[OPENGL]
[reactos.git] / reactos / dll / opengl / mesa / src / mesa / swrast / s_aatriangle.c
1 /*
2 * Mesa 3-D graphics library
3 * Version: 6.5.3
4 *
5 * Copyright (C) 1999-2007 Brian Paul All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included
15 * in all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
21 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25
26 /*
27 * Antialiased Triangle rasterizers
28 */
29
30
31 #include "main/glheader.h"
32 #include "main/context.h"
33 #include "main/colormac.h"
34 #include "main/macros.h"
35 #include "main/imports.h"
36 #include "main/state.h"
37 #include "s_aatriangle.h"
38 #include "s_context.h"
39 #include "s_fragprog.h"
40 #include "s_span.h"
41
42
43 /*
44 * Compute coefficients of a plane using the X,Y coords of the v0, v1, v2
45 * vertices and the given Z values.
46 * A point (x,y,z) lies on plane iff a*x+b*y+c*z+d = 0.
47 */
48 static inline void
49 compute_plane(const GLfloat v0[], const GLfloat v1[], const GLfloat v2[],
50 GLfloat z0, GLfloat z1, GLfloat z2, GLfloat plane[4])
51 {
52 const GLfloat px = v1[0] - v0[0];
53 const GLfloat py = v1[1] - v0[1];
54 const GLfloat pz = z1 - z0;
55
56 const GLfloat qx = v2[0] - v0[0];
57 const GLfloat qy = v2[1] - v0[1];
58 const GLfloat qz = z2 - z0;
59
60 /* Crossproduct "(a,b,c):= dv1 x dv2" is orthogonal to plane. */
61 const GLfloat a = py * qz - pz * qy;
62 const GLfloat b = pz * qx - px * qz;
63 const GLfloat c = px * qy - py * qx;
64 /* Point on the plane = "r*(a,b,c) + w", with fixed "r" depending
65 on the distance of plane from origin and arbitrary "w" parallel
66 to the plane. */
67 /* The scalar product "(r*(a,b,c)+w)*(a,b,c)" is "r*(a^2+b^2+c^2)",
68 which is equal to "-d" below. */
69 const GLfloat d = -(a * v0[0] + b * v0[1] + c * z0);
70
71 plane[0] = a;
72 plane[1] = b;
73 plane[2] = c;
74 plane[3] = d;
75 }
76
77
78 /*
79 * Compute coefficients of a plane with a constant Z value.
80 */
81 static inline void
82 constant_plane(GLfloat value, GLfloat plane[4])
83 {
84 plane[0] = 0.0;
85 plane[1] = 0.0;
86 plane[2] = -1.0;
87 plane[3] = value;
88 }
89
90 #define CONSTANT_PLANE(VALUE, PLANE) \
91 do { \
92 PLANE[0] = 0.0F; \
93 PLANE[1] = 0.0F; \
94 PLANE[2] = -1.0F; \
95 PLANE[3] = VALUE; \
96 } while (0)
97
98
99
100 /*
101 * Solve plane equation for Z at (X,Y).
102 */
103 static inline GLfloat
104 solve_plane(GLfloat x, GLfloat y, const GLfloat plane[4])
105 {
106 ASSERT(plane[2] != 0.0F);
107 return (plane[3] + plane[0] * x + plane[1] * y) / -plane[2];
108 }
109
110
111 #define SOLVE_PLANE(X, Y, PLANE) \
112 ((PLANE[3] + PLANE[0] * (X) + PLANE[1] * (Y)) / -PLANE[2])
113
114
115 /*
116 * Return 1 / solve_plane().
117 */
118 static inline GLfloat
119 solve_plane_recip(GLfloat x, GLfloat y, const GLfloat plane[4])
120 {
121 const GLfloat denom = plane[3] + plane[0] * x + plane[1] * y;
122 if (denom == 0.0F)
123 return 0.0F;
124 else
125 return -plane[2] / denom;
126 }
127
128
129 /*
130 * Solve plane and return clamped GLchan value.
131 */
132 static inline GLchan
133 solve_plane_chan(GLfloat x, GLfloat y, const GLfloat plane[4])
134 {
135 const GLfloat z = (plane[3] + plane[0] * x + plane[1] * y) / -plane[2];
136 #if CHAN_TYPE == GL_FLOAT
137 return CLAMP(z, 0.0F, CHAN_MAXF);
138 #else
139 if (z < 0)
140 return 0;
141 else if (z > CHAN_MAX)
142 return CHAN_MAX;
143 return (GLchan) IROUND_POS(z);
144 #endif
145 }
146
147
148 static inline GLfloat
149 plane_dx(const GLfloat plane[4])
150 {
151 return -plane[0] / plane[2];
152 }
153
154 static inline GLfloat
155 plane_dy(const GLfloat plane[4])
156 {
157 return -plane[1] / plane[2];
158 }
159
160
161
162 /*
163 * Compute how much (area) of the given pixel is inside the triangle.
164 * Vertices MUST be specified in counter-clockwise order.
165 * Return: coverage in [0, 1].
166 */
167 static GLfloat
168 compute_coveragef(const GLfloat v0[3], const GLfloat v1[3],
169 const GLfloat v2[3], GLint winx, GLint winy)
170 {
171 /* Given a position [0,3]x[0,3] return the sub-pixel sample position.
172 * Contributed by Ray Tice.
173 *
174 * Jitter sample positions -
175 * - average should be .5 in x & y for each column
176 * - each of the 16 rows and columns should be used once
177 * - the rectangle formed by the first four points
178 * should contain the other points
179 * - the distrubition should be fairly even in any given direction
180 *
181 * The pattern drawn below isn't optimal, but it's better than a regular
182 * grid. In the drawing, the center of each subpixel is surrounded by
183 * four dots. The "x" marks the jittered position relative to the
184 * subpixel center.
185 */
186 #define POS(a, b) (0.5+a*4+b)/16
187 static const GLfloat samples[16][2] = {
188 /* start with the four corners */
189 { POS(0, 2), POS(0, 0) },
190 { POS(3, 3), POS(0, 2) },
191 { POS(0, 0), POS(3, 1) },
192 { POS(3, 1), POS(3, 3) },
193 /* continue with interior samples */
194 { POS(1, 1), POS(0, 1) },
195 { POS(2, 0), POS(0, 3) },
196 { POS(0, 3), POS(1, 3) },
197 { POS(1, 2), POS(1, 0) },
198 { POS(2, 3), POS(1, 2) },
199 { POS(3, 2), POS(1, 1) },
200 { POS(0, 1), POS(2, 2) },
201 { POS(1, 0), POS(2, 1) },
202 { POS(2, 1), POS(2, 3) },
203 { POS(3, 0), POS(2, 0) },
204 { POS(1, 3), POS(3, 0) },
205 { POS(2, 2), POS(3, 2) }
206 };
207
208 const GLfloat x = (GLfloat) winx;
209 const GLfloat y = (GLfloat) winy;
210 const GLfloat dx0 = v1[0] - v0[0];
211 const GLfloat dy0 = v1[1] - v0[1];
212 const GLfloat dx1 = v2[0] - v1[0];
213 const GLfloat dy1 = v2[1] - v1[1];
214 const GLfloat dx2 = v0[0] - v2[0];
215 const GLfloat dy2 = v0[1] - v2[1];
216 GLint stop = 4, i;
217 GLfloat insideCount = 16.0F;
218
219 ASSERT(dx0 * dy1 - dx1 * dy0 >= 0.0); /* area >= 0.0 */
220
221 for (i = 0; i < stop; i++) {
222 const GLfloat sx = x + samples[i][0];
223 const GLfloat sy = y + samples[i][1];
224 /* cross product determines if sample is inside or outside each edge */
225 GLfloat cross = (dx0 * (sy - v0[1]) - dy0 * (sx - v0[0]));
226 /* Check if the sample is exactly on an edge. If so, let cross be a
227 * positive or negative value depending on the direction of the edge.
228 */
229 if (cross == 0.0F)
230 cross = dx0 + dy0;
231 if (cross < 0.0F) {
232 /* sample point is outside first edge */
233 insideCount -= 1.0F;
234 stop = 16;
235 }
236 else {
237 /* sample point is inside first edge */
238 cross = (dx1 * (sy - v1[1]) - dy1 * (sx - v1[0]));
239 if (cross == 0.0F)
240 cross = dx1 + dy1;
241 if (cross < 0.0F) {
242 /* sample point is outside second edge */
243 insideCount -= 1.0F;
244 stop = 16;
245 }
246 else {
247 /* sample point is inside first and second edges */
248 cross = (dx2 * (sy - v2[1]) - dy2 * (sx - v2[0]));
249 if (cross == 0.0F)
250 cross = dx2 + dy2;
251 if (cross < 0.0F) {
252 /* sample point is outside third edge */
253 insideCount -= 1.0F;
254 stop = 16;
255 }
256 }
257 }
258 }
259 if (stop == 4)
260 return 1.0F;
261 else
262 return insideCount * (1.0F / 16.0F);
263 }
264
265
266
267 static void
268 rgba_aa_tri(struct gl_context *ctx,
269 const SWvertex *v0,
270 const SWvertex *v1,
271 const SWvertex *v2)
272 {
273 #define DO_Z
274 #include "s_aatritemp.h"
275 }
276
277
278 static void
279 general_aa_tri(struct gl_context *ctx,
280 const SWvertex *v0,
281 const SWvertex *v1,
282 const SWvertex *v2)
283 {
284 #define DO_Z
285 #define DO_ATTRIBS
286 #include "s_aatritemp.h"
287 }
288
289
290
291 /*
292 * Examine GL state and set swrast->Triangle to an
293 * appropriate antialiased triangle rasterizer function.
294 */
295 void
296 _swrast_set_aa_triangle_function(struct gl_context *ctx)
297 {
298 SWcontext *swrast = SWRAST_CONTEXT(ctx);
299
300 ASSERT(ctx->Polygon.SmoothFlag);
301
302 if (ctx->Texture._EnabledCoordUnits != 0
303 || _swrast_use_fragment_program(ctx)
304 || swrast->_FogEnabled
305 || _mesa_need_secondary_color(ctx)) {
306 SWRAST_CONTEXT(ctx)->Triangle = general_aa_tri;
307 }
308 else {
309 SWRAST_CONTEXT(ctx)->Triangle = rgba_aa_tri;
310 }
311
312 ASSERT(SWRAST_CONTEXT(ctx)->Triangle);
313 }