From: Jérôme Gardou Date: Sat, 27 Mar 2010 23:52:07 +0000 (+0000) Subject: svn will drive me nuts, part 2/2 X-Git-Tag: backups/reactos-yarotows@57446~214 X-Git-Url: https://git.reactos.org/?p=reactos.git;a=commitdiff_plain;h=1f0205c1de8ceab09817617e0ed91401ebd2ce23 svn will drive me nuts, part 2/2 svn path=/branches/reactos-yarotows/; revision=46506 --- diff --git a/dll/directx/ksproxy/mediasample.cpp b/dll/directx/ksproxy/mediasample.cpp new file mode 100644 index 00000000000..e0411938444 --- /dev/null +++ b/dll/directx/ksproxy/mediasample.cpp @@ -0,0 +1,368 @@ +/* + * COPYRIGHT: See COPYING in the top level directory + * PROJECT: ReactOS WDM Streaming ActiveMovie Proxy + * FILE: dll/directx/ksproxy/mediasample.cpp + * PURPOSE: IMediaSample interface + * + * PROGRAMMERS: Johannes Anderwald (janderwald@reactos.org) + */ +#include "precomp.h" + +class CMediaSample : public IMediaSample +{ +public: + STDMETHODIMP QueryInterface( REFIID InterfaceId, PVOID* Interface); + + STDMETHODIMP_(ULONG) AddRef() + { + InterlockedIncrement(&m_Ref); + return m_Ref; + } + STDMETHODIMP_(ULONG) Release() + { + InterlockedDecrement(&m_Ref); + DebugBreak(); + if (!m_Ref) + { + if (m_Allocator) + { + m_Allocator->ReleaseBuffer((IMediaSample*)this); + return 0; + } + delete this; + return 0; + } + return m_Ref; + } + + HRESULT STDMETHODCALLTYPE GetPointer(BYTE **ppBuffer); + long STDMETHODCALLTYPE GetSize(void); + HRESULT STDMETHODCALLTYPE GetTime(REFERENCE_TIME *pTimeStart, REFERENCE_TIME *pTimeEnd); + HRESULT STDMETHODCALLTYPE SetTime(REFERENCE_TIME *pTimeStart, REFERENCE_TIME *pTimeEnd); + HRESULT STDMETHODCALLTYPE IsSyncPoint(); + HRESULT STDMETHODCALLTYPE SetSyncPoint(BOOL bIsSyncPoint); + HRESULT STDMETHODCALLTYPE IsPreroll(); + HRESULT STDMETHODCALLTYPE SetPreroll(BOOL bIsPreroll); + long STDMETHODCALLTYPE GetActualDataLength(); + HRESULT STDMETHODCALLTYPE SetActualDataLength(long Length); + HRESULT STDMETHODCALLTYPE GetMediaType(AM_MEDIA_TYPE **ppMediaType); + HRESULT STDMETHODCALLTYPE SetMediaType(AM_MEDIA_TYPE *pMediaType); + HRESULT STDMETHODCALLTYPE IsDiscontinuity(); + HRESULT STDMETHODCALLTYPE SetDiscontinuity(BOOL bDiscontinuity); + HRESULT STDMETHODCALLTYPE GetMediaTime(LONGLONG *pTimeStart, LONGLONG *pTimeEnd); + HRESULT STDMETHODCALLTYPE SetMediaTime(LONGLONG *pTimeStart, LONGLONG *pTimeEnd); + + CMediaSample(IMemAllocator * Allocator, BYTE * Buffer, LONG BufferSize); + virtual ~CMediaSample(){} + +protected: + ULONG m_Flags; + ULONG m_TypeFlags; + BYTE * m_Buffer; + LONG m_ActualLength; + LONG m_BufferSize; + IMemAllocator * m_Allocator; + CMediaSample * m_Next; + REFERENCE_TIME m_StartTime; + REFERENCE_TIME m_StopTime; + LONGLONG m_MediaStart; + LONGLONG m_MediaStop; + AM_MEDIA_TYPE * m_MediaType; + ULONG m_StreamId; + +public: + LONG m_Ref; + + BOOL m_bMediaTimeValid; + + +}; + +CMediaSample::CMediaSample( + IMemAllocator * Allocator, + BYTE * Buffer, + LONG BufferSize) : + m_Flags(0), + m_TypeFlags(0), + m_Buffer(Buffer), + m_ActualLength(BufferSize), + m_BufferSize(BufferSize), + m_Allocator(Allocator), + m_Next(0), + m_StartTime(0), + m_StopTime(0), + m_MediaStart(0), + m_MediaStop(0), + m_MediaType(0), + m_StreamId(0), + m_Ref(0), + m_bMediaTimeValid(0) +{ +} + + +HRESULT +STDMETHODCALLTYPE +CMediaSample::QueryInterface( + IN REFIID refiid, + OUT PVOID* Output) +{ + if (IsEqualGUID(refiid, IID_IUnknown) || + IsEqualGUID(refiid, IID_IMediaSample)) + { + *Output = PVOID(this); + reinterpret_cast(*Output)->AddRef(); + return NOERROR; + } + if (IsEqualGUID(refiid, IID_IMediaSample2)) + { +#if 0 + *Output = (IMediaSample2*)(this); + reinterpret_cast(*Output)->AddRef(); + return NOERROR; +#endif + } + + return E_NOINTERFACE; +} + +//------------------------------------------------------------------- +// IMediaSample interface +// +HRESULT +STDMETHODCALLTYPE +CMediaSample::GetPointer( + BYTE **ppBuffer) +{ + if (!ppBuffer) + return E_POINTER; + + *ppBuffer = m_Buffer; + return S_OK; +} + +long +STDMETHODCALLTYPE +CMediaSample::GetSize() +{ + return m_BufferSize; +} + +HRESULT +STDMETHODCALLTYPE +CMediaSample::GetTime( + REFERENCE_TIME *pTimeStart, + REFERENCE_TIME *pTimeEnd) +{ + HRESULT hr; + + if (!pTimeStart || !pTimeEnd) + return E_POINTER; + + if (!(m_Flags & (AM_SAMPLE_TIMEVALID | AM_SAMPLE_STOPVALID))) + { + // no time is set + return VFW_E_SAMPLE_TIME_NOT_SET; + } + + *pTimeStart = m_StartTime; + + if (m_Flags & AM_SAMPLE_STOPVALID) + { + *pTimeEnd = m_StopTime; + hr = NOERROR; + } + else + { + *pTimeEnd = m_StartTime + 1; + hr = VFW_S_NO_STOP_TIME; + } + return hr; +} + +HRESULT +STDMETHODCALLTYPE +CMediaSample::SetTime(REFERENCE_TIME *pTimeStart, REFERENCE_TIME *pTimeEnd) +{ + if (!pTimeStart) + { + m_Flags &= ~(AM_SAMPLE_TIMEVALID | AM_SAMPLE_STOPVALID); + return NOERROR; + } + + if (!pTimeEnd) + { + m_Flags &= ~(AM_SAMPLE_STOPVALID); + m_Flags |= AM_SAMPLE_TIMEVALID; + m_StartTime = *pTimeStart; + return NOERROR; + } + + + m_Flags |= (AM_SAMPLE_TIMEVALID | AM_SAMPLE_STOPVALID); + m_StartTime = *pTimeStart; + m_StopTime = *pTimeEnd; + + return NOERROR; +} + +HRESULT +STDMETHODCALLTYPE +CMediaSample::IsSyncPoint() +{ + return (m_Flags & AM_SAMPLE_SPLICEPOINT) ? S_OK : S_FALSE; +} +HRESULT +STDMETHODCALLTYPE +CMediaSample::SetSyncPoint(BOOL bIsSyncPoint) +{ + if (bIsSyncPoint) + m_Flags |= AM_SAMPLE_SPLICEPOINT; + else + m_Flags &= ~AM_SAMPLE_SPLICEPOINT; + + return NOERROR; +} + +HRESULT +STDMETHODCALLTYPE +CMediaSample::IsPreroll() +{ + return (m_Flags & AM_SAMPLE_PREROLL) ? S_OK : S_FALSE; +} + +HRESULT +STDMETHODCALLTYPE +CMediaSample::SetPreroll(BOOL bIsPreroll) +{ + if (bIsPreroll) + m_Flags |= AM_SAMPLE_PREROLL; + else + m_Flags &= ~AM_SAMPLE_PREROLL; + + return NOERROR; +} + +long +STDMETHODCALLTYPE +CMediaSample::GetActualDataLength() +{ + return m_ActualLength; +} + +HRESULT +STDMETHODCALLTYPE +CMediaSample::SetActualDataLength(long Length) +{ + if (Length > m_BufferSize) + return VFW_E_BUFFER_OVERFLOW; + + m_ActualLength = Length; + return NOERROR; +} + +HRESULT +STDMETHODCALLTYPE +CMediaSample::GetMediaType(AM_MEDIA_TYPE **ppMediaType) +{ + if (!m_MediaType) + { + *ppMediaType = NULL; + return S_FALSE; + } + + assert(0); + return E_NOTIMPL; +} + +HRESULT +STDMETHODCALLTYPE +CMediaSample::SetMediaType(AM_MEDIA_TYPE *pMediaType) +{ + OutputDebugStringW(L"CMediaSample::SetMediaType NotImplemented\n"); + DebugBreak(); + return E_NOTIMPL; +} + + +HRESULT +STDMETHODCALLTYPE +CMediaSample::IsDiscontinuity() +{ + return (m_Flags & AM_SAMPLE_DATADISCONTINUITY) ? S_OK : S_FALSE; +} + +HRESULT +STDMETHODCALLTYPE +CMediaSample::SetDiscontinuity(BOOL bDiscontinuity) +{ + if (bDiscontinuity) + m_Flags |= AM_SAMPLE_DATADISCONTINUITY; + else + m_Flags &= ~AM_SAMPLE_DATADISCONTINUITY; + + return NOERROR; +} + +HRESULT +STDMETHODCALLTYPE +CMediaSample::GetMediaTime(LONGLONG *pTimeStart, LONGLONG *pTimeEnd) +{ + if (!pTimeStart || !pTimeEnd) + return E_POINTER; + + if (!m_bMediaTimeValid) + return VFW_E_MEDIA_TIME_NOT_SET; + + m_MediaStart = *pTimeStart; + m_MediaStop = *pTimeEnd; + + return NOERROR; +} + +HRESULT +STDMETHODCALLTYPE +CMediaSample::SetMediaTime(LONGLONG *pTimeStart, LONGLONG *pTimeEnd) +{ + if (!pTimeStart || !pTimeEnd) + { + m_bMediaTimeValid = false; + return NOERROR; + } + + m_MediaStart = *pTimeStart; + m_MediaStop = *pTimeEnd; + + return NOERROR; +} + + + + +HRESULT +WINAPI +CMediaSample_Constructor( + IMemAllocator* Allocator, + BYTE* pBuffer, + ULONG BufferSize, + REFIID riid, + LPVOID * ppv) +{ +#ifdef KSPROXY_TRACE + OutputDebugStringW(L"CMediaSample_Constructor\n"); +#endif + + CMediaSample * handler = new CMediaSample(Allocator, pBuffer, BufferSize); + + if (!handler) + return E_OUTOFMEMORY; + + if (FAILED(handler->QueryInterface(riid, ppv))) + { + /* not supported */ + delete handler; + return E_NOINTERFACE; + } + + return NOERROR; +} diff --git a/dll/nls/idndl/idndl.spec b/dll/nls/idndl/idndl.spec new file mode 100644 index 00000000000..acb2b50f799 --- /dev/null +++ b/dll/nls/idndl/idndl.spec @@ -0,0 +1,4 @@ + + 1 stdcall DownlevelGetLocaleScripts(ptr ptr long) DownlevelGetLocaleScripts + 2 stdcall DownlevelGetStringScripts(long ptr long ptr long) kernel32.GetStringScripts + 3 stdcall DownlevelVerifyScripts(long ptr long ptr long) kernel32.VerifyScripts diff --git a/dll/win32/dbghelp/image_private.h b/dll/win32/dbghelp/image_private.h new file mode 100644 index 00000000000..b768deb91e3 --- /dev/null +++ b/dll/win32/dbghelp/image_private.h @@ -0,0 +1,182 @@ +/* + * File elf_private.h - definitions for processing of ELF files + * + * Copyright (C) 1996, Eric Youngdale. + * 1999-2007 Eric Pouech + * + * This library is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; either + * version 2.1 of the License, or (at your option) any later version. + * + * This library is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with this library; if not, write to the Free Software + * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA + */ + +#ifdef HAVE_ELF_H +# include +#endif +#ifdef HAVE_SYS_ELF32_H +# include +#endif +#ifdef HAVE_SYS_EXEC_ELF_H +# include +#endif +#if !defined(DT_NUM) +# if defined(DT_COUNT) +# define DT_NUM DT_COUNT +# else +/* this seems to be a satisfactory value on Solaris, which doesn't support this AFAICT */ +# define DT_NUM 24 +# endif +#endif +#ifdef HAVE_LINK_H +# include +#endif +#ifdef HAVE_SYS_LINK_H +# include +#endif + +#define IMAGE_NO_MAP ((void*)-1) + +#ifdef __ELF__ + +#ifdef _WIN64 +#define Elf_Ehdr Elf64_Ehdr +#define Elf_Shdr Elf64_Shdr +#define Elf_Phdr Elf64_Phdr +#define Elf_Dyn Elf64_Dyn +#define Elf_Sym Elf64_Sym +#else +#define Elf_Ehdr Elf32_Ehdr +#define Elf_Shdr Elf32_Shdr +#define Elf_Phdr Elf32_Phdr +#define Elf_Dyn Elf32_Dyn +#define Elf_Sym Elf32_Sym +#endif +#else +#ifndef SHT_NULL +#define SHT_NULL 0 +#endif +#endif + +/* structure holding information while handling an ELF image + * allows one by one section mapping for memory savings + */ +struct image_file_map +{ + enum module_type modtype; + union + { + struct elf_file_map + { + size_t elf_size; + size_t elf_start; + int fd; + const char* shstrtab; + struct image_file_map* alternate; /* another ELF file (linked to this one) */ +#ifdef __ELF__ + Elf_Ehdr elfhdr; + struct + { + Elf_Shdr shdr; + const char* mapped; + }* sect; +#endif + } elf; + struct pe_file_map + { + HANDLE hMap; + IMAGE_NT_HEADERS ntheader; + unsigned full_count; + void* full_map; + struct + { + IMAGE_SECTION_HEADER shdr; + const char* mapped; + }* sect; + const char* strtable; + } pe; + } u; +}; + +struct image_section_map +{ + struct image_file_map* fmap; + long sidx; +}; + +extern BOOL elf_find_section(struct image_file_map* fmap, const char* name, + unsigned sht, struct image_section_map* ism); +extern const char* elf_map_section(struct image_section_map* ism); +extern void elf_unmap_section(struct image_section_map* ism); +extern DWORD_PTR elf_get_map_rva(const struct image_section_map* ism); +extern unsigned elf_get_map_size(const struct image_section_map* ism); + +extern BOOL pe_find_section(struct image_file_map* fmap, const char* name, + struct image_section_map* ism); +extern const char* pe_map_section(struct image_section_map* psm); +extern void pe_unmap_section(struct image_section_map* psm); +extern DWORD_PTR pe_get_map_rva(const struct image_section_map* psm); +extern unsigned pe_get_map_size(const struct image_section_map* psm); + +static inline BOOL image_find_section(struct image_file_map* fmap, const char* name, + struct image_section_map* ism) +{ + switch (fmap->modtype) + { + case DMT_ELF: return elf_find_section(fmap, name, SHT_NULL, ism); + case DMT_PE: return pe_find_section(fmap, name, ism); + default: assert(0); return FALSE; + } +} + +static inline const char* image_map_section(struct image_section_map* ism) +{ + if (!ism->fmap) return NULL; + switch (ism->fmap->modtype) + { + case DMT_ELF: return elf_map_section(ism); + case DMT_PE: return pe_map_section(ism); + default: assert(0); return NULL; + } +} + +static inline void image_unmap_section(struct image_section_map* ism) +{ + if (!ism->fmap) return; + switch (ism->fmap->modtype) + { + case DMT_ELF: elf_unmap_section(ism); break; + case DMT_PE: pe_unmap_section(ism); break; + default: assert(0); return; + } +} + +static inline DWORD_PTR image_get_map_rva(struct image_section_map* ism) +{ + if (!ism->fmap) return 0; + switch (ism->fmap->modtype) + { + case DMT_ELF: return elf_get_map_rva(ism); + case DMT_PE: return pe_get_map_rva(ism); + default: assert(0); return 0; + } +} + +static inline unsigned image_get_map_size(struct image_section_map* ism) +{ + if (!ism->fmap) return 0; + switch (ism->fmap->modtype) + { + case DMT_ELF: return elf_get_map_size(ism); + case DMT_PE: return pe_get_map_size(ism); + default: assert(0); return 0; + } +} diff --git a/dll/win32/rsaenh/sha2.c b/dll/win32/rsaenh/sha2.c new file mode 100644 index 00000000000..559323c54e5 --- /dev/null +++ b/dll/win32/rsaenh/sha2.c @@ -0,0 +1,1003 @@ +/* + * FILE: sha2.c + * AUTHOR: Aaron D. Gifford - http://www.aarongifford.com/ + * + * Copyright (c) 2000-2001, Aaron D. Gifford + * All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * 3. Neither the name of the copyright holder nor the names of contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND + * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS + * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) + * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF + * SUCH DAMAGE. + */ + +#include "config.h" + +#include +#include +#include "sha2.h" + +/* + * ASSERT NOTE: + * Some sanity checking code is included using assert(). On my FreeBSD + * system, this additional code can be removed by compiling with NDEBUG + * defined. Check your own systems manpage on assert() to see how to + * compile WITHOUT the sanity checking code on your system. + * + * UNROLLED TRANSFORM LOOP NOTE: + * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform + * loop version for the hash transform rounds (defined using macros + * later in this file). Either define on the command line, for example: + * + * cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c + * + * or define below: + * + * #define SHA2_UNROLL_TRANSFORM + * + */ + +/*** SHA-256/384/512 Various Length Definitions ***********************/ +/* NOTE: Most of these are in sha2.h */ +#define SHA256_SHORT_BLOCK_LENGTH (SHA256_BLOCK_LENGTH - 8) +#define SHA384_SHORT_BLOCK_LENGTH (SHA384_BLOCK_LENGTH - 16) +#define SHA512_SHORT_BLOCK_LENGTH (SHA512_BLOCK_LENGTH - 16) + +#define SHA2_WORD64_CONST(dw1, dw2) (((sha2_word64)(dw1) << 32) | (dw2)) + +/*** ENDIAN REVERSAL MACROS *******************************************/ +#ifndef WORDS_BIGENDIAN +#define REVERSE32(w,x) { \ + sha2_word32 tmp = (w); \ + tmp = (tmp >> 16) | (tmp << 16); \ + (x) = ((tmp & 0xff00ff00) >> 8) | ((tmp & 0x00ff00ff) << 8); \ +} +#define REVERSE64(w,x) { \ + sha2_word64 tmp = (w); \ + tmp = (tmp >> 32) | (tmp << 32); \ + tmp = ((tmp & SHA2_WORD64_CONST(0xff00ff00, 0xff00ff00)) >> 8) | \ + ((tmp & SHA2_WORD64_CONST(0x00ff00ff, 0x00ff00ff)) << 8); \ + (x) = ((tmp & SHA2_WORD64_CONST(0xffff0000, 0xffff0000)) >> 16) | \ + ((tmp & SHA2_WORD64_CONST(0x0000ffff, 0x0000ffff)) << 16); \ +} +#endif + +/* + * Macro for incrementally adding the unsigned 64-bit integer n to the + * unsigned 128-bit integer (represented using a two-element array of + * 64-bit words): + */ +#define ADDINC128(w,n) { \ + (w)[0] += (sha2_word64)(n); \ + if ((w)[0] < (n)) { \ + (w)[1]++; \ + } \ +} + +/* + * Macros for copying blocks of memory and for zeroing out ranges + * of memory. Using these macros makes it easy to switch from + * using memset()/memcpy() and using bzero()/bcopy(). + * + * Please define either SHA2_USE_MEMSET_MEMCPY or define + * SHA2_USE_BZERO_BCOPY depending on which function set you + * choose to use: + */ +#if !defined(SHA2_USE_MEMSET_MEMCPY) && !defined(SHA2_USE_BZERO_BCOPY) +/* Default to memset()/memcpy() if no option is specified */ +#define SHA2_USE_MEMSET_MEMCPY 1 +#endif +#if defined(SHA2_USE_MEMSET_MEMCPY) && defined(SHA2_USE_BZERO_BCOPY) +/* Abort with an error if BOTH options are defined */ +#error Define either SHA2_USE_MEMSET_MEMCPY or SHA2_USE_BZERO_BCOPY, not both! +#endif + +#ifdef SHA2_USE_MEMSET_MEMCPY +#define MEMSET_BZERO(p,l) memset((p), 0, (l)) +#define MEMCPY_BCOPY(d,s,l) memcpy((d), (s), (l)) +#endif +#ifdef SHA2_USE_BZERO_BCOPY +#define MEMSET_BZERO(p,l) bzero((p), (l)) +#define MEMCPY_BCOPY(d,s,l) bcopy((s), (d), (l)) +#endif + + +/*** THE SIX LOGICAL FUNCTIONS ****************************************/ +/* + * Bit shifting and rotation (used by the six SHA-XYZ logical functions: + * + * NOTE: The naming of R and S appears backwards here (R is a SHIFT and + * S is a ROTATION) because the SHA-256/384/512 description document + * (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this + * same "backwards" definition. + */ +/* Shift-right (used in SHA-256, SHA-384, and SHA-512): */ +#define R(b,x) ((x) >> (b)) +/* 32-bit Rotate-right (used in SHA-256): */ +#define S32(b,x) (((x) >> (b)) | ((x) << (32 - (b)))) +/* 64-bit Rotate-right (used in SHA-384 and SHA-512): */ +#define S64(b,x) (((x) >> (b)) | ((x) << (64 - (b)))) + +/* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */ +#define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z))) +#define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z))) + +/* Four of six logical functions used in SHA-256: */ +#define Sigma0_256(x) (S32(2, (x)) ^ S32(13, (x)) ^ S32(22, (x))) +#define Sigma1_256(x) (S32(6, (x)) ^ S32(11, (x)) ^ S32(25, (x))) +#define sigma0_256(x) (S32(7, (x)) ^ S32(18, (x)) ^ R(3 , (x))) +#define sigma1_256(x) (S32(17, (x)) ^ S32(19, (x)) ^ R(10, (x))) + +/* Four of six logical functions used in SHA-384 and SHA-512: */ +#define Sigma0_512(x) (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x))) +#define Sigma1_512(x) (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x))) +#define sigma0_512(x) (S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7, (x))) +#define sigma1_512(x) (S64(19, (x)) ^ S64(61, (x)) ^ R( 6, (x))) + +/*** INTERNAL FUNCTION PROTOTYPES *************************************/ +/* NOTE: These should not be accessed directly from outside this + * library -- they are intended for private internal visibility/use + * only. + */ +void SHA512_Last(SHA512_CTX*); +void SHA256_Transform(SHA256_CTX*, const sha2_word32*); +void SHA512_Transform(SHA512_CTX*, const sha2_word64*); + + +/*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/ +/* Hash constant words K for SHA-256: */ +static const sha2_word32 K256[64] = { + 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, + 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, + 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, + 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, + 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, + 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, + 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, + 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, + 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, + 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, + 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, + 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, + 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, + 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, + 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, + 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2 +}; + +/* Initial hash value H for SHA-256: */ +static const sha2_word32 sha256_initial_hash_value[8] = { + 0x6a09e667, + 0xbb67ae85, + 0x3c6ef372, + 0xa54ff53a, + 0x510e527f, + 0x9b05688c, + 0x1f83d9ab, + 0x5be0cd19 +}; + +/* Hash constant words K for SHA-384 and SHA-512: */ +static const sha2_word64 K512[80] = { + SHA2_WORD64_CONST(0x428a2f98, 0xd728ae22), SHA2_WORD64_CONST(0x71374491, 0x23ef65cd), + SHA2_WORD64_CONST(0xb5c0fbcf, 0xec4d3b2f), SHA2_WORD64_CONST(0xe9b5dba5, 0x8189dbbc), + SHA2_WORD64_CONST(0x3956c25b, 0xf348b538), SHA2_WORD64_CONST(0x59f111f1, 0xb605d019), + SHA2_WORD64_CONST(0x923f82a4, 0xaf194f9b), SHA2_WORD64_CONST(0xab1c5ed5, 0xda6d8118), + SHA2_WORD64_CONST(0xd807aa98, 0xa3030242), SHA2_WORD64_CONST(0x12835b01, 0x45706fbe), + SHA2_WORD64_CONST(0x243185be, 0x4ee4b28c), SHA2_WORD64_CONST(0x550c7dc3, 0xd5ffb4e2), + SHA2_WORD64_CONST(0x72be5d74, 0xf27b896f), SHA2_WORD64_CONST(0x80deb1fe, 0x3b1696b1), + SHA2_WORD64_CONST(0x9bdc06a7, 0x25c71235), SHA2_WORD64_CONST(0xc19bf174, 0xcf692694), + SHA2_WORD64_CONST(0xe49b69c1, 0x9ef14ad2), SHA2_WORD64_CONST(0xefbe4786, 0x384f25e3), + SHA2_WORD64_CONST(0x0fc19dc6, 0x8b8cd5b5), SHA2_WORD64_CONST(0x240ca1cc, 0x77ac9c65), + SHA2_WORD64_CONST(0x2de92c6f, 0x592b0275), SHA2_WORD64_CONST(0x4a7484aa, 0x6ea6e483), + SHA2_WORD64_CONST(0x5cb0a9dc, 0xbd41fbd4), SHA2_WORD64_CONST(0x76f988da, 0x831153b5), + SHA2_WORD64_CONST(0x983e5152, 0xee66dfab), SHA2_WORD64_CONST(0xa831c66d, 0x2db43210), + SHA2_WORD64_CONST(0xb00327c8, 0x98fb213f), SHA2_WORD64_CONST(0xbf597fc7, 0xbeef0ee4), + SHA2_WORD64_CONST(0xc6e00bf3, 0x3da88fc2), SHA2_WORD64_CONST(0xd5a79147, 0x930aa725), + SHA2_WORD64_CONST(0x06ca6351, 0xe003826f), SHA2_WORD64_CONST(0x14292967, 0x0a0e6e70), + SHA2_WORD64_CONST(0x27b70a85, 0x46d22ffc), SHA2_WORD64_CONST(0x2e1b2138, 0x5c26c926), + SHA2_WORD64_CONST(0x4d2c6dfc, 0x5ac42aed), SHA2_WORD64_CONST(0x53380d13, 0x9d95b3df), + SHA2_WORD64_CONST(0x650a7354, 0x8baf63de), SHA2_WORD64_CONST(0x766a0abb, 0x3c77b2a8), + SHA2_WORD64_CONST(0x81c2c92e, 0x47edaee6), SHA2_WORD64_CONST(0x92722c85, 0x1482353b), + SHA2_WORD64_CONST(0xa2bfe8a1, 0x4cf10364), SHA2_WORD64_CONST(0xa81a664b, 0xbc423001), + SHA2_WORD64_CONST(0xc24b8b70, 0xd0f89791), SHA2_WORD64_CONST(0xc76c51a3, 0x0654be30), + SHA2_WORD64_CONST(0xd192e819, 0xd6ef5218), SHA2_WORD64_CONST(0xd6990624, 0x5565a910), + SHA2_WORD64_CONST(0xf40e3585, 0x5771202a), SHA2_WORD64_CONST(0x106aa070, 0x32bbd1b8), + SHA2_WORD64_CONST(0x19a4c116, 0xb8d2d0c8), SHA2_WORD64_CONST(0x1e376c08, 0x5141ab53), + SHA2_WORD64_CONST(0x2748774c, 0xdf8eeb99), SHA2_WORD64_CONST(0x34b0bcb5, 0xe19b48a8), + SHA2_WORD64_CONST(0x391c0cb3, 0xc5c95a63), SHA2_WORD64_CONST(0x4ed8aa4a, 0xe3418acb), + SHA2_WORD64_CONST(0x5b9cca4f, 0x7763e373), SHA2_WORD64_CONST(0x682e6ff3, 0xd6b2b8a3), + SHA2_WORD64_CONST(0x748f82ee, 0x5defb2fc), SHA2_WORD64_CONST(0x78a5636f, 0x43172f60), + SHA2_WORD64_CONST(0x84c87814, 0xa1f0ab72), SHA2_WORD64_CONST(0x8cc70208, 0x1a6439ec), + SHA2_WORD64_CONST(0x90befffa, 0x23631e28), SHA2_WORD64_CONST(0xa4506ceb, 0xde82bde9), + SHA2_WORD64_CONST(0xbef9a3f7, 0xb2c67915), SHA2_WORD64_CONST(0xc67178f2, 0xe372532b), + SHA2_WORD64_CONST(0xca273ece, 0xea26619c), SHA2_WORD64_CONST(0xd186b8c7, 0x21c0c207), + SHA2_WORD64_CONST(0xeada7dd6, 0xcde0eb1e), SHA2_WORD64_CONST(0xf57d4f7f, 0xee6ed178), + SHA2_WORD64_CONST(0x06f067aa, 0x72176fba), SHA2_WORD64_CONST(0x0a637dc5, 0xa2c898a6), + SHA2_WORD64_CONST(0x113f9804, 0xbef90dae), SHA2_WORD64_CONST(0x1b710b35, 0x131c471b), + SHA2_WORD64_CONST(0x28db77f5, 0x23047d84), SHA2_WORD64_CONST(0x32caab7b, 0x40c72493), + SHA2_WORD64_CONST(0x3c9ebe0a, 0x15c9bebc), SHA2_WORD64_CONST(0x431d67c4, 0x9c100d4c), + SHA2_WORD64_CONST(0x4cc5d4be, 0xcb3e42b6), SHA2_WORD64_CONST(0x597f299c, 0xfc657e2a), + SHA2_WORD64_CONST(0x5fcb6fab, 0x3ad6faec), SHA2_WORD64_CONST(0x6c44198c, 0x4a475817) +}; + +/* Initial hash value H for SHA-384 */ +static const sha2_word64 sha384_initial_hash_value[8] = { + SHA2_WORD64_CONST(0xcbbb9d5d, 0xc1059ed8), + SHA2_WORD64_CONST(0x629a292a, 0x367cd507), + SHA2_WORD64_CONST(0x9159015a, 0x3070dd17), + SHA2_WORD64_CONST(0x152fecd8, 0xf70e5939), + SHA2_WORD64_CONST(0x67332667, 0xffc00b31), + SHA2_WORD64_CONST(0x8eb44a87, 0x68581511), + SHA2_WORD64_CONST(0xdb0c2e0d, 0x64f98fa7), + SHA2_WORD64_CONST(0x47b5481d, 0xbefa4fa4) +}; + +/* Initial hash value H for SHA-512 */ +static const sha2_word64 sha512_initial_hash_value[8] = { + SHA2_WORD64_CONST(0x6a09e667, 0xf3bcc908), + SHA2_WORD64_CONST(0xbb67ae85, 0x84caa73b), + SHA2_WORD64_CONST(0x3c6ef372, 0xfe94f82b), + SHA2_WORD64_CONST(0xa54ff53a, 0x5f1d36f1), + SHA2_WORD64_CONST(0x510e527f, 0xade682d1), + SHA2_WORD64_CONST(0x9b05688c, 0x2b3e6c1f), + SHA2_WORD64_CONST(0x1f83d9ab, 0xfb41bd6b), + SHA2_WORD64_CONST(0x5be0cd19, 0x137e2179) +}; + +/* + * Constant used by SHA256/384/512_End() functions for converting the + * digest to a readable hexadecimal character string: + */ +static const char sha2_hex_digits[] = "0123456789abcdef"; + + +/*** SHA-256: *********************************************************/ +void SHA256_Init(SHA256_CTX* context) { + if (context == (SHA256_CTX*)0) { + return; + } + MEMCPY_BCOPY(context->state, sha256_initial_hash_value, SHA256_DIGEST_LENGTH); + MEMSET_BZERO(context->buffer, SHA256_BLOCK_LENGTH); + context->bitcount = 0; +} + +#ifdef SHA2_UNROLL_TRANSFORM + +/* Unrolled SHA-256 round macros: */ + +#ifndef WORDS_BIGENDIAN + +#define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \ + REVERSE32(*data++, W256[j]); \ + T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \ + K256[j] + W256[j]; \ + (d) += T1; \ + (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \ + j++ + + +#else + +#define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \ + T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \ + K256[j] + (W256[j] = *data++); \ + (d) += T1; \ + (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \ + j++ + +#endif + +#define ROUND256(a,b,c,d,e,f,g,h) \ + s0 = W256[(j+1)&0x0f]; \ + s0 = sigma0_256(s0); \ + s1 = W256[(j+14)&0x0f]; \ + s1 = sigma1_256(s1); \ + T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[j] + \ + (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \ + (d) += T1; \ + (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \ + j++ + +void SHA256_Transform(SHA256_CTX* context, const sha2_word32* data) { + sha2_word32 a, b, c, d, e, f, g, h, s0, s1; + sha2_word32 T1, *W256; + int j; + + W256 = (sha2_word32*)context->buffer; + + /* Initialize registers with the prev. intermediate value */ + a = context->state[0]; + b = context->state[1]; + c = context->state[2]; + d = context->state[3]; + e = context->state[4]; + f = context->state[5]; + g = context->state[6]; + h = context->state[7]; + + j = 0; + do { + /* Rounds 0 to 15 (unrolled): */ + ROUND256_0_TO_15(a,b,c,d,e,f,g,h); + ROUND256_0_TO_15(h,a,b,c,d,e,f,g); + ROUND256_0_TO_15(g,h,a,b,c,d,e,f); + ROUND256_0_TO_15(f,g,h,a,b,c,d,e); + ROUND256_0_TO_15(e,f,g,h,a,b,c,d); + ROUND256_0_TO_15(d,e,f,g,h,a,b,c); + ROUND256_0_TO_15(c,d,e,f,g,h,a,b); + ROUND256_0_TO_15(b,c,d,e,f,g,h,a); + } while (j < 16); + + /* Now for the remaining rounds to 64: */ + do { + ROUND256(a,b,c,d,e,f,g,h); + ROUND256(h,a,b,c,d,e,f,g); + ROUND256(g,h,a,b,c,d,e,f); + ROUND256(f,g,h,a,b,c,d,e); + ROUND256(e,f,g,h,a,b,c,d); + ROUND256(d,e,f,g,h,a,b,c); + ROUND256(c,d,e,f,g,h,a,b); + ROUND256(b,c,d,e,f,g,h,a); + } while (j < 64); + + /* Compute the current intermediate hash value */ + context->state[0] += a; + context->state[1] += b; + context->state[2] += c; + context->state[3] += d; + context->state[4] += e; + context->state[5] += f; + context->state[6] += g; + context->state[7] += h; + + /* Clean up */ + a = b = c = d = e = f = g = h = T1 = 0; +} + +#else /* SHA2_UNROLL_TRANSFORM */ + +void SHA256_Transform(SHA256_CTX* context, const sha2_word32* data) { + sha2_word32 a, b, c, d, e, f, g, h, s0, s1; + sha2_word32 T1, T2, *W256; + int j; + + W256 = (sha2_word32*)context->buffer; + + /* Initialize registers with the prev. intermediate value */ + a = context->state[0]; + b = context->state[1]; + c = context->state[2]; + d = context->state[3]; + e = context->state[4]; + f = context->state[5]; + g = context->state[6]; + h = context->state[7]; + + j = 0; + do { +#ifndef WORDS_BIGENDIAN + /* Copy data while converting to host byte order */ + REVERSE32(*data++,W256[j]); + /* Apply the SHA-256 compression function to update a..h */ + T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j]; +#else + /* Apply the SHA-256 compression function to update a..h with copy */ + T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + (W256[j] = *data++); +#endif + T2 = Sigma0_256(a) + Maj(a, b, c); + h = g; + g = f; + f = e; + e = d + T1; + d = c; + c = b; + b = a; + a = T1 + T2; + + j++; + } while (j < 16); + + do { + /* Part of the message block expansion: */ + s0 = W256[(j+1)&0x0f]; + s0 = sigma0_256(s0); + s1 = W256[(j+14)&0x0f]; + s1 = sigma1_256(s1); + + /* Apply the SHA-256 compression function to update a..h */ + T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + + (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); + T2 = Sigma0_256(a) + Maj(a, b, c); + h = g; + g = f; + f = e; + e = d + T1; + d = c; + c = b; + b = a; + a = T1 + T2; + + j++; + } while (j < 64); + + /* Compute the current intermediate hash value */ + context->state[0] += a; + context->state[1] += b; + context->state[2] += c; + context->state[3] += d; + context->state[4] += e; + context->state[5] += f; + context->state[6] += g; + context->state[7] += h; + + /* Clean up */ + a = b = c = d = e = f = g = h = T1 = T2 = 0; +} + +#endif /* SHA2_UNROLL_TRANSFORM */ + +void SHA256_Update(SHA256_CTX* context, const sha2_byte *data, size_t len) { + unsigned int freespace, usedspace; + + if (len == 0) { + /* Calling with no data is valid - we do nothing */ + return; + } + + /* Sanity check: */ + assert(context != (SHA256_CTX*)0 && data != (sha2_byte*)0); + + usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH; + if (usedspace > 0) { + /* Calculate how much free space is available in the buffer */ + freespace = SHA256_BLOCK_LENGTH - usedspace; + + if (len >= freespace) { + /* Fill the buffer completely and process it */ + MEMCPY_BCOPY(&context->buffer[usedspace], data, freespace); + context->bitcount += freespace << 3; + len -= freespace; + data += freespace; + SHA256_Transform(context, (sha2_word32*)context->buffer); + } else { + /* The buffer is not yet full */ + MEMCPY_BCOPY(&context->buffer[usedspace], data, len); + context->bitcount += len << 3; + /* Clean up: */ + usedspace = freespace = 0; + return; + } + } + while (len >= SHA256_BLOCK_LENGTH) { + /* Process as many complete blocks as we can */ + SHA256_Transform(context, (sha2_word32*)data); + context->bitcount += SHA256_BLOCK_LENGTH << 3; + len -= SHA256_BLOCK_LENGTH; + data += SHA256_BLOCK_LENGTH; + } + if (len > 0) { + /* There's left-overs, so save 'em */ + MEMCPY_BCOPY(context->buffer, data, len); + context->bitcount += len << 3; + } + /* Clean up: */ + usedspace = freespace = 0; +} + +void SHA256_Final(sha2_byte digest[], SHA256_CTX* context) { + sha2_word32 *d = (sha2_word32*)digest; + unsigned int usedspace; + + /* Sanity check: */ + assert(context != (SHA256_CTX*)0); + + /* If no digest buffer is passed, we don't bother doing this: */ + if (digest != (sha2_byte*)0) { + usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH; +#ifndef WORDS_BIGENDIAN + /* Convert FROM host byte order */ + REVERSE64(context->bitcount,context->bitcount); +#endif + if (usedspace > 0) { + /* Begin padding with a 1 bit: */ + context->buffer[usedspace++] = 0x80; + + if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) { + /* Set-up for the last transform: */ + MEMSET_BZERO(&context->buffer[usedspace], SHA256_SHORT_BLOCK_LENGTH - usedspace); + } else { + if (usedspace < SHA256_BLOCK_LENGTH) { + MEMSET_BZERO(&context->buffer[usedspace], SHA256_BLOCK_LENGTH - usedspace); + } + /* Do second-to-last transform: */ + SHA256_Transform(context, (sha2_word32*)context->buffer); + + /* And set-up for the last transform: */ + MEMSET_BZERO(context->buffer, SHA256_SHORT_BLOCK_LENGTH); + } + } else { + /* Set-up for the last transform: */ + MEMSET_BZERO(context->buffer, SHA256_SHORT_BLOCK_LENGTH); + + /* Begin padding with a 1 bit: */ + *context->buffer = 0x80; + } + /* Set the bit count: */ + *(sha2_word64*)&context->buffer[SHA256_SHORT_BLOCK_LENGTH] = context->bitcount; + + /* Final transform: */ + SHA256_Transform(context, (sha2_word32*)context->buffer); + +#ifndef WORDS_BIGENDIAN + { + /* Convert TO host byte order */ + int j; + for (j = 0; j < 8; j++) { + REVERSE32(context->state[j],context->state[j]); + *d++ = context->state[j]; + } + } +#else + MEMCPY_BCOPY(d, context->state, SHA256_DIGEST_LENGTH); +#endif + } + + /* Clean up state data: */ + MEMSET_BZERO(context, sizeof(context)); + usedspace = 0; +} + +char *SHA256_End(SHA256_CTX* context, char buffer[]) { + sha2_byte digest[SHA256_DIGEST_LENGTH], *d = digest; + int i; + + /* Sanity check: */ + assert(context != (SHA256_CTX*)0); + + if (buffer != (char*)0) { + SHA256_Final(digest, context); + + for (i = 0; i < SHA256_DIGEST_LENGTH; i++) { + *buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4]; + *buffer++ = sha2_hex_digits[*d & 0x0f]; + d++; + } + *buffer = (char)0; + } else { + MEMSET_BZERO(context, sizeof(context)); + } + MEMSET_BZERO(digest, SHA256_DIGEST_LENGTH); + return buffer; +} + +char* SHA256_Data(const sha2_byte* data, size_t len, char digest[SHA256_DIGEST_STRING_LENGTH]) { + SHA256_CTX context; + + SHA256_Init(&context); + SHA256_Update(&context, data, len); + return SHA256_End(&context, digest); +} + + +/*** SHA-512: *********************************************************/ +void SHA512_Init(SHA512_CTX* context) { + if (context == (SHA512_CTX*)0) { + return; + } + MEMCPY_BCOPY(context->state, sha512_initial_hash_value, SHA512_DIGEST_LENGTH); + MEMSET_BZERO(context->buffer, SHA512_BLOCK_LENGTH); + context->bitcount[0] = context->bitcount[1] = 0; +} + +#ifdef SHA2_UNROLL_TRANSFORM + +/* Unrolled SHA-512 round macros: */ +#ifndef WORDS_BIGENDIAN + +#define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \ + REVERSE64(*data++, W512[j]); \ + T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \ + K512[j] + W512[j]; \ + (d) += T1, \ + (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)), \ + j++ + + +#else + +#define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \ + T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \ + K512[j] + (W512[j] = *data++); \ + (d) += T1; \ + (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \ + j++ + +#endif + +#define ROUND512(a,b,c,d,e,f,g,h) \ + s0 = W512[(j+1)&0x0f]; \ + s0 = sigma0_512(s0); \ + s1 = W512[(j+14)&0x0f]; \ + s1 = sigma1_512(s1); \ + T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + K512[j] + \ + (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \ + (d) += T1; \ + (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \ + j++ + +void SHA512_Transform(SHA512_CTX* context, const sha2_word64* data) { + sha2_word64 a, b, c, d, e, f, g, h, s0, s1; + sha2_word64 T1, *W512 = (sha2_word64*)context->buffer; + int j; + + /* Initialize registers with the prev. intermediate value */ + a = context->state[0]; + b = context->state[1]; + c = context->state[2]; + d = context->state[3]; + e = context->state[4]; + f = context->state[5]; + g = context->state[6]; + h = context->state[7]; + + j = 0; + do { + ROUND512_0_TO_15(a,b,c,d,e,f,g,h); + ROUND512_0_TO_15(h,a,b,c,d,e,f,g); + ROUND512_0_TO_15(g,h,a,b,c,d,e,f); + ROUND512_0_TO_15(f,g,h,a,b,c,d,e); + ROUND512_0_TO_15(e,f,g,h,a,b,c,d); + ROUND512_0_TO_15(d,e,f,g,h,a,b,c); + ROUND512_0_TO_15(c,d,e,f,g,h,a,b); + ROUND512_0_TO_15(b,c,d,e,f,g,h,a); + } while (j < 16); + + /* Now for the remaining rounds up to 79: */ + do { + ROUND512(a,b,c,d,e,f,g,h); + ROUND512(h,a,b,c,d,e,f,g); + ROUND512(g,h,a,b,c,d,e,f); + ROUND512(f,g,h,a,b,c,d,e); + ROUND512(e,f,g,h,a,b,c,d); + ROUND512(d,e,f,g,h,a,b,c); + ROUND512(c,d,e,f,g,h,a,b); + ROUND512(b,c,d,e,f,g,h,a); + } while (j < 80); + + /* Compute the current intermediate hash value */ + context->state[0] += a; + context->state[1] += b; + context->state[2] += c; + context->state[3] += d; + context->state[4] += e; + context->state[5] += f; + context->state[6] += g; + context->state[7] += h; + + /* Clean up */ + a = b = c = d = e = f = g = h = T1 = 0; +} + +#else /* SHA2_UNROLL_TRANSFORM */ + +void SHA512_Transform(SHA512_CTX* context, const sha2_word64* data) { + sha2_word64 a, b, c, d, e, f, g, h, s0, s1; + sha2_word64 T1, T2, *W512 = (sha2_word64*)context->buffer; + int j; + + /* Initialize registers with the prev. intermediate value */ + a = context->state[0]; + b = context->state[1]; + c = context->state[2]; + d = context->state[3]; + e = context->state[4]; + f = context->state[5]; + g = context->state[6]; + h = context->state[7]; + + j = 0; + do { +#ifndef WORDS_BIGENDIAN + /* Convert TO host byte order */ + REVERSE64(*data++, W512[j]); + /* Apply the SHA-512 compression function to update a..h */ + T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j]; +#else + /* Apply the SHA-512 compression function to update a..h with copy */ + T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + (W512[j] = *data++); +#endif + T2 = Sigma0_512(a) + Maj(a, b, c); + h = g; + g = f; + f = e; + e = d + T1; + d = c; + c = b; + b = a; + a = T1 + T2; + + j++; + } while (j < 16); + + do { + /* Part of the message block expansion: */ + s0 = W512[(j+1)&0x0f]; + s0 = sigma0_512(s0); + s1 = W512[(j+14)&0x0f]; + s1 = sigma1_512(s1); + + /* Apply the SHA-512 compression function to update a..h */ + T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + + (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); + T2 = Sigma0_512(a) + Maj(a, b, c); + h = g; + g = f; + f = e; + e = d + T1; + d = c; + c = b; + b = a; + a = T1 + T2; + + j++; + } while (j < 80); + + /* Compute the current intermediate hash value */ + context->state[0] += a; + context->state[1] += b; + context->state[2] += c; + context->state[3] += d; + context->state[4] += e; + context->state[5] += f; + context->state[6] += g; + context->state[7] += h; + + /* Clean up */ + a = b = c = d = e = f = g = h = T1 = T2 = 0; +} + +#endif /* SHA2_UNROLL_TRANSFORM */ + +void SHA512_Update(SHA512_CTX* context, const sha2_byte *data, size_t len) { + unsigned int freespace, usedspace; + + if (len == 0) { + /* Calling with no data is valid - we do nothing */ + return; + } + + /* Sanity check: */ + assert(context != (SHA512_CTX*)0 && data != (sha2_byte*)0); + + usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH; + if (usedspace > 0) { + /* Calculate how much free space is available in the buffer */ + freespace = SHA512_BLOCK_LENGTH - usedspace; + + if (len >= freespace) { + /* Fill the buffer completely and process it */ + MEMCPY_BCOPY(&context->buffer[usedspace], data, freespace); + ADDINC128(context->bitcount, freespace << 3); + len -= freespace; + data += freespace; + SHA512_Transform(context, (sha2_word64*)context->buffer); + } else { + /* The buffer is not yet full */ + MEMCPY_BCOPY(&context->buffer[usedspace], data, len); + ADDINC128(context->bitcount, len << 3); + /* Clean up: */ + usedspace = freespace = 0; + return; + } + } + while (len >= SHA512_BLOCK_LENGTH) { + /* Process as many complete blocks as we can */ + SHA512_Transform(context, (sha2_word64*)data); + ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3); + len -= SHA512_BLOCK_LENGTH; + data += SHA512_BLOCK_LENGTH; + } + if (len > 0) { + /* There's left-overs, so save 'em */ + MEMCPY_BCOPY(context->buffer, data, len); + ADDINC128(context->bitcount, len << 3); + } + /* Clean up: */ + usedspace = freespace = 0; +} + +void SHA512_Last(SHA512_CTX* context) { + unsigned int usedspace; + + usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH; +#ifndef WORDS_BIGENDIAN + /* Convert FROM host byte order */ + REVERSE64(context->bitcount[0],context->bitcount[0]); + REVERSE64(context->bitcount[1],context->bitcount[1]); +#endif + if (usedspace > 0) { + /* Begin padding with a 1 bit: */ + context->buffer[usedspace++] = 0x80; + + if (usedspace <= SHA512_SHORT_BLOCK_LENGTH) { + /* Set-up for the last transform: */ + MEMSET_BZERO(&context->buffer[usedspace], SHA512_SHORT_BLOCK_LENGTH - usedspace); + } else { + if (usedspace < SHA512_BLOCK_LENGTH) { + MEMSET_BZERO(&context->buffer[usedspace], SHA512_BLOCK_LENGTH - usedspace); + } + /* Do second-to-last transform: */ + SHA512_Transform(context, (sha2_word64*)context->buffer); + + /* And set-up for the last transform: */ + MEMSET_BZERO(context->buffer, SHA512_BLOCK_LENGTH - 2); + } + } else { + /* Prepare for final transform: */ + MEMSET_BZERO(context->buffer, SHA512_SHORT_BLOCK_LENGTH); + + /* Begin padding with a 1 bit: */ + *context->buffer = 0x80; + } + /* Store the length of input data (in bits): */ + *(sha2_word64*)&context->buffer[SHA512_SHORT_BLOCK_LENGTH] = context->bitcount[1]; + *(sha2_word64*)&context->buffer[SHA512_SHORT_BLOCK_LENGTH+8] = context->bitcount[0]; + + /* Final transform: */ + SHA512_Transform(context, (sha2_word64*)context->buffer); +} + +void SHA512_Final(sha2_byte digest[], SHA512_CTX* context) { + sha2_word64 *d = (sha2_word64*)digest; + + /* Sanity check: */ + assert(context != (SHA512_CTX*)0); + + /* If no digest buffer is passed, we don't bother doing this: */ + if (digest != (sha2_byte*)0) { + SHA512_Last(context); + + /* Save the hash data for output: */ +#ifndef WORDS_BIGENDIAN + { + /* Convert TO host byte order */ + int j; + for (j = 0; j < 8; j++) { + REVERSE64(context->state[j],context->state[j]); + *d++ = context->state[j]; + } + } +#else + MEMCPY_BCOPY(d, context->state, SHA512_DIGEST_LENGTH); +#endif + } + + /* Zero out state data */ + MEMSET_BZERO(context, sizeof(context)); +} + +char *SHA512_End(SHA512_CTX* context, char buffer[]) { + sha2_byte digest[SHA512_DIGEST_LENGTH], *d = digest; + int i; + + /* Sanity check: */ + assert(context != (SHA512_CTX*)0); + + if (buffer != (char*)0) { + SHA512_Final(digest, context); + + for (i = 0; i < SHA512_DIGEST_LENGTH; i++) { + *buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4]; + *buffer++ = sha2_hex_digits[*d & 0x0f]; + d++; + } + *buffer = (char)0; + } else { + MEMSET_BZERO(context, sizeof(context)); + } + MEMSET_BZERO(digest, SHA512_DIGEST_LENGTH); + return buffer; +} + +char* SHA512_Data(const sha2_byte* data, size_t len, char digest[SHA512_DIGEST_STRING_LENGTH]) { + SHA512_CTX context; + + SHA512_Init(&context); + SHA512_Update(&context, data, len); + return SHA512_End(&context, digest); +} + + +/*** SHA-384: *********************************************************/ +void SHA384_Init(SHA384_CTX* context) { + if (context == (SHA384_CTX*)0) { + return; + } + MEMCPY_BCOPY(context->state, sha384_initial_hash_value, SHA512_DIGEST_LENGTH); + MEMSET_BZERO(context->buffer, SHA384_BLOCK_LENGTH); + context->bitcount[0] = context->bitcount[1] = 0; +} + +void SHA384_Update(SHA384_CTX* context, const sha2_byte* data, size_t len) { + SHA512_Update((SHA512_CTX*)context, data, len); +} + +void SHA384_Final(sha2_byte digest[], SHA384_CTX* context) { + sha2_word64 *d = (sha2_word64*)digest; + + /* Sanity check: */ + assert(context != (SHA384_CTX*)0); + + /* If no digest buffer is passed, we don't bother doing this: */ + if (digest != (sha2_byte*)0) { + SHA512_Last((SHA512_CTX*)context); + + /* Save the hash data for output: */ +#ifndef WORDS_BIGENDIAN + { + /* Convert TO host byte order */ + int j; + for (j = 0; j < 6; j++) { + REVERSE64(context->state[j],context->state[j]); + *d++ = context->state[j]; + } + } +#else + MEMCPY_BCOPY(d, context->state, SHA384_DIGEST_LENGTH); +#endif + } + + /* Zero out state data */ + MEMSET_BZERO(context, sizeof(context)); +} + +char *SHA384_End(SHA384_CTX* context, char buffer[]) { + sha2_byte digest[SHA384_DIGEST_LENGTH], *d = digest; + int i; + + /* Sanity check: */ + assert(context != (SHA384_CTX*)0); + + if (buffer != (char*)0) { + SHA384_Final(digest, context); + + for (i = 0; i < SHA384_DIGEST_LENGTH; i++) { + *buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4]; + *buffer++ = sha2_hex_digits[*d & 0x0f]; + d++; + } + *buffer = (char)0; + } else { + MEMSET_BZERO(context, sizeof(context)); + } + MEMSET_BZERO(digest, SHA384_DIGEST_LENGTH); + return buffer; +} + +char* SHA384_Data(const sha2_byte* data, size_t len, char digest[SHA384_DIGEST_STRING_LENGTH]) { + SHA384_CTX context; + + SHA384_Init(&context); + SHA384_Update(&context, data, len); + return SHA384_End(&context, digest); +} diff --git a/dll/win32/rsaenh/sha2.h b/dll/win32/rsaenh/sha2.h new file mode 100644 index 00000000000..2dda41230c1 --- /dev/null +++ b/dll/win32/rsaenh/sha2.h @@ -0,0 +1,89 @@ +/* + * FILE: sha2.h + * AUTHOR: Aaron D. Gifford - http://www.aarongifford.com/ + * + * Copyright (c) 2000-2001, Aaron D. Gifford + * All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * 3. Neither the name of the copyright holder nor the names of contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND + * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS + * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) + * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF + * SUCH DAMAGE. + */ + +#ifndef __SHA2_H__ +#define __SHA2_H__ + +#include + +/*** SHA-256/384/512 Various Length Definitions ***********************/ +#define SHA256_BLOCK_LENGTH 64 +#define SHA256_DIGEST_LENGTH 32 +#define SHA256_DIGEST_STRING_LENGTH (SHA256_DIGEST_LENGTH * 2 + 1) +#define SHA384_BLOCK_LENGTH 128 +#define SHA384_DIGEST_LENGTH 48 +#define SHA384_DIGEST_STRING_LENGTH (SHA384_DIGEST_LENGTH * 2 + 1) +#define SHA512_BLOCK_LENGTH 128 +#define SHA512_DIGEST_LENGTH 64 +#define SHA512_DIGEST_STRING_LENGTH (SHA512_DIGEST_LENGTH * 2 + 1) + + +/*** SHA-256/384/512 Context Structures *******************************/ +typedef UINT8 sha2_byte; /* Exactly 1 byte */ +typedef UINT32 sha2_word32; /* Exactly 4 bytes */ +typedef UINT64 sha2_word64; /* Exactly 8 bytes */ + +typedef struct _SHA256_CTX { + sha2_word32 state[8]; + sha2_word64 bitcount; + sha2_byte buffer[SHA256_BLOCK_LENGTH]; +} SHA256_CTX; +typedef struct _SHA512_CTX { + sha2_word64 state[8]; + sha2_word64 bitcount[2]; + sha2_byte buffer[SHA512_BLOCK_LENGTH]; +} SHA512_CTX; + +typedef SHA512_CTX SHA384_CTX; + + +/*** SHA-256/384/512 Function Prototypes ******************************/ + +void SHA256_Init(SHA256_CTX *); +void SHA256_Update(SHA256_CTX*, const sha2_byte*, size_t); +void SHA256_Final(sha2_byte[SHA256_DIGEST_LENGTH], SHA256_CTX*); +char* SHA256_End(SHA256_CTX*, char[SHA256_DIGEST_STRING_LENGTH]); +char* SHA256_Data(const sha2_byte*, size_t, char[SHA256_DIGEST_STRING_LENGTH]); + +void SHA384_Init(SHA384_CTX*); +void SHA384_Update(SHA384_CTX*, const sha2_byte*, size_t); +void SHA384_Final(sha2_byte[SHA384_DIGEST_LENGTH], SHA384_CTX*); +char* SHA384_End(SHA384_CTX*, char[SHA384_DIGEST_STRING_LENGTH]); +char* SHA384_Data(const sha2_byte*, size_t, char[SHA384_DIGEST_STRING_LENGTH]); + +void SHA512_Init(SHA512_CTX*); +void SHA512_Update(SHA512_CTX*, const sha2_byte*, size_t); +void SHA512_Final(sha2_byte[SHA512_DIGEST_LENGTH], SHA512_CTX*); +char* SHA512_End(SHA512_CTX*, char[SHA512_DIGEST_STRING_LENGTH]); +char* SHA512_Data(const sha2_byte*, size_t, char[SHA512_DIGEST_STRING_LENGTH]); + +#endif /* __SHA2_H__ */