SmartPDF - lightweight pdf viewer app for rosapps
[reactos.git] / rosapps / lib / libjpeg / jmemmgr.c
diff --git a/rosapps/lib/libjpeg/jmemmgr.c b/rosapps/lib/libjpeg/jmemmgr.c
new file mode 100644 (file)
index 0000000..d801b32
--- /dev/null
@@ -0,0 +1,1118 @@
+/*
+ * jmemmgr.c
+ *
+ * Copyright (C) 1991-1997, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains the JPEG system-independent memory management
+ * routines.  This code is usable across a wide variety of machines; most
+ * of the system dependencies have been isolated in a separate file.
+ * The major functions provided here are:
+ *   * pool-based allocation and freeing of memory;
+ *   * policy decisions about how to divide available memory among the
+ *     virtual arrays;
+ *   * control logic for swapping virtual arrays between main memory and
+ *     backing storage.
+ * The separate system-dependent file provides the actual backing-storage
+ * access code, and it contains the policy decision about how much total
+ * main memory to use.
+ * This file is system-dependent in the sense that some of its functions
+ * are unnecessary in some systems.  For example, if there is enough virtual
+ * memory so that backing storage will never be used, much of the virtual
+ * array control logic could be removed.  (Of course, if you have that much
+ * memory then you shouldn't care about a little bit of unused code...)
+ */
+
+#define JPEG_INTERNALS
+#define AM_MEMORY_MANAGER      /* we define jvirt_Xarray_control structs */
+#include "jinclude.h"
+#include "jpeglib.h"
+#include "jmemsys.h"           /* import the system-dependent declarations */
+
+#ifndef NO_GETENV
+#ifndef HAVE_STDLIB_H          /* <stdlib.h> should declare getenv() */
+extern char * getenv JPP((const char * name));
+#endif
+#endif
+
+
+/*
+ * Some important notes:
+ *   The allocation routines provided here must never return NULL.
+ *   They should exit to error_exit if unsuccessful.
+ *
+ *   It's not a good idea to try to merge the sarray and barray routines,
+ *   even though they are textually almost the same, because samples are
+ *   usually stored as bytes while coefficients are shorts or ints.  Thus,
+ *   in machines where byte pointers have a different representation from
+ *   word pointers, the resulting machine code could not be the same.
+ */
+
+
+/*
+ * Many machines require storage alignment: longs must start on 4-byte
+ * boundaries, doubles on 8-byte boundaries, etc.  On such machines, malloc()
+ * always returns pointers that are multiples of the worst-case alignment
+ * requirement, and we had better do so too.
+ * There isn't any really portable way to determine the worst-case alignment
+ * requirement.  This module assumes that the alignment requirement is
+ * multiples of sizeof(ALIGN_TYPE).
+ * By default, we define ALIGN_TYPE as double.  This is necessary on some
+ * workstations (where doubles really do need 8-byte alignment) and will work
+ * fine on nearly everything.  If your machine has lesser alignment needs,
+ * you can save a few bytes by making ALIGN_TYPE smaller.
+ * The only place I know of where this will NOT work is certain Macintosh
+ * 680x0 compilers that define double as a 10-byte IEEE extended float.
+ * Doing 10-byte alignment is counterproductive because longwords won't be
+ * aligned well.  Put "#define ALIGN_TYPE long" in jconfig.h if you have
+ * such a compiler.
+ */
+
+#ifndef ALIGN_TYPE             /* so can override from jconfig.h */
+#define ALIGN_TYPE  double
+#endif
+
+
+/*
+ * We allocate objects from "pools", where each pool is gotten with a single
+ * request to jpeg_get_small() or jpeg_get_large().  There is no per-object
+ * overhead within a pool, except for alignment padding.  Each pool has a
+ * header with a link to the next pool of the same class.
+ * Small and large pool headers are identical except that the latter's
+ * link pointer must be FAR on 80x86 machines.
+ * Notice that the "real" header fields are union'ed with a dummy ALIGN_TYPE
+ * field.  This forces the compiler to make SIZEOF(small_pool_hdr) a multiple
+ * of the alignment requirement of ALIGN_TYPE.
+ */
+
+typedef union small_pool_struct * small_pool_ptr;
+
+typedef union small_pool_struct {
+  struct {
+    small_pool_ptr next;       /* next in list of pools */
+    size_t bytes_used;         /* how many bytes already used within pool */
+    size_t bytes_left;         /* bytes still available in this pool */
+  } hdr;
+  ALIGN_TYPE dummy;            /* included in union to ensure alignment */
+} small_pool_hdr;
+
+typedef union large_pool_struct FAR * large_pool_ptr;
+
+typedef union large_pool_struct {
+  struct {
+    large_pool_ptr next;       /* next in list of pools */
+    size_t bytes_used;         /* how many bytes already used within pool */
+    size_t bytes_left;         /* bytes still available in this pool */
+  } hdr;
+  ALIGN_TYPE dummy;            /* included in union to ensure alignment */
+} large_pool_hdr;
+
+
+/*
+ * Here is the full definition of a memory manager object.
+ */
+
+typedef struct {
+  struct jpeg_memory_mgr pub;  /* public fields */
+
+  /* Each pool identifier (lifetime class) names a linked list of pools. */
+  small_pool_ptr small_list[JPOOL_NUMPOOLS];
+  large_pool_ptr large_list[JPOOL_NUMPOOLS];
+
+  /* Since we only have one lifetime class of virtual arrays, only one
+   * linked list is necessary (for each datatype).  Note that the virtual
+   * array control blocks being linked together are actually stored somewhere
+   * in the small-pool list.
+   */
+  jvirt_sarray_ptr virt_sarray_list;
+  jvirt_barray_ptr virt_barray_list;
+
+  /* This counts total space obtained from jpeg_get_small/large */
+  long total_space_allocated;
+
+  /* alloc_sarray and alloc_barray set this value for use by virtual
+   * array routines.
+   */
+  JDIMENSION last_rowsperchunk;        /* from most recent alloc_sarray/barray */
+} my_memory_mgr;
+
+typedef my_memory_mgr * my_mem_ptr;
+
+
+/*
+ * The control blocks for virtual arrays.
+ * Note that these blocks are allocated in the "small" pool area.
+ * System-dependent info for the associated backing store (if any) is hidden
+ * inside the backing_store_info struct.
+ */
+
+struct jvirt_sarray_control {
+  JSAMPARRAY mem_buffer;       /* => the in-memory buffer */
+  JDIMENSION rows_in_array;    /* total virtual array height */
+  JDIMENSION samplesperrow;    /* width of array (and of memory buffer) */
+  JDIMENSION maxaccess;                /* max rows accessed by access_virt_sarray */
+  JDIMENSION rows_in_mem;      /* height of memory buffer */
+  JDIMENSION rowsperchunk;     /* allocation chunk size in mem_buffer */
+  JDIMENSION cur_start_row;    /* first logical row # in the buffer */
+  JDIMENSION first_undef_row;  /* row # of first uninitialized row */
+  boolean pre_zero;            /* pre-zero mode requested? */
+  boolean dirty;               /* do current buffer contents need written? */
+  boolean b_s_open;            /* is backing-store data valid? */
+  jvirt_sarray_ptr next;       /* link to next virtual sarray control block */
+  backing_store_info b_s_info; /* System-dependent control info */
+};
+
+struct jvirt_barray_control {
+  JBLOCKARRAY mem_buffer;      /* => the in-memory buffer */
+  JDIMENSION rows_in_array;    /* total virtual array height */
+  JDIMENSION blocksperrow;     /* width of array (and of memory buffer) */
+  JDIMENSION maxaccess;                /* max rows accessed by access_virt_barray */
+  JDIMENSION rows_in_mem;      /* height of memory buffer */
+  JDIMENSION rowsperchunk;     /* allocation chunk size in mem_buffer */
+  JDIMENSION cur_start_row;    /* first logical row # in the buffer */
+  JDIMENSION first_undef_row;  /* row # of first uninitialized row */
+  boolean pre_zero;            /* pre-zero mode requested? */
+  boolean dirty;               /* do current buffer contents need written? */
+  boolean b_s_open;            /* is backing-store data valid? */
+  jvirt_barray_ptr next;       /* link to next virtual barray control block */
+  backing_store_info b_s_info; /* System-dependent control info */
+};
+
+
+#ifdef MEM_STATS               /* optional extra stuff for statistics */
+
+LOCAL(void)
+print_mem_stats (j_common_ptr cinfo, int pool_id)
+{
+  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
+  small_pool_ptr shdr_ptr;
+  large_pool_ptr lhdr_ptr;
+
+  /* Since this is only a debugging stub, we can cheat a little by using
+   * fprintf directly rather than going through the trace message code.
+   * This is helpful because message parm array can't handle longs.
+   */
+  fprintf(stderr, "Freeing pool %d, total space = %ld\n",
+         pool_id, mem->total_space_allocated);
+
+  for (lhdr_ptr = mem->large_list[pool_id]; lhdr_ptr != NULL;
+       lhdr_ptr = lhdr_ptr->hdr.next) {
+    fprintf(stderr, "  Large chunk used %ld\n",
+           (long) lhdr_ptr->hdr.bytes_used);
+  }
+
+  for (shdr_ptr = mem->small_list[pool_id]; shdr_ptr != NULL;
+       shdr_ptr = shdr_ptr->hdr.next) {
+    fprintf(stderr, "  Small chunk used %ld free %ld\n",
+           (long) shdr_ptr->hdr.bytes_used,
+           (long) shdr_ptr->hdr.bytes_left);
+  }
+}
+
+#endif /* MEM_STATS */
+
+
+LOCAL(void)
+out_of_memory (j_common_ptr cinfo, int which)
+/* Report an out-of-memory error and stop execution */
+/* If we compiled MEM_STATS support, report alloc requests before dying */
+{
+#ifdef MEM_STATS
+  cinfo->err->trace_level = 2; /* force self_destruct to report stats */
+#endif
+  ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, which);
+}
+
+
+/*
+ * Allocation of "small" objects.
+ *
+ * For these, we use pooled storage.  When a new pool must be created,
+ * we try to get enough space for the current request plus a "slop" factor,
+ * where the slop will be the amount of leftover space in the new pool.
+ * The speed vs. space tradeoff is largely determined by the slop values.
+ * A different slop value is provided for each pool class (lifetime),
+ * and we also distinguish the first pool of a class from later ones.
+ * NOTE: the values given work fairly well on both 16- and 32-bit-int
+ * machines, but may be too small if longs are 64 bits or more.
+ */
+
+static const size_t first_pool_slop[JPOOL_NUMPOOLS] = 
+{
+       1600,                   /* first PERMANENT pool */
+       16000                   /* first IMAGE pool */
+};
+
+static const size_t extra_pool_slop[JPOOL_NUMPOOLS] = 
+{
+       0,                      /* additional PERMANENT pools */
+       5000                    /* additional IMAGE pools */
+};
+
+#define MIN_SLOP  50           /* greater than 0 to avoid futile looping */
+
+
+METHODDEF(void *)
+alloc_small (j_common_ptr cinfo, int pool_id, size_t sizeofobject)
+/* Allocate a "small" object */
+{
+  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
+  small_pool_ptr hdr_ptr, prev_hdr_ptr;
+  char * data_ptr;
+  size_t odd_bytes, min_request, slop;
+
+  /* Check for unsatisfiable request (do now to ensure no overflow below) */
+  if (sizeofobject > (size_t) (MAX_ALLOC_CHUNK-SIZEOF(small_pool_hdr)))
+    out_of_memory(cinfo, 1);   /* request exceeds malloc's ability */
+
+  /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */
+  odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE);
+  if (odd_bytes > 0)
+    sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes;
+
+  /* See if space is available in any existing pool */
+  if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
+    ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id);        /* safety check */
+  prev_hdr_ptr = NULL;
+  hdr_ptr = mem->small_list[pool_id];
+  while (hdr_ptr != NULL) {
+    if (hdr_ptr->hdr.bytes_left >= sizeofobject)
+      break;                   /* found pool with enough space */
+    prev_hdr_ptr = hdr_ptr;
+    hdr_ptr = hdr_ptr->hdr.next;
+  }
+
+  /* Time to make a new pool? */
+  if (hdr_ptr == NULL) {
+    /* min_request is what we need now, slop is what will be leftover */
+    min_request = sizeofobject + SIZEOF(small_pool_hdr);
+    if (prev_hdr_ptr == NULL)  /* first pool in class? */
+      slop = first_pool_slop[pool_id];
+    else
+      slop = extra_pool_slop[pool_id];
+    /* Don't ask for more than MAX_ALLOC_CHUNK */
+    if (slop > (size_t) (MAX_ALLOC_CHUNK-min_request))
+      slop = (size_t) (MAX_ALLOC_CHUNK-min_request);
+    /* Try to get space, if fail reduce slop and try again */
+    for (;;) {
+      hdr_ptr = (small_pool_ptr) jpeg_get_small(cinfo, min_request + slop);
+      if (hdr_ptr != NULL)
+       break;
+      slop /= 2;
+      if (slop < MIN_SLOP)     /* give up when it gets real small */
+       out_of_memory(cinfo, 2); /* jpeg_get_small failed */
+    }
+    mem->total_space_allocated += min_request + slop;
+    /* Success, initialize the new pool header and add to end of list */
+    hdr_ptr->hdr.next = NULL;
+    hdr_ptr->hdr.bytes_used = 0;
+    hdr_ptr->hdr.bytes_left = sizeofobject + slop;
+    if (prev_hdr_ptr == NULL)  /* first pool in class? */
+      mem->small_list[pool_id] = hdr_ptr;
+    else
+      prev_hdr_ptr->hdr.next = hdr_ptr;
+  }
+
+  /* OK, allocate the object from the current pool */
+  data_ptr = (char *) (hdr_ptr + 1); /* point to first data byte in pool */
+  data_ptr += hdr_ptr->hdr.bytes_used; /* point to place for object */
+  hdr_ptr->hdr.bytes_used += sizeofobject;
+  hdr_ptr->hdr.bytes_left -= sizeofobject;
+
+  return (void *) data_ptr;
+}
+
+
+/*
+ * Allocation of "large" objects.
+ *
+ * The external semantics of these are the same as "small" objects,
+ * except that FAR pointers are used on 80x86.  However the pool
+ * management heuristics are quite different.  We assume that each
+ * request is large enough that it may as well be passed directly to
+ * jpeg_get_large; the pool management just links everything together
+ * so that we can free it all on demand.
+ * Note: the major use of "large" objects is in JSAMPARRAY and JBLOCKARRAY
+ * structures.  The routines that create these structures (see below)
+ * deliberately bunch rows together to ensure a large request size.
+ */
+
+METHODDEF(void FAR *)
+alloc_large (j_common_ptr cinfo, int pool_id, size_t sizeofobject)
+/* Allocate a "large" object */
+{
+  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
+  large_pool_ptr hdr_ptr;
+  size_t odd_bytes;
+
+  /* Check for unsatisfiable request (do now to ensure no overflow below) */
+  if (sizeofobject > (size_t) (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)))
+    out_of_memory(cinfo, 3);   /* request exceeds malloc's ability */
+
+  /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */
+  odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE);
+  if (odd_bytes > 0)
+    sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes;
+
+  /* Always make a new pool */
+  if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
+    ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id);        /* safety check */
+
+  hdr_ptr = (large_pool_ptr) jpeg_get_large(cinfo, sizeofobject +
+                                           SIZEOF(large_pool_hdr));
+  if (hdr_ptr == NULL)
+    out_of_memory(cinfo, 4);   /* jpeg_get_large failed */
+  mem->total_space_allocated += sizeofobject + SIZEOF(large_pool_hdr);
+
+  /* Success, initialize the new pool header and add to list */
+  hdr_ptr->hdr.next = mem->large_list[pool_id];
+  /* We maintain space counts in each pool header for statistical purposes,
+   * even though they are not needed for allocation.
+   */
+  hdr_ptr->hdr.bytes_used = sizeofobject;
+  hdr_ptr->hdr.bytes_left = 0;
+  mem->large_list[pool_id] = hdr_ptr;
+
+  return (void FAR *) (hdr_ptr + 1); /* point to first data byte in pool */
+}
+
+
+/*
+ * Creation of 2-D sample arrays.
+ * The pointers are in near heap, the samples themselves in FAR heap.
+ *
+ * To minimize allocation overhead and to allow I/O of large contiguous
+ * blocks, we allocate the sample rows in groups of as many rows as possible
+ * without exceeding MAX_ALLOC_CHUNK total bytes per allocation request.
+ * NB: the virtual array control routines, later in this file, know about
+ * this chunking of rows.  The rowsperchunk value is left in the mem manager
+ * object so that it can be saved away if this sarray is the workspace for
+ * a virtual array.
+ */
+
+METHODDEF(JSAMPARRAY)
+alloc_sarray (j_common_ptr cinfo, int pool_id,
+             JDIMENSION samplesperrow, JDIMENSION numrows)
+/* Allocate a 2-D sample array */
+{
+  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
+  JSAMPARRAY result;
+  JSAMPROW workspace;
+  JDIMENSION rowsperchunk, currow, i;
+  long ltemp;
+
+  /* Calculate max # of rows allowed in one allocation chunk */
+  ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) /
+         ((long) samplesperrow * SIZEOF(JSAMPLE));
+  if (ltemp <= 0)
+    ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
+  if (ltemp < (long) numrows)
+    rowsperchunk = (JDIMENSION) ltemp;
+  else
+    rowsperchunk = numrows;
+  mem->last_rowsperchunk = rowsperchunk;
+
+  /* Get space for row pointers (small object) */
+  result = (JSAMPARRAY) alloc_small(cinfo, pool_id,
+                                   (size_t) (numrows * SIZEOF(JSAMPROW)));
+
+  /* Get the rows themselves (large objects) */
+  currow = 0;
+  while (currow < numrows) {
+    rowsperchunk = MIN(rowsperchunk, numrows - currow);
+    workspace = (JSAMPROW) alloc_large(cinfo, pool_id,
+       (size_t) ((size_t) rowsperchunk * (size_t) samplesperrow
+                 * SIZEOF(JSAMPLE)));
+    for (i = rowsperchunk; i > 0; i--) {
+      result[currow++] = workspace;
+      workspace += samplesperrow;
+    }
+  }
+
+  return result;
+}
+
+
+/*
+ * Creation of 2-D coefficient-block arrays.
+ * This is essentially the same as the code for sample arrays, above.
+ */
+
+METHODDEF(JBLOCKARRAY)
+alloc_barray (j_common_ptr cinfo, int pool_id,
+             JDIMENSION blocksperrow, JDIMENSION numrows)
+/* Allocate a 2-D coefficient-block array */
+{
+  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
+  JBLOCKARRAY result;
+  JBLOCKROW workspace;
+  JDIMENSION rowsperchunk, currow, i;
+  long ltemp;
+
+  /* Calculate max # of rows allowed in one allocation chunk */
+  ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) /
+         ((long) blocksperrow * SIZEOF(JBLOCK));
+  if (ltemp <= 0)
+    ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
+  if (ltemp < (long) numrows)
+    rowsperchunk = (JDIMENSION) ltemp;
+  else
+    rowsperchunk = numrows;
+  mem->last_rowsperchunk = rowsperchunk;
+
+  /* Get space for row pointers (small object) */
+  result = (JBLOCKARRAY) alloc_small(cinfo, pool_id,
+                                    (size_t) (numrows * SIZEOF(JBLOCKROW)));
+
+  /* Get the rows themselves (large objects) */
+  currow = 0;
+  while (currow < numrows) {
+    rowsperchunk = MIN(rowsperchunk, numrows - currow);
+    workspace = (JBLOCKROW) alloc_large(cinfo, pool_id,
+       (size_t) ((size_t) rowsperchunk * (size_t) blocksperrow
+                 * SIZEOF(JBLOCK)));
+    for (i = rowsperchunk; i > 0; i--) {
+      result[currow++] = workspace;
+      workspace += blocksperrow;
+    }
+  }
+
+  return result;
+}
+
+
+/*
+ * About virtual array management:
+ *
+ * The above "normal" array routines are only used to allocate strip buffers
+ * (as wide as the image, but just a few rows high).  Full-image-sized buffers
+ * are handled as "virtual" arrays.  The array is still accessed a strip at a
+ * time, but the memory manager must save the whole array for repeated
+ * accesses.  The intended implementation is that there is a strip buffer in
+ * memory (as high as is possible given the desired memory limit), plus a
+ * backing file that holds the rest of the array.
+ *
+ * The request_virt_array routines are told the total size of the image and
+ * the maximum number of rows that will be accessed at once.  The in-memory
+ * buffer must be at least as large as the maxaccess value.
+ *
+ * The request routines create control blocks but not the in-memory buffers.
+ * That is postponed until realize_virt_arrays is called.  At that time the
+ * total amount of space needed is known (approximately, anyway), so free
+ * memory can be divided up fairly.
+ *
+ * The access_virt_array routines are responsible for making a specific strip
+ * area accessible (after reading or writing the backing file, if necessary).
+ * Note that the access routines are told whether the caller intends to modify
+ * the accessed strip; during a read-only pass this saves having to rewrite
+ * data to disk.  The access routines are also responsible for pre-zeroing
+ * any newly accessed rows, if pre-zeroing was requested.
+ *
+ * In current usage, the access requests are usually for nonoverlapping
+ * strips; that is, successive access start_row numbers differ by exactly
+ * num_rows = maxaccess.  This means we can get good performance with simple
+ * buffer dump/reload logic, by making the in-memory buffer be a multiple
+ * of the access height; then there will never be accesses across bufferload
+ * boundaries.  The code will still work with overlapping access requests,
+ * but it doesn't handle bufferload overlaps very efficiently.
+ */
+
+
+METHODDEF(jvirt_sarray_ptr)
+request_virt_sarray (j_common_ptr cinfo, int pool_id, boolean pre_zero,
+                    JDIMENSION samplesperrow, JDIMENSION numrows,
+                    JDIMENSION maxaccess)
+/* Request a virtual 2-D sample array */
+{
+  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
+  jvirt_sarray_ptr result;
+
+  /* Only IMAGE-lifetime virtual arrays are currently supported */
+  if (pool_id != JPOOL_IMAGE)
+    ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id);        /* safety check */
+
+  /* get control block */
+  result = (jvirt_sarray_ptr) alloc_small(cinfo, pool_id,
+                                         SIZEOF(struct jvirt_sarray_control));
+
+  result->mem_buffer = NULL;   /* marks array not yet realized */
+  result->rows_in_array = numrows;
+  result->samplesperrow = samplesperrow;
+  result->maxaccess = maxaccess;
+  result->pre_zero = pre_zero;
+  result->b_s_open = FALSE;    /* no associated backing-store object */
+  result->next = mem->virt_sarray_list; /* add to list of virtual arrays */
+  mem->virt_sarray_list = result;
+
+  return result;
+}
+
+
+METHODDEF(jvirt_barray_ptr)
+request_virt_barray (j_common_ptr cinfo, int pool_id, boolean pre_zero,
+                    JDIMENSION blocksperrow, JDIMENSION numrows,
+                    JDIMENSION maxaccess)
+/* Request a virtual 2-D coefficient-block array */
+{
+  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
+  jvirt_barray_ptr result;
+
+  /* Only IMAGE-lifetime virtual arrays are currently supported */
+  if (pool_id != JPOOL_IMAGE)
+    ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id);        /* safety check */
+
+  /* get control block */
+  result = (jvirt_barray_ptr) alloc_small(cinfo, pool_id,
+                                         SIZEOF(struct jvirt_barray_control));
+
+  result->mem_buffer = NULL;   /* marks array not yet realized */
+  result->rows_in_array = numrows;
+  result->blocksperrow = blocksperrow;
+  result->maxaccess = maxaccess;
+  result->pre_zero = pre_zero;
+  result->b_s_open = FALSE;    /* no associated backing-store object */
+  result->next = mem->virt_barray_list; /* add to list of virtual arrays */
+  mem->virt_barray_list = result;
+
+  return result;
+}
+
+
+METHODDEF(void)
+realize_virt_arrays (j_common_ptr cinfo)
+/* Allocate the in-memory buffers for any unrealized virtual arrays */
+{
+  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
+  long space_per_minheight, maximum_space, avail_mem;
+  long minheights, max_minheights;
+  jvirt_sarray_ptr sptr;
+  jvirt_barray_ptr bptr;
+
+  /* Compute the minimum space needed (maxaccess rows in each buffer)
+   * and the maximum space needed (full image height in each buffer).
+   * These may be of use to the system-dependent jpeg_mem_available routine.
+   */
+  space_per_minheight = 0;
+  maximum_space = 0;
+  for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
+    if (sptr->mem_buffer == NULL) { /* if not realized yet */
+      space_per_minheight += (long) sptr->maxaccess *
+                            (long) sptr->samplesperrow * SIZEOF(JSAMPLE);
+      maximum_space += (long) sptr->rows_in_array *
+                      (long) sptr->samplesperrow * SIZEOF(JSAMPLE);
+    }
+  }
+  for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
+    if (bptr->mem_buffer == NULL) { /* if not realized yet */
+      space_per_minheight += (long) bptr->maxaccess *
+                            (long) bptr->blocksperrow * SIZEOF(JBLOCK);
+      maximum_space += (long) bptr->rows_in_array *
+                      (long) bptr->blocksperrow * SIZEOF(JBLOCK);
+    }
+  }
+
+  if (space_per_minheight <= 0)
+    return;                    /* no unrealized arrays, no work */
+
+  /* Determine amount of memory to actually use; this is system-dependent. */
+  avail_mem = jpeg_mem_available(cinfo, space_per_minheight, maximum_space,
+                                mem->total_space_allocated);
+
+  /* If the maximum space needed is available, make all the buffers full
+   * height; otherwise parcel it out with the same number of minheights
+   * in each buffer.
+   */
+  if (avail_mem >= maximum_space)
+    max_minheights = 1000000000L;
+  else {
+    max_minheights = avail_mem / space_per_minheight;
+    /* If there doesn't seem to be enough space, try to get the minimum
+     * anyway.  This allows a "stub" implementation of jpeg_mem_available().
+     */
+    if (max_minheights <= 0)
+      max_minheights = 1;
+  }
+
+  /* Allocate the in-memory buffers and initialize backing store as needed. */
+
+  for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
+    if (sptr->mem_buffer == NULL) { /* if not realized yet */
+      minheights = ((long) sptr->rows_in_array - 1L) / sptr->maxaccess + 1L;
+      if (minheights <= max_minheights) {
+       /* This buffer fits in memory */
+       sptr->rows_in_mem = sptr->rows_in_array;
+      } else {
+       /* It doesn't fit in memory, create backing store. */
+       sptr->rows_in_mem = (JDIMENSION) (max_minheights * sptr->maxaccess);
+       jpeg_open_backing_store(cinfo, & sptr->b_s_info,
+                               (long) sptr->rows_in_array *
+                               (long) sptr->samplesperrow *
+                               (long) SIZEOF(JSAMPLE));
+       sptr->b_s_open = TRUE;
+      }
+      sptr->mem_buffer = alloc_sarray(cinfo, JPOOL_IMAGE,
+                                     sptr->samplesperrow, sptr->rows_in_mem);
+      sptr->rowsperchunk = mem->last_rowsperchunk;
+      sptr->cur_start_row = 0;
+      sptr->first_undef_row = 0;
+      sptr->dirty = FALSE;
+    }
+  }
+
+  for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
+    if (bptr->mem_buffer == NULL) { /* if not realized yet */
+      minheights = ((long) bptr->rows_in_array - 1L) / bptr->maxaccess + 1L;
+      if (minheights <= max_minheights) {
+       /* This buffer fits in memory */
+       bptr->rows_in_mem = bptr->rows_in_array;
+      } else {
+       /* It doesn't fit in memory, create backing store. */
+       bptr->rows_in_mem = (JDIMENSION) (max_minheights * bptr->maxaccess);
+       jpeg_open_backing_store(cinfo, & bptr->b_s_info,
+                               (long) bptr->rows_in_array *
+                               (long) bptr->blocksperrow *
+                               (long) SIZEOF(JBLOCK));
+       bptr->b_s_open = TRUE;
+      }
+      bptr->mem_buffer = alloc_barray(cinfo, JPOOL_IMAGE,
+                                     bptr->blocksperrow, bptr->rows_in_mem);
+      bptr->rowsperchunk = mem->last_rowsperchunk;
+      bptr->cur_start_row = 0;
+      bptr->first_undef_row = 0;
+      bptr->dirty = FALSE;
+    }
+  }
+}
+
+
+LOCAL(void)
+do_sarray_io (j_common_ptr cinfo, jvirt_sarray_ptr ptr, boolean writing)
+/* Do backing store read or write of a virtual sample array */
+{
+  long bytesperrow, file_offset, byte_count, rows, thisrow, i;
+
+  bytesperrow = (long) ptr->samplesperrow * SIZEOF(JSAMPLE);
+  file_offset = ptr->cur_start_row * bytesperrow;
+  /* Loop to read or write each allocation chunk in mem_buffer */
+  for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) {
+    /* One chunk, but check for short chunk at end of buffer */
+    rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i);
+    /* Transfer no more than is currently defined */
+    thisrow = (long) ptr->cur_start_row + i;
+    rows = MIN(rows, (long) ptr->first_undef_row - thisrow);
+    /* Transfer no more than fits in file */
+    rows = MIN(rows, (long) ptr->rows_in_array - thisrow);
+    if (rows <= 0)             /* this chunk might be past end of file! */
+      break;
+    byte_count = rows * bytesperrow;
+    if (writing)
+      (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info,
+                                           (void FAR *) ptr->mem_buffer[i],
+                                           file_offset, byte_count);
+    else
+      (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info,
+                                          (void FAR *) ptr->mem_buffer[i],
+                                          file_offset, byte_count);
+    file_offset += byte_count;
+  }
+}
+
+
+LOCAL(void)
+do_barray_io (j_common_ptr cinfo, jvirt_barray_ptr ptr, boolean writing)
+/* Do backing store read or write of a virtual coefficient-block array */
+{
+  long bytesperrow, file_offset, byte_count, rows, thisrow, i;
+
+  bytesperrow = (long) ptr->blocksperrow * SIZEOF(JBLOCK);
+  file_offset = ptr->cur_start_row * bytesperrow;
+  /* Loop to read or write each allocation chunk in mem_buffer */
+  for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) {
+    /* One chunk, but check for short chunk at end of buffer */
+    rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i);
+    /* Transfer no more than is currently defined */
+    thisrow = (long) ptr->cur_start_row + i;
+    rows = MIN(rows, (long) ptr->first_undef_row - thisrow);
+    /* Transfer no more than fits in file */
+    rows = MIN(rows, (long) ptr->rows_in_array - thisrow);
+    if (rows <= 0)             /* this chunk might be past end of file! */
+      break;
+    byte_count = rows * bytesperrow;
+    if (writing)
+      (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info,
+                                           (void FAR *) ptr->mem_buffer[i],
+                                           file_offset, byte_count);
+    else
+      (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info,
+                                          (void FAR *) ptr->mem_buffer[i],
+                                          file_offset, byte_count);
+    file_offset += byte_count;
+  }
+}
+
+
+METHODDEF(JSAMPARRAY)
+access_virt_sarray (j_common_ptr cinfo, jvirt_sarray_ptr ptr,
+                   JDIMENSION start_row, JDIMENSION num_rows,
+                   boolean writable)
+/* Access the part of a virtual sample array starting at start_row */
+/* and extending for num_rows rows.  writable is true if  */
+/* caller intends to modify the accessed area. */
+{
+  JDIMENSION end_row = start_row + num_rows;
+  JDIMENSION undef_row;
+
+  /* debugging check */
+  if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
+      ptr->mem_buffer == NULL)
+    ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
+
+  /* Make the desired part of the virtual array accessible */
+  if (start_row < ptr->cur_start_row ||
+      end_row > ptr->cur_start_row+ptr->rows_in_mem) {
+    if (! ptr->b_s_open)
+      ERREXIT(cinfo, JERR_VIRTUAL_BUG);
+    /* Flush old buffer contents if necessary */
+    if (ptr->dirty) {
+      do_sarray_io(cinfo, ptr, TRUE);
+      ptr->dirty = FALSE;
+    }
+    /* Decide what part of virtual array to access.
+     * Algorithm: if target address > current window, assume forward scan,
+     * load starting at target address.  If target address < current window,
+     * assume backward scan, load so that target area is top of window.
+     * Note that when switching from forward write to forward read, will have
+     * start_row = 0, so the limiting case applies and we load from 0 anyway.
+     */
+    if (start_row > ptr->cur_start_row) {
+      ptr->cur_start_row = start_row;
+    } else {
+      /* use long arithmetic here to avoid overflow & unsigned problems */
+      long ltemp;
+
+      ltemp = (long) end_row - (long) ptr->rows_in_mem;
+      if (ltemp < 0)
+       ltemp = 0;              /* don't fall off front end of file */
+      ptr->cur_start_row = (JDIMENSION) ltemp;
+    }
+    /* Read in the selected part of the array.
+     * During the initial write pass, we will do no actual read
+     * because the selected part is all undefined.
+     */
+    do_sarray_io(cinfo, ptr, FALSE);
+  }
+  /* Ensure the accessed part of the array is defined; prezero if needed.
+   * To improve locality of access, we only prezero the part of the array
+   * that the caller is about to access, not the entire in-memory array.
+   */
+  if (ptr->first_undef_row < end_row) {
+    if (ptr->first_undef_row < start_row) {
+      if (writable)            /* writer skipped over a section of array */
+       ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
+      undef_row = start_row;   /* but reader is allowed to read ahead */
+    } else {
+      undef_row = ptr->first_undef_row;
+    }
+    if (writable)
+      ptr->first_undef_row = end_row;
+    if (ptr->pre_zero) {
+      size_t bytesperrow = (size_t) ptr->samplesperrow * SIZEOF(JSAMPLE);
+      undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
+      end_row -= ptr->cur_start_row;
+      while (undef_row < end_row) {
+       jzero_far((void FAR *) ptr->mem_buffer[undef_row], bytesperrow);
+       undef_row++;
+      }
+    } else {
+      if (! writable)          /* reader looking at undefined data */
+       ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
+    }
+  }
+  /* Flag the buffer dirty if caller will write in it */
+  if (writable)
+    ptr->dirty = TRUE;
+  /* Return address of proper part of the buffer */
+  return ptr->mem_buffer + (start_row - ptr->cur_start_row);
+}
+
+
+METHODDEF(JBLOCKARRAY)
+access_virt_barray (j_common_ptr cinfo, jvirt_barray_ptr ptr,
+                   JDIMENSION start_row, JDIMENSION num_rows,
+                   boolean writable)
+/* Access the part of a virtual block array starting at start_row */
+/* and extending for num_rows rows.  writable is true if  */
+/* caller intends to modify the accessed area. */
+{
+  JDIMENSION end_row = start_row + num_rows;
+  JDIMENSION undef_row;
+
+  /* debugging check */
+  if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
+      ptr->mem_buffer == NULL)
+    ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
+
+  /* Make the desired part of the virtual array accessible */
+  if (start_row < ptr->cur_start_row ||
+      end_row > ptr->cur_start_row+ptr->rows_in_mem) {
+    if (! ptr->b_s_open)
+      ERREXIT(cinfo, JERR_VIRTUAL_BUG);
+    /* Flush old buffer contents if necessary */
+    if (ptr->dirty) {
+      do_barray_io(cinfo, ptr, TRUE);
+      ptr->dirty = FALSE;
+    }
+    /* Decide what part of virtual array to access.
+     * Algorithm: if target address > current window, assume forward scan,
+     * load starting at target address.  If target address < current window,
+     * assume backward scan, load so that target area is top of window.
+     * Note that when switching from forward write to forward read, will have
+     * start_row = 0, so the limiting case applies and we load from 0 anyway.
+     */
+    if (start_row > ptr->cur_start_row) {
+      ptr->cur_start_row = start_row;
+    } else {
+      /* use long arithmetic here to avoid overflow & unsigned problems */
+      long ltemp;
+
+      ltemp = (long) end_row - (long) ptr->rows_in_mem;
+      if (ltemp < 0)
+       ltemp = 0;              /* don't fall off front end of file */
+      ptr->cur_start_row = (JDIMENSION) ltemp;
+    }
+    /* Read in the selected part of the array.
+     * During the initial write pass, we will do no actual read
+     * because the selected part is all undefined.
+     */
+    do_barray_io(cinfo, ptr, FALSE);
+  }
+  /* Ensure the accessed part of the array is defined; prezero if needed.
+   * To improve locality of access, we only prezero the part of the array
+   * that the caller is about to access, not the entire in-memory array.
+   */
+  if (ptr->first_undef_row < end_row) {
+    if (ptr->first_undef_row < start_row) {
+      if (writable)            /* writer skipped over a section of array */
+       ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
+      undef_row = start_row;   /* but reader is allowed to read ahead */
+    } else {
+      undef_row = ptr->first_undef_row;
+    }
+    if (writable)
+      ptr->first_undef_row = end_row;
+    if (ptr->pre_zero) {
+      size_t bytesperrow = (size_t) ptr->blocksperrow * SIZEOF(JBLOCK);
+      undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
+      end_row -= ptr->cur_start_row;
+      while (undef_row < end_row) {
+       jzero_far((void FAR *) ptr->mem_buffer[undef_row], bytesperrow);
+       undef_row++;
+      }
+    } else {
+      if (! writable)          /* reader looking at undefined data */
+       ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
+    }
+  }
+  /* Flag the buffer dirty if caller will write in it */
+  if (writable)
+    ptr->dirty = TRUE;
+  /* Return address of proper part of the buffer */
+  return ptr->mem_buffer + (start_row - ptr->cur_start_row);
+}
+
+
+/*
+ * Release all objects belonging to a specified pool.
+ */
+
+METHODDEF(void)
+free_pool (j_common_ptr cinfo, int pool_id)
+{
+  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
+  small_pool_ptr shdr_ptr;
+  large_pool_ptr lhdr_ptr;
+  size_t space_freed;
+
+  if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
+    ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id);        /* safety check */
+
+#ifdef MEM_STATS
+  if (cinfo->err->trace_level > 1)
+    print_mem_stats(cinfo, pool_id); /* print pool's memory usage statistics */
+#endif
+
+  /* If freeing IMAGE pool, close any virtual arrays first */
+  if (pool_id == JPOOL_IMAGE) {
+    jvirt_sarray_ptr sptr;
+    jvirt_barray_ptr bptr;
+
+    for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
+      if (sptr->b_s_open) {    /* there may be no backing store */
+       sptr->b_s_open = FALSE; /* prevent recursive close if error */
+       (*sptr->b_s_info.close_backing_store) (cinfo, & sptr->b_s_info);
+      }
+    }
+    mem->virt_sarray_list = NULL;
+    for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
+      if (bptr->b_s_open) {    /* there may be no backing store */
+       bptr->b_s_open = FALSE; /* prevent recursive close if error */
+       (*bptr->b_s_info.close_backing_store) (cinfo, & bptr->b_s_info);
+      }
+    }
+    mem->virt_barray_list = NULL;
+  }
+
+  /* Release large objects */
+  lhdr_ptr = mem->large_list[pool_id];
+  mem->large_list[pool_id] = NULL;
+
+  while (lhdr_ptr != NULL) {
+    large_pool_ptr next_lhdr_ptr = lhdr_ptr->hdr.next;
+    space_freed = lhdr_ptr->hdr.bytes_used +
+                 lhdr_ptr->hdr.bytes_left +
+                 SIZEOF(large_pool_hdr);
+    jpeg_free_large(cinfo, (void FAR *) lhdr_ptr, space_freed);
+    mem->total_space_allocated -= space_freed;
+    lhdr_ptr = next_lhdr_ptr;
+  }
+
+  /* Release small objects */
+  shdr_ptr = mem->small_list[pool_id];
+  mem->small_list[pool_id] = NULL;
+
+  while (shdr_ptr != NULL) {
+    small_pool_ptr next_shdr_ptr = shdr_ptr->hdr.next;
+    space_freed = shdr_ptr->hdr.bytes_used +
+                 shdr_ptr->hdr.bytes_left +
+                 SIZEOF(small_pool_hdr);
+    jpeg_free_small(cinfo, (void *) shdr_ptr, space_freed);
+    mem->total_space_allocated -= space_freed;
+    shdr_ptr = next_shdr_ptr;
+  }
+}
+
+
+/*
+ * Close up shop entirely.
+ * Note that this cannot be called unless cinfo->mem is non-NULL.
+ */
+
+METHODDEF(void)
+self_destruct (j_common_ptr cinfo)
+{
+  int pool;
+
+  /* Close all backing store, release all memory.
+   * Releasing pools in reverse order might help avoid fragmentation
+   * with some (brain-damaged) malloc libraries.
+   */
+  for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) {
+    free_pool(cinfo, pool);
+  }
+
+  /* Release the memory manager control block too. */
+  jpeg_free_small(cinfo, (void *) cinfo->mem, SIZEOF(my_memory_mgr));
+  cinfo->mem = NULL;           /* ensures I will be called only once */
+
+  jpeg_mem_term(cinfo);                /* system-dependent cleanup */
+}
+
+
+/*
+ * Memory manager initialization.
+ * When this is called, only the error manager pointer is valid in cinfo!
+ */
+
+GLOBAL(void)
+jinit_memory_mgr (j_common_ptr cinfo)
+{
+  my_mem_ptr mem;
+  long max_to_use;
+  int pool;
+  size_t test_mac;
+
+  cinfo->mem = NULL;           /* for safety if init fails */
+
+  /* Check for configuration errors.
+   * SIZEOF(ALIGN_TYPE) should be a power of 2; otherwise, it probably
+   * doesn't reflect any real hardware alignment requirement.
+   * The test is a little tricky: for X>0, X and X-1 have no one-bits
+   * in common if and only if X is a power of 2, ie has only one one-bit.
+   * Some compilers may give an "unreachable code" warning here; ignore it.
+   */
+  if ((SIZEOF(ALIGN_TYPE) & (SIZEOF(ALIGN_TYPE)-1)) != 0)
+    ERREXIT(cinfo, JERR_BAD_ALIGN_TYPE);
+  /* MAX_ALLOC_CHUNK must be representable as type size_t, and must be
+   * a multiple of SIZEOF(ALIGN_TYPE).
+   * Again, an "unreachable code" warning may be ignored here.
+   * But a "constant too large" warning means you need to fix MAX_ALLOC_CHUNK.
+   */
+  test_mac = (size_t) MAX_ALLOC_CHUNK;
+  if ((long) test_mac != MAX_ALLOC_CHUNK ||
+      (MAX_ALLOC_CHUNK % SIZEOF(ALIGN_TYPE)) != 0)
+    ERREXIT(cinfo, JERR_BAD_ALLOC_CHUNK);
+
+  max_to_use = jpeg_mem_init(cinfo); /* system-dependent initialization */
+
+  /* Attempt to allocate memory manager's control block */
+  mem = (my_mem_ptr) jpeg_get_small(cinfo, SIZEOF(my_memory_mgr));
+
+  if (mem == NULL) {
+    jpeg_mem_term(cinfo);      /* system-dependent cleanup */
+    ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 0);
+  }
+
+  /* OK, fill in the method pointers */
+  mem->pub.alloc_small = alloc_small;
+  mem->pub.alloc_large = alloc_large;
+  mem->pub.alloc_sarray = alloc_sarray;
+  mem->pub.alloc_barray = alloc_barray;
+  mem->pub.request_virt_sarray = request_virt_sarray;
+  mem->pub.request_virt_barray = request_virt_barray;
+  mem->pub.realize_virt_arrays = realize_virt_arrays;
+  mem->pub.access_virt_sarray = access_virt_sarray;
+  mem->pub.access_virt_barray = access_virt_barray;
+  mem->pub.free_pool = free_pool;
+  mem->pub.self_destruct = self_destruct;
+
+  /* Make MAX_ALLOC_CHUNK accessible to other modules */
+  mem->pub.max_alloc_chunk = MAX_ALLOC_CHUNK;
+
+  /* Initialize working state */
+  mem->pub.max_memory_to_use = max_to_use;
+
+  for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) {
+    mem->small_list[pool] = NULL;
+    mem->large_list[pool] = NULL;
+  }
+  mem->virt_sarray_list = NULL;
+  mem->virt_barray_list = NULL;
+
+  mem->total_space_allocated = SIZEOF(my_memory_mgr);
+
+  /* Declare ourselves open for business */
+  cinfo->mem = & mem->pub;
+
+  /* Check for an environment variable JPEGMEM; if found, override the
+   * default max_memory setting from jpeg_mem_init.  Note that the
+   * surrounding application may again override this value.
+   * If your system doesn't support getenv(), define NO_GETENV to disable
+   * this feature.
+   */
+#ifndef NO_GETENV
+  { char * memenv;
+
+    if ((memenv = getenv("JPEGMEM")) != NULL) {
+      char ch = 'x';
+
+      if (sscanf(memenv, "%ld%c", &max_to_use, &ch) > 0) {
+       if (ch == 'm' || ch == 'M')
+         max_to_use *= 1000L;
+       mem->pub.max_memory_to_use = max_to_use * 1000L;
+      }
+    }
+  }
+#endif
+
+}