
1639 if (r1->right > left)
1640 {
1641 MEMCHECK(pReg, pNextRect, pReg->Buffer);
1642 pNextRect->left = left;
1643 pNextRect->top = top;
1644 pNextRect->right = r1->right;
1645 pNextRect->bottom = bottom;
1646 pReg->rdh.nCount += 1;
1647 pNextRect++;
1648 }
1649 r1++;
1650 if (r1 != r1End)
1651 left = r1->left;
1652 }
1653 }
1654
1655 /*
1656 * Add remaining minuend rectangles to region.
1657 */
1658 while (r1 != r1End)
1659 {
1660 MEMCHECK(pReg, pNextRect, pReg->Buffer);
1661 pNextRect->left = left;
1662 pNextRect->top = top;
1663 pNextRect->right = r1->right;
1664 pNextRect->bottom = bottom;
1665 pReg->rdh.nCount += 1;
1666 pNextRect++;
1667 r1++;
1668 if (r1 != r1End)
1669 {
1670 left = r1->left;
1671 }
1672 }
1673 return;
1674 }
1675
1676 /*!
1677 * Subtract regS from regM and leave the result in regD.
1678 * S stands for subtrahend, M for minuend and D for difference.
1679 *
1680 * Results:
1681 * TRUE.
1682 *
1683 * \note Side Effects:
1684 * regD is overwritten.
1685 *
1686 */
1687 static void FASTCALL
1688 REGION_SubtractRegion(
1689 ROSRGNDATA *regD,
1690 ROSRGNDATA *regM,
1691 ROSRGNDATA *regS
1692 )
1693 {
1694 /* Check for trivial reject */
1695 if ( (!(regM->rdh.nCount)) || (!(regS->rdh.nCount)) ||
1696 (!EXTENTCHECK(&regM->rdh.rcBound, &regS->rdh.rcBound)) )
1697 {
1698 REGION_CopyRegion(regD, regM);
1699 return;
1700 }
1701
1702 REGION_RegionOp (regD, regM, regS, REGION_SubtractO,
1703 REGION_SubtractNonO1, NULL);
1704
1705 /*
1706 * Can't alter newReg's extents before we call miRegionOp because
1707 * it might be one of the source regions and miRegionOp depends
1708 * on the extents of those regions being the unaltered. Besides, this
1709 * way there's no checking against rectangles that will be nuked
1710 * due to coalescing, so we have to examine fewer rectangles.
1711 */
1712 REGION_SetExtents (regD);
1713 }
1714
1715 /***********************************************************************
1716 * REGION_XorRegion
1717 */
1718 static void FASTCALL
1719 REGION_XorRegion(
1720 ROSRGNDATA *dr,
1721 ROSRGNDATA *sra,
1722 ROSRGNDATA *srb
1723 )
1724 {
1725 HRGN htra, htrb;
1726 ROSRGNDATA *tra, *trb;
1727
1728 // FIXME: Don't use a handle
1729 tra = REGION_AllocRgnWithHandle(sra->rdh.nCount + 1);
1730 if (!tra )
1731 {
1732 return;
1733 }
1734 htra = tra->BaseObject.hHmgr;
1735
1736 // FIXME: Don't use a handle
1737 trb = REGION_AllocRgnWithHandle(srb->rdh.nCount + 1);
1738 if (!trb)
1739 {
1740 RGNOBJAPI_Unlock(tra);
1741 GreDeleteObject(htra);
1742 return;
1743 }
1744 htrb = trb->BaseObject.hHmgr;
1745
1746 REGION_SubtractRegion(tra, sra, srb);
1747 REGION_SubtractRegion(trb, srb, sra);
1748 REGION_UnionRegion(dr, tra, trb);
1749 RGNOBJAPI_Unlock(tra);
1750 RGNOBJAPI_Unlock(trb);
1751
1752 GreDeleteObject(htra);
1753 GreDeleteObject(htrb);
1754 return;
1755 }
1756
1757
1758 /*!
1759 * Adds a rectangle to a REGION
1760 */
1761 VOID FASTCALL
1762 REGION_UnionRectWithRgn(
1763 ROSRGNDATA *rgn,
1764 const RECTL *rect
1765 )
1766 {
1767 ROSRGNDATA region;
1768
1769 region.Buffer = &region.rdh.rcBound;
1770 region.rdh.nCount = 1;
1771 region.rdh.nRgnSize = sizeof(RECT);
1772 region.rdh.rcBound = *rect;
1773 REGION_UnionRegion(rgn, rgn, &region);
1774 }
1775
1776 BOOL FASTCALL
1777 REGION_CreateSimpleFrameRgn(
1778 PROSRGNDATA rgn,
1779 INT x,
1780 INT y
1781 )
1782 {
1783 RECTL rc[4];
1784 PRECTL prc;
1785
1786 if ((x != 0) || (y != 0))
1787 {
1788 prc = rc;
1789
1790 if (rgn->rdh.rcBound.bottom - rgn->rdh.rcBound.top > y * 2 &&
1791 rgn->rdh.rcBound.right - rgn->rdh.rcBound.left > x * 2)
1792 {
1793 if (y != 0)
1794 {
1795 /* Top rectangle */
1796 prc->left = rgn->rdh.rcBound.left;
1797 prc->top = rgn->rdh.rcBound.top;
1798 prc->right = rgn->rdh.rcBound.right;
1799 prc->bottom = prc->top + y;
1800 prc++;
1801 }
1802
1803 if (x != 0)
1804 {
1805 /* Left rectangle */
1806 prc->left = rgn->rdh.rcBound.left;
1807 prc->top = rgn->rdh.rcBound.top + y;
1808 prc->right = prc->left + x;
1809 prc->bottom = rgn->rdh.rcBound.bottom - y;
1810 prc++;
1811
1812 /* Right rectangle */
1813 prc->left = rgn->rdh.rcBound.right - x;
1814 prc->top = rgn->rdh.rcBound.top + y;
1815 prc->right = rgn->rdh.rcBound.right;
1816 prc->bottom = rgn->rdh.rcBound.bottom - y;
1817 prc++;
1818 }
1819
1820 if (y != 0)
1821 {
1822 /* Bottom rectangle */
1823 prc->left = rgn->rdh.rcBound.left;
1824 prc->top = rgn->rdh.rcBound.bottom - y;
1825 prc->right = rgn->rdh.rcBound.right;
1826 prc->bottom = rgn->rdh.rcBound.bottom;
1827 prc++;
1828 }
1829 }
1830
1831 if (prc != rc)
1832 {
1833 /* The frame results in a complex region. rcBounds remains
1834 the same, though. */
1835 rgn->rdh.nCount = (DWORD)(prc - rc);
1836 ASSERT(rgn->rdh.nCount > 1);
1837 rgn->rdh.nRgnSize = rgn->rdh.nCount * sizeof(RECT);
1838 rgn->Buffer = ExAllocatePoolWithTag(PagedPool, rgn->rdh.nRgnSize, TAG_REGION);
1839 if (!rgn->Buffer)
1840 {
1841 rgn->rdh.nRgnSize = 0;
1842 return FALSE;
1843 }
1844
1845 _PRAGMA_WARNING_SUPPRESS(__WARNING_MAYBE_UNINIT_VAR) // rc is initialized
1846 COPY_RECTS(rgn->Buffer, rc, rgn->rdh.nCount);
1847 }
1848 }
1849
1850 return TRUE;
1851 }
1852
1853 BOOL FASTCALL
1854 REGION_CreateFrameRgn(
1855 HRGN hDest,
1856 HRGN hSrc,
1857 INT x,
1858 INT y
1859 )
1860 {
1861 PROSRGNDATA srcObj, destObj;
1862 PRECTL rc;
1863 ULONG i;
1864
1865 if (!(srcObj = RGNOBJAPI_Lock(hSrc, NULL)))
1866 {
1867 return FALSE;
1868 }
1869 if (!REGION_NOT_EMPTY(srcObj))
1870 {
1871 RGNOBJAPI_Unlock(srcObj);
1872 return FALSE;
1873 }
1874 if (!(destObj = RGNOBJAPI_Lock(hDest, NULL)))
1875 {
1876 RGNOBJAPI_Unlock(srcObj);
1877 return FALSE;
1878 }
1879
1880 EMPTY_REGION(destObj);
1881 if (!REGION_CopyRegion(destObj, srcObj))
1882 {
1883 RGNOBJAPI_Unlock(destObj);
1884 RGNOBJAPI_Unlock(srcObj);
1885 return FALSE;
1886 }
1887
1888 if (REGION_Complexity(srcObj) == SIMPLEREGION)
1889 {
1890 if (!REGION_CreateSimpleFrameRgn(destObj, x, y))
1891 {
1892 EMPTY_REGION(destObj);
1893 RGNOBJAPI_Unlock(destObj);
1894 RGNOBJAPI_Unlock(srcObj);
1895 return FALSE;
1896 }
1897 }
1898 else
1899 {
1900 /* Original region moved to right */
1901 rc = srcObj->Buffer;
1902 for (i = 0; i < srcObj->rdh.nCount; i++)
1903 {
1904 rc->left += x;
1905 rc->right += x;
1906 rc++;
1907 }
1908 REGION_IntersectRegion(destObj, destObj, srcObj);
1909
1910 /* Original region moved to left */
1911 rc = srcObj->Buffer;
1912 for (i = 0; i < srcObj->rdh.nCount; i++)
1913 {
1914 rc->left -= 2 * x;
1915 rc->right -= 2 * x;
1916 rc++;
1917 }
1918 REGION_IntersectRegion(destObj, destObj, srcObj);
1919
1920 /* Original region moved down */
1921 rc = srcObj->Buffer;
1922 for (i = 0; i < srcObj->rdh.nCount; i++)
1923 {
1924 rc->left += x;
1925 rc->right += x;
1926 rc->top += y;
1927 rc->bottom += y;
1928 rc++;
1929 }
1930 REGION_IntersectRegion(destObj, destObj, srcObj);
1931
1932 /* Original region moved up */
1933 rc = srcObj->Buffer;
1934 for (i = 0; i < srcObj->rdh.nCount; i++)
1935 {
1936 rc->top -= 2 * y;
1937 rc->bottom -= 2 * y;
1938 rc++;
1939 }
1940 REGION_IntersectRegion(destObj, destObj, srcObj);
1941
1942 /* Restore the original region */
1943 rc = srcObj->Buffer;
1944 for (i = 0; i < srcObj->rdh.nCount; i++)
1945 {
1946 rc->top += y;
1947 rc->bottom += y;
1948 rc++;
1949 }
1950 REGION_SubtractRegion(destObj, srcObj, destObj);
1951 }
1952
1953 RGNOBJAPI_Unlock(destObj);
1954 RGNOBJAPI_Unlock(srcObj);
1955 return TRUE;
1956 }
1957
1958
1959 static
1960 BOOL FASTCALL
1961 REGION_LPTODP(
1962 _In_ PDC dc,
1963 _Inout_ PREGION RgnDest,
1964 _In_ PREGION RgnSrc)
1965 {
1966 RECTL *pCurRect, *pEndRect;
1967 RECTL tmpRect;
1968 PDC_ATTR pdcattr;
1969
1970 if (!dc)
1971 return FALSE;
1972 pdcattr = dc->pdcattr;
1973
1974 if (pdcattr->iMapMode == MM_TEXT) // Requires only a translation
1975 {
1976 if (IntGdiCombineRgn(RgnDest, RgnSrc, 0, RGN_COPY) == ERROR)
1977 return FALSE;
1978
1979 IntGdiOffsetRgn(RgnDest, pdcattr->ptlViewportOrg.x - pdcattr->ptlWindowOrg.x,
1980 pdcattr->ptlViewportOrg.y - pdcattr->ptlWindowOrg.y);
1981 return TRUE;
1982 }
1983
1984 EMPTY_REGION(RgnDest);
1985
1986 pEndRect = RgnSrc->Buffer + RgnSrc->rdh.nCount;
1987 for (pCurRect = RgnSrc->Buffer; pCurRect < pEndRect; pCurRect++)
1988 {
1989 tmpRect = *pCurRect;
1990 tmpRect.left = XLPTODP(pdcattr, tmpRect.left);
1991 tmpRect.top = YLPTODP(pdcattr, tmpRect.top);
1992 tmpRect.right = XLPTODP(pdcattr, tmpRect.right);
1993 tmpRect.bottom = YLPTODP(pdcattr, tmpRect.bottom);
1994
1995 if (tmpRect.left > tmpRect.right)
1996 {
1997 INT tmp = tmpRect.left;
1998 tmpRect.left = tmpRect.right;
1999 tmpRect.right = tmp;
2000 }
2001 if (tmpRect.top > tmpRect.bottom)
2002 {
2003 INT tmp = tmpRect.top;
2004 tmpRect.top = tmpRect.bottom;
2005 tmpRect.bottom = tmp;
2006 }
2007
2008 REGION_UnionRectWithRgn(RgnDest, &tmpRect);
2009 }
2010
2011 return TRUE;
2012 }
2013
2014 PROSRGNDATA
2015 FASTCALL
2016 REGION_AllocRgnWithHandle(INT nReg)
2017 {
2018 //HRGN hReg;
2019 PROSRGNDATA pReg;
2020
2021 pReg = (PROSRGNDATA)GDIOBJ_AllocateObject(GDIObjType_RGN_TYPE,
2022 sizeof(REGION),
2023 BASEFLAG_LOOKASIDE);
2024 if (!pReg)
2025 {
2026 DPRINT1("Could not allocate a palette.\n");
2027 return NULL;
2028 }
2029
2030 if (!GDIOBJ_hInsertObject(&pReg->BaseObject, GDI_OBJ_HMGR_POWNED))
2031 {
2032 DPRINT1("Could not insert palette into handle table.\n");
2033 GDIOBJ_vFreeObject(&pReg->BaseObject);
2034 return NULL;
2035 }
2036
2037 //hReg = pReg->BaseObject.hHmgr;
2038
2039 if (nReg == 0 || nReg == 1)
2040 {
2041 /* Testing shows that > 95% of all regions have only 1 rect.
2042 Including that here saves us from having to do another allocation */
2043 pReg->Buffer = &pReg->rdh.rcBound;
2044 }
2045 else
2046 {
2047 pReg->Buffer = ExAllocatePoolWithTag(PagedPool, nReg * sizeof(RECT), TAG_REGION);
2048 if (!pReg->Buffer)
2049 {
2050 DPRINT1("Could not allocate region buffer\n");
2051 GDIOBJ_vDeleteObject(&pReg->BaseObject);
2052 return NULL;
2053 }
2054 }
2055
2056 EMPTY_REGION(pReg);
2057 pReg->rdh.dwSize = sizeof(RGNDATAHEADER);
2058 pReg->rdh.nCount = nReg;
2059 pReg->rdh.nRgnSize = nReg * sizeof(RECT);
2060 pReg->prgnattr = &pReg->rgnattr;
2061
2062 return pReg;
2063 }
2064
2065 BOOL
2066 NTAPI
2067 REGION_bAllocRgnAttr(PREGION prgn)
2068 {
2069 PPROCESSINFO ppi;
2070 PRGN_ATTR prgnattr;
2071
2072 ppi = PsGetCurrentProcessWin32Process();
2073 ASSERT(ppi);
2074
2075 prgnattr = GdiPoolAllocate(ppi->pPoolRgnAttr);
2076 if (!prgnattr)
2077 {
2078 DPRINT1("Could not allocate RGN attr\n");
2079 return FALSE;
2080 }
2081
2082 /* Set the object attribute in the handle table */
2083 prgn->prgnattr = prgnattr;
2084 GDIOBJ_vSetObjectAttr(&prgn->BaseObject, prgnattr);
2085
2086 return TRUE;
2087 }
2088
2089
2090 //
2091 // Allocate User Space Region Handle.
2092 //
2093 PROSRGNDATA
2094 FASTCALL
2095 REGION_AllocUserRgnWithHandle(INT nRgn)
2096 {
2097 PREGION prgn;
2098
2099 prgn = REGION_AllocRgnWithHandle(nRgn);
2100 if (!prgn)
2101 {
2102 return NULL;
2103 }
2104
2105 if (!REGION_bAllocRgnAttr(prgn))
2106 {
2107 ASSERT(FALSE);
2108 }
2109
2110 return prgn;
2111 }
2112
2113 VOID
2114 NTAPI
2115 REGION_vSyncRegion(PREGION pRgn)
2116 {
2117 PRGN_ATTR pRgn_Attr = NULL;
2118
2119 if (pRgn && pRgn->prgnattr != &pRgn->rgnattr)
2120 {
2121 pRgn_Attr = GDIOBJ_pvGetObjectAttr(&pRgn->BaseObject);
2122
2123 if ( pRgn_Attr )
2124 {
2125 _SEH2_TRY
2126 {
2127 if ( !(pRgn_Attr->AttrFlags & ATTR_CACHED) )
2128 {
2129 if ( pRgn_Attr->AttrFlags & (ATTR_RGN_VALID|ATTR_RGN_DIRTY) )
2130 {
2131 switch (pRgn_Attr->Flags)
2132 {
2133 case NULLREGION:
2134 EMPTY_REGION( pRgn );
2135 break;
2136
2137 case SIMPLEREGION:
2138 REGION_SetRectRgn( pRgn,
2139 pRgn_Attr->Rect.left,
2140 pRgn_Attr->Rect.top,
2141 pRgn_Attr->Rect.right,
2142 pRgn_Attr->Rect.bottom );
2143 break;
2144 }
2145 pRgn_Attr->AttrFlags &= ~ATTR_RGN_DIRTY;
2146 }
2147 }
2148 }
2149 _SEH2_EXCEPT(EXCEPTION_EXECUTE_HANDLER)
2150 {
2151 (void)0;
2152 }
2153 _SEH2_END;
2154 }
2155 }
2156
2157 }
2158
2159 PROSRGNDATA
2160 FASTCALL
2161 RGNOBJAPI_Lock(HRGN hRgn, PRGN_ATTR *ppRgn_Attr)
2162 {
2163 PROSRGNDATA pRgn = NULL;
2164
2165 pRgn = REGION_LockRgn(hRgn);
2166
2167 REGION_vSyncRegion(pRgn);
2168
2169 if (ppRgn_Attr)
2170 *ppRgn_Attr = pRgn->prgnattr;
2171
2172 return pRgn;
2173 }
2174
2175 VOID
2176 FASTCALL
2177 RGNOBJAPI_Unlock(PROSRGNDATA pRgn)
2178 {
2179 PRGN_ATTR pRgn_Attr;
2180
2181 if (pRgn && GreGetObjectOwner(pRgn->BaseObject.hHmgr) == GDI_OBJ_HMGR_POWNED)
2182 {
2183 pRgn_Attr = GDIOBJ_pvGetObjectAttr(&pRgn->BaseObject);
2184
2185 if ( pRgn_Attr )
2186 {
2187 _SEH2_TRY
2188 {
2189 if ( pRgn_Attr->AttrFlags & ATTR_RGN_VALID )
2190 {
2191 pRgn_Attr->Flags = REGION_Complexity( pRgn );
2192 pRgn_Attr->Rect.left = pRgn->rdh.rcBound.left;
2193 pRgn_Attr->Rect.top = pRgn->rdh.rcBound.top;
2194 pRgn_Attr->Rect.right = pRgn->rdh.rcBound.right;
2195 pRgn_Attr->Rect.bottom = pRgn->rdh.rcBound.bottom;
2196 }
2197 }
2198 _SEH2_EXCEPT(EXCEPTION_EXECUTE_HANDLER)
2199 {
2200 (void)0;
2201 }
2202 _SEH2_END;
2203 }
2204 }
2205 REGION_UnlockRgn(pRgn);
2206 }
2207
2208 /*
2209 System Regions:
2210 These regions do not use attribute sections and when allocated, use gdiobj
2211 level functions.
2212 */
2213 //
2214 // System Region Functions
2215 //
2216 PROSRGNDATA
2217 FASTCALL
2218 IntSysCreateRectpRgn(INT LeftRect, INT TopRect, INT RightRect, INT BottomRect)
2219 {
2220 PREGION prgn;
2221
2222 /* Allocate a region, witout a handle */
2223 prgn = (PREGION)GDIOBJ_AllocateObject(GDIObjType_RGN_TYPE, sizeof(REGION), BASEFLAG_LOOKASIDE);
2224 if (!prgn)
2225 {
2226 return NULL;
2227 }
2228
2229 /* Initialize it */
2230 prgn->Buffer = &prgn->rdh.rcBound;
2231 prgn->prgnattr = &prgn->rgnattr;
2232 REGION_SetRectRgn(prgn, LeftRect, TopRect, RightRect, BottomRect);
2233
2234 return prgn;
2235 }
2236
2237 VOID NTAPI
2238 REGION_vCleanup(PVOID ObjectBody)
2239 {
2240 PROSRGNDATA pRgn = (PROSRGNDATA)ObjectBody;
2241 PPROCESSINFO ppi = PsGetCurrentProcessWin32Process();
2242 ASSERT(ppi);
2243
2244 ASSERT(pRgn->prgnattr);
2245 if (pRgn->prgnattr != &pRgn->rgnattr)
2246 GdiPoolFree(ppi->pPoolRgnAttr, pRgn->prgnattr);
2247
2248 if (pRgn->Buffer && pRgn->Buffer != &pRgn->rdh.rcBound)
2249 ExFreePoolWithTag(pRgn->Buffer, TAG_REGION);
2250 }
2251
2252 VOID FASTCALL
2253 REGION_Delete(PROSRGNDATA pRgn)
2254 {
2255 if ( pRgn == prgnDefault) return;
2256 GDIOBJ_vDeleteObject(&pRgn->BaseObject);
2257 }
2258
2259 VOID FASTCALL
2260 IntGdiReleaseRaoRgn(PDC pDC)
2261 {
2262 INT Index = GDI_HANDLE_GET_INDEX(pDC->BaseObject.hHmgr);
2263 PGDI_TABLE_ENTRY Entry = &GdiHandleTable->Entries[Index];
2264 pDC->fs |= DC_FLAG_DIRTY_RAO;
2265 Entry->Flags |= GDI_ENTRY_VALIDATE_VIS;
2266 RECTL_vSetEmptyRect(&pDC->erclClip);
2267 REGION_Delete(pDC->prgnRao);
2268 pDC->prgnRao = NULL;
2269 }
2270
2271 VOID FASTCALL
2272 IntGdiReleaseVisRgn(PDC pDC)
2273 {
2274 INT Index = GDI_HANDLE_GET_INDEX(pDC->BaseObject.hHmgr);
2275 PGDI_TABLE_ENTRY Entry = &GdiHandleTable->Entries[Index];
2276 pDC->fs |= DC_FLAG_DIRTY_RAO;
2277 Entry->Flags |= GDI_ENTRY_VALIDATE_VIS;
2278 RECTL_vSetEmptyRect(&pDC->erclClip);
2279 REGION_Delete(pDC->prgnVis);
2280 pDC->prgnVis = prgnDefault;
2281 }
2282
2283 VOID FASTCALL
2284 IntUpdateVisRectRgn(PDC pDC, PROSRGNDATA pRgn)
2285 {
2286 INT Index = GDI_HANDLE_GET_INDEX(pDC->BaseObject.hHmgr);
2287 PGDI_TABLE_ENTRY Entry = &GdiHandleTable->Entries[Index];
2288 PDC_ATTR pdcattr;
2289 RECTL rcl;
2290
2291 if (Entry->Flags & GDI_ENTRY_VALIDATE_VIS)
2292 {
2293 pdcattr = pDC->pdcattr;
2294
2295 pdcattr->VisRectRegion.Flags = REGION_Complexity(pRgn);
2296
2297 if (pRgn && pdcattr->VisRectRegion.Flags != NULLREGION)
2298 {
2299 rcl.left = pRgn->rdh.rcBound.left;
2300 rcl.top = pRgn->rdh.rcBound.top;
2301 rcl.right = pRgn->rdh.rcBound.right;
2302 rcl.bottom = pRgn->rdh.rcBound.bottom;
2303
2304 rcl.left -= pDC->erclWindow.left;
2305 rcl.top -= pDC->erclWindow.top;
2306 rcl.right -= pDC->erclWindow.left;
2307 rcl.bottom -= pDC->erclWindow.top;
2308 }
2309 else
2310 RECTL_vSetEmptyRect(&rcl);
2311
2312 pdcattr->VisRectRegion.Rect = rcl;
2313
2314 Entry->Flags &= ~GDI_ENTRY_VALIDATE_VIS;
2315 }
2316 }
2317
2318 BOOL
2319 FASTCALL
2320 IntGdiSetRegionOwner(HRGN hRgn, DWORD OwnerMask)
2321 {
2322 PREGION prgn;
2323 PRGN_ATTR prgnattr;
2324 PPROCESSINFO ppi;
2325
2326 prgn = RGNOBJAPI_Lock(hRgn, &prgnattr);
2327 if (!prgn)
2328 {
2329 return FALSE;
2330 }
2331
2332 if (prgnattr != &prgn->rgnattr)
2333 {
2334 GDIOBJ_vSetObjectAttr(&prgn->BaseObject, NULL);
2335 prgn->prgnattr = &prgn->rgnattr;
2336 ppi = PsGetCurrentProcessWin32Process();
2337 GdiPoolFree(ppi->pPoolRgnAttr, prgnattr);
2338 }
2339 RGNOBJAPI_Unlock(prgn);
2340
2341 return GreSetObjectOwner(hRgn, OwnerMask);
2342 }
2343
2344 INT
2345 FASTCALL
2346 IntGdiCombineRgn(
2347 PROSRGNDATA prgnDest,
2348 PROSRGNDATA prgnSrc1,
2349 PROSRGNDATA prgnSrc2,
2350 INT iCombineMode)
2351 {
2352
2353 if (!prgnDest)
2354 {
2355 DPRINT("IntGdiCombineRgn: hDest unavailable\n");
2356 return ERROR;
2357 }
2358
2359 if (!prgnSrc1)
2360 {
2361 DPRINT("IntGdiCombineRgn: hSrc1 unavailable\n");
2362 return ERROR;
2363 }
2364
2365 if (iCombineMode == RGN_COPY)
2366 {
2367 if (!REGION_CopyRegion(prgnDest, prgnSrc1))
2368 return ERROR;
2369 return REGION_Complexity(prgnDest);
2370 }
2371
2372 if (!prgnSrc2)
2373 {
2374 DPRINT1("IntGdiCombineRgn requires hSrc2 != NULL for combine mode %d!\n", iCombineMode);
2375 ASSERT(FALSE);
2376 return ERROR;
2377 }
2378
2379 switch (iCombineMode)
2380 {
2381 case RGN_AND:
2382 REGION_IntersectRegion(prgnDest, prgnSrc1, prgnSrc2);
2383 break;
2384 case RGN_OR:
2385 REGION_UnionRegion(prgnDest, prgnSrc1, prgnSrc2);
2386 break;
2387 case RGN_XOR:
2388 REGION_XorRegion(prgnDest, prgnSrc1, prgnSrc2);
2389 break;
2390 case RGN_DIFF:
2391 REGION_SubtractRegion(prgnDest, prgnSrc1, prgnSrc2);
2392 break;
2393 }
2394
2395 return REGION_Complexity(prgnDest);
2396 }
2397
2398 INT FASTCALL
2399 REGION_GetRgnBox(
2400 PROSRGNDATA Rgn,
2401 PRECTL pRect
2402 )
2403 {
2404 DWORD ret;
2405
2406 if (Rgn)
2407 {
2408 *pRect = Rgn->rdh.rcBound;
2409 ret = REGION_Complexity(Rgn);
2410
2411 return ret;
2412 }
2413 return 0; // If invalid region return zero
2414 }
2415
2416 INT APIENTRY
2417 IntGdiGetRgnBox(
2418 HRGN hRgn,
2419 PRECTL pRect
2420 )
2421 {
2422 PROSRGNDATA Rgn;
2423 DWORD ret;
2424
2425 if (!(Rgn = RGNOBJAPI_Lock(hRgn, NULL)))
2426 {
2427 return ERROR;
2428 }
2429
2430 ret = REGION_GetRgnBox(Rgn, pRect);
2431 RGNOBJAPI_Unlock(Rgn);
2432
2433 return ret;
2434 }
2435
2436 BOOL
2437 FASTCALL
2438 IntGdiPaintRgn(
2439 PDC dc,
2440 PREGION Rgn
2441 )
2442 {
2443 PROSRGNDATA VisRgn;
2444 XCLIPOBJ ClipRegion;
2445 BOOL bRet = FALSE;
2446 POINTL BrushOrigin;
2447 SURFACE *psurf;
2448 PDC_ATTR pdcattr;
2449
2450 if (!dc || !Rgn)
2451 return FALSE;
2452
2453 pdcattr = dc->pdcattr;
2454
2455 ASSERT(!(pdcattr->ulDirty_ & (DIRTY_FILL | DC_BRUSH_DIRTY)));
2456
2457 VisRgn = IntSysCreateRectpRgn(0, 0, 0, 0);
2458 if (!VisRgn)
2459 {
2460 return FALSE;
2461 }
2462
2463 // Transform region into device co-ords
2464 if (!REGION_LPTODP(dc, VisRgn, Rgn) ||
2465 IntGdiOffsetRgn(VisRgn, dc->ptlDCOrig.x, dc->ptlDCOrig.y) == ERROR)
2466 {
2467 REGION_Delete(VisRgn);
2468 return FALSE;
2469 }
2470
2471 if (dc->prgnRao)
2472 IntGdiCombineRgn(VisRgn, VisRgn, dc->prgnRao, RGN_AND);
2473
2474 IntEngInitClipObj(&ClipRegion);
2475 IntEngUpdateClipRegion(&ClipRegion, VisRgn->rdh.nCount, VisRgn->Buffer, &VisRgn->rdh.rcBound );
2476
2477 BrushOrigin.x = pdcattr->ptlBrushOrigin.x;
2478 BrushOrigin.y = pdcattr->ptlBrushOrigin.y;
2479 psurf = dc->dclevel.pSurface;
2480 /* FIXME: Handle psurf == NULL !!!! */
2481
2482 bRet = IntEngPaint(&psurf->SurfObj,
2483 &ClipRegion.ClipObj,
2484 &dc->eboFill.BrushObject,
2485 &BrushOrigin,
2486 0xFFFF); // FIXME: Don't know what to put here
2487
2488 REGION_Delete(VisRgn);
2489 IntEngFreeClipResources(&ClipRegion);
2490
2491 // Fill the region
2492 return bRet;
2493 }
2494
2495 BOOL
2496 FASTCALL
2497 REGION_PtInRegion(
2498 PREGION prgn,
2499 INT X,
2500 INT Y)
2501 {
2502 ULONG i;
2503 PRECT r;
2504
2505 if (prgn->rdh.nCount > 0 && INRECT(prgn->rdh.rcBound, X, Y))
2506 {
2507 r = prgn->Buffer;
2508 for (i = 0; i < prgn->rdh.nCount; i++)
2509 {
2510 if (INRECT(r[i], X, Y))
2511 return TRUE;
2512 }
2513 }
2514
2515 return FALSE;
2516 }
2517
2518 BOOL
2519 FASTCALL
2520 REGION_RectInRegion(
2521 PROSRGNDATA Rgn,
2522 const RECTL *rect
2523 )
2524 {
2525 PRECTL pCurRect, pRectEnd;
2526 RECT rc;
2527
2528 /* Swap the coordinates to make right >= left and bottom >= top */
2529 /* (region building rectangles are normalized the same way) */
2530 if( rect->top > rect->bottom) {
2531 rc.top = rect->bottom;
2532 rc.bottom = rect->top;
2533 } else {
2534 rc.top = rect->top;
2535 rc.bottom = rect->bottom;
2536 }
2537 if( rect->right < rect->left) {
2538 rc.right = rect->left;
2539 rc.left = rect->right;
2540 } else {
2541 rc.right = rect->right;
2542 rc.left = rect->left;
2543 }
2544
2545 /* This is (just) a useful optimization */
2546 if ((Rgn->rdh.nCount > 0) && EXTENTCHECK(&Rgn->rdh.rcBound, &rc))
2547 {
2548 for (pCurRect = Rgn->Buffer, pRectEnd = pCurRect +
2549 Rgn->rdh.nCount; pCurRect < pRectEnd; pCurRect++)
2550 {
2551 if (pCurRect->bottom <= rc.top)
2552 continue; /* Not far enough down yet */
2553
2554 if (pCurRect->top >= rc.bottom)
2555 break; /* Too far down */
2556
2557 if (pCurRect->right <= rc.left)
2558 continue; /* Not far enough over yet */
2559
2560 if (pCurRect->left >= rc.right) {
2561 continue;
2562 }
2563
2564 return TRUE;
2565 }
2566 }
2567 return FALSE;
2568 }
2569
2570 VOID
2571 FASTCALL
2572 REGION_SetRectRgn(
2573 PROSRGNDATA rgn,
2574 INT LeftRect,
2575 INT TopRect,
2576 INT RightRect,
2577 INT BottomRect
2578 )
2579 {
2580 PRECTL firstRect;
2581
2582 if (LeftRect > RightRect)
2583 {
2584 INT tmp = LeftRect;
2585 LeftRect = RightRect;
2586 RightRect = tmp;
2587 }
2588 if (TopRect > BottomRect)
2589 {
2590 INT tmp = TopRect;
2591 TopRect = BottomRect;
2592 BottomRect = tmp;
2593 }
2594
2595 if ((LeftRect != RightRect) && (TopRect != BottomRect))
2596 {
2597 firstRect = rgn->Buffer;
2598 ASSERT(firstRect);
2599 firstRect->left = rgn->rdh.rcBound.left = LeftRect;
2600 firstRect->top = rgn->rdh.rcBound.top = TopRect;
2601 firstRect->right = rgn->rdh.rcBound.right = RightRect;
2602 firstRect->bottom = rgn->rdh.rcBound.bottom = BottomRect;
2603 rgn->rdh.nCount = 1;
2604 rgn->rdh.iType = RDH_RECTANGLES;
2605 }
2606 else
2607 {
2608 EMPTY_REGION(rgn);
2609 }
2610 }
2611
2612 INT
2613 FASTCALL
2614 IntGdiOffsetRgn(
2615 PROSRGNDATA rgn,
2616 INT XOffset,
2617 INT YOffset )
2618 {
2619 if (XOffset || YOffset)
2620 {
2621 int nbox = rgn->rdh.nCount;
2622 PRECTL pbox = rgn->Buffer;
2623
2624 if (nbox && pbox)
2625 {
2626 while (nbox--)
2627 {
2628 pbox->left += XOffset;
2629 pbox->right += XOffset;
2630 pbox->top += YOffset;
2631 pbox->bottom += YOffset;
2632 pbox++;
2633 }
2634 if (rgn->Buffer != &rgn->rdh.rcBound)
2635 {
2636 rgn->rdh.rcBound.left += XOffset;
2637 rgn->rdh.rcBound.right += XOffset;
2638 rgn->rdh.rcBound.top += YOffset;
2639 rgn->rdh.rcBound.bottom += YOffset;
2640 }
2641 }
2642 }
2643 return REGION_Complexity(rgn);
2644 }
2645
2646 /***********************************************************************
2647 * REGION_InsertEdgeInET
2648 *
2649 * Insert the given edge into the edge table.
2650 * First we must find the correct bucket in the
2651 * Edge table, then find the right slot in the
2652 * bucket. Finally, we can insert it.
2653 *
2654 */
2655 static void FASTCALL
2656 REGION_InsertEdgeInET(
2657 EdgeTable *ET,
2658 EdgeTableEntry *ETE,
2659 INT scanline,
2660 ScanLineListBlock **SLLBlock,
2661 INT *iSLLBlock
2662 )
2663 {
2664 EdgeTableEntry *start, *prev;
2665 ScanLineList *pSLL, *pPrevSLL;
2666 ScanLineListBlock *tmpSLLBlock;
2667
2668 /*
2669 * Find the right bucket to put the edge into
2670 */
2671 pPrevSLL = &ET->scanlines;
2672 pSLL = pPrevSLL->next;
2673 while (pSLL && (pSLL->scanline < scanline))
2674 {
2675 pPrevSLL = pSLL;
2676 pSLL = pSLL->next;
2677 }
2678
2679 /*
2680 * Reassign pSLL (pointer to ScanLineList) if necessary
2681 */
2682 if ((!pSLL) || (pSLL->scanline > scanline))
2683 {
2684 if (*iSLLBlock > SLLSPERBLOCK-1)
2685 {
2686 tmpSLLBlock = ExAllocatePoolWithTag(PagedPool, sizeof(ScanLineListBlock), TAG_REGION);
2687 if (!tmpSLLBlock)
2688 {
2689 DPRINT1("REGION_InsertEdgeInETL(): Can't alloc SLLB\n");
2690 /* FIXME: Free resources? */
2691 return;
2692 }
2693 (*SLLBlock)->next = tmpSLLBlock;
2694 tmpSLLBlock->next = (ScanLineListBlock *)NULL;
2695 *SLLBlock = tmpSLLBlock;
2696 *iSLLBlock = 0;
2697 }
2698 pSLL = &((*SLLBlock)->SLLs[(*iSLLBlock)++]);
2699
2700 pSLL->next = pPrevSLL->next;
2701 pSLL->edgelist = (EdgeTableEntry *)NULL;
2702 pPrevSLL->next = pSLL;
2703 }
2704 pSLL->scanline = scanline;
2705
2706 /*
2707 * Now insert the edge in the right bucket
2708 */
2709 prev = (EdgeTableEntry *)NULL;
2710 start = pSLL->edgelist;
2711 while (start && (start->bres.minor_axis < ETE->bres.minor_axis))
2712 {
2713 prev = start;
2714 start = start->next;
2715 }
2716 ETE->next = start;
2717
2718 if (prev)
2719 prev->next = ETE;
2720 else
2721 pSLL->edgelist = ETE;
2722 }
2723
2724 /***********************************************************************
2725 * REGION_loadAET
2726 *
2727 * This routine moves EdgeTableEntries from the
2728 * EdgeTable into the Active Edge Table,
2729 * leaving them sorted by smaller x coordinate.
2730 *
2731 */
2732 static void FASTCALL
2733 REGION_loadAET(
2734 EdgeTableEntry *AET,
2735 EdgeTableEntry *ETEs
2736 )
2737 {
2738 EdgeTableEntry *pPrevAET;
2739 EdgeTableEntry *tmp;
2740
2741 pPrevAET = AET;
2742 AET = AET->next;
2743 while (ETEs)
2744 {
2745 while (AET && (AET->bres.minor_axis < ETEs->bres.minor_axis))
2746 {
2747 pPrevAET = AET;
2748 AET = AET->next;
2749 }
2750 tmp = ETEs->next;
2751 ETEs->next = AET;
2752 if (AET)
2753 AET->back = ETEs;
2754 ETEs->back = pPrevAET;
2755 pPrevAET->next = ETEs;
2756 pPrevAET = ETEs;
2757
2758 ETEs = tmp;
2759 }
2760 }
2761
2762 /***********************************************************************
2763 * REGION_computeWAET
2764 *
2765 * This routine links the AET by the
2766 * nextWETE (winding EdgeTableEntry) link for
2767 * use by the winding number rule. The final
2768 * Active Edge Table (AET) might look something
2769 * like:
2770 *
2771 * AET
2772 * ---------- --------- ---------
2773 * |ymax | |ymax | |ymax |
2774 * | ... | |... | |... |
2775 * |next |->|next |->|next |->...
2776 * |nextWETE| |nextWETE| |nextWETE|
2777 * --------- --------- ^--------
2778 * | | |
2779 * V-------------------> V---> ...
2780 *
2781 */
2782 static void FASTCALL
2783 REGION_computeWAET(EdgeTableEntry *AET)
2784 {
2785 register EdgeTableEntry *pWETE;
2786 register int inside = 1;
2787 register int isInside = 0;
2788
2789 AET->nextWETE = (EdgeTableEntry *)NULL;
2790 pWETE = AET;
2791 AET = AET->next;
2792 while (AET)
2793 {
2794 if (AET->ClockWise)
2795 isInside++;
2796 else
2797 isInside--;
2798
2799 if ( (!inside && !isInside) ||
2800 ( inside && isInside) )
2801 {
2802 pWETE->nextWETE = AET;
2803 pWETE = AET;
2804 inside = !inside;
2805 }
2806 AET = AET->next;
2807 }
2808 pWETE->nextWETE = (EdgeTableEntry *)NULL;
2809 }
2810
2811 /***********************************************************************
2812 * REGION_InsertionSort
2813 *
2814 * Just a simple insertion sort using
2815 * pointers and back pointers to sort the Active
2816 * Edge Table.
2817 *
2818 */
2819 static BOOL FASTCALL
2820 REGION_InsertionSort(EdgeTableEntry *AET)
2821 {
2822 EdgeTableEntry *pETEchase;
2823 EdgeTableEntry *pETEinsert;
2824 EdgeTableEntry *pETEchaseBackTMP;
2825 BOOL changed = FALSE;
2826
2827 AET = AET->next;
2828 while (AET)
2829 {
2830 pETEinsert = AET;
2831 pETEchase = AET;
2832 while (pETEchase->back->bres.minor_axis > AET->bres.minor_axis)
2833 pETEchase = pETEchase->back;
2834
2835 AET = AET->next;
2836 if (pETEchase != pETEinsert)
2837 {
2838 pETEchaseBackTMP = pETEchase->back;
2839 pETEinsert->back->next = AET;
2840 if (AET)
2841 AET->back = pETEinsert->back;
2842 pETEinsert->next = pETEchase;
2843 pETEchase->back->next = pETEinsert;
2844 pETEchase->back = pETEinsert;
2845 pETEinsert->back = pETEchaseBackTMP;
2846 changed = TRUE;
2847 }
2848 }
2849 return changed;
2850 }
2851
2852 /***********************************************************************
2853 * REGION_FreeStorage
2854 *
2855 * Clean up our act.
2856 */
2857 static void FASTCALL
2858 REGION_FreeStorage(ScanLineListBlock *pSLLBlock)
2859 {
2860 ScanLineListBlock *tmpSLLBlock;
2861
2862 while (pSLLBlock)
2863 {
2864 tmpSLLBlock = pSLLBlock->next;
2865 ExFreePoolWithTag(pSLLBlock, TAG_REGION);
2866 pSLLBlock = tmpSLLBlock;
2867 }
2868 }
2869
2870
2871 /***********************************************************************
2872 * REGION_PtsToRegion
2873 *
2874 * Create an array of rectangles from a list of points.
2875 */
2876 static int FASTCALL
2877 REGION_PtsToRegion(
2878 int numFullPtBlocks,
2879 int iCurPtBlock,
2880 POINTBLOCK *FirstPtBlock,
2881 ROSRGNDATA *reg)
2882 {
2883 RECTL *rects;
2884 POINT *pts;
2885 POINTBLOCK *CurPtBlock;
2886 int i;
2887 RECTL *extents, *temp;
2888 INT numRects;
2889
2890 extents = &reg->rdh.rcBound;
2891
2892 numRects = ((numFullPtBlocks * NUMPTSTOBUFFER) + iCurPtBlock) >> 1;
2893
2894 /* Make sure, we have at least one rect */
2895 if (numRects == 0)
2896 {
2897 numRects = 1;
2898 }
2899
2900 if (!(temp = ExAllocatePoolWithTag(PagedPool, numRects * sizeof(RECT), TAG_REGION)))
2901 {
2902 return 0;
2903 }
2904 if (reg->Buffer != NULL)
2905 {
2906 COPY_RECTS(temp, reg->Buffer, reg->rdh.nCount);
2907 if (reg->Buffer != &reg->rdh.rcBound)
2908 ExFreePoolWithTag(reg->Buffer, TAG_REGION);
2909 }
2910 reg->Buffer = temp;
2911
2912 reg->rdh.nCount = numRects;
2913 CurPtBlock = FirstPtBlock;
2914 rects = reg->Buffer - 1;
2915 numRects = 0;
2916 extents->left = LARGE_COORDINATE, extents->right = SMALL_COORDINATE;
2917
2918 for ( ; numFullPtBlocks >= 0; numFullPtBlocks--)
2919 {
2920 /* The loop uses 2 points per iteration */
2921 i = NUMPTSTOBUFFER >> 1;
2922 if (!numFullPtBlocks)
2923 i = iCurPtBlock >> 1;
2924 for (pts = CurPtBlock->pts; i--; pts += 2)
2925 {
2926 if (pts->x == pts[1].x)
2927 continue;
2928 if (numRects && pts->x == rects->left && pts->y == rects->bottom &&
2929 pts[1].x == rects->right &&
2930 (numRects == 1 || rects[-1].top != rects->top) &&
2931 (i && pts[2].y > pts[1].y))
2932 {
2933 rects->bottom = pts[1].y + 1;
2934 continue;
2935 }
2936 numRects++;
2937 rects++;
2938 rects->left = pts->x;
2939 rects->top = pts->y;
2940 rects->right = pts[1].x;
2941 rects->bottom = pts[1].y + 1;
2942 if (rects->left < extents->left)
2943 extents->left = rects->left;
2944 if (rects->right > extents->right)
2945 extents->right = rects->right;
2946 }
2947 CurPtBlock = CurPtBlock->next;
2948 }
2949
2950 if (numRects)
2951 {
2952 extents->top = reg->Buffer->top;
2953 extents->bottom = rects->bottom;
2954 }
2955 else
2956 {
2957 extents->left = 0;
2958 extents->top = 0;
2959 extents->right = 0;
2960 extents->bottom = 0;
2961 }
2962 reg->rdh.nCount = numRects;
2963
2964 return(TRUE);
2965 }
2966
2967 /***********************************************************************
2968 * REGION_CreateEdgeTable
2969 *
2970 * This routine creates the edge table for
2971 * scan converting polygons.
2972 * The Edge Table (ET) looks like:
2973 *
2974 * EdgeTable
2975 * --------
2976 * | ymax | ScanLineLists
2977 * |scanline|-->------------>-------------->...
2978 * -------- |scanline| |scanline|
2979 * |edgelist| |edgelist|
2980 * --------- ---------
2981 * | |
2982 * | |
2983 * V V
2984 * list of ETEs list of ETEs
2985 *
2986 * where ETE is an EdgeTableEntry data structure,
2987 * and there is one ScanLineList per scanline at
2988 * which an edge is initially entered.
2989 *
2990 */
2991 static void FASTCALL
2992 REGION_CreateETandAET(
2993 const ULONG *Count,
2994 INT nbpolygons,
2995 const POINT *pts,
2996 EdgeTable *ET,
2997 EdgeTableEntry *AET,
2998 EdgeTableEntry *pETEs,
2999 ScanLineListBlock *pSLLBlock
3000 )
3001 {
3002 const POINT *top, *bottom;
3003 const POINT *PrevPt, *CurrPt, *EndPt;
3004 INT poly, count;
3005 int iSLLBlock = 0;
3006 int dy;
3007
3008
3009 /*
3010 * Initialize the Active Edge Table
3011 */
3012 AET->next = (EdgeTableEntry *)NULL;
3013 AET->back = (EdgeTableEntry *)NULL;
3014 AET->nextWETE = (EdgeTableEntry *)NULL;
3015 AET->bres.minor_axis = SMALL_COORDINATE;
3016
3017 /*
3018 * Initialize the Edge Table.
3019 */
3020 ET->scanlines.next = (ScanLineList *)NULL;
3021 ET->ymax = SMALL_COORDINATE;
3022 ET->ymin = LARGE_COORDINATE;
3023 pSLLBlock->next = (ScanLineListBlock *)NULL;
3024
3025 EndPt = pts - 1;
3026 for (poly = 0; poly < nbpolygons; poly++)
3027 {
3028 count = Count[poly];
3029 EndPt += count;
3030 if (count < 2)
3031 continue;
3032
3033 PrevPt = EndPt;
3034
3035 /*
3036 * For each vertex in the array of points.
3037 * In this loop we are dealing with two vertices at
3038 * a time -- these make up one edge of the polygon.
3039 */
3040 while (count--)
3041 {
3042 CurrPt = pts++;
3043
3044 /*
3045 * Find out which point is above and which is below.
3046 */
3047 if (PrevPt->y > CurrPt->y)
3048 {
3049 bottom = PrevPt, top = CurrPt;
3050 pETEs->ClockWise = 0;
3051 }
3052 else
3053 {
3054 bottom = CurrPt, top = PrevPt;
3055 pETEs->ClockWise = 1;
3056 }
3057
3058 /*
3059 * Don't add horizontal edges to the Edge table.
3060 */
3061 if (bottom->y != top->y)
3062 {
3063 pETEs->ymax = bottom->y-1;
3064 /* -1 so we don't get last scanline */
3065
3066 /*
3067 * Initialize integer edge algorithm
3068 */
3069 dy = bottom->y - top->y;
3070 BRESINITPGONSTRUCT(dy, top->x, bottom->x, pETEs->bres);
3071
3072 REGION_InsertEdgeInET(ET, pETEs, top->y, &pSLLBlock,
3073 &iSLLBlock);
3074
3075 if (PrevPt->y > ET->ymax)
3076 ET->ymax = PrevPt->y;
3077 if (PrevPt->y < ET->ymin)
3078 ET->ymin = PrevPt->y;
3079 pETEs++;
3080 }
3081
3082 PrevPt = CurrPt;
3083 }
3084 }
3085 }
3086
3087 BOOL FASTCALL
3088 IntSetPolyPolygonRgn(
3089 POINT *Pts,
3090 PULONG Count,
3091 INT nbpolygons,
3092 INT mode,
3093 PREGION Rgn
3094 )
3095 {
3096 EdgeTableEntry *pAET; /* Active Edge Table */
3097 INT y; /* Current scanline */
3098 int iPts = 0; /* Number of pts in buffer */
3099 EdgeTableEntry *pWETE; /* Winding Edge Table Entry */
3100 ScanLineList *pSLL; /* Current scanLineList */
3101 POINT *pts; /* Output buffer */
3102 EdgeTableEntry *pPrevAET; /* Pointer to previous AET */
3103 EdgeTable ET; /* Header node for ET */
3104 EdgeTableEntry AET; /* Header node for AET */
3105 EdgeTableEntry *pETEs; /* EdgeTableEntries pool */
3106 ScanLineListBlock SLLBlock; /* Header for scanlinelist */
3107 int fixWAET = FALSE;
3108 POINTBLOCK FirstPtBlock, *curPtBlock; /* PtBlock buffers */
3109 POINTBLOCK *tmpPtBlock;
3110 int numFullPtBlocks = 0;
3111 INT poly, total;
3112
3113 if (mode == 0 || mode > 2) return 0;
3114
3115 /* Special case a rectangle */
3116
3117 if (((nbpolygons == 1) && ((*Count == 4) ||
3118 ((*Count == 5) && (Pts[4].x == Pts[0].x) && (Pts[4].y == Pts[0].y)))) &&
3119 (((Pts[0].y == Pts[1].y) &&
3120 (Pts[1].x == Pts[2].x) &&
3121 (Pts[2].y == Pts[3].y) &&
3122 (Pts[3].x == Pts[0].x)) ||
3123 ((Pts[0].x == Pts[1].x) &&
3124 (Pts[1].y == Pts[2].y) &&
3125 (Pts[2].x == Pts[3].x) &&
3126 (Pts[3].y == Pts[0].y))))
3127 {
3128 REGION_SetRectRgn(Rgn,
3129 min(Pts[0].x, Pts[2].x),
3130 min(Pts[0].y, Pts[2].y),
3131 max(Pts[0].x, Pts[2].x),
3132 max(Pts[0].y, Pts[2].y));
3133 return TRUE;
3134 }
3135
3136 for (poly = total = 0; poly < nbpolygons; poly++)
3137 total += Count[poly];
3138 if (! (pETEs = ExAllocatePoolWithTag(PagedPool, sizeof(EdgeTableEntry) * total, TAG_REGION)) )
3139 {
3140 return FALSE;
3141 }
3142 pts = FirstPtBlock.pts;
3143 REGION_CreateETandAET(Count, nbpolygons, Pts, &ET, &AET, pETEs, &SLLBlock);
3144 pSLL = ET.scanlines.next;
3145 curPtBlock = &FirstPtBlock;
3146
3147 if (mode != WINDING)
3148 {
3149 /*
3150 * For each scanline
3151 */
3152 for (y = ET.ymin; y < ET.ymax; y++)
3153 {
3154 /*
3155 * Add a new edge to the active edge table when we
3156 * get to the next edge.
3157 */
3158 if (pSLL != NULL && y == pSLL->scanline)
3159 {
3160 REGION_loadAET(&AET, pSLL->edgelist);
3161 pSLL = pSLL->next;
3162 }
3163 pPrevAET = &AET;
3164 pAET = AET.next;
3165
3166 /*
3167 * For each active edge
3168 */
3169 while (pAET)
3170 {
3171 pts->x = pAET->bres.minor_axis, pts->y = y;
3172 pts++, iPts++;
3173
3174 /*
3175 * Send out the buffer
3176 */
3177 if (iPts == NUMPTSTOBUFFER)
3178 {
3179 tmpPtBlock = ExAllocatePoolWithTag(PagedPool, sizeof(POINTBLOCK), TAG_REGION);
3180 if (!tmpPtBlock)
3181 {
3182 DPRINT1("Can't alloc tPB\n");
3183 ExFreePoolWithTag(pETEs, TAG_REGION);
3184 return FALSE;
3185 }
3186 curPtBlock->next = tmpPtBlock;
3187 curPtBlock = tmpPtBlock;
3188 pts = curPtBlock->pts;
3189 numFullPtBlocks++;
3190 iPts = 0;
3191 }
3192 EVALUATEEDGEEVENODD(pAET, pPrevAET, y);
3193 }
3194 REGION_InsertionSort(&AET);
3195 }
3196 }
3197 else
3198 {
3199 /*
3200 * For each scanline
3201 */
3202 for (y = ET.ymin; y < ET.ymax; y++)
3203 {
3204 /*
3205 * Add a new edge to the active edge table when we
3206 * get to the next edge.
3207 */
3208 if (pSLL != NULL && y == pSLL->scanline)
3209 {
3210 REGION_loadAET(&AET, pSLL->edgelist);
3211 REGION_computeWAET(&AET);
3212 pSLL = pSLL->next;
3213 }
3214 pPrevAET = &AET;
3215 pAET = AET.next;
3216 pWETE = pAET;
3217
3218 /*
3219 * For each active edge
3220 */
3221 while (pAET)
3222 {
3223 /*
3224 * Add to the buffer only those edges that
3225 * are in the Winding active edge table.
3226 */
3227 if (pWETE == pAET)
3228 {
3229 pts->x = pAET->bres.minor_axis, pts->y = y;
3230 pts++, iPts++;
3231
3232 /*
3233 * Send out the buffer
3234 */
3235 if (iPts == NUMPTSTOBUFFER)
3236 {
3237 tmpPtBlock = ExAllocatePoolWithTag(PagedPool,
3238 sizeof(POINTBLOCK), TAG_REGION);
3239 if (!tmpPtBlock)
3240 {
3241 DPRINT1("Can't alloc tPB\n");
3242 ExFreePoolWithTag(pETEs, TAG_REGION);
3243 return FALSE;
3244 }
3245 curPtBlock->next = tmpPtBlock;
3246 curPtBlock = tmpPtBlock;
3247 pts = curPtBlock->pts;
3248 numFullPtBlocks++;
3249 iPts = 0;
3250 }
3251 pWETE = pWETE->nextWETE;
3252 }
3253 EVALUATEEDGEWINDING(pAET, pPrevAET, y, fixWAET);
3254 }
3255
3256 /*
3257 * Recompute the winding active edge table if
3258 * we just resorted or have exited an edge.
3259 */
3260 if (REGION_InsertionSort(&AET) || fixWAET)
3261 {
3262 REGION_computeWAET(&AET);
3263 fixWAET = FALSE;
3264 }
3265 }
3266 }
3267 REGION_FreeStorage(SLLBlock.next);
3268 REGION_PtsToRegion(numFullPtBlocks, iPts, &FirstPtBlock, Rgn);
3269
3270 for (curPtBlock = FirstPtBlock.next; --numFullPtBlocks >= 0;)
3271 {
3272 tmpPtBlock = curPtBlock->next;
3273 ExFreePoolWithTag(curPtBlock, TAG_REGION);
3274 curPtBlock = tmpPtBlock;
3275 }
3276 ExFreePoolWithTag(pETEs, TAG_REGION);
3277 return TRUE;
3278 }
3279
3280 BOOL
3281 FASTCALL
3282 IntRectInRegion(
3283 HRGN hRgn,
3284 LPRECTL rc
3285 )
3286 {
3287 PROSRGNDATA Rgn;
3288 BOOL Ret;
3289
3290 if (!(Rgn = RGNOBJAPI_Lock(hRgn, NULL)))
3291 {
3292 return ERROR;
3293 }
3294
3295 Ret = REGION_RectInRegion(Rgn, rc);
3296 RGNOBJAPI_Unlock(Rgn);
3297 return Ret;
3298 }
3299
3300
3301 //
3302 // NtGdi Exported Functions
3303 //
3304 INT
3305 APIENTRY
3306 NtGdiCombineRgn(
3307 IN HRGN hrgnDst,
3308 IN HRGN hrgnSrc1,
3309 IN HRGN hrgnSrc2,
3310 IN INT iMode)
3311 {
3312 HRGN ahrgn[3];
3313 PREGION aprgn[3];
3314 INT iResult;
3315
3316 if (iMode < RGN_AND || iMode > RGN_COPY)
3317 {
3318 return ERROR;
3319 }
3320
3321 if (!hrgnDst || !hrgnSrc1 || (iMode != RGN_COPY && !hrgnSrc2))
3322 {
3323 DPRINT1("NtGdiCombineRgn: %p, %p, %p, %d\n",
3324 hrgnDst, hrgnSrc1, hrgnSrc2, iMode);
3325 return ERROR;
3326 }
3327
3328 /* Lock all regions */
3329 ahrgn[0] = hrgnDst;
3330 ahrgn[1] = hrgnSrc1;
3331 ahrgn[2] = iMode != RGN_COPY ? hrgnSrc2 : NULL;
3332 if (!GDIOBJ_bLockMultipleObjects(3, (HGDIOBJ*)ahrgn, (PVOID*)aprgn, GDIObjType_RGN_TYPE))
3333 {
3334 DPRINT1("NtGdiCombineRgn: %p, %p, %p, %d\n",
3335 hrgnDst, hrgnSrc1, hrgnSrc2, iMode);
3336 return ERROR;
3337 }
3338
3339 /* HACK: Sync usermode attributes */
3340 REGION_vSyncRegion(aprgn[0]);
3341 REGION_vSyncRegion(aprgn[1]);
3342 if (aprgn[2]) REGION_vSyncRegion(aprgn[2]);
3343
3344 /* Call the internal function */
3345 iResult = IntGdiCombineRgn(aprgn[0], aprgn[1], aprgn[2], iMode);
3346
3347 /* Cleanup and return */
3348 REGION_UnlockRgn(aprgn[0]);
3349 REGION_UnlockRgn(aprgn[1]);
3350 if (aprgn[2]) REGION_UnlockRgn(aprgn[2]);
3351 return iResult;
3352 }
3353
3354 HRGN
3355 APIENTRY
3356 NtGdiCreateEllipticRgn(
3357 INT Left,