[OPENGL]
[reactos.git] / reactos / dll / opengl / mesa / src / glsl / ast_function.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 #include "glsl_symbol_table.h"
25 #include "ast.h"
26 #include "glsl_types.h"
27 #include "ir.h"
28 #include "main/core.h" /* for MIN2 */
29
30 static ir_rvalue *
31 convert_component(ir_rvalue *src, const glsl_type *desired_type);
32
33 bool
34 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
35 struct _mesa_glsl_parse_state *state);
36
37 static unsigned
38 process_parameters(exec_list *instructions, exec_list *actual_parameters,
39 exec_list *parameters,
40 struct _mesa_glsl_parse_state *state)
41 {
42 unsigned count = 0;
43
44 foreach_list (n, parameters) {
45 ast_node *const ast = exec_node_data(ast_node, n, link);
46 ir_rvalue *result = ast->hir(instructions, state);
47
48 ir_constant *const constant = result->constant_expression_value();
49 if (constant != NULL)
50 result = constant;
51
52 actual_parameters->push_tail(result);
53 count++;
54 }
55
56 return count;
57 }
58
59
60 /**
61 * Generate a source prototype for a function signature
62 *
63 * \param return_type Return type of the function. May be \c NULL.
64 * \param name Name of the function.
65 * \param parameters List of \c ir_instruction nodes representing the
66 * parameter list for the function. This may be either a
67 * formal (\c ir_variable) or actual (\c ir_rvalue)
68 * parameter list. Only the type is used.
69 *
70 * \return
71 * A ralloced string representing the prototype of the function.
72 */
73 char *
74 prototype_string(const glsl_type *return_type, const char *name,
75 exec_list *parameters)
76 {
77 char *str = NULL;
78
79 if (return_type != NULL)
80 str = ralloc_asprintf(NULL, "%s ", return_type->name);
81
82 ralloc_asprintf_append(&str, "%s(", name);
83
84 const char *comma = "";
85 foreach_list(node, parameters) {
86 const ir_instruction *const param = (ir_instruction *) node;
87
88 ralloc_asprintf_append(&str, "%s%s", comma, param->type->name);
89 comma = ", ";
90 }
91
92 ralloc_strcat(&str, ")");
93 return str;
94 }
95
96 /**
97 * If a function call is generated, \c call_ir will point to it on exit.
98 * Otherwise \c call_ir will be set to \c NULL.
99 */
100 static ir_rvalue *
101 generate_call(exec_list *instructions, ir_function_signature *sig,
102 YYLTYPE *loc, exec_list *actual_parameters,
103 ir_call **call_ir,
104 struct _mesa_glsl_parse_state *state)
105 {
106 void *ctx = state;
107 exec_list post_call_conversions;
108
109 *call_ir = NULL;
110
111 /* Verify that 'out' and 'inout' actual parameters are lvalues. This
112 * isn't done in ir_function::matching_signature because that function
113 * cannot generate the necessary diagnostics.
114 *
115 * Also, validate that 'const_in' formal parameters (an extension of our
116 * IR) correspond to ir_constant actual parameters.
117 *
118 * Also, perform implicit conversion of arguments. Note: to implicitly
119 * convert out parameters, we need to place them in a temporary
120 * variable, and do the conversion after the call takes place. Since we
121 * haven't emitted the call yet, we'll place the post-call conversions
122 * in a temporary exec_list, and emit them later.
123 */
124 exec_list_iterator actual_iter = actual_parameters->iterator();
125 exec_list_iterator formal_iter = sig->parameters.iterator();
126
127 while (actual_iter.has_next()) {
128 ir_rvalue *actual = (ir_rvalue *) actual_iter.get();
129 ir_variable *formal = (ir_variable *) formal_iter.get();
130
131 assert(actual != NULL);
132 assert(formal != NULL);
133
134 if (formal->mode == ir_var_const_in && !actual->as_constant()) {
135 _mesa_glsl_error(loc, state,
136 "parameter `%s' must be a constant expression",
137 formal->name);
138 return ir_call::get_error_instruction(ctx);
139 }
140
141 if ((formal->mode == ir_var_out)
142 || (formal->mode == ir_var_inout)) {
143 const char *mode = NULL;
144 switch (formal->mode) {
145 case ir_var_out: mode = "out"; break;
146 case ir_var_inout: mode = "inout"; break;
147 default: assert(false); break;
148 }
149 /* FIXME: 'loc' is incorrect (as of 2011-01-21). It is always
150 * FIXME: 0:0(0).
151 */
152 if (actual->variable_referenced()
153 && actual->variable_referenced()->read_only) {
154 _mesa_glsl_error(loc, state,
155 "function parameter '%s %s' references the "
156 "read-only variable '%s'",
157 mode, formal->name,
158 actual->variable_referenced()->name);
159
160 } else if (!actual->is_lvalue()) {
161 _mesa_glsl_error(loc, state,
162 "function parameter '%s %s' is not an lvalue",
163 mode, formal->name);
164 }
165 }
166
167 if (formal->type->is_numeric() || formal->type->is_boolean()) {
168 switch (formal->mode) {
169 case ir_var_const_in:
170 case ir_var_in: {
171 ir_rvalue *converted
172 = convert_component(actual, formal->type);
173 actual->replace_with(converted);
174 break;
175 }
176 case ir_var_out:
177 if (actual->type != formal->type) {
178 /* To convert an out parameter, we need to create a
179 * temporary variable to hold the value before conversion,
180 * and then perform the conversion after the function call
181 * returns.
182 *
183 * This has the effect of transforming code like this:
184 *
185 * void f(out int x);
186 * float value;
187 * f(value);
188 *
189 * Into IR that's equivalent to this:
190 *
191 * void f(out int x);
192 * float value;
193 * int out_parameter_conversion;
194 * f(out_parameter_conversion);
195 * value = float(out_parameter_conversion);
196 */
197 ir_variable *tmp =
198 new(ctx) ir_variable(formal->type,
199 "out_parameter_conversion",
200 ir_var_temporary);
201 instructions->push_tail(tmp);
202 ir_dereference_variable *deref_tmp_1
203 = new(ctx) ir_dereference_variable(tmp);
204 ir_dereference_variable *deref_tmp_2
205 = new(ctx) ir_dereference_variable(tmp);
206 ir_rvalue *converted_tmp
207 = convert_component(deref_tmp_1, actual->type);
208 ir_assignment *assignment
209 = new(ctx) ir_assignment(actual, converted_tmp);
210 post_call_conversions.push_tail(assignment);
211 actual->replace_with(deref_tmp_2);
212 }
213 break;
214 case ir_var_inout:
215 /* Inout parameters should never require conversion, since that
216 * would require an implicit conversion to exist both to and
217 * from the formal parameter type, and there are no
218 * bidirectional implicit conversions.
219 */
220 assert (actual->type == formal->type);
221 break;
222 default:
223 assert (!"Illegal formal parameter mode");
224 break;
225 }
226 }
227
228 actual_iter.next();
229 formal_iter.next();
230 }
231
232 /* Always insert the call in the instruction stream, and return a deref
233 * of its return val if it returns a value, since we don't know if
234 * the rvalue is going to be assigned to anything or not.
235 *
236 * Also insert any out parameter conversions after the call.
237 */
238 ir_call *call = new(ctx) ir_call(sig, actual_parameters);
239 ir_dereference_variable *deref;
240 if (!sig->return_type->is_void()) {
241 /* If the function call is a constant expression, don't
242 * generate the instructions to call it; just generate an
243 * ir_constant representing the constant value.
244 *
245 * Function calls can only be constant expressions starting
246 * in GLSL 1.20.
247 */
248 if (state->language_version >= 120) {
249 ir_constant *const_val = call->constant_expression_value();
250 if (const_val) {
251 return const_val;
252 }
253 }
254
255 ir_variable *var;
256
257 var = new(ctx) ir_variable(sig->return_type,
258 ralloc_asprintf(ctx, "%s_retval",
259 sig->function_name()),
260 ir_var_temporary);
261 instructions->push_tail(var);
262
263 deref = new(ctx) ir_dereference_variable(var);
264 ir_assignment *assign = new(ctx) ir_assignment(deref, call, NULL);
265 instructions->push_tail(assign);
266 *call_ir = call;
267
268 deref = new(ctx) ir_dereference_variable(var);
269 } else {
270 instructions->push_tail(call);
271 *call_ir = call;
272 deref = NULL;
273 }
274 instructions->append_list(&post_call_conversions);
275 return deref;
276 }
277
278 static ir_rvalue *
279 match_function_by_name(exec_list *instructions, const char *name,
280 YYLTYPE *loc, exec_list *actual_parameters,
281 ir_call **call_ir,
282 struct _mesa_glsl_parse_state *state)
283 {
284 void *ctx = state;
285 ir_function *f = state->symbols->get_function(name);
286 ir_function_signature *local_sig = NULL;
287 ir_function_signature *sig = NULL;
288
289 /* Is the function hidden by a record type constructor? */
290 if (state->symbols->get_type(name))
291 goto done; /* no match */
292
293 /* Is the function hidden by a variable (impossible in 1.10)? */
294 if (state->language_version != 110 && state->symbols->get_variable(name))
295 goto done; /* no match */
296
297 if (f != NULL) {
298 /* Look for a match in the local shader. If exact, we're done. */
299 bool is_exact = false;
300 sig = local_sig = f->matching_signature(actual_parameters, &is_exact);
301 if (is_exact)
302 goto done;
303
304 if (!state->es_shader && f->has_user_signature()) {
305 /* In desktop GL, the presence of a user-defined signature hides any
306 * built-in signatures, so we must ignore them. In contrast, in ES2
307 * user-defined signatures add new overloads, so we must proceed.
308 */
309 goto done;
310 }
311 }
312
313 /* Local shader has no exact candidates; check the built-ins. */
314 _mesa_glsl_initialize_functions(state);
315 for (unsigned i = 0; i < state->num_builtins_to_link; i++) {
316 ir_function *builtin =
317 state->builtins_to_link[i]->symbols->get_function(name);
318 if (builtin == NULL)
319 continue;
320
321 bool is_exact = false;
322 ir_function_signature *builtin_sig =
323 builtin->matching_signature(actual_parameters, &is_exact);
324
325 if (builtin_sig == NULL)
326 continue;
327
328 /* If the built-in signature is exact, we can stop. */
329 if (is_exact) {
330 sig = builtin_sig;
331 goto done;
332 }
333
334 if (sig == NULL) {
335 /* We found an inexact match, which is better than nothing. However,
336 * we should keep searching for an exact match.
337 */
338 sig = builtin_sig;
339 }
340 }
341
342 done:
343 if (sig != NULL) {
344 /* If the match is from a linked built-in shader, import the prototype. */
345 if (sig != local_sig) {
346 if (f == NULL) {
347 f = new(ctx) ir_function(name);
348 state->symbols->add_global_function(f);
349 emit_function(state, f);
350 }
351 f->add_signature(sig->clone_prototype(f, NULL));
352 }
353
354 /* Finally, generate a call instruction. */
355 return generate_call(instructions, sig, loc, actual_parameters,
356 call_ir, state);
357 } else {
358 char *str = prototype_string(NULL, name, actual_parameters);
359
360 _mesa_glsl_error(loc, state, "no matching function for call to `%s'",
361 str);
362 ralloc_free(str);
363
364 const char *prefix = "candidates are: ";
365
366 for (int i = -1; i < (int) state->num_builtins_to_link; i++) {
367 glsl_symbol_table *syms = i >= 0 ? state->builtins_to_link[i]->symbols
368 : state->symbols;
369 f = syms->get_function(name);
370 if (f == NULL)
371 continue;
372
373 foreach_list (node, &f->signatures) {
374 ir_function_signature *sig = (ir_function_signature *) node;
375
376 str = prototype_string(sig->return_type, f->name, &sig->parameters);
377 _mesa_glsl_error(loc, state, "%s%s", prefix, str);
378 ralloc_free(str);
379
380 prefix = " ";
381 }
382
383 }
384
385 return ir_call::get_error_instruction(ctx);
386 }
387 }
388
389
390 /**
391 * Perform automatic type conversion of constructor parameters
392 *
393 * This implements the rules in the "Conversion and Scalar Constructors"
394 * section (GLSL 1.10 section 5.4.1), not the "Implicit Conversions" rules.
395 */
396 static ir_rvalue *
397 convert_component(ir_rvalue *src, const glsl_type *desired_type)
398 {
399 void *ctx = ralloc_parent(src);
400 const unsigned a = desired_type->base_type;
401 const unsigned b = src->type->base_type;
402 ir_expression *result = NULL;
403
404 if (src->type->is_error())
405 return src;
406
407 assert(a <= GLSL_TYPE_BOOL);
408 assert(b <= GLSL_TYPE_BOOL);
409
410 if (a == b)
411 return src;
412
413 switch (a) {
414 case GLSL_TYPE_UINT:
415 switch (b) {
416 case GLSL_TYPE_INT:
417 result = new(ctx) ir_expression(ir_unop_i2u, src);
418 break;
419 case GLSL_TYPE_FLOAT:
420 result = new(ctx) ir_expression(ir_unop_i2u,
421 new(ctx) ir_expression(ir_unop_f2i, src));
422 break;
423 case GLSL_TYPE_BOOL:
424 result = new(ctx) ir_expression(ir_unop_i2u,
425 new(ctx) ir_expression(ir_unop_b2i, src));
426 break;
427 }
428 break;
429 case GLSL_TYPE_INT:
430 switch (b) {
431 case GLSL_TYPE_UINT:
432 result = new(ctx) ir_expression(ir_unop_u2i, src);
433 break;
434 case GLSL_TYPE_FLOAT:
435 result = new(ctx) ir_expression(ir_unop_f2i, src);
436 break;
437 case GLSL_TYPE_BOOL:
438 result = new(ctx) ir_expression(ir_unop_b2i, src);
439 break;
440 }
441 break;
442 case GLSL_TYPE_FLOAT:
443 switch (b) {
444 case GLSL_TYPE_UINT:
445 result = new(ctx) ir_expression(ir_unop_u2f, desired_type, src, NULL);
446 break;
447 case GLSL_TYPE_INT:
448 result = new(ctx) ir_expression(ir_unop_i2f, desired_type, src, NULL);
449 break;
450 case GLSL_TYPE_BOOL:
451 result = new(ctx) ir_expression(ir_unop_b2f, desired_type, src, NULL);
452 break;
453 }
454 break;
455 case GLSL_TYPE_BOOL:
456 switch (b) {
457 case GLSL_TYPE_UINT:
458 result = new(ctx) ir_expression(ir_unop_i2b,
459 new(ctx) ir_expression(ir_unop_u2i, src));
460 break;
461 case GLSL_TYPE_INT:
462 result = new(ctx) ir_expression(ir_unop_i2b, desired_type, src, NULL);
463 break;
464 case GLSL_TYPE_FLOAT:
465 result = new(ctx) ir_expression(ir_unop_f2b, desired_type, src, NULL);
466 break;
467 }
468 break;
469 }
470
471 assert(result != NULL);
472 assert(result->type == desired_type);
473
474 /* Try constant folding; it may fold in the conversion we just added. */
475 ir_constant *const constant = result->constant_expression_value();
476 return (constant != NULL) ? (ir_rvalue *) constant : (ir_rvalue *) result;
477 }
478
479 /**
480 * Dereference a specific component from a scalar, vector, or matrix
481 */
482 static ir_rvalue *
483 dereference_component(ir_rvalue *src, unsigned component)
484 {
485 void *ctx = ralloc_parent(src);
486 assert(component < src->type->components());
487
488 /* If the source is a constant, just create a new constant instead of a
489 * dereference of the existing constant.
490 */
491 ir_constant *constant = src->as_constant();
492 if (constant)
493 return new(ctx) ir_constant(constant, component);
494
495 if (src->type->is_scalar()) {
496 return src;
497 } else if (src->type->is_vector()) {
498 return new(ctx) ir_swizzle(src, component, 0, 0, 0, 1);
499 } else {
500 assert(src->type->is_matrix());
501
502 /* Dereference a row of the matrix, then call this function again to get
503 * a specific element from that row.
504 */
505 const int c = component / src->type->column_type()->vector_elements;
506 const int r = component % src->type->column_type()->vector_elements;
507 ir_constant *const col_index = new(ctx) ir_constant(c);
508 ir_dereference *const col = new(ctx) ir_dereference_array(src, col_index);
509
510 col->type = src->type->column_type();
511
512 return dereference_component(col, r);
513 }
514
515 assert(!"Should not get here.");
516 return NULL;
517 }
518
519
520 static ir_rvalue *
521 process_array_constructor(exec_list *instructions,
522 const glsl_type *constructor_type,
523 YYLTYPE *loc, exec_list *parameters,
524 struct _mesa_glsl_parse_state *state)
525 {
526 void *ctx = state;
527 /* Array constructors come in two forms: sized and unsized. Sized array
528 * constructors look like 'vec4[2](a, b)', where 'a' and 'b' are vec4
529 * variables. In this case the number of parameters must exactly match the
530 * specified size of the array.
531 *
532 * Unsized array constructors look like 'vec4[](a, b)', where 'a' and 'b'
533 * are vec4 variables. In this case the size of the array being constructed
534 * is determined by the number of parameters.
535 *
536 * From page 52 (page 58 of the PDF) of the GLSL 1.50 spec:
537 *
538 * "There must be exactly the same number of arguments as the size of
539 * the array being constructed. If no size is present in the
540 * constructor, then the array is explicitly sized to the number of
541 * arguments provided. The arguments are assigned in order, starting at
542 * element 0, to the elements of the constructed array. Each argument
543 * must be the same type as the element type of the array, or be a type
544 * that can be converted to the element type of the array according to
545 * Section 4.1.10 "Implicit Conversions.""
546 */
547 exec_list actual_parameters;
548 const unsigned parameter_count =
549 process_parameters(instructions, &actual_parameters, parameters, state);
550
551 if ((parameter_count == 0)
552 || ((constructor_type->length != 0)
553 && (constructor_type->length != parameter_count))) {
554 const unsigned min_param = (constructor_type->length == 0)
555 ? 1 : constructor_type->length;
556
557 _mesa_glsl_error(loc, state, "array constructor must have %s %u "
558 "parameter%s",
559 (constructor_type->length != 0) ? "at least" : "exactly",
560 min_param, (min_param <= 1) ? "" : "s");
561 return ir_call::get_error_instruction(ctx);
562 }
563
564 if (constructor_type->length == 0) {
565 constructor_type =
566 glsl_type::get_array_instance(constructor_type->element_type(),
567 parameter_count);
568 assert(constructor_type != NULL);
569 assert(constructor_type->length == parameter_count);
570 }
571
572 bool all_parameters_are_constant = true;
573
574 /* Type cast each parameter and, if possible, fold constants. */
575 foreach_list_safe(n, &actual_parameters) {
576 ir_rvalue *ir = (ir_rvalue *) n;
577 ir_rvalue *result = ir;
578
579 /* Apply implicit conversions (not the scalar constructor rules!). See
580 * the spec quote above. */
581 if (constructor_type->element_type()->is_float()) {
582 const glsl_type *desired_type =
583 glsl_type::get_instance(GLSL_TYPE_FLOAT,
584 ir->type->vector_elements,
585 ir->type->matrix_columns);
586 if (result->type->can_implicitly_convert_to(desired_type)) {
587 /* Even though convert_component() implements the constructor
588 * conversion rules (not the implicit conversion rules), its safe
589 * to use it here because we already checked that the implicit
590 * conversion is legal.
591 */
592 result = convert_component(ir, desired_type);
593 }
594 }
595
596 if (result->type != constructor_type->element_type()) {
597 _mesa_glsl_error(loc, state, "type error in array constructor: "
598 "expected: %s, found %s",
599 constructor_type->element_type()->name,
600 result->type->name);
601 }
602
603 /* Attempt to convert the parameter to a constant valued expression.
604 * After doing so, track whether or not all the parameters to the
605 * constructor are trivially constant valued expressions.
606 */
607 ir_rvalue *const constant = result->constant_expression_value();
608
609 if (constant != NULL)
610 result = constant;
611 else
612 all_parameters_are_constant = false;
613
614 ir->replace_with(result);
615 }
616
617 if (all_parameters_are_constant)
618 return new(ctx) ir_constant(constructor_type, &actual_parameters);
619
620 ir_variable *var = new(ctx) ir_variable(constructor_type, "array_ctor",
621 ir_var_temporary);
622 instructions->push_tail(var);
623
624 int i = 0;
625 foreach_list(node, &actual_parameters) {
626 ir_rvalue *rhs = (ir_rvalue *) node;
627 ir_rvalue *lhs = new(ctx) ir_dereference_array(var,
628 new(ctx) ir_constant(i));
629
630 ir_instruction *assignment = new(ctx) ir_assignment(lhs, rhs, NULL);
631 instructions->push_tail(assignment);
632
633 i++;
634 }
635
636 return new(ctx) ir_dereference_variable(var);
637 }
638
639
640 /**
641 * Try to convert a record constructor to a constant expression
642 */
643 static ir_constant *
644 constant_record_constructor(const glsl_type *constructor_type,
645 exec_list *parameters, void *mem_ctx)
646 {
647 foreach_list(node, parameters) {
648 ir_constant *constant = ((ir_instruction *) node)->as_constant();
649 if (constant == NULL)
650 return NULL;
651 node->replace_with(constant);
652 }
653
654 return new(mem_ctx) ir_constant(constructor_type, parameters);
655 }
656
657
658 /**
659 * Determine if a list consists of a single scalar r-value
660 */
661 bool
662 single_scalar_parameter(exec_list *parameters)
663 {
664 const ir_rvalue *const p = (ir_rvalue *) parameters->head;
665 assert(((ir_rvalue *)p)->as_rvalue() != NULL);
666
667 return (p->type->is_scalar() && p->next->is_tail_sentinel());
668 }
669
670
671 /**
672 * Generate inline code for a vector constructor
673 *
674 * The generated constructor code will consist of a temporary variable
675 * declaration of the same type as the constructor. A sequence of assignments
676 * from constructor parameters to the temporary will follow.
677 *
678 * \return
679 * An \c ir_dereference_variable of the temprorary generated in the constructor
680 * body.
681 */
682 ir_rvalue *
683 emit_inline_vector_constructor(const glsl_type *type,
684 exec_list *instructions,
685 exec_list *parameters,
686 void *ctx)
687 {
688 assert(!parameters->is_empty());
689
690 ir_variable *var = new(ctx) ir_variable(type, "vec_ctor", ir_var_temporary);
691 instructions->push_tail(var);
692
693 /* There are two kinds of vector constructors.
694 *
695 * - Construct a vector from a single scalar by replicating that scalar to
696 * all components of the vector.
697 *
698 * - Construct a vector from an arbirary combination of vectors and
699 * scalars. The components of the constructor parameters are assigned
700 * to the vector in order until the vector is full.
701 */
702 const unsigned lhs_components = type->components();
703 if (single_scalar_parameter(parameters)) {
704 ir_rvalue *first_param = (ir_rvalue *)parameters->head;
705 ir_rvalue *rhs = new(ctx) ir_swizzle(first_param, 0, 0, 0, 0,
706 lhs_components);
707 ir_dereference_variable *lhs = new(ctx) ir_dereference_variable(var);
708 const unsigned mask = (1U << lhs_components) - 1;
709
710 assert(rhs->type == lhs->type);
711
712 ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL, mask);
713 instructions->push_tail(inst);
714 } else {
715 unsigned base_component = 0;
716 unsigned base_lhs_component = 0;
717 ir_constant_data data;
718 unsigned constant_mask = 0, constant_components = 0;
719
720 memset(&data, 0, sizeof(data));
721
722 foreach_list(node, parameters) {
723 ir_rvalue *param = (ir_rvalue *) node;
724 unsigned rhs_components = param->type->components();
725
726 /* Do not try to assign more components to the vector than it has!
727 */
728 if ((rhs_components + base_lhs_component) > lhs_components) {
729 rhs_components = lhs_components - base_lhs_component;
730 }
731
732 const ir_constant *const c = param->as_constant();
733 if (c != NULL) {
734 for (unsigned i = 0; i < rhs_components; i++) {
735 switch (c->type->base_type) {
736 case GLSL_TYPE_UINT:
737 data.u[i + base_component] = c->get_uint_component(i);
738 break;
739 case GLSL_TYPE_INT:
740 data.i[i + base_component] = c->get_int_component(i);
741 break;
742 case GLSL_TYPE_FLOAT:
743 data.f[i + base_component] = c->get_float_component(i);
744 break;
745 case GLSL_TYPE_BOOL:
746 data.b[i + base_component] = c->get_bool_component(i);
747 break;
748 default:
749 assert(!"Should not get here.");
750 break;
751 }
752 }
753
754 /* Mask of fields to be written in the assignment.
755 */
756 constant_mask |= ((1U << rhs_components) - 1) << base_lhs_component;
757 constant_components += rhs_components;
758
759 base_component += rhs_components;
760 }
761 /* Advance the component index by the number of components
762 * that were just assigned.
763 */
764 base_lhs_component += rhs_components;
765 }
766
767 if (constant_mask != 0) {
768 ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
769 const glsl_type *rhs_type = glsl_type::get_instance(var->type->base_type,
770 constant_components,
771 1);
772 ir_rvalue *rhs = new(ctx) ir_constant(rhs_type, &data);
773
774 ir_instruction *inst =
775 new(ctx) ir_assignment(lhs, rhs, NULL, constant_mask);
776 instructions->push_tail(inst);
777 }
778
779 base_component = 0;
780 foreach_list(node, parameters) {
781 ir_rvalue *param = (ir_rvalue *) node;
782 unsigned rhs_components = param->type->components();
783
784 /* Do not try to assign more components to the vector than it has!
785 */
786 if ((rhs_components + base_component) > lhs_components) {
787 rhs_components = lhs_components - base_component;
788 }
789
790 const ir_constant *const c = param->as_constant();
791 if (c == NULL) {
792 /* Mask of fields to be written in the assignment.
793 */
794 const unsigned write_mask = ((1U << rhs_components) - 1)
795 << base_component;
796
797 ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
798
799 /* Generate a swizzle so that LHS and RHS sizes match.
800 */
801 ir_rvalue *rhs =
802 new(ctx) ir_swizzle(param, 0, 1, 2, 3, rhs_components);
803
804 ir_instruction *inst =
805 new(ctx) ir_assignment(lhs, rhs, NULL, write_mask);
806 instructions->push_tail(inst);
807 }
808
809 /* Advance the component index by the number of components that were
810 * just assigned.
811 */
812 base_component += rhs_components;
813 }
814 }
815 return new(ctx) ir_dereference_variable(var);
816 }
817
818
819 /**
820 * Generate assignment of a portion of a vector to a portion of a matrix column
821 *
822 * \param src_base First component of the source to be used in assignment
823 * \param column Column of destination to be assiged
824 * \param row_base First component of the destination column to be assigned
825 * \param count Number of components to be assigned
826 *
827 * \note
828 * \c src_base + \c count must be less than or equal to the number of components
829 * in the source vector.
830 */
831 ir_instruction *
832 assign_to_matrix_column(ir_variable *var, unsigned column, unsigned row_base,
833 ir_rvalue *src, unsigned src_base, unsigned count,
834 void *mem_ctx)
835 {
836 ir_constant *col_idx = new(mem_ctx) ir_constant(column);
837 ir_dereference *column_ref = new(mem_ctx) ir_dereference_array(var, col_idx);
838
839 assert(column_ref->type->components() >= (row_base + count));
840 assert(src->type->components() >= (src_base + count));
841
842 /* Generate a swizzle that extracts the number of components from the source
843 * that are to be assigned to the column of the matrix.
844 */
845 if (count < src->type->vector_elements) {
846 src = new(mem_ctx) ir_swizzle(src,
847 src_base + 0, src_base + 1,
848 src_base + 2, src_base + 3,
849 count);
850 }
851
852 /* Mask of fields to be written in the assignment.
853 */
854 const unsigned write_mask = ((1U << count) - 1) << row_base;
855
856 return new(mem_ctx) ir_assignment(column_ref, src, NULL, write_mask);
857 }
858
859
860 /**
861 * Generate inline code for a matrix constructor
862 *
863 * The generated constructor code will consist of a temporary variable
864 * declaration of the same type as the constructor. A sequence of assignments
865 * from constructor parameters to the temporary will follow.
866 *
867 * \return
868 * An \c ir_dereference_variable of the temprorary generated in the constructor
869 * body.
870 */
871 ir_rvalue *
872 emit_inline_matrix_constructor(const glsl_type *type,
873 exec_list *instructions,
874 exec_list *parameters,
875 void *ctx)
876 {
877 assert(!parameters->is_empty());
878
879 ir_variable *var = new(ctx) ir_variable(type, "mat_ctor", ir_var_temporary);
880 instructions->push_tail(var);
881
882 /* There are three kinds of matrix constructors.
883 *
884 * - Construct a matrix from a single scalar by replicating that scalar to
885 * along the diagonal of the matrix and setting all other components to
886 * zero.
887 *
888 * - Construct a matrix from an arbirary combination of vectors and
889 * scalars. The components of the constructor parameters are assigned
890 * to the matrix in colum-major order until the matrix is full.
891 *
892 * - Construct a matrix from a single matrix. The source matrix is copied
893 * to the upper left portion of the constructed matrix, and the remaining
894 * elements take values from the identity matrix.
895 */
896 ir_rvalue *const first_param = (ir_rvalue *) parameters->head;
897 if (single_scalar_parameter(parameters)) {
898 /* Assign the scalar to the X component of a vec4, and fill the remaining
899 * components with zero.
900 */
901 ir_variable *rhs_var =
902 new(ctx) ir_variable(glsl_type::vec4_type, "mat_ctor_vec",
903 ir_var_temporary);
904 instructions->push_tail(rhs_var);
905
906 ir_constant_data zero;
907 zero.f[0] = 0.0;
908 zero.f[1] = 0.0;
909 zero.f[2] = 0.0;
910 zero.f[3] = 0.0;
911
912 ir_instruction *inst =
913 new(ctx) ir_assignment(new(ctx) ir_dereference_variable(rhs_var),
914 new(ctx) ir_constant(rhs_var->type, &zero),
915 NULL);
916 instructions->push_tail(inst);
917
918 ir_dereference *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
919
920 inst = new(ctx) ir_assignment(rhs_ref, first_param, NULL, 0x01);
921 instructions->push_tail(inst);
922
923 /* Assign the temporary vector to each column of the destination matrix
924 * with a swizzle that puts the X component on the diagonal of the
925 * matrix. In some cases this may mean that the X component does not
926 * get assigned into the column at all (i.e., when the matrix has more
927 * columns than rows).
928 */
929 static const unsigned rhs_swiz[4][4] = {
930 { 0, 1, 1, 1 },
931 { 1, 0, 1, 1 },
932 { 1, 1, 0, 1 },
933 { 1, 1, 1, 0 }
934 };
935
936 const unsigned cols_to_init = MIN2(type->matrix_columns,
937 type->vector_elements);
938 for (unsigned i = 0; i < cols_to_init; i++) {
939 ir_constant *const col_idx = new(ctx) ir_constant(i);
940 ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var, col_idx);
941
942 ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
943 ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, rhs_swiz[i],
944 type->vector_elements);
945
946 inst = new(ctx) ir_assignment(col_ref, rhs, NULL);
947 instructions->push_tail(inst);
948 }
949
950 for (unsigned i = cols_to_init; i < type->matrix_columns; i++) {
951 ir_constant *const col_idx = new(ctx) ir_constant(i);
952 ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var, col_idx);
953
954 ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
955 ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, 1, 1, 1, 1,
956 type->vector_elements);
957
958 inst = new(ctx) ir_assignment(col_ref, rhs, NULL);
959 instructions->push_tail(inst);
960 }
961 } else if (first_param->type->is_matrix()) {
962 /* From page 50 (56 of the PDF) of the GLSL 1.50 spec:
963 *
964 * "If a matrix is constructed from a matrix, then each component
965 * (column i, row j) in the result that has a corresponding
966 * component (column i, row j) in the argument will be initialized
967 * from there. All other components will be initialized to the
968 * identity matrix. If a matrix argument is given to a matrix
969 * constructor, it is an error to have any other arguments."
970 */
971 assert(first_param->next->is_tail_sentinel());
972 ir_rvalue *const src_matrix = first_param;
973
974 /* If the source matrix is smaller, pre-initialize the relavent parts of
975 * the destination matrix to the identity matrix.
976 */
977 if ((src_matrix->type->matrix_columns < var->type->matrix_columns)
978 || (src_matrix->type->vector_elements < var->type->vector_elements)) {
979
980 /* If the source matrix has fewer rows, every column of the destination
981 * must be initialized. Otherwise only the columns in the destination
982 * that do not exist in the source must be initialized.
983 */
984 unsigned col =
985 (src_matrix->type->vector_elements < var->type->vector_elements)
986 ? 0 : src_matrix->type->matrix_columns;
987
988 const glsl_type *const col_type = var->type->column_type();
989 for (/* empty */; col < var->type->matrix_columns; col++) {
990 ir_constant_data ident;
991
992 ident.f[0] = 0.0;
993 ident.f[1] = 0.0;
994 ident.f[2] = 0.0;
995 ident.f[3] = 0.0;
996
997 ident.f[col] = 1.0;
998
999 ir_rvalue *const rhs = new(ctx) ir_constant(col_type, &ident);
1000
1001 ir_rvalue *const lhs =
1002 new(ctx) ir_dereference_array(var, new(ctx) ir_constant(col));
1003
1004 ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL);
1005 instructions->push_tail(inst);
1006 }
1007 }
1008
1009 /* Assign columns from the source matrix to the destination matrix.
1010 *
1011 * Since the parameter will be used in the RHS of multiple assignments,
1012 * generate a temporary and copy the paramter there.
1013 */
1014 ir_variable *const rhs_var =
1015 new(ctx) ir_variable(first_param->type, "mat_ctor_mat",
1016 ir_var_temporary);
1017 instructions->push_tail(rhs_var);
1018
1019 ir_dereference *const rhs_var_ref =
1020 new(ctx) ir_dereference_variable(rhs_var);
1021 ir_instruction *const inst =
1022 new(ctx) ir_assignment(rhs_var_ref, first_param, NULL);
1023 instructions->push_tail(inst);
1024
1025 const unsigned last_row = MIN2(src_matrix->type->vector_elements,
1026 var->type->vector_elements);
1027 const unsigned last_col = MIN2(src_matrix->type->matrix_columns,
1028 var->type->matrix_columns);
1029
1030 unsigned swiz[4] = { 0, 0, 0, 0 };
1031 for (unsigned i = 1; i < last_row; i++)
1032 swiz[i] = i;
1033
1034 const unsigned write_mask = (1U << last_row) - 1;
1035
1036 for (unsigned i = 0; i < last_col; i++) {
1037 ir_dereference *const lhs =
1038 new(ctx) ir_dereference_array(var, new(ctx) ir_constant(i));
1039 ir_rvalue *const rhs_col =
1040 new(ctx) ir_dereference_array(rhs_var, new(ctx) ir_constant(i));
1041
1042 /* If one matrix has columns that are smaller than the columns of the
1043 * other matrix, wrap the column access of the larger with a swizzle
1044 * so that the LHS and RHS of the assignment have the same size (and
1045 * therefore have the same type).
1046 *
1047 * It would be perfectly valid to unconditionally generate the
1048 * swizzles, this this will typically result in a more compact IR tree.
1049 */
1050 ir_rvalue *rhs;
1051 if (lhs->type->vector_elements != rhs_col->type->vector_elements) {
1052 rhs = new(ctx) ir_swizzle(rhs_col, swiz, last_row);
1053 } else {
1054 rhs = rhs_col;
1055 }
1056
1057 ir_instruction *inst =
1058 new(ctx) ir_assignment(lhs, rhs, NULL, write_mask);
1059 instructions->push_tail(inst);
1060 }
1061 } else {
1062 const unsigned cols = type->matrix_columns;
1063 const unsigned rows = type->vector_elements;
1064 unsigned col_idx = 0;
1065 unsigned row_idx = 0;
1066
1067 foreach_list (node, parameters) {
1068 ir_rvalue *const rhs = (ir_rvalue *) node;
1069 const unsigned components_remaining_this_column = rows - row_idx;
1070 unsigned rhs_components = rhs->type->components();
1071 unsigned rhs_base = 0;
1072
1073 /* Since the parameter might be used in the RHS of two assignments,
1074 * generate a temporary and copy the paramter there.
1075 */
1076 ir_variable *rhs_var =
1077 new(ctx) ir_variable(rhs->type, "mat_ctor_vec", ir_var_temporary);
1078 instructions->push_tail(rhs_var);
1079
1080 ir_dereference *rhs_var_ref =
1081 new(ctx) ir_dereference_variable(rhs_var);
1082 ir_instruction *inst = new(ctx) ir_assignment(rhs_var_ref, rhs, NULL);
1083 instructions->push_tail(inst);
1084
1085 /* Assign the current parameter to as many components of the matrix
1086 * as it will fill.
1087 *
1088 * NOTE: A single vector parameter can span two matrix columns. A
1089 * single vec4, for example, can completely fill a mat2.
1090 */
1091 if (rhs_components >= components_remaining_this_column) {
1092 const unsigned count = MIN2(rhs_components,
1093 components_remaining_this_column);
1094
1095 rhs_var_ref = new(ctx) ir_dereference_variable(rhs_var);
1096
1097 ir_instruction *inst = assign_to_matrix_column(var, col_idx,
1098 row_idx,
1099 rhs_var_ref, 0,
1100 count, ctx);
1101 instructions->push_tail(inst);
1102
1103 rhs_base = count;
1104
1105 col_idx++;
1106 row_idx = 0;
1107 }
1108
1109 /* If there is data left in the parameter and components left to be
1110 * set in the destination, emit another assignment. It is possible
1111 * that the assignment could be of a vec4 to the last element of the
1112 * matrix. In this case col_idx==cols, but there is still data
1113 * left in the source parameter. Obviously, don't emit an assignment
1114 * to data outside the destination matrix.
1115 */
1116 if ((col_idx < cols) && (rhs_base < rhs_components)) {
1117 const unsigned count = rhs_components - rhs_base;
1118
1119 rhs_var_ref = new(ctx) ir_dereference_variable(rhs_var);
1120
1121 ir_instruction *inst = assign_to_matrix_column(var, col_idx,
1122 row_idx,
1123 rhs_var_ref,
1124 rhs_base,
1125 count, ctx);
1126 instructions->push_tail(inst);
1127
1128 row_idx += count;
1129 }
1130 }
1131 }
1132
1133 return new(ctx) ir_dereference_variable(var);
1134 }
1135
1136
1137 ir_rvalue *
1138 emit_inline_record_constructor(const glsl_type *type,
1139 exec_list *instructions,
1140 exec_list *parameters,
1141 void *mem_ctx)
1142 {
1143 ir_variable *const var =
1144 new(mem_ctx) ir_variable(type, "record_ctor", ir_var_temporary);
1145 ir_dereference_variable *const d = new(mem_ctx) ir_dereference_variable(var);
1146
1147 instructions->push_tail(var);
1148
1149 exec_node *node = parameters->head;
1150 for (unsigned i = 0; i < type->length; i++) {
1151 assert(!node->is_tail_sentinel());
1152
1153 ir_dereference *const lhs =
1154 new(mem_ctx) ir_dereference_record(d->clone(mem_ctx, NULL),
1155 type->fields.structure[i].name);
1156
1157 ir_rvalue *const rhs = ((ir_instruction *) node)->as_rvalue();
1158 assert(rhs != NULL);
1159
1160 ir_instruction *const assign = new(mem_ctx) ir_assignment(lhs, rhs, NULL);
1161
1162 instructions->push_tail(assign);
1163 node = node->next;
1164 }
1165
1166 return d;
1167 }
1168
1169
1170 ir_rvalue *
1171 ast_function_expression::hir(exec_list *instructions,
1172 struct _mesa_glsl_parse_state *state)
1173 {
1174 void *ctx = state;
1175 /* There are three sorts of function calls.
1176 *
1177 * 1. constructors - The first subexpression is an ast_type_specifier.
1178 * 2. methods - Only the .length() method of array types.
1179 * 3. functions - Calls to regular old functions.
1180 *
1181 * Method calls are actually detected when the ast_field_selection
1182 * expression is handled.
1183 */
1184 if (is_constructor()) {
1185 const ast_type_specifier *type = (ast_type_specifier *) subexpressions[0];
1186 YYLTYPE loc = type->get_location();
1187 const char *name;
1188
1189 const glsl_type *const constructor_type = type->glsl_type(& name, state);
1190
1191 /* constructor_type can be NULL if a variable with the same name as the
1192 * structure has come into scope.
1193 */
1194 if (constructor_type == NULL) {
1195 _mesa_glsl_error(& loc, state, "unknown type `%s' (structure name "
1196 "may be shadowed by a variable with the same name)",
1197 type->type_name);
1198 return ir_call::get_error_instruction(ctx);
1199 }
1200
1201
1202 /* Constructors for samplers are illegal.
1203 */
1204 if (constructor_type->is_sampler()) {
1205 _mesa_glsl_error(& loc, state, "cannot construct sampler type `%s'",
1206 constructor_type->name);
1207 return ir_call::get_error_instruction(ctx);
1208 }
1209
1210 if (constructor_type->is_array()) {
1211 if (state->language_version <= 110) {
1212 _mesa_glsl_error(& loc, state,
1213 "array constructors forbidden in GLSL 1.10");
1214 return ir_call::get_error_instruction(ctx);
1215 }
1216
1217 return process_array_constructor(instructions, constructor_type,
1218 & loc, &this->expressions, state);
1219 }
1220
1221
1222 /* There are two kinds of constructor call. Constructors for built-in
1223 * language types, such as mat4 and vec2, are free form. The only
1224 * requirement is that the parameters must provide enough values of the
1225 * correct scalar type. Constructors for arrays and structures must
1226 * have the exact number of parameters with matching types in the
1227 * correct order. These constructors follow essentially the same type
1228 * matching rules as functions.
1229 */
1230 if (constructor_type->is_record()) {
1231 exec_list actual_parameters;
1232
1233 process_parameters(instructions, &actual_parameters,
1234 &this->expressions, state);
1235
1236 exec_node *node = actual_parameters.head;
1237 for (unsigned i = 0; i < constructor_type->length; i++) {
1238 ir_rvalue *ir = (ir_rvalue *) node;
1239
1240 if (node->is_tail_sentinel()) {
1241 _mesa_glsl_error(&loc, state,
1242 "insufficient parameters to constructor "
1243 "for `%s'",
1244 constructor_type->name);
1245 return ir_call::get_error_instruction(ctx);
1246 }
1247
1248 if (apply_implicit_conversion(constructor_type->fields.structure[i].type,
1249 ir, state)) {
1250 node->replace_with(ir);
1251 } else {
1252 _mesa_glsl_error(&loc, state,
1253 "parameter type mismatch in constructor "
1254 "for `%s.%s' (%s vs %s)",
1255 constructor_type->name,
1256 constructor_type->fields.structure[i].name,
1257 ir->type->name,
1258 constructor_type->fields.structure[i].type->name);
1259 return ir_call::get_error_instruction(ctx);;
1260 }
1261
1262 node = node->next;
1263 }
1264
1265 if (!node->is_tail_sentinel()) {
1266 _mesa_glsl_error(&loc, state, "too many parameters in constructor "
1267 "for `%s'", constructor_type->name);
1268 return ir_call::get_error_instruction(ctx);
1269 }
1270
1271 ir_rvalue *const constant =
1272 constant_record_constructor(constructor_type, &actual_parameters,
1273 state);
1274
1275 return (constant != NULL)
1276 ? constant
1277 : emit_inline_record_constructor(constructor_type, instructions,
1278 &actual_parameters, state);
1279 }
1280
1281 if (!constructor_type->is_numeric() && !constructor_type->is_boolean())
1282 return ir_call::get_error_instruction(ctx);
1283
1284 /* Total number of components of the type being constructed. */
1285 const unsigned type_components = constructor_type->components();
1286
1287 /* Number of components from parameters that have actually been
1288 * consumed. This is used to perform several kinds of error checking.
1289 */
1290 unsigned components_used = 0;
1291
1292 unsigned matrix_parameters = 0;
1293 unsigned nonmatrix_parameters = 0;
1294 exec_list actual_parameters;
1295
1296 foreach_list (n, &this->expressions) {
1297 ast_node *ast = exec_node_data(ast_node, n, link);
1298 ir_rvalue *result = ast->hir(instructions, state)->as_rvalue();
1299
1300 /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
1301 *
1302 * "It is an error to provide extra arguments beyond this
1303 * last used argument."
1304 */
1305 if (components_used >= type_components) {
1306 _mesa_glsl_error(& loc, state, "too many parameters to `%s' "
1307 "constructor",
1308 constructor_type->name);
1309 return ir_call::get_error_instruction(ctx);
1310 }
1311
1312 if (!result->type->is_numeric() && !result->type->is_boolean()) {
1313 _mesa_glsl_error(& loc, state, "cannot construct `%s' from a "
1314 "non-numeric data type",
1315 constructor_type->name);
1316 return ir_call::get_error_instruction(ctx);
1317 }
1318
1319 /* Count the number of matrix and nonmatrix parameters. This
1320 * is used below to enforce some of the constructor rules.
1321 */
1322 if (result->type->is_matrix())
1323 matrix_parameters++;
1324 else
1325 nonmatrix_parameters++;
1326
1327 actual_parameters.push_tail(result);
1328 components_used += result->type->components();
1329 }
1330
1331 /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
1332 *
1333 * "It is an error to construct matrices from other matrices. This
1334 * is reserved for future use."
1335 */
1336 if (state->language_version == 110 && matrix_parameters > 0
1337 && constructor_type->is_matrix()) {
1338 _mesa_glsl_error(& loc, state, "cannot construct `%s' from a "
1339 "matrix in GLSL 1.10",
1340 constructor_type->name);
1341 return ir_call::get_error_instruction(ctx);
1342 }
1343
1344 /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
1345 *
1346 * "If a matrix argument is given to a matrix constructor, it is
1347 * an error to have any other arguments."
1348 */
1349 if ((matrix_parameters > 0)
1350 && ((matrix_parameters + nonmatrix_parameters) > 1)
1351 && constructor_type->is_matrix()) {
1352 _mesa_glsl_error(& loc, state, "for matrix `%s' constructor, "
1353 "matrix must be only parameter",
1354 constructor_type->name);
1355 return ir_call::get_error_instruction(ctx);
1356 }
1357
1358 /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
1359 *
1360 * "In these cases, there must be enough components provided in the
1361 * arguments to provide an initializer for every component in the
1362 * constructed value."
1363 */
1364 if (components_used < type_components && components_used != 1
1365 && matrix_parameters == 0) {
1366 _mesa_glsl_error(& loc, state, "too few components to construct "
1367 "`%s'",
1368 constructor_type->name);
1369 return ir_call::get_error_instruction(ctx);
1370 }
1371
1372 /* Later, we cast each parameter to the same base type as the
1373 * constructor. Since there are no non-floating point matrices, we
1374 * need to break them up into a series of column vectors.
1375 */
1376 if (constructor_type->base_type != GLSL_TYPE_FLOAT) {
1377 foreach_list_safe(n, &actual_parameters) {
1378 ir_rvalue *matrix = (ir_rvalue *) n;
1379
1380 if (!matrix->type->is_matrix())
1381 continue;
1382
1383 /* Create a temporary containing the matrix. */
1384 ir_variable *var = new(ctx) ir_variable(matrix->type, "matrix_tmp",
1385 ir_var_temporary);
1386 instructions->push_tail(var);
1387 instructions->push_tail(new(ctx) ir_assignment(new(ctx)
1388 ir_dereference_variable(var), matrix, NULL));
1389 var->constant_value = matrix->constant_expression_value();
1390
1391 /* Replace the matrix with dereferences of its columns. */
1392 for (int i = 0; i < matrix->type->matrix_columns; i++) {
1393 matrix->insert_before(new (ctx) ir_dereference_array(var,
1394 new(ctx) ir_constant(i)));
1395 }
1396 matrix->remove();
1397 }
1398 }
1399
1400 bool all_parameters_are_constant = true;
1401
1402 /* Type cast each parameter and, if possible, fold constants.*/
1403 foreach_list_safe(n, &actual_parameters) {
1404 ir_rvalue *ir = (ir_rvalue *) n;
1405
1406 const glsl_type *desired_type =
1407 glsl_type::get_instance(constructor_type->base_type,
1408 ir->type->vector_elements,
1409 ir->type->matrix_columns);
1410 ir_rvalue *result = convert_component(ir, desired_type);
1411
1412 /* Attempt to convert the parameter to a constant valued expression.
1413 * After doing so, track whether or not all the parameters to the
1414 * constructor are trivially constant valued expressions.
1415 */
1416 ir_rvalue *const constant = result->constant_expression_value();
1417
1418 if (constant != NULL)
1419 result = constant;
1420 else
1421 all_parameters_are_constant = false;
1422
1423 if (result != ir) {
1424 ir->replace_with(result);
1425 }
1426 }
1427
1428 /* If all of the parameters are trivially constant, create a
1429 * constant representing the complete collection of parameters.
1430 */
1431 if (all_parameters_are_constant) {
1432 return new(ctx) ir_constant(constructor_type, &actual_parameters);
1433 } else if (constructor_type->is_scalar()) {
1434 return dereference_component((ir_rvalue *) actual_parameters.head,
1435 0);
1436 } else if (constructor_type->is_vector()) {
1437 return emit_inline_vector_constructor(constructor_type,
1438 instructions,
1439 &actual_parameters,
1440 ctx);
1441 } else {
1442 assert(constructor_type->is_matrix());
1443 return emit_inline_matrix_constructor(constructor_type,
1444 instructions,
1445 &actual_parameters,
1446 ctx);
1447 }
1448 } else {
1449 const ast_expression *id = subexpressions[0];
1450 YYLTYPE loc = id->get_location();
1451 exec_list actual_parameters;
1452
1453 process_parameters(instructions, &actual_parameters, &this->expressions,
1454 state);
1455
1456 ir_call *call = NULL;
1457 ir_rvalue *const value =
1458 match_function_by_name(instructions,
1459 id->primary_expression.identifier,
1460 &loc, &actual_parameters, &call, state);
1461
1462 if (call != NULL) {
1463 /* If a function was found, make sure that none of the 'out' or 'inout'
1464 * parameters violate the extra l-value rules.
1465 */
1466 ir_function_signature *f = call->get_callee();
1467 assert(f != NULL);
1468
1469 exec_node *formal_node = f->parameters.head;
1470
1471 foreach_list (actual_node, &this->expressions) {
1472 /* Both parameter lists had better be the same length!
1473 */
1474 assert(!actual_node->is_tail_sentinel());
1475
1476 const ir_variable *const formal_parameter =
1477 (ir_variable *) formal_node;
1478 const ast_expression *const actual_parameter =
1479 exec_node_data(ast_expression, actual_node, link);
1480
1481 if ((formal_parameter->mode == ir_var_out
1482 || formal_parameter->mode == ir_var_inout)
1483 && actual_parameter->non_lvalue_description != NULL) {
1484 YYLTYPE loc = actual_parameter->get_location();
1485
1486 _mesa_glsl_error(&loc, state,
1487 "function parameter '%s %s' references a %s",
1488 (formal_parameter->mode == ir_var_out)
1489 ? "out" : "inout",
1490 formal_parameter->name,
1491 actual_parameter->non_lvalue_description);
1492 return ir_call::get_error_instruction(ctx);
1493 }
1494
1495 /* Only advance the formal_node pointer here because the
1496 * foreach_list business already advances actual_node.
1497 */
1498 formal_node = formal_node->next;
1499 }
1500 }
1501
1502 return value;
1503 }
1504
1505 return ir_call::get_error_instruction(ctx);
1506 }