9bb8d7af14fe4a0733a6d156fbecfbf8c9b9d269
[reactos.git] / reactos / lib / rtl / i386 / aulldvrm_asm.s
1 /*
2 * COPYRIGHT: See COPYING in the top level directory
3 * PROJECT: ReactOS kernel
4 * PURPOSE: Run-Time Library
5 * FILE: lib/rtl/i386/aulldvrm.S
6 * PROGRAMER: Alex Ionescu (alex@relsoft.net)
7 * Eric Kohl (ekohl@rz-online.de)
8 *
9 * Copyright (C) 2002 Michael Ringgaard.
10 * All rights reserved.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 *
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 * 3. Neither the name of the project nor the names of its contributors
22 * may be used to endorse or promote products derived from this software
23 * without specific prior written permission.
24
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES// LOSS OF USE, DATA, OR PROFITS// OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 */
37
38 .globl __aulldvrm
39
40 .intel_syntax noprefix
41
42 /* FUNCTIONS ***************************************************************/
43
44 __aulldvrm:
45
46 // ulldvrm - unsigned long divide and remainder
47 //
48 // Purpose:
49 // Does a unsigned long divide and remainder of the arguments. Arguments
50 // are not changed.
51 //
52 // Entry:
53 // Arguments are passed on the stack:
54 // 1st pushed: divisor (QWORD)
55 // 2nd pushed: dividend (QWORD)
56 //
57 // Exit:
58 // EDX:EAX contains the quotient (dividend/divisor)
59 // EBX:ECX contains the remainder (divided % divisor)
60 // NOTE: this routine removes the parameters from the stack.
61 //
62 // Uses:
63 // ECX
64 //
65 push esi
66
67 // Set up the local stack and save the index registers. When this is done
68 // the stack frame will look as follows (assuming that the expression a/b will
69 // generate a call to aulldvrm(a, b)):
70 //
71 // -----------------
72 // | |
73 // |---------------|
74 // | |
75 // |--divisor (b)--|
76 // | |
77 // |---------------|
78 // | |
79 // |--dividend (a)-|
80 // | |
81 // |---------------|
82 // | return addr** |
83 // |---------------|
84 // ESP---->| ESI |
85 // -----------------
86 //
87
88 #undef DVNDLO
89 #undef DVNDHI
90 #undef DVSRLO
91 #undef DVSRHI
92 #define DVNDLO [esp + 8] // stack address of dividend (a)
93 #define DVNDHI [esp + 8] // stack address of dividend (a)
94 #define DVSRLO [esp + 16] // stack address of divisor (b)
95 #define DVSRHI [esp + 20] // stack address of divisor (b)
96
97 //
98 // Now do the divide. First look to see if the divisor is less than 4194304K.
99 // If so, then we can use a simple algorithm with word divides, otherwise
100 // things get a little more complex.
101 //
102
103 mov eax,DVSRHI // check to see if divisor < 4194304K
104 or eax,eax
105 jnz short .....L1 // nope, gotta do this the hard way
106 mov ecx,DVSRLO // load divisor
107 mov eax,DVNDHI // load high word of dividend
108 xor edx,edx
109 div ecx // get high order bits of quotient
110 mov ebx,eax // save high bits of quotient
111 mov eax,DVNDLO // edx:eax <- remainder:lo word of dividend
112 div ecx // get low order bits of quotient
113 mov esi,eax // ebx:esi <- quotient
114
115 //
116 // Now we need to do a multiply so that we can compute the remainder.
117 //
118 mov eax,ebx // set up high word of quotient
119 mul dword ptr DVSRLO // HIWORD(QUOT) * DVSR
120 mov ecx,eax // save the result in ecx
121 mov eax,esi // set up low word of quotient
122 mul dword ptr DVSRLO // LOWORD(QUOT) * DVSR
123 add edx,ecx // EDX:EAX = QUOT * DVSR
124 jmp short .....L2 // complete remainder calculation
125
126 //
127 // Here we do it the hard way. Remember, eax contains DVSRHI
128 //
129
130 .....L1:
131 mov ecx,eax // ecx:ebx <- divisor
132 mov ebx,DVSRLO
133 mov edx,DVNDHI // edx:eax <- dividend
134 mov eax,DVNDLO
135 .....L3:
136 shr ecx,1 // shift divisor right one bit// hi bit <- 0
137 rcr ebx,1
138 shr edx,1 // shift dividend right one bit// hi bit <- 0
139 rcr eax,1
140 or ecx,ecx
141 jnz short .....L3 // loop until divisor < 4194304K
142 div ebx // now divide, ignore remainder
143 mov esi,eax // save quotient
144
145 //
146 // We may be off by one, so to check, we will multiply the quotient
147 // by the divisor and check the result against the orignal dividend
148 // Note that we must also check for overflow, which can occur if the
149 // dividend is close to 2**64 and the quotient is off by 1.
150 //
151
152 mul dword ptr DVSRHI // QUOT * DVSRHI
153 mov ecx,eax
154 mov eax,DVSRLO
155 mul esi // QUOT * DVSRLO
156 add edx,ecx // EDX:EAX = QUOT * DVSR
157 jc short .....L4 // carry means Quotient is off by 1
158
159 //
160 // do long compare here between original dividend and the result of the
161 // multiply in edx:eax. If original is larger or equal, we are ok, otherwise
162 // subtract one (1) from the quotient.
163 //
164
165 cmp edx,DVNDHI // compare hi words of result and original
166 ja short .....L4 // if result > original, do subtract
167 jb short .....L5 // if result < original, we are ok
168 cmp eax,DVNDLO // hi words are equal, compare lo words
169 jbe short .....L5 // if less or equal we are ok, else subtract
170 .....L4:
171 dec esi // subtract 1 from quotient
172 sub eax,DVSRLO // subtract divisor from result
173 sbb edx,DVSRHI
174 .....L5:
175 xor ebx,ebx // ebx:esi <- quotient
176
177 .....L2:
178 //
179 // Calculate remainder by subtracting the result from the original dividend.
180 // Since the result is already in a register, we will do the subtract in the
181 // opposite direction and negate the result.
182 //
183
184 sub eax,DVNDLO // subtract dividend from result
185 sbb edx,DVNDHI
186 neg edx // otherwise, negate the result
187 neg eax
188 sbb edx,0
189
190 //
191 // Now we need to get the quotient into edx:eax and the remainder into ebx:ecx.
192 //
193 mov ecx,edx
194 mov edx,ebx
195 mov ebx,ecx
196 mov ecx,eax
197 mov eax,esi
198 //
199 // Just the cleanup left to do. edx:eax contains the quotient.
200 // Restore the saved registers and return.
201 //
202
203 pop esi
204
205 ret 16