[MESA]
[reactos.git] / reactos / dll / opengl / mesa / src / mesa / swrast / s_aaline.c
1 /*
2 * Mesa 3-D graphics library
3 * Version: 6.5.3
4 *
5 * Copyright (C) 1999-2007 Brian Paul All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included
15 * in all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
21 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25
26 #include "main/glheader.h"
27 #include "main/imports.h"
28 #include "main/macros.h"
29 #include "main/mtypes.h"
30 #include "swrast/s_aaline.h"
31 #include "swrast/s_context.h"
32 #include "swrast/s_span.h"
33 #include "swrast/swrast.h"
34
35
36 #define SUB_PIXEL 4
37
38
39 /*
40 * Info about the AA line we're rendering
41 */
42 struct LineInfo
43 {
44 GLfloat x0, y0; /* start */
45 GLfloat x1, y1; /* end */
46 GLfloat dx, dy; /* direction vector */
47 GLfloat len; /* length */
48 GLfloat halfWidth; /* half of line width */
49 GLfloat xAdj, yAdj; /* X and Y adjustment for quad corners around line */
50 /* for coverage computation */
51 GLfloat qx0, qy0; /* quad vertices */
52 GLfloat qx1, qy1;
53 GLfloat qx2, qy2;
54 GLfloat qx3, qy3;
55 GLfloat ex0, ey0; /* quad edge vectors */
56 GLfloat ex1, ey1;
57 GLfloat ex2, ey2;
58 GLfloat ex3, ey3;
59
60 /* DO_Z */
61 GLfloat zPlane[4];
62 /* DO_RGBA - always enabled */
63 GLfloat rPlane[4], gPlane[4], bPlane[4], aPlane[4];
64 /* DO_ATTRIBS */
65 GLfloat wPlane[4];
66 GLfloat attrPlane[FRAG_ATTRIB_MAX][4][4];
67 GLfloat lambda[FRAG_ATTRIB_MAX];
68 GLfloat texWidth[FRAG_ATTRIB_MAX];
69 GLfloat texHeight[FRAG_ATTRIB_MAX];
70
71 SWspan span;
72 };
73
74
75
76 /*
77 * Compute the equation of a plane used to interpolate line fragment data
78 * such as color, Z, texture coords, etc.
79 * Input: (x0, y0) and (x1,y1) are the endpoints of the line.
80 * z0, and z1 are the end point values to interpolate.
81 * Output: plane - the plane equation.
82 *
83 * Note: we don't really have enough parameters to specify a plane.
84 * We take the endpoints of the line and compute a plane such that
85 * the cross product of the line vector and the plane normal is
86 * parallel to the projection plane.
87 */
88 static void
89 compute_plane(GLfloat x0, GLfloat y0, GLfloat x1, GLfloat y1,
90 GLfloat z0, GLfloat z1, GLfloat plane[4])
91 {
92 #if 0
93 /* original */
94 const GLfloat px = x1 - x0;
95 const GLfloat py = y1 - y0;
96 const GLfloat pz = z1 - z0;
97 const GLfloat qx = -py;
98 const GLfloat qy = px;
99 const GLfloat qz = 0;
100 const GLfloat a = py * qz - pz * qy;
101 const GLfloat b = pz * qx - px * qz;
102 const GLfloat c = px * qy - py * qx;
103 const GLfloat d = -(a * x0 + b * y0 + c * z0);
104 plane[0] = a;
105 plane[1] = b;
106 plane[2] = c;
107 plane[3] = d;
108 #else
109 /* simplified */
110 const GLfloat px = x1 - x0;
111 const GLfloat py = y1 - y0;
112 const GLfloat pz = z0 - z1;
113 const GLfloat a = pz * px;
114 const GLfloat b = pz * py;
115 const GLfloat c = px * px + py * py;
116 const GLfloat d = -(a * x0 + b * y0 + c * z0);
117 if (a == 0.0 && b == 0.0 && c == 0.0 && d == 0.0) {
118 plane[0] = 0.0;
119 plane[1] = 0.0;
120 plane[2] = 1.0;
121 plane[3] = 0.0;
122 }
123 else {
124 plane[0] = a;
125 plane[1] = b;
126 plane[2] = c;
127 plane[3] = d;
128 }
129 #endif
130 }
131
132
133 static inline void
134 constant_plane(GLfloat value, GLfloat plane[4])
135 {
136 plane[0] = 0.0;
137 plane[1] = 0.0;
138 plane[2] = -1.0;
139 plane[3] = value;
140 }
141
142
143 static inline GLfloat
144 solve_plane(GLfloat x, GLfloat y, const GLfloat plane[4])
145 {
146 const GLfloat z = (plane[3] + plane[0] * x + plane[1] * y) / -plane[2];
147 return z;
148 }
149
150 #define SOLVE_PLANE(X, Y, PLANE) \
151 ((PLANE[3] + PLANE[0] * (X) + PLANE[1] * (Y)) / -PLANE[2])
152
153
154 /*
155 * Return 1 / solve_plane().
156 */
157 static inline GLfloat
158 solve_plane_recip(GLfloat x, GLfloat y, const GLfloat plane[4])
159 {
160 const GLfloat denom = plane[3] + plane[0] * x + plane[1] * y;
161 if (denom == 0.0)
162 return 0.0;
163 else
164 return -plane[2] / denom;
165 }
166
167
168 /*
169 * Solve plane and return clamped GLchan value.
170 */
171 static inline GLchan
172 solve_plane_chan(GLfloat x, GLfloat y, const GLfloat plane[4])
173 {
174 const GLfloat z = (plane[3] + plane[0] * x + plane[1] * y) / -plane[2];
175 #if CHAN_TYPE == GL_FLOAT
176 return CLAMP(z, 0.0F, CHAN_MAXF);
177 #else
178 if (z < 0)
179 return 0;
180 else if (z > CHAN_MAX)
181 return CHAN_MAX;
182 return (GLchan) IROUND_POS(z);
183 #endif
184 }
185
186
187 /*
188 * Compute mipmap level of detail.
189 */
190 static inline GLfloat
191 compute_lambda(const GLfloat sPlane[4], const GLfloat tPlane[4],
192 GLfloat invQ, GLfloat width, GLfloat height)
193 {
194 GLfloat dudx = sPlane[0] / sPlane[2] * invQ * width;
195 GLfloat dudy = sPlane[1] / sPlane[2] * invQ * width;
196 GLfloat dvdx = tPlane[0] / tPlane[2] * invQ * height;
197 GLfloat dvdy = tPlane[1] / tPlane[2] * invQ * height;
198 GLfloat r1 = dudx * dudx + dudy * dudy;
199 GLfloat r2 = dvdx * dvdx + dvdy * dvdy;
200 GLfloat rho2 = r1 + r2;
201 /* return log base 2 of rho */
202 if (rho2 == 0.0F)
203 return 0.0;
204 else
205 return (GLfloat) (LOGF(rho2) * 1.442695 * 0.5);/* 1.442695 = 1/log(2) */
206 }
207
208
209
210
211 /*
212 * Fill in the samples[] array with the (x,y) subpixel positions of
213 * xSamples * ySamples sample positions.
214 * Note that the four corner samples are put into the first four
215 * positions of the array. This allows us to optimize for the common
216 * case of all samples being inside the polygon.
217 */
218 static void
219 make_sample_table(GLint xSamples, GLint ySamples, GLfloat samples[][2])
220 {
221 const GLfloat dx = 1.0F / (GLfloat) xSamples;
222 const GLfloat dy = 1.0F / (GLfloat) ySamples;
223 GLint x, y;
224 GLint i;
225
226 i = 4;
227 for (x = 0; x < xSamples; x++) {
228 for (y = 0; y < ySamples; y++) {
229 GLint j;
230 if (x == 0 && y == 0) {
231 /* lower left */
232 j = 0;
233 }
234 else if (x == xSamples - 1 && y == 0) {
235 /* lower right */
236 j = 1;
237 }
238 else if (x == 0 && y == ySamples - 1) {
239 /* upper left */
240 j = 2;
241 }
242 else if (x == xSamples - 1 && y == ySamples - 1) {
243 /* upper right */
244 j = 3;
245 }
246 else {
247 j = i++;
248 }
249 samples[j][0] = x * dx + 0.5F * dx;
250 samples[j][1] = y * dy + 0.5F * dy;
251 }
252 }
253 }
254
255
256
257 /*
258 * Compute how much of the given pixel's area is inside the rectangle
259 * defined by vertices v0, v1, v2, v3.
260 * Vertices MUST be specified in counter-clockwise order.
261 * Return: coverage in [0, 1].
262 */
263 static GLfloat
264 compute_coveragef(const struct LineInfo *info,
265 GLint winx, GLint winy)
266 {
267 static GLfloat samples[SUB_PIXEL * SUB_PIXEL][2];
268 static GLboolean haveSamples = GL_FALSE;
269 const GLfloat x = (GLfloat) winx;
270 const GLfloat y = (GLfloat) winy;
271 GLint stop = 4, i;
272 GLfloat insideCount = SUB_PIXEL * SUB_PIXEL;
273
274 if (!haveSamples) {
275 make_sample_table(SUB_PIXEL, SUB_PIXEL, samples);
276 haveSamples = GL_TRUE;
277 }
278
279 #if 0 /*DEBUG*/
280 {
281 const GLfloat area = dx0 * dy1 - dx1 * dy0;
282 assert(area >= 0.0);
283 }
284 #endif
285
286 for (i = 0; i < stop; i++) {
287 const GLfloat sx = x + samples[i][0];
288 const GLfloat sy = y + samples[i][1];
289 const GLfloat fx0 = sx - info->qx0;
290 const GLfloat fy0 = sy - info->qy0;
291 const GLfloat fx1 = sx - info->qx1;
292 const GLfloat fy1 = sy - info->qy1;
293 const GLfloat fx2 = sx - info->qx2;
294 const GLfloat fy2 = sy - info->qy2;
295 const GLfloat fx3 = sx - info->qx3;
296 const GLfloat fy3 = sy - info->qy3;
297 /* cross product determines if sample is inside or outside each edge */
298 GLfloat cross0 = (info->ex0 * fy0 - info->ey0 * fx0);
299 GLfloat cross1 = (info->ex1 * fy1 - info->ey1 * fx1);
300 GLfloat cross2 = (info->ex2 * fy2 - info->ey2 * fx2);
301 GLfloat cross3 = (info->ex3 * fy3 - info->ey3 * fx3);
302 /* Check if the sample is exactly on an edge. If so, let cross be a
303 * positive or negative value depending on the direction of the edge.
304 */
305 if (cross0 == 0.0F)
306 cross0 = info->ex0 + info->ey0;
307 if (cross1 == 0.0F)
308 cross1 = info->ex1 + info->ey1;
309 if (cross2 == 0.0F)
310 cross2 = info->ex2 + info->ey2;
311 if (cross3 == 0.0F)
312 cross3 = info->ex3 + info->ey3;
313 if (cross0 < 0.0F || cross1 < 0.0F || cross2 < 0.0F || cross3 < 0.0F) {
314 /* point is outside quadrilateral */
315 insideCount -= 1.0F;
316 stop = SUB_PIXEL * SUB_PIXEL;
317 }
318 }
319 if (stop == 4)
320 return 1.0F;
321 else
322 return insideCount * (1.0F / (SUB_PIXEL * SUB_PIXEL));
323 }
324
325
326 typedef void (*plot_func)(struct gl_context *ctx, struct LineInfo *line,
327 int ix, int iy);
328
329
330
331 /*
332 * Draw an AA line segment (called many times per line when stippling)
333 */
334 static void
335 segment(struct gl_context *ctx,
336 struct LineInfo *line,
337 plot_func plot,
338 GLfloat t0, GLfloat t1)
339 {
340 const GLfloat absDx = (line->dx < 0.0F) ? -line->dx : line->dx;
341 const GLfloat absDy = (line->dy < 0.0F) ? -line->dy : line->dy;
342 /* compute the actual segment's endpoints */
343 const GLfloat x0 = line->x0 + t0 * line->dx;
344 const GLfloat y0 = line->y0 + t0 * line->dy;
345 const GLfloat x1 = line->x0 + t1 * line->dx;
346 const GLfloat y1 = line->y0 + t1 * line->dy;
347
348 /* compute vertices of the line-aligned quadrilateral */
349 line->qx0 = x0 - line->yAdj;
350 line->qy0 = y0 + line->xAdj;
351 line->qx1 = x0 + line->yAdj;
352 line->qy1 = y0 - line->xAdj;
353 line->qx2 = x1 + line->yAdj;
354 line->qy2 = y1 - line->xAdj;
355 line->qx3 = x1 - line->yAdj;
356 line->qy3 = y1 + line->xAdj;
357 /* compute the quad's edge vectors (for coverage calc) */
358 line->ex0 = line->qx1 - line->qx0;
359 line->ey0 = line->qy1 - line->qy0;
360 line->ex1 = line->qx2 - line->qx1;
361 line->ey1 = line->qy2 - line->qy1;
362 line->ex2 = line->qx3 - line->qx2;
363 line->ey2 = line->qy3 - line->qy2;
364 line->ex3 = line->qx0 - line->qx3;
365 line->ey3 = line->qy0 - line->qy3;
366
367 if (absDx > absDy) {
368 /* X-major line */
369 GLfloat dydx = line->dy / line->dx;
370 GLfloat xLeft, xRight, yBot, yTop;
371 GLint ix, ixRight;
372 if (x0 < x1) {
373 xLeft = x0 - line->halfWidth;
374 xRight = x1 + line->halfWidth;
375 if (line->dy >= 0.0) {
376 yBot = y0 - 3.0F * line->halfWidth;
377 yTop = y0 + line->halfWidth;
378 }
379 else {
380 yBot = y0 - line->halfWidth;
381 yTop = y0 + 3.0F * line->halfWidth;
382 }
383 }
384 else {
385 xLeft = x1 - line->halfWidth;
386 xRight = x0 + line->halfWidth;
387 if (line->dy <= 0.0) {
388 yBot = y1 - 3.0F * line->halfWidth;
389 yTop = y1 + line->halfWidth;
390 }
391 else {
392 yBot = y1 - line->halfWidth;
393 yTop = y1 + 3.0F * line->halfWidth;
394 }
395 }
396
397 /* scan along the line, left-to-right */
398 ixRight = (GLint) (xRight + 1.0F);
399
400 /*printf("avg span height: %g\n", yTop - yBot);*/
401 for (ix = (GLint) xLeft; ix < ixRight; ix++) {
402 const GLint iyBot = (GLint) yBot;
403 const GLint iyTop = (GLint) (yTop + 1.0F);
404 GLint iy;
405 /* scan across the line, bottom-to-top */
406 for (iy = iyBot; iy < iyTop; iy++) {
407 (*plot)(ctx, line, ix, iy);
408 }
409 yBot += dydx;
410 yTop += dydx;
411 }
412 }
413 else {
414 /* Y-major line */
415 GLfloat dxdy = line->dx / line->dy;
416 GLfloat yBot, yTop, xLeft, xRight;
417 GLint iy, iyTop;
418 if (y0 < y1) {
419 yBot = y0 - line->halfWidth;
420 yTop = y1 + line->halfWidth;
421 if (line->dx >= 0.0) {
422 xLeft = x0 - 3.0F * line->halfWidth;
423 xRight = x0 + line->halfWidth;
424 }
425 else {
426 xLeft = x0 - line->halfWidth;
427 xRight = x0 + 3.0F * line->halfWidth;
428 }
429 }
430 else {
431 yBot = y1 - line->halfWidth;
432 yTop = y0 + line->halfWidth;
433 if (line->dx <= 0.0) {
434 xLeft = x1 - 3.0F * line->halfWidth;
435 xRight = x1 + line->halfWidth;
436 }
437 else {
438 xLeft = x1 - line->halfWidth;
439 xRight = x1 + 3.0F * line->halfWidth;
440 }
441 }
442
443 /* scan along the line, bottom-to-top */
444 iyTop = (GLint) (yTop + 1.0F);
445
446 /*printf("avg span width: %g\n", xRight - xLeft);*/
447 for (iy = (GLint) yBot; iy < iyTop; iy++) {
448 const GLint ixLeft = (GLint) xLeft;
449 const GLint ixRight = (GLint) (xRight + 1.0F);
450 GLint ix;
451 /* scan across the line, left-to-right */
452 for (ix = ixLeft; ix < ixRight; ix++) {
453 (*plot)(ctx, line, ix, iy);
454 }
455 xLeft += dxdy;
456 xRight += dxdy;
457 }
458 }
459 }
460
461
462 #define NAME(x) aa_rgba_##x
463 #define DO_Z
464 #include "s_aalinetemp.h"
465
466
467 #define NAME(x) aa_general_rgba_##x
468 #define DO_Z
469 #define DO_ATTRIBS
470 #include "s_aalinetemp.h"
471
472
473
474 void
475 _swrast_choose_aa_line_function(struct gl_context *ctx)
476 {
477 SWcontext *swrast = SWRAST_CONTEXT(ctx);
478
479 ASSERT(ctx->Line.SmoothFlag);
480
481 if (ctx->Texture._EnabledCoordUnits != 0
482 || (ctx->Light.Enabled &&
483 ctx->Light.Model.ColorControl == GL_SEPARATE_SPECULAR_COLOR)
484 || ctx->Fog.ColorSumEnabled
485 || swrast->_FogEnabled) {
486 swrast->Line = aa_general_rgba_line;
487 }
488 else {
489 swrast->Line = aa_rgba_line;
490 }
491 }