reshuffling of dlls
[reactos.git] / reactos / dll / win32 / glu32 / libtess / render.c
1 /*
2 ** License Applicability. Except to the extent portions of this file are
3 ** made subject to an alternative license as permitted in the SGI Free
4 ** Software License B, Version 1.1 (the "License"), the contents of this
5 ** file are subject only to the provisions of the License. You may not use
6 ** this file except in compliance with the License. You may obtain a copy
7 ** of the License at Silicon Graphics, Inc., attn: Legal Services, 1600
8 ** Amphitheatre Parkway, Mountain View, CA 94043-1351, or at:
9 **
10 ** http://oss.sgi.com/projects/FreeB
11 **
12 ** Note that, as provided in the License, the Software is distributed on an
13 ** "AS IS" basis, with ALL EXPRESS AND IMPLIED WARRANTIES AND CONDITIONS
14 ** DISCLAIMED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES AND
15 ** CONDITIONS OF MERCHANTABILITY, SATISFACTORY QUALITY, FITNESS FOR A
16 ** PARTICULAR PURPOSE, AND NON-INFRINGEMENT.
17 **
18 ** Original Code. The Original Code is: OpenGL Sample Implementation,
19 ** Version 1.2.1, released January 26, 2000, developed by Silicon Graphics,
20 ** Inc. The Original Code is Copyright (c) 1991-2000 Silicon Graphics, Inc.
21 ** Copyright in any portions created by third parties is as indicated
22 ** elsewhere herein. All Rights Reserved.
23 **
24 ** Additional Notice Provisions: The application programming interfaces
25 ** established by SGI in conjunction with the Original Code are The
26 ** OpenGL(R) Graphics System: A Specification (Version 1.2.1), released
27 ** April 1, 1999; The OpenGL(R) Graphics System Utility Library (Version
28 ** 1.3), released November 4, 1998; and OpenGL(R) Graphics with the X
29 ** Window System(R) (Version 1.3), released October 19, 1998. This software
30 ** was created using the OpenGL(R) version 1.2.1 Sample Implementation
31 ** published by SGI, but has not been independently verified as being
32 ** compliant with the OpenGL(R) version 1.2.1 Specification.
33 **
34 */
35 /*
36 ** Author: Eric Veach, July 1994.
37 **
38 ** $Date$ $Revision: 1.1 $
39 ** $Header: /cygdrive/c/RCVS/CVS/ReactOS/reactos/lib/glu32/libtess/render.c,v 1.1 2004/02/02 16:39:15 navaraf Exp $
40 */
41
42 #include "gluos.h"
43 #include <assert.h>
44 #include <stddef.h>
45 #include "mesh.h"
46 #include "tess.h"
47 #include "render.h"
48
49 #define TRUE 1
50 #define FALSE 0
51
52 /* This structure remembers the information we need about a primitive
53 * to be able to render it later, once we have determined which
54 * primitive is able to use the most triangles.
55 */
56 struct FaceCount {
57 long size; /* number of triangles used */
58 GLUhalfEdge *eStart; /* edge where this primitive starts */
59 void (*render)(GLUtesselator *, GLUhalfEdge *, long);
60 /* routine to render this primitive */
61 };
62
63 static struct FaceCount MaximumFan( GLUhalfEdge *eOrig );
64 static struct FaceCount MaximumStrip( GLUhalfEdge *eOrig );
65
66 static void RenderFan( GLUtesselator *tess, GLUhalfEdge *eStart, long size );
67 static void RenderStrip( GLUtesselator *tess, GLUhalfEdge *eStart, long size );
68 static void RenderTriangle( GLUtesselator *tess, GLUhalfEdge *eStart,
69 long size );
70
71 static void RenderMaximumFaceGroup( GLUtesselator *tess, GLUface *fOrig );
72 static void RenderLonelyTriangles( GLUtesselator *tess, GLUface *head );
73
74
75
76 /************************ Strips and Fans decomposition ******************/
77
78 /* __gl_renderMesh( tess, mesh ) takes a mesh and breaks it into triangle
79 * fans, strips, and separate triangles. A substantial effort is made
80 * to use as few rendering primitives as possible (ie. to make the fans
81 * and strips as large as possible).
82 *
83 * The rendering output is provided as callbacks (see the api).
84 */
85 void __gl_renderMesh( GLUtesselator *tess, GLUmesh *mesh )
86 {
87 GLUface *f;
88
89 /* Make a list of separate triangles so we can render them all at once */
90 tess->lonelyTriList = NULL;
91
92 for( f = mesh->fHead.next; f != &mesh->fHead; f = f->next ) {
93 f->marked = FALSE;
94 }
95 for( f = mesh->fHead.next; f != &mesh->fHead; f = f->next ) {
96
97 /* We examine all faces in an arbitrary order. Whenever we find
98 * an unprocessed face F, we output a group of faces including F
99 * whose size is maximum.
100 */
101 if( f->inside && ! f->marked ) {
102 RenderMaximumFaceGroup( tess, f );
103 assert( f->marked );
104 }
105 }
106 if( tess->lonelyTriList != NULL ) {
107 RenderLonelyTriangles( tess, tess->lonelyTriList );
108 tess->lonelyTriList = NULL;
109 }
110 }
111
112
113 static void RenderMaximumFaceGroup( GLUtesselator *tess, GLUface *fOrig )
114 {
115 /* We want to find the largest triangle fan or strip of unmarked faces
116 * which includes the given face fOrig. There are 3 possible fans
117 * passing through fOrig (one centered at each vertex), and 3 possible
118 * strips (one for each CCW permutation of the vertices). Our strategy
119 * is to try all of these, and take the primitive which uses the most
120 * triangles (a greedy approach).
121 */
122 GLUhalfEdge *e = fOrig->anEdge;
123 struct FaceCount max, newFace;
124
125 max.size = 1;
126 max.eStart = e;
127 max.render = &RenderTriangle;
128
129 if( ! tess->flagBoundary ) {
130 newFace = MaximumFan( e ); if( newFace.size > max.size ) { max = newFace; }
131 newFace = MaximumFan( e->Lnext ); if( newFace.size > max.size ) { max = newFace; }
132 newFace = MaximumFan( e->Lprev ); if( newFace.size > max.size ) { max = newFace; }
133
134 newFace = MaximumStrip( e ); if( newFace.size > max.size ) { max = newFace; }
135 newFace = MaximumStrip( e->Lnext ); if( newFace.size > max.size ) { max = newFace; }
136 newFace = MaximumStrip( e->Lprev ); if( newFace.size > max.size ) { max = newFace; }
137 }
138 (*(max.render))( tess, max.eStart, max.size );
139 }
140
141
142 /* Macros which keep track of faces we have marked temporarily, and allow
143 * us to backtrack when necessary. With triangle fans, this is not
144 * really necessary, since the only awkward case is a loop of triangles
145 * around a single origin vertex. However with strips the situation is
146 * more complicated, and we need a general tracking method like the
147 * one here.
148 */
149 #define Marked(f) (! (f)->inside || (f)->marked)
150
151 #define AddToTrail(f,t) ((f)->trail = (t), (t) = (f), (f)->marked = TRUE)
152
153 #define FreeTrail(t) if( 1 ) { \
154 while( (t) != NULL ) { \
155 (t)->marked = FALSE; t = (t)->trail; \
156 } \
157 } else /* absorb trailing semicolon */
158
159
160
161 static struct FaceCount MaximumFan( GLUhalfEdge *eOrig )
162 {
163 /* eOrig->Lface is the face we want to render. We want to find the size
164 * of a maximal fan around eOrig->Org. To do this we just walk around
165 * the origin vertex as far as possible in both directions.
166 */
167 struct FaceCount newFace = { 0, NULL, &RenderFan };
168 GLUface *trail = NULL;
169 GLUhalfEdge *e;
170
171 for( e = eOrig; ! Marked( e->Lface ); e = e->Onext ) {
172 AddToTrail( e->Lface, trail );
173 ++newFace.size;
174 }
175 for( e = eOrig; ! Marked( e->Rface ); e = e->Oprev ) {
176 AddToTrail( e->Rface, trail );
177 ++newFace.size;
178 }
179 newFace.eStart = e;
180 /*LINTED*/
181 FreeTrail( trail );
182 return newFace;
183 }
184
185
186 #define IsEven(n) (((n) & 1) == 0)
187
188 static struct FaceCount MaximumStrip( GLUhalfEdge *eOrig )
189 {
190 /* Here we are looking for a maximal strip that contains the vertices
191 * eOrig->Org, eOrig->Dst, eOrig->Lnext->Dst (in that order or the
192 * reverse, such that all triangles are oriented CCW).
193 *
194 * Again we walk forward and backward as far as possible. However for
195 * strips there is a twist: to get CCW orientations, there must be
196 * an *even* number of triangles in the strip on one side of eOrig.
197 * We walk the strip starting on a side with an even number of triangles;
198 * if both side have an odd number, we are forced to shorten one side.
199 */
200 struct FaceCount newFace = { 0, NULL, &RenderStrip };
201 long headSize = 0, tailSize = 0;
202 GLUface *trail = NULL;
203 GLUhalfEdge *e, *eTail, *eHead;
204
205 for( e = eOrig; ! Marked( e->Lface ); ++tailSize, e = e->Onext ) {
206 AddToTrail( e->Lface, trail );
207 ++tailSize;
208 e = e->Dprev;
209 if( Marked( e->Lface )) break;
210 AddToTrail( e->Lface, trail );
211 }
212 eTail = e;
213
214 for( e = eOrig; ! Marked( e->Rface ); ++headSize, e = e->Dnext ) {
215 AddToTrail( e->Rface, trail );
216 ++headSize;
217 e = e->Oprev;
218 if( Marked( e->Rface )) break;
219 AddToTrail( e->Rface, trail );
220 }
221 eHead = e;
222
223 newFace.size = tailSize + headSize;
224 if( IsEven( tailSize )) {
225 newFace.eStart = eTail->Sym;
226 } else if( IsEven( headSize )) {
227 newFace.eStart = eHead;
228 } else {
229 /* Both sides have odd length, we must shorten one of them. In fact,
230 * we must start from eHead to guarantee inclusion of eOrig->Lface.
231 */
232 --newFace.size;
233 newFace.eStart = eHead->Onext;
234 }
235 /*LINTED*/
236 FreeTrail( trail );
237 return newFace;
238 }
239
240
241 static void RenderTriangle( GLUtesselator *tess, GLUhalfEdge *e, long size )
242 {
243 /* Just add the triangle to a triangle list, so we can render all
244 * the separate triangles at once.
245 */
246 assert( size == 1 );
247 AddToTrail( e->Lface, tess->lonelyTriList );
248 }
249
250
251 static void RenderLonelyTriangles( GLUtesselator *tess, GLUface *f )
252 {
253 /* Now we render all the separate triangles which could not be
254 * grouped into a triangle fan or strip.
255 */
256 GLUhalfEdge *e;
257 int newState;
258 int edgeState = -1; /* force edge state output for first vertex */
259
260 CALL_BEGIN_OR_BEGIN_DATA( GL_TRIANGLES );
261
262 for( ; f != NULL; f = f->trail ) {
263 /* Loop once for each edge (there will always be 3 edges) */
264
265 e = f->anEdge;
266 do {
267 if( tess->flagBoundary ) {
268 /* Set the "edge state" to TRUE just before we output the
269 * first vertex of each edge on the polygon boundary.
270 */
271 newState = ! e->Rface->inside;
272 if( edgeState != newState ) {
273 edgeState = newState;
274 CALL_EDGE_FLAG_OR_EDGE_FLAG_DATA( edgeState );
275 }
276 }
277 CALL_VERTEX_OR_VERTEX_DATA( e->Org->data );
278
279 e = e->Lnext;
280 } while( e != f->anEdge );
281 }
282 CALL_END_OR_END_DATA();
283 }
284
285
286 static void RenderFan( GLUtesselator *tess, GLUhalfEdge *e, long size )
287 {
288 /* Render as many CCW triangles as possible in a fan starting from
289 * edge "e". The fan *should* contain exactly "size" triangles
290 * (otherwise we've goofed up somewhere).
291 */
292 CALL_BEGIN_OR_BEGIN_DATA( GL_TRIANGLE_FAN );
293 CALL_VERTEX_OR_VERTEX_DATA( e->Org->data );
294 CALL_VERTEX_OR_VERTEX_DATA( e->Dst->data );
295
296 while( ! Marked( e->Lface )) {
297 e->Lface->marked = TRUE;
298 --size;
299 e = e->Onext;
300 CALL_VERTEX_OR_VERTEX_DATA( e->Dst->data );
301 }
302
303 assert( size == 0 );
304 CALL_END_OR_END_DATA();
305 }
306
307
308 static void RenderStrip( GLUtesselator *tess, GLUhalfEdge *e, long size )
309 {
310 /* Render as many CCW triangles as possible in a strip starting from
311 * edge "e". The strip *should* contain exactly "size" triangles
312 * (otherwise we've goofed up somewhere).
313 */
314 CALL_BEGIN_OR_BEGIN_DATA( GL_TRIANGLE_STRIP );
315 CALL_VERTEX_OR_VERTEX_DATA( e->Org->data );
316 CALL_VERTEX_OR_VERTEX_DATA( e->Dst->data );
317
318 while( ! Marked( e->Lface )) {
319 e->Lface->marked = TRUE;
320 --size;
321 e = e->Dprev;
322 CALL_VERTEX_OR_VERTEX_DATA( e->Org->data );
323 if( Marked( e->Lface )) break;
324
325 e->Lface->marked = TRUE;
326 --size;
327 e = e->Onext;
328 CALL_VERTEX_OR_VERTEX_DATA( e->Dst->data );
329 }
330
331 assert( size == 0 );
332 CALL_END_OR_END_DATA();
333 }
334
335
336 /************************ Boundary contour decomposition ******************/
337
338 /* __gl_renderBoundary( tess, mesh ) takes a mesh, and outputs one
339 * contour for each face marked "inside". The rendering output is
340 * provided as callbacks (see the api).
341 */
342 void __gl_renderBoundary( GLUtesselator *tess, GLUmesh *mesh )
343 {
344 GLUface *f;
345 GLUhalfEdge *e;
346
347 for( f = mesh->fHead.next; f != &mesh->fHead; f = f->next ) {
348 if( f->inside ) {
349 CALL_BEGIN_OR_BEGIN_DATA( GL_LINE_LOOP );
350 e = f->anEdge;
351 do {
352 CALL_VERTEX_OR_VERTEX_DATA( e->Org->data );
353 e = e->Lnext;
354 } while( e != f->anEdge );
355 CALL_END_OR_END_DATA();
356 }
357 }
358 }
359
360
361 /************************ Quick-and-dirty decomposition ******************/
362
363 #define SIGN_INCONSISTENT 2
364
365 static int ComputeNormal( GLUtesselator *tess, GLdouble norm[3], int check )
366 /*
367 * If check==FALSE, we compute the polygon normal and place it in norm[].
368 * If check==TRUE, we check that each triangle in the fan from v0 has a
369 * consistent orientation with respect to norm[]. If triangles are
370 * consistently oriented CCW, return 1; if CW, return -1; if all triangles
371 * are degenerate return 0; otherwise (no consistent orientation) return
372 * SIGN_INCONSISTENT.
373 */
374 {
375 CachedVertex *v0 = tess->cache;
376 CachedVertex *vn = v0 + tess->cacheCount;
377 CachedVertex *vc;
378 GLdouble dot, xc, yc, zc, xp, yp, zp, n[3];
379 int sign = 0;
380
381 /* Find the polygon normal. It is important to get a reasonable
382 * normal even when the polygon is self-intersecting (eg. a bowtie).
383 * Otherwise, the computed normal could be very tiny, but perpendicular
384 * to the true plane of the polygon due to numerical noise. Then all
385 * the triangles would appear to be degenerate and we would incorrectly
386 * decompose the polygon as a fan (or simply not render it at all).
387 *
388 * We use a sum-of-triangles normal algorithm rather than the more
389 * efficient sum-of-trapezoids method (used in CheckOrientation()
390 * in normal.c). This lets us explicitly reverse the signed area
391 * of some triangles to get a reasonable normal in the self-intersecting
392 * case.
393 */
394 if( ! check ) {
395 norm[0] = norm[1] = norm[2] = 0.0;
396 }
397
398 vc = v0 + 1;
399 xc = vc->coords[0] - v0->coords[0];
400 yc = vc->coords[1] - v0->coords[1];
401 zc = vc->coords[2] - v0->coords[2];
402 while( ++vc < vn ) {
403 xp = xc; yp = yc; zp = zc;
404 xc = vc->coords[0] - v0->coords[0];
405 yc = vc->coords[1] - v0->coords[1];
406 zc = vc->coords[2] - v0->coords[2];
407
408 /* Compute (vp - v0) cross (vc - v0) */
409 n[0] = yp*zc - zp*yc;
410 n[1] = zp*xc - xp*zc;
411 n[2] = xp*yc - yp*xc;
412
413 dot = n[0]*norm[0] + n[1]*norm[1] + n[2]*norm[2];
414 if( ! check ) {
415 /* Reverse the contribution of back-facing triangles to get
416 * a reasonable normal for self-intersecting polygons (see above)
417 */
418 if( dot >= 0 ) {
419 norm[0] += n[0]; norm[1] += n[1]; norm[2] += n[2];
420 } else {
421 norm[0] -= n[0]; norm[1] -= n[1]; norm[2] -= n[2];
422 }
423 } else if( dot != 0 ) {
424 /* Check the new orientation for consistency with previous triangles */
425 if( dot > 0 ) {
426 if( sign < 0 ) return SIGN_INCONSISTENT;
427 sign = 1;
428 } else {
429 if( sign > 0 ) return SIGN_INCONSISTENT;
430 sign = -1;
431 }
432 }
433 }
434 return sign;
435 }
436
437 /* __gl_renderCache( tess ) takes a single contour and tries to render it
438 * as a triangle fan. This handles convex polygons, as well as some
439 * non-convex polygons if we get lucky.
440 *
441 * Returns TRUE if the polygon was successfully rendered. The rendering
442 * output is provided as callbacks (see the api).
443 */
444 GLboolean __gl_renderCache( GLUtesselator *tess )
445 {
446 CachedVertex *v0 = tess->cache;
447 CachedVertex *vn = v0 + tess->cacheCount;
448 CachedVertex *vc;
449 GLdouble norm[3];
450 int sign;
451
452 if( tess->cacheCount < 3 ) {
453 /* Degenerate contour -- no output */
454 return TRUE;
455 }
456
457 norm[0] = tess->normal[0];
458 norm[1] = tess->normal[1];
459 norm[2] = tess->normal[2];
460 if( norm[0] == 0 && norm[1] == 0 && norm[2] == 0 ) {
461 ComputeNormal( tess, norm, FALSE );
462 }
463
464 sign = ComputeNormal( tess, norm, TRUE );
465 if( sign == SIGN_INCONSISTENT ) {
466 /* Fan triangles did not have a consistent orientation */
467 return FALSE;
468 }
469 if( sign == 0 ) {
470 /* All triangles were degenerate */
471 return TRUE;
472 }
473
474 /* Make sure we do the right thing for each winding rule */
475 switch( tess->windingRule ) {
476 case GLU_TESS_WINDING_ODD:
477 case GLU_TESS_WINDING_NONZERO:
478 break;
479 case GLU_TESS_WINDING_POSITIVE:
480 if( sign < 0 ) return TRUE;
481 break;
482 case GLU_TESS_WINDING_NEGATIVE:
483 if( sign > 0 ) return TRUE;
484 break;
485 case GLU_TESS_WINDING_ABS_GEQ_TWO:
486 return TRUE;
487 }
488
489 CALL_BEGIN_OR_BEGIN_DATA( tess->boundaryOnly ? GL_LINE_LOOP
490 : (tess->cacheCount > 3) ? GL_TRIANGLE_FAN
491 : GL_TRIANGLES );
492
493 CALL_VERTEX_OR_VERTEX_DATA( v0->data );
494 if( sign > 0 ) {
495 for( vc = v0+1; vc < vn; ++vc ) {
496 CALL_VERTEX_OR_VERTEX_DATA( vc->data );
497 }
498 } else {
499 for( vc = vn-1; vc > v0; --vc ) {
500 CALL_VERTEX_OR_VERTEX_DATA( vc->data );
501 }
502 }
503 CALL_END_OR_END_DATA();
504 return TRUE;
505 }