reshuffling of dlls
[reactos.git] / reactos / dll / glu32 / libtess / geom.c
1 /*
2 ** License Applicability. Except to the extent portions of this file are
3 ** made subject to an alternative license as permitted in the SGI Free
4 ** Software License B, Version 1.1 (the "License"), the contents of this
5 ** file are subject only to the provisions of the License. You may not use
6 ** this file except in compliance with the License. You may obtain a copy
7 ** of the License at Silicon Graphics, Inc., attn: Legal Services, 1600
8 ** Amphitheatre Parkway, Mountain View, CA 94043-1351, or at:
9 **
10 ** http://oss.sgi.com/projects/FreeB
11 **
12 ** Note that, as provided in the License, the Software is distributed on an
13 ** "AS IS" basis, with ALL EXPRESS AND IMPLIED WARRANTIES AND CONDITIONS
14 ** DISCLAIMED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES AND
15 ** CONDITIONS OF MERCHANTABILITY, SATISFACTORY QUALITY, FITNESS FOR A
16 ** PARTICULAR PURPOSE, AND NON-INFRINGEMENT.
17 **
18 ** Original Code. The Original Code is: OpenGL Sample Implementation,
19 ** Version 1.2.1, released January 26, 2000, developed by Silicon Graphics,
20 ** Inc. The Original Code is Copyright (c) 1991-2000 Silicon Graphics, Inc.
21 ** Copyright in any portions created by third parties is as indicated
22 ** elsewhere herein. All Rights Reserved.
23 **
24 ** Additional Notice Provisions: The application programming interfaces
25 ** established by SGI in conjunction with the Original Code are The
26 ** OpenGL(R) Graphics System: A Specification (Version 1.2.1), released
27 ** April 1, 1999; The OpenGL(R) Graphics System Utility Library (Version
28 ** 1.3), released November 4, 1998; and OpenGL(R) Graphics with the X
29 ** Window System(R) (Version 1.3), released October 19, 1998. This software
30 ** was created using the OpenGL(R) version 1.2.1 Sample Implementation
31 ** published by SGI, but has not been independently verified as being
32 ** compliant with the OpenGL(R) version 1.2.1 Specification.
33 **
34 */
35 /*
36 ** Author: Eric Veach, July 1994.
37 **
38 ** $Date$ $Revision: 1.1 $
39 ** $Header: /cygdrive/c/RCVS/CVS/ReactOS/reactos/lib/glu32/libtess/geom.c,v 1.1 2004/02/02 16:39:15 navaraf Exp $
40 */
41
42 #include "gluos.h"
43 #include <assert.h>
44 #include "mesh.h"
45 #include "geom.h"
46
47 int __gl_vertLeq( GLUvertex *u, GLUvertex *v )
48 {
49 /* Returns TRUE if u is lexicographically <= v. */
50
51 return VertLeq( u, v );
52 }
53
54 GLdouble __gl_edgeEval( GLUvertex *u, GLUvertex *v, GLUvertex *w )
55 {
56 /* Given three vertices u,v,w such that VertLeq(u,v) && VertLeq(v,w),
57 * evaluates the t-coord of the edge uw at the s-coord of the vertex v.
58 * Returns v->t - (uw)(v->s), ie. the signed distance from uw to v.
59 * If uw is vertical (and thus passes thru v), the result is zero.
60 *
61 * The calculation is extremely accurate and stable, even when v
62 * is very close to u or w. In particular if we set v->t = 0 and
63 * let r be the negated result (this evaluates (uw)(v->s)), then
64 * r is guaranteed to satisfy MIN(u->t,w->t) <= r <= MAX(u->t,w->t).
65 */
66 GLdouble gapL, gapR;
67
68 assert( VertLeq( u, v ) && VertLeq( v, w ));
69
70 gapL = v->s - u->s;
71 gapR = w->s - v->s;
72
73 if( gapL + gapR > 0 ) {
74 if( gapL < gapR ) {
75 return (v->t - u->t) + (u->t - w->t) * (gapL / (gapL + gapR));
76 } else {
77 return (v->t - w->t) + (w->t - u->t) * (gapR / (gapL + gapR));
78 }
79 }
80 /* vertical line */
81 return 0;
82 }
83
84 GLdouble __gl_edgeSign( GLUvertex *u, GLUvertex *v, GLUvertex *w )
85 {
86 /* Returns a number whose sign matches EdgeEval(u,v,w) but which
87 * is cheaper to evaluate. Returns > 0, == 0 , or < 0
88 * as v is above, on, or below the edge uw.
89 */
90 GLdouble gapL, gapR;
91
92 assert( VertLeq( u, v ) && VertLeq( v, w ));
93
94 gapL = v->s - u->s;
95 gapR = w->s - v->s;
96
97 if( gapL + gapR > 0 ) {
98 return (v->t - w->t) * gapL + (v->t - u->t) * gapR;
99 }
100 /* vertical line */
101 return 0;
102 }
103
104
105 /***********************************************************************
106 * Define versions of EdgeSign, EdgeEval with s and t transposed.
107 */
108
109 GLdouble __gl_transEval( GLUvertex *u, GLUvertex *v, GLUvertex *w )
110 {
111 /* Given three vertices u,v,w such that TransLeq(u,v) && TransLeq(v,w),
112 * evaluates the t-coord of the edge uw at the s-coord of the vertex v.
113 * Returns v->s - (uw)(v->t), ie. the signed distance from uw to v.
114 * If uw is vertical (and thus passes thru v), the result is zero.
115 *
116 * The calculation is extremely accurate and stable, even when v
117 * is very close to u or w. In particular if we set v->s = 0 and
118 * let r be the negated result (this evaluates (uw)(v->t)), then
119 * r is guaranteed to satisfy MIN(u->s,w->s) <= r <= MAX(u->s,w->s).
120 */
121 GLdouble gapL, gapR;
122
123 assert( TransLeq( u, v ) && TransLeq( v, w ));
124
125 gapL = v->t - u->t;
126 gapR = w->t - v->t;
127
128 if( gapL + gapR > 0 ) {
129 if( gapL < gapR ) {
130 return (v->s - u->s) + (u->s - w->s) * (gapL / (gapL + gapR));
131 } else {
132 return (v->s - w->s) + (w->s - u->s) * (gapR / (gapL + gapR));
133 }
134 }
135 /* vertical line */
136 return 0;
137 }
138
139 GLdouble __gl_transSign( GLUvertex *u, GLUvertex *v, GLUvertex *w )
140 {
141 /* Returns a number whose sign matches TransEval(u,v,w) but which
142 * is cheaper to evaluate. Returns > 0, == 0 , or < 0
143 * as v is above, on, or below the edge uw.
144 */
145 GLdouble gapL, gapR;
146
147 assert( TransLeq( u, v ) && TransLeq( v, w ));
148
149 gapL = v->t - u->t;
150 gapR = w->t - v->t;
151
152 if( gapL + gapR > 0 ) {
153 return (v->s - w->s) * gapL + (v->s - u->s) * gapR;
154 }
155 /* vertical line */
156 return 0;
157 }
158
159
160 int __gl_vertCCW( GLUvertex *u, GLUvertex *v, GLUvertex *w )
161 {
162 /* For almost-degenerate situations, the results are not reliable.
163 * Unless the floating-point arithmetic can be performed without
164 * rounding errors, *any* implementation will give incorrect results
165 * on some degenerate inputs, so the client must have some way to
166 * handle this situation.
167 */
168 return (u->s*(v->t - w->t) + v->s*(w->t - u->t) + w->s*(u->t - v->t)) >= 0;
169 }
170
171 /* Given parameters a,x,b,y returns the value (b*x+a*y)/(a+b),
172 * or (x+y)/2 if a==b==0. It requires that a,b >= 0, and enforces
173 * this in the rare case that one argument is slightly negative.
174 * The implementation is extremely stable numerically.
175 * In particular it guarantees that the result r satisfies
176 * MIN(x,y) <= r <= MAX(x,y), and the results are very accurate
177 * even when a and b differ greatly in magnitude.
178 */
179 #define RealInterpolate(a,x,b,y) \
180 (a = (a < 0) ? 0 : a, b = (b < 0) ? 0 : b, \
181 ((a <= b) ? ((b == 0) ? ((x+y) / 2) \
182 : (x + (y-x) * (a/(a+b)))) \
183 : (y + (x-y) * (b/(a+b)))))
184
185 #ifndef FOR_TRITE_TEST_PROGRAM
186 #define Interpolate(a,x,b,y) RealInterpolate(a,x,b,y)
187 #else
188
189 /* Claim: the ONLY property the sweep algorithm relies on is that
190 * MIN(x,y) <= r <= MAX(x,y). This is a nasty way to test that.
191 */
192 #include <stdlib.h>
193 extern int RandomInterpolate;
194
195 GLdouble Interpolate( GLdouble a, GLdouble x, GLdouble b, GLdouble y)
196 {
197 printf("*********************%d\n",RandomInterpolate);
198 if( RandomInterpolate ) {
199 a = 1.2 * drand48() - 0.1;
200 a = (a < 0) ? 0 : ((a > 1) ? 1 : a);
201 b = 1.0 - a;
202 }
203 return RealInterpolate(a,x,b,y);
204 }
205
206 #endif
207
208 #define Swap(a,b) if (1) { GLUvertex *t = a; a = b; b = t; } else
209
210 void __gl_edgeIntersect( GLUvertex *o1, GLUvertex *d1,
211 GLUvertex *o2, GLUvertex *d2,
212 GLUvertex *v )
213 /* Given edges (o1,d1) and (o2,d2), compute their point of intersection.
214 * The computed point is guaranteed to lie in the intersection of the
215 * bounding rectangles defined by each edge.
216 */
217 {
218 GLdouble z1, z2;
219
220 /* This is certainly not the most efficient way to find the intersection
221 * of two line segments, but it is very numerically stable.
222 *
223 * Strategy: find the two middle vertices in the VertLeq ordering,
224 * and interpolate the intersection s-value from these. Then repeat
225 * using the TransLeq ordering to find the intersection t-value.
226 */
227
228 if( ! VertLeq( o1, d1 )) { Swap( o1, d1 ); }
229 if( ! VertLeq( o2, d2 )) { Swap( o2, d2 ); }
230 if( ! VertLeq( o1, o2 )) { Swap( o1, o2 ); Swap( d1, d2 ); }
231
232 if( ! VertLeq( o2, d1 )) {
233 /* Technically, no intersection -- do our best */
234 v->s = (o2->s + d1->s) / 2;
235 } else if( VertLeq( d1, d2 )) {
236 /* Interpolate between o2 and d1 */
237 z1 = EdgeEval( o1, o2, d1 );
238 z2 = EdgeEval( o2, d1, d2 );
239 if( z1+z2 < 0 ) { z1 = -z1; z2 = -z2; }
240 v->s = Interpolate( z1, o2->s, z2, d1->s );
241 } else {
242 /* Interpolate between o2 and d2 */
243 z1 = EdgeSign( o1, o2, d1 );
244 z2 = -EdgeSign( o1, d2, d1 );
245 if( z1+z2 < 0 ) { z1 = -z1; z2 = -z2; }
246 v->s = Interpolate( z1, o2->s, z2, d2->s );
247 }
248
249 /* Now repeat the process for t */
250
251 if( ! TransLeq( o1, d1 )) { Swap( o1, d1 ); }
252 if( ! TransLeq( o2, d2 )) { Swap( o2, d2 ); }
253 if( ! TransLeq( o1, o2 )) { Swap( o1, o2 ); Swap( d1, d2 ); }
254
255 if( ! TransLeq( o2, d1 )) {
256 /* Technically, no intersection -- do our best */
257 v->t = (o2->t + d1->t) / 2;
258 } else if( TransLeq( d1, d2 )) {
259 /* Interpolate between o2 and d1 */
260 z1 = TransEval( o1, o2, d1 );
261 z2 = TransEval( o2, d1, d2 );
262 if( z1+z2 < 0 ) { z1 = -z1; z2 = -z2; }
263 v->t = Interpolate( z1, o2->t, z2, d1->t );
264 } else {
265 /* Interpolate between o2 and d2 */
266 z1 = TransSign( o1, o2, d1 );
267 z2 = -TransSign( o1, d2, d1 );
268 if( z1+z2 < 0 ) { z1 = -z1; z2 = -z2; }
269 v->t = Interpolate( z1, o2->t, z2, d2->t );
270 }
271 }