reshuffling of dlls
[reactos.git] / reactos / dll / win32 / glu32 / libtess / sweep.c
1 /*
2 ** License Applicability. Except to the extent portions of this file are
3 ** made subject to an alternative license as permitted in the SGI Free
4 ** Software License B, Version 1.1 (the "License"), the contents of this
5 ** file are subject only to the provisions of the License. You may not use
6 ** this file except in compliance with the License. You may obtain a copy
7 ** of the License at Silicon Graphics, Inc., attn: Legal Services, 1600
8 ** Amphitheatre Parkway, Mountain View, CA 94043-1351, or at:
9 **
10 ** http://oss.sgi.com/projects/FreeB
11 **
12 ** Note that, as provided in the License, the Software is distributed on an
13 ** "AS IS" basis, with ALL EXPRESS AND IMPLIED WARRANTIES AND CONDITIONS
14 ** DISCLAIMED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES AND
15 ** CONDITIONS OF MERCHANTABILITY, SATISFACTORY QUALITY, FITNESS FOR A
16 ** PARTICULAR PURPOSE, AND NON-INFRINGEMENT.
17 **
18 ** Original Code. The Original Code is: OpenGL Sample Implementation,
19 ** Version 1.2.1, released January 26, 2000, developed by Silicon Graphics,
20 ** Inc. The Original Code is Copyright (c) 1991-2000 Silicon Graphics, Inc.
21 ** Copyright in any portions created by third parties is as indicated
22 ** elsewhere herein. All Rights Reserved.
23 **
24 ** Additional Notice Provisions: The application programming interfaces
25 ** established by SGI in conjunction with the Original Code are The
26 ** OpenGL(R) Graphics System: A Specification (Version 1.2.1), released
27 ** April 1, 1999; The OpenGL(R) Graphics System Utility Library (Version
28 ** 1.3), released November 4, 1998; and OpenGL(R) Graphics with the X
29 ** Window System(R) (Version 1.3), released October 19, 1998. This software
30 ** was created using the OpenGL(R) version 1.2.1 Sample Implementation
31 ** published by SGI, but has not been independently verified as being
32 ** compliant with the OpenGL(R) version 1.2.1 Specification.
33 **
34 */
35 /*
36 ** Author: Eric Veach, July 1994.
37 **
38 */
39
40 #include "gluos.h"
41 #include <assert.h>
42 #include <stddef.h>
43 #include <setjmp.h> /* longjmp */
44 #include <limits.h> /* LONG_MAX */
45
46 #include "mesh.h"
47 #include "geom.h"
48 #include "tess.h"
49 #include "dict.h"
50 #include "priorityq.h"
51 #include "memalloc.h"
52 #include "sweep.h"
53
54 #define TRUE 1
55 #define FALSE 0
56
57 #ifdef FOR_TRITE_TEST_PROGRAM
58 extern void DebugEvent( GLUtesselator *tess );
59 #else
60 #define DebugEvent( tess )
61 #endif
62
63 /*
64 * Invariants for the Edge Dictionary.
65 * - each pair of adjacent edges e2=Succ(e1) satisfies EdgeLeq(e1,e2)
66 * at any valid location of the sweep event
67 * - if EdgeLeq(e2,e1) as well (at any valid sweep event), then e1 and e2
68 * share a common endpoint
69 * - for each e, e->Dst has been processed, but not e->Org
70 * - each edge e satisfies VertLeq(e->Dst,event) && VertLeq(event,e->Org)
71 * where "event" is the current sweep line event.
72 * - no edge e has zero length
73 *
74 * Invariants for the Mesh (the processed portion).
75 * - the portion of the mesh left of the sweep line is a planar graph,
76 * ie. there is *some* way to embed it in the plane
77 * - no processed edge has zero length
78 * - no two processed vertices have identical coordinates
79 * - each "inside" region is monotone, ie. can be broken into two chains
80 * of monotonically increasing vertices according to VertLeq(v1,v2)
81 * - a non-invariant: these chains may intersect (very slightly)
82 *
83 * Invariants for the Sweep.
84 * - if none of the edges incident to the event vertex have an activeRegion
85 * (ie. none of these edges are in the edge dictionary), then the vertex
86 * has only right-going edges.
87 * - if an edge is marked "fixUpperEdge" (it is a temporary edge introduced
88 * by ConnectRightVertex), then it is the only right-going edge from
89 * its associated vertex. (This says that these edges exist only
90 * when it is necessary.)
91 */
92
93 #undef MAX
94 #undef MIN
95 #define MAX(x,y) ((x) >= (y) ? (x) : (y))
96 #define MIN(x,y) ((x) <= (y) ? (x) : (y))
97
98 /* When we merge two edges into one, we need to compute the combined
99 * winding of the new edge.
100 */
101 #define AddWinding(eDst,eSrc) (eDst->winding += eSrc->winding, \
102 eDst->Sym->winding += eSrc->Sym->winding)
103
104 static void SweepEvent( GLUtesselator *tess, GLUvertex *vEvent );
105 static void WalkDirtyRegions( GLUtesselator *tess, ActiveRegion *regUp );
106 static int CheckForRightSplice( GLUtesselator *tess, ActiveRegion *regUp );
107
108 static int EdgeLeq( GLUtesselator *tess, ActiveRegion *reg1,
109 ActiveRegion *reg2 )
110 /*
111 * Both edges must be directed from right to left (this is the canonical
112 * direction for the upper edge of each region).
113 *
114 * The strategy is to evaluate a "t" value for each edge at the
115 * current sweep line position, given by tess->event. The calculations
116 * are designed to be very stable, but of course they are not perfect.
117 *
118 * Special case: if both edge destinations are at the sweep event,
119 * we sort the edges by slope (they would otherwise compare equally).
120 */
121 {
122 GLUvertex *event = tess->event;
123 GLUhalfEdge *e1, *e2;
124 GLdouble t1, t2;
125
126 e1 = reg1->eUp;
127 e2 = reg2->eUp;
128
129 if( e1->Dst == event ) {
130 if( e2->Dst == event ) {
131 /* Two edges right of the sweep line which meet at the sweep event.
132 * Sort them by slope.
133 */
134 if( VertLeq( e1->Org, e2->Org )) {
135 return EdgeSign( e2->Dst, e1->Org, e2->Org ) <= 0;
136 }
137 return EdgeSign( e1->Dst, e2->Org, e1->Org ) >= 0;
138 }
139 return EdgeSign( e2->Dst, event, e2->Org ) <= 0;
140 }
141 if( e2->Dst == event ) {
142 return EdgeSign( e1->Dst, event, e1->Org ) >= 0;
143 }
144
145 /* General case - compute signed distance *from* e1, e2 to event */
146 t1 = EdgeEval( e1->Dst, event, e1->Org );
147 t2 = EdgeEval( e2->Dst, event, e2->Org );
148 return (t1 >= t2);
149 }
150
151
152 static void DeleteRegion( GLUtesselator *tess, ActiveRegion *reg )
153 {
154 if( reg->fixUpperEdge ) {
155 /* It was created with zero winding number, so it better be
156 * deleted with zero winding number (ie. it better not get merged
157 * with a real edge).
158 */
159 assert( reg->eUp->winding == 0 );
160 }
161 reg->eUp->activeRegion = NULL;
162 dictDelete( tess->dict, reg->nodeUp ); /* __gl_dictListDelete */
163 memFree( reg );
164 }
165
166
167 static int FixUpperEdge( ActiveRegion *reg, GLUhalfEdge *newEdge )
168 /*
169 * Replace an upper edge which needs fixing (see ConnectRightVertex).
170 */
171 {
172 assert( reg->fixUpperEdge );
173 if ( !__gl_meshDelete( reg->eUp ) ) return 0;
174 reg->fixUpperEdge = FALSE;
175 reg->eUp = newEdge;
176 newEdge->activeRegion = reg;
177
178 return 1;
179 }
180
181 static ActiveRegion *TopLeftRegion( ActiveRegion *reg )
182 {
183 GLUvertex *org = reg->eUp->Org;
184 GLUhalfEdge *e;
185
186 /* Find the region above the uppermost edge with the same origin */
187 do {
188 reg = RegionAbove( reg );
189 } while( reg->eUp->Org == org );
190
191 /* If the edge above was a temporary edge introduced by ConnectRightVertex,
192 * now is the time to fix it.
193 */
194 if( reg->fixUpperEdge ) {
195 e = __gl_meshConnect( RegionBelow(reg)->eUp->Sym, reg->eUp->Lnext );
196 if (e == NULL) return NULL;
197 if ( !FixUpperEdge( reg, e ) ) return NULL;
198 reg = RegionAbove( reg );
199 }
200 return reg;
201 }
202
203 static ActiveRegion *TopRightRegion( ActiveRegion *reg )
204 {
205 GLUvertex *dst = reg->eUp->Dst;
206
207 /* Find the region above the uppermost edge with the same destination */
208 do {
209 reg = RegionAbove( reg );
210 } while( reg->eUp->Dst == dst );
211 return reg;
212 }
213
214 static ActiveRegion *AddRegionBelow( GLUtesselator *tess,
215 ActiveRegion *regAbove,
216 GLUhalfEdge *eNewUp )
217 /*
218 * Add a new active region to the sweep line, *somewhere* below "regAbove"
219 * (according to where the new edge belongs in the sweep-line dictionary).
220 * The upper edge of the new region will be "eNewUp".
221 * Winding number and "inside" flag are not updated.
222 */
223 {
224 ActiveRegion *regNew = (ActiveRegion *)memAlloc( sizeof( ActiveRegion ));
225 if (regNew == NULL) longjmp(tess->env,1);
226
227 regNew->eUp = eNewUp;
228 /* __gl_dictListInsertBefore */
229 regNew->nodeUp = dictInsertBefore( tess->dict, regAbove->nodeUp, regNew );
230 if (regNew->nodeUp == NULL) longjmp(tess->env,1);
231 regNew->fixUpperEdge = FALSE;
232 regNew->sentinel = FALSE;
233 regNew->dirty = FALSE;
234
235 eNewUp->activeRegion = regNew;
236 return regNew;
237 }
238
239 static GLboolean IsWindingInside( GLUtesselator *tess, int n )
240 {
241 switch( tess->windingRule ) {
242 case GLU_TESS_WINDING_ODD:
243 return (n & 1);
244 case GLU_TESS_WINDING_NONZERO:
245 return (n != 0);
246 case GLU_TESS_WINDING_POSITIVE:
247 return (n > 0);
248 case GLU_TESS_WINDING_NEGATIVE:
249 return (n < 0);
250 case GLU_TESS_WINDING_ABS_GEQ_TWO:
251 return (n >= 2) || (n <= -2);
252 }
253 /*LINTED*/
254 assert( FALSE );
255 /*NOTREACHED*/
256 return GL_FALSE; /* avoid compiler complaints */
257 }
258
259
260 static void ComputeWinding( GLUtesselator *tess, ActiveRegion *reg )
261 {
262 reg->windingNumber = RegionAbove(reg)->windingNumber + reg->eUp->winding;
263 reg->inside = IsWindingInside( tess, reg->windingNumber );
264 }
265
266
267 static void FinishRegion( GLUtesselator *tess, ActiveRegion *reg )
268 /*
269 * Delete a region from the sweep line. This happens when the upper
270 * and lower chains of a region meet (at a vertex on the sweep line).
271 * The "inside" flag is copied to the appropriate mesh face (we could
272 * not do this before -- since the structure of the mesh is always
273 * changing, this face may not have even existed until now).
274 */
275 {
276 GLUhalfEdge *e = reg->eUp;
277 GLUface *f = e->Lface;
278
279 f->inside = reg->inside;
280 f->anEdge = e; /* optimization for __gl_meshTessellateMonoRegion() */
281 DeleteRegion( tess, reg );
282 }
283
284
285 static GLUhalfEdge *FinishLeftRegions( GLUtesselator *tess,
286 ActiveRegion *regFirst, ActiveRegion *regLast )
287 /*
288 * We are given a vertex with one or more left-going edges. All affected
289 * edges should be in the edge dictionary. Starting at regFirst->eUp,
290 * we walk down deleting all regions where both edges have the same
291 * origin vOrg. At the same time we copy the "inside" flag from the
292 * active region to the face, since at this point each face will belong
293 * to at most one region (this was not necessarily true until this point
294 * in the sweep). The walk stops at the region above regLast; if regLast
295 * is NULL we walk as far as possible. At the same time we relink the
296 * mesh if necessary, so that the ordering of edges around vOrg is the
297 * same as in the dictionary.
298 */
299 {
300 ActiveRegion *reg, *regPrev;
301 GLUhalfEdge *e, *ePrev;
302
303 regPrev = regFirst;
304 ePrev = regFirst->eUp;
305 while( regPrev != regLast ) {
306 regPrev->fixUpperEdge = FALSE; /* placement was OK */
307 reg = RegionBelow( regPrev );
308 e = reg->eUp;
309 if( e->Org != ePrev->Org ) {
310 if( ! reg->fixUpperEdge ) {
311 /* Remove the last left-going edge. Even though there are no further
312 * edges in the dictionary with this origin, there may be further
313 * such edges in the mesh (if we are adding left edges to a vertex
314 * that has already been processed). Thus it is important to call
315 * FinishRegion rather than just DeleteRegion.
316 */
317 FinishRegion( tess, regPrev );
318 break;
319 }
320 /* If the edge below was a temporary edge introduced by
321 * ConnectRightVertex, now is the time to fix it.
322 */
323 e = __gl_meshConnect( ePrev->Lprev, e->Sym );
324 if (e == NULL) longjmp(tess->env,1);
325 if ( !FixUpperEdge( reg, e ) ) longjmp(tess->env,1);
326 }
327
328 /* Relink edges so that ePrev->Onext == e */
329 if( ePrev->Onext != e ) {
330 if ( !__gl_meshSplice( e->Oprev, e ) ) longjmp(tess->env,1);
331 if ( !__gl_meshSplice( ePrev, e ) ) longjmp(tess->env,1);
332 }
333 FinishRegion( tess, regPrev ); /* may change reg->eUp */
334 ePrev = reg->eUp;
335 regPrev = reg;
336 }
337 return ePrev;
338 }
339
340
341 static void AddRightEdges( GLUtesselator *tess, ActiveRegion *regUp,
342 GLUhalfEdge *eFirst, GLUhalfEdge *eLast, GLUhalfEdge *eTopLeft,
343 GLboolean cleanUp )
344 /*
345 * Purpose: insert right-going edges into the edge dictionary, and update
346 * winding numbers and mesh connectivity appropriately. All right-going
347 * edges share a common origin vOrg. Edges are inserted CCW starting at
348 * eFirst; the last edge inserted is eLast->Oprev. If vOrg has any
349 * left-going edges already processed, then eTopLeft must be the edge
350 * such that an imaginary upward vertical segment from vOrg would be
351 * contained between eTopLeft->Oprev and eTopLeft; otherwise eTopLeft
352 * should be NULL.
353 */
354 {
355 ActiveRegion *reg, *regPrev;
356 GLUhalfEdge *e, *ePrev;
357 int firstTime = TRUE;
358
359 /* Insert the new right-going edges in the dictionary */
360 e = eFirst;
361 do {
362 assert( VertLeq( e->Org, e->Dst ));
363 AddRegionBelow( tess, regUp, e->Sym );
364 e = e->Onext;
365 } while ( e != eLast );
366
367 /* Walk *all* right-going edges from e->Org, in the dictionary order,
368 * updating the winding numbers of each region, and re-linking the mesh
369 * edges to match the dictionary ordering (if necessary).
370 */
371 if( eTopLeft == NULL ) {
372 eTopLeft = RegionBelow( regUp )->eUp->Rprev;
373 }
374 regPrev = regUp;
375 ePrev = eTopLeft;
376 for( ;; ) {
377 reg = RegionBelow( regPrev );
378 e = reg->eUp->Sym;
379 if( e->Org != ePrev->Org ) break;
380
381 if( e->Onext != ePrev ) {
382 /* Unlink e from its current position, and relink below ePrev */
383 if ( !__gl_meshSplice( e->Oprev, e ) ) longjmp(tess->env,1);
384 if ( !__gl_meshSplice( ePrev->Oprev, e ) ) longjmp(tess->env,1);
385 }
386 /* Compute the winding number and "inside" flag for the new regions */
387 reg->windingNumber = regPrev->windingNumber - e->winding;
388 reg->inside = IsWindingInside( tess, reg->windingNumber );
389
390 /* Check for two outgoing edges with same slope -- process these
391 * before any intersection tests (see example in __gl_computeInterior).
392 */
393 regPrev->dirty = TRUE;
394 if( ! firstTime && CheckForRightSplice( tess, regPrev )) {
395 AddWinding( e, ePrev );
396 DeleteRegion( tess, regPrev );
397 if ( !__gl_meshDelete( ePrev ) ) longjmp(tess->env,1);
398 }
399 firstTime = FALSE;
400 regPrev = reg;
401 ePrev = e;
402 }
403 regPrev->dirty = TRUE;
404 assert( regPrev->windingNumber - e->winding == reg->windingNumber );
405
406 if( cleanUp ) {
407 /* Check for intersections between newly adjacent edges. */
408 WalkDirtyRegions( tess, regPrev );
409 }
410 }
411
412
413 static void CallCombine( GLUtesselator *tess, GLUvertex *isect,
414 void *data[4], GLfloat weights[4], int needed )
415 {
416 GLdouble coords[3];
417
418 /* Copy coord data in case the callback changes it. */
419 coords[0] = isect->coords[0];
420 coords[1] = isect->coords[1];
421 coords[2] = isect->coords[2];
422
423 isect->data = NULL;
424 CALL_COMBINE_OR_COMBINE_DATA( coords, data, weights, &isect->data );
425 if( isect->data == NULL ) {
426 if( ! needed ) {
427 isect->data = data[0];
428 } else if( ! tess->fatalError ) {
429 /* The only way fatal error is when two edges are found to intersect,
430 * but the user has not provided the callback necessary to handle
431 * generated intersection points.
432 */
433 CALL_ERROR_OR_ERROR_DATA( GLU_TESS_NEED_COMBINE_CALLBACK );
434 tess->fatalError = TRUE;
435 }
436 }
437 }
438
439 static void SpliceMergeVertices( GLUtesselator *tess, GLUhalfEdge *e1,
440 GLUhalfEdge *e2 )
441 /*
442 * Two vertices with idential coordinates are combined into one.
443 * e1->Org is kept, while e2->Org is discarded.
444 */
445 {
446 void *data[4] = { NULL, NULL, NULL, NULL };
447 GLfloat weights[4] = { 0.5, 0.5, 0.0, 0.0 };
448
449 data[0] = e1->Org->data;
450 data[1] = e2->Org->data;
451 CallCombine( tess, e1->Org, data, weights, FALSE );
452 if ( !__gl_meshSplice( e1, e2 ) ) longjmp(tess->env,1);
453 }
454
455 static void VertexWeights( GLUvertex *isect, GLUvertex *org, GLUvertex *dst,
456 GLfloat *weights )
457 /*
458 * Find some weights which describe how the intersection vertex is
459 * a linear combination of "org" and "dest". Each of the two edges
460 * which generated "isect" is allocated 50% of the weight; each edge
461 * splits the weight between its org and dst according to the
462 * relative distance to "isect".
463 */
464 {
465 GLdouble t1 = VertL1dist( org, isect );
466 GLdouble t2 = VertL1dist( dst, isect );
467
468 weights[0] = 0.5 * t2 / (t1 + t2);
469 weights[1] = 0.5 * t1 / (t1 + t2);
470 isect->coords[0] += weights[0]*org->coords[0] + weights[1]*dst->coords[0];
471 isect->coords[1] += weights[0]*org->coords[1] + weights[1]*dst->coords[1];
472 isect->coords[2] += weights[0]*org->coords[2] + weights[1]*dst->coords[2];
473 }
474
475
476 static void GetIntersectData( GLUtesselator *tess, GLUvertex *isect,
477 GLUvertex *orgUp, GLUvertex *dstUp,
478 GLUvertex *orgLo, GLUvertex *dstLo )
479 /*
480 * We've computed a new intersection point, now we need a "data" pointer
481 * from the user so that we can refer to this new vertex in the
482 * rendering callbacks.
483 */
484 {
485 void *data[4];
486 GLfloat weights[4];
487
488 data[0] = orgUp->data;
489 data[1] = dstUp->data;
490 data[2] = orgLo->data;
491 data[3] = dstLo->data;
492
493 isect->coords[0] = isect->coords[1] = isect->coords[2] = 0;
494 VertexWeights( isect, orgUp, dstUp, &weights[0] );
495 VertexWeights( isect, orgLo, dstLo, &weights[2] );
496
497 CallCombine( tess, isect, data, weights, TRUE );
498 }
499
500 static int CheckForRightSplice( GLUtesselator *tess, ActiveRegion *regUp )
501 /*
502 * Check the upper and lower edge of "regUp", to make sure that the
503 * eUp->Org is above eLo, or eLo->Org is below eUp (depending on which
504 * origin is leftmost).
505 *
506 * The main purpose is to splice right-going edges with the same
507 * dest vertex and nearly identical slopes (ie. we can't distinguish
508 * the slopes numerically). However the splicing can also help us
509 * to recover from numerical errors. For example, suppose at one
510 * point we checked eUp and eLo, and decided that eUp->Org is barely
511 * above eLo. Then later, we split eLo into two edges (eg. from
512 * a splice operation like this one). This can change the result of
513 * our test so that now eUp->Org is incident to eLo, or barely below it.
514 * We must correct this condition to maintain the dictionary invariants.
515 *
516 * One possibility is to check these edges for intersection again
517 * (ie. CheckForIntersect). This is what we do if possible. However
518 * CheckForIntersect requires that tess->event lies between eUp and eLo,
519 * so that it has something to fall back on when the intersection
520 * calculation gives us an unusable answer. So, for those cases where
521 * we can't check for intersection, this routine fixes the problem
522 * by just splicing the offending vertex into the other edge.
523 * This is a guaranteed solution, no matter how degenerate things get.
524 * Basically this is a combinatorial solution to a numerical problem.
525 */
526 {
527 ActiveRegion *regLo = RegionBelow(regUp);
528 GLUhalfEdge *eUp = regUp->eUp;
529 GLUhalfEdge *eLo = regLo->eUp;
530
531 if( VertLeq( eUp->Org, eLo->Org )) {
532 if( EdgeSign( eLo->Dst, eUp->Org, eLo->Org ) > 0 ) return FALSE;
533
534 /* eUp->Org appears to be below eLo */
535 if( ! VertEq( eUp->Org, eLo->Org )) {
536 /* Splice eUp->Org into eLo */
537 if ( __gl_meshSplitEdge( eLo->Sym ) == NULL) longjmp(tess->env,1);
538 if ( !__gl_meshSplice( eUp, eLo->Oprev ) ) longjmp(tess->env,1);
539 regUp->dirty = regLo->dirty = TRUE;
540
541 } else if( eUp->Org != eLo->Org ) {
542 /* merge the two vertices, discarding eUp->Org */
543 pqDelete( tess->pq, eUp->Org->pqHandle ); /* __gl_pqSortDelete */
544 SpliceMergeVertices( tess, eLo->Oprev, eUp );
545 }
546 } else {
547 if( EdgeSign( eUp->Dst, eLo->Org, eUp->Org ) < 0 ) return FALSE;
548
549 /* eLo->Org appears to be above eUp, so splice eLo->Org into eUp */
550 RegionAbove(regUp)->dirty = regUp->dirty = TRUE;
551 if (__gl_meshSplitEdge( eUp->Sym ) == NULL) longjmp(tess->env,1);
552 if ( !__gl_meshSplice( eLo->Oprev, eUp ) ) longjmp(tess->env,1);
553 }
554 return TRUE;
555 }
556
557 static int CheckForLeftSplice( GLUtesselator *tess, ActiveRegion *regUp )
558 /*
559 * Check the upper and lower edge of "regUp", to make sure that the
560 * eUp->Dst is above eLo, or eLo->Dst is below eUp (depending on which
561 * destination is rightmost).
562 *
563 * Theoretically, this should always be true. However, splitting an edge
564 * into two pieces can change the results of previous tests. For example,
565 * suppose at one point we checked eUp and eLo, and decided that eUp->Dst
566 * is barely above eLo. Then later, we split eLo into two edges (eg. from
567 * a splice operation like this one). This can change the result of
568 * the test so that now eUp->Dst is incident to eLo, or barely below it.
569 * We must correct this condition to maintain the dictionary invariants
570 * (otherwise new edges might get inserted in the wrong place in the
571 * dictionary, and bad stuff will happen).
572 *
573 * We fix the problem by just splicing the offending vertex into the
574 * other edge.
575 */
576 {
577 ActiveRegion *regLo = RegionBelow(regUp);
578 GLUhalfEdge *eUp = regUp->eUp;
579 GLUhalfEdge *eLo = regLo->eUp;
580 GLUhalfEdge *e;
581
582 assert( ! VertEq( eUp->Dst, eLo->Dst ));
583
584 if( VertLeq( eUp->Dst, eLo->Dst )) {
585 if( EdgeSign( eUp->Dst, eLo->Dst, eUp->Org ) < 0 ) return FALSE;
586
587 /* eLo->Dst is above eUp, so splice eLo->Dst into eUp */
588 RegionAbove(regUp)->dirty = regUp->dirty = TRUE;
589 e = __gl_meshSplitEdge( eUp );
590 if (e == NULL) longjmp(tess->env,1);
591 if ( !__gl_meshSplice( eLo->Sym, e ) ) longjmp(tess->env,1);
592 e->Lface->inside = regUp->inside;
593 } else {
594 if( EdgeSign( eLo->Dst, eUp->Dst, eLo->Org ) > 0 ) return FALSE;
595
596 /* eUp->Dst is below eLo, so splice eUp->Dst into eLo */
597 regUp->dirty = regLo->dirty = TRUE;
598 e = __gl_meshSplitEdge( eLo );
599 if (e == NULL) longjmp(tess->env,1);
600 if ( !__gl_meshSplice( eUp->Lnext, eLo->Sym ) ) longjmp(tess->env,1);
601 e->Rface->inside = regUp->inside;
602 }
603 return TRUE;
604 }
605
606
607 static int CheckForIntersect( GLUtesselator *tess, ActiveRegion *regUp )
608 /*
609 * Check the upper and lower edges of the given region to see if
610 * they intersect. If so, create the intersection and add it
611 * to the data structures.
612 *
613 * Returns TRUE if adding the new intersection resulted in a recursive
614 * call to AddRightEdges(); in this case all "dirty" regions have been
615 * checked for intersections, and possibly regUp has been deleted.
616 */
617 {
618 ActiveRegion *regLo = RegionBelow(regUp);
619 GLUhalfEdge *eUp = regUp->eUp;
620 GLUhalfEdge *eLo = regLo->eUp;
621 GLUvertex *orgUp = eUp->Org;
622 GLUvertex *orgLo = eLo->Org;
623 GLUvertex *dstUp = eUp->Dst;
624 GLUvertex *dstLo = eLo->Dst;
625 GLdouble tMinUp, tMaxLo;
626 GLUvertex isect, *orgMin;
627 GLUhalfEdge *e;
628
629 assert( ! VertEq( dstLo, dstUp ));
630 assert( EdgeSign( dstUp, tess->event, orgUp ) <= 0 );
631 assert( EdgeSign( dstLo, tess->event, orgLo ) >= 0 );
632 assert( orgUp != tess->event && orgLo != tess->event );
633 assert( ! regUp->fixUpperEdge && ! regLo->fixUpperEdge );
634
635 if( orgUp == orgLo ) return FALSE; /* right endpoints are the same */
636
637 tMinUp = MIN( orgUp->t, dstUp->t );
638 tMaxLo = MAX( orgLo->t, dstLo->t );
639 if( tMinUp > tMaxLo ) return FALSE; /* t ranges do not overlap */
640
641 if( VertLeq( orgUp, orgLo )) {
642 if( EdgeSign( dstLo, orgUp, orgLo ) > 0 ) return FALSE;
643 } else {
644 if( EdgeSign( dstUp, orgLo, orgUp ) < 0 ) return FALSE;
645 }
646
647 /* At this point the edges intersect, at least marginally */
648 DebugEvent( tess );
649
650 __gl_edgeIntersect( dstUp, orgUp, dstLo, orgLo, &isect );
651 /* The following properties are guaranteed: */
652 assert( MIN( orgUp->t, dstUp->t ) <= isect.t );
653 assert( isect.t <= MAX( orgLo->t, dstLo->t ));
654 assert( MIN( dstLo->s, dstUp->s ) <= isect.s );
655 assert( isect.s <= MAX( orgLo->s, orgUp->s ));
656
657 if( VertLeq( &isect, tess->event )) {
658 /* The intersection point lies slightly to the left of the sweep line,
659 * so move it until it''s slightly to the right of the sweep line.
660 * (If we had perfect numerical precision, this would never happen
661 * in the first place). The easiest and safest thing to do is
662 * replace the intersection by tess->event.
663 */
664 isect.s = tess->event->s;
665 isect.t = tess->event->t;
666 }
667 /* Similarly, if the computed intersection lies to the right of the
668 * rightmost origin (which should rarely happen), it can cause
669 * unbelievable inefficiency on sufficiently degenerate inputs.
670 * (If you have the test program, try running test54.d with the
671 * "X zoom" option turned on).
672 */
673 orgMin = VertLeq( orgUp, orgLo ) ? orgUp : orgLo;
674 if( VertLeq( orgMin, &isect )) {
675 isect.s = orgMin->s;
676 isect.t = orgMin->t;
677 }
678
679 if( VertEq( &isect, orgUp ) || VertEq( &isect, orgLo )) {
680 /* Easy case -- intersection at one of the right endpoints */
681 (void) CheckForRightSplice( tess, regUp );
682 return FALSE;
683 }
684
685 if( (! VertEq( dstUp, tess->event )
686 && EdgeSign( dstUp, tess->event, &isect ) >= 0)
687 || (! VertEq( dstLo, tess->event )
688 && EdgeSign( dstLo, tess->event, &isect ) <= 0 ))
689 {
690 /* Very unusual -- the new upper or lower edge would pass on the
691 * wrong side of the sweep event, or through it. This can happen
692 * due to very small numerical errors in the intersection calculation.
693 */
694 if( dstLo == tess->event ) {
695 /* Splice dstLo into eUp, and process the new region(s) */
696 if (__gl_meshSplitEdge( eUp->Sym ) == NULL) longjmp(tess->env,1);
697 if ( !__gl_meshSplice( eLo->Sym, eUp ) ) longjmp(tess->env,1);
698 regUp = TopLeftRegion( regUp );
699 if (regUp == NULL) longjmp(tess->env,1);
700 eUp = RegionBelow(regUp)->eUp;
701 FinishLeftRegions( tess, RegionBelow(regUp), regLo );
702 AddRightEdges( tess, regUp, eUp->Oprev, eUp, eUp, TRUE );
703 return TRUE;
704 }
705 if( dstUp == tess->event ) {
706 /* Splice dstUp into eLo, and process the new region(s) */
707 if (__gl_meshSplitEdge( eLo->Sym ) == NULL) longjmp(tess->env,1);
708 if ( !__gl_meshSplice( eUp->Lnext, eLo->Oprev ) ) longjmp(tess->env,1);
709 regLo = regUp;
710 regUp = TopRightRegion( regUp );
711 e = RegionBelow(regUp)->eUp->Rprev;
712 regLo->eUp = eLo->Oprev;
713 eLo = FinishLeftRegions( tess, regLo, NULL );
714 AddRightEdges( tess, regUp, eLo->Onext, eUp->Rprev, e, TRUE );
715 return TRUE;
716 }
717 /* Special case: called from ConnectRightVertex. If either
718 * edge passes on the wrong side of tess->event, split it
719 * (and wait for ConnectRightVertex to splice it appropriately).
720 */
721 if( EdgeSign( dstUp, tess->event, &isect ) >= 0 ) {
722 RegionAbove(regUp)->dirty = regUp->dirty = TRUE;
723 if (__gl_meshSplitEdge( eUp->Sym ) == NULL) longjmp(tess->env,1);
724 eUp->Org->s = tess->event->s;
725 eUp->Org->t = tess->event->t;
726 }
727 if( EdgeSign( dstLo, tess->event, &isect ) <= 0 ) {
728 regUp->dirty = regLo->dirty = TRUE;
729 if (__gl_meshSplitEdge( eLo->Sym ) == NULL) longjmp(tess->env,1);
730 eLo->Org->s = tess->event->s;
731 eLo->Org->t = tess->event->t;
732 }
733 /* leave the rest for ConnectRightVertex */
734 return FALSE;
735 }
736
737 /* General case -- split both edges, splice into new vertex.
738 * When we do the splice operation, the order of the arguments is
739 * arbitrary as far as correctness goes. However, when the operation
740 * creates a new face, the work done is proportional to the size of
741 * the new face. We expect the faces in the processed part of
742 * the mesh (ie. eUp->Lface) to be smaller than the faces in the
743 * unprocessed original contours (which will be eLo->Oprev->Lface).
744 */
745 if (__gl_meshSplitEdge( eUp->Sym ) == NULL) longjmp(tess->env,1);
746 if (__gl_meshSplitEdge( eLo->Sym ) == NULL) longjmp(tess->env,1);
747 if ( !__gl_meshSplice( eLo->Oprev, eUp ) ) longjmp(tess->env,1);
748 eUp->Org->s = isect.s;
749 eUp->Org->t = isect.t;
750 eUp->Org->pqHandle = pqInsert( tess->pq, eUp->Org ); /* __gl_pqSortInsert */
751 if (eUp->Org->pqHandle == LONG_MAX) {
752 pqDeletePriorityQ(tess->pq); /* __gl_pqSortDeletePriorityQ */
753 tess->pq = NULL;
754 longjmp(tess->env,1);
755 }
756 GetIntersectData( tess, eUp->Org, orgUp, dstUp, orgLo, dstLo );
757 RegionAbove(regUp)->dirty = regUp->dirty = regLo->dirty = TRUE;
758 return FALSE;
759 }
760
761 static void WalkDirtyRegions( GLUtesselator *tess, ActiveRegion *regUp )
762 /*
763 * When the upper or lower edge of any region changes, the region is
764 * marked "dirty". This routine walks through all the dirty regions
765 * and makes sure that the dictionary invariants are satisfied
766 * (see the comments at the beginning of this file). Of course
767 * new dirty regions can be created as we make changes to restore
768 * the invariants.
769 */
770 {
771 ActiveRegion *regLo = RegionBelow(regUp);
772 GLUhalfEdge *eUp, *eLo;
773
774 for( ;; ) {
775 /* Find the lowest dirty region (we walk from the bottom up). */
776 while( regLo->dirty ) {
777 regUp = regLo;
778 regLo = RegionBelow(regLo);
779 }
780 if( ! regUp->dirty ) {
781 regLo = regUp;
782 regUp = RegionAbove( regUp );
783 if( regUp == NULL || ! regUp->dirty ) {
784 /* We've walked all the dirty regions */
785 return;
786 }
787 }
788 regUp->dirty = FALSE;
789 eUp = regUp->eUp;
790 eLo = regLo->eUp;
791
792 if( eUp->Dst != eLo->Dst ) {
793 /* Check that the edge ordering is obeyed at the Dst vertices. */
794 if( CheckForLeftSplice( tess, regUp )) {
795
796 /* If the upper or lower edge was marked fixUpperEdge, then
797 * we no longer need it (since these edges are needed only for
798 * vertices which otherwise have no right-going edges).
799 */
800 if( regLo->fixUpperEdge ) {
801 DeleteRegion( tess, regLo );
802 if ( !__gl_meshDelete( eLo ) ) longjmp(tess->env,1);
803 regLo = RegionBelow( regUp );
804 eLo = regLo->eUp;
805 } else if( regUp->fixUpperEdge ) {
806 DeleteRegion( tess, regUp );
807 if ( !__gl_meshDelete( eUp ) ) longjmp(tess->env,1);
808 regUp = RegionAbove( regLo );
809 eUp = regUp->eUp;
810 }
811 }
812 }
813 if( eUp->Org != eLo->Org ) {
814 if( eUp->Dst != eLo->Dst
815 && ! regUp->fixUpperEdge && ! regLo->fixUpperEdge
816 && (eUp->Dst == tess->event || eLo->Dst == tess->event) )
817 {
818 /* When all else fails in CheckForIntersect(), it uses tess->event
819 * as the intersection location. To make this possible, it requires
820 * that tess->event lie between the upper and lower edges, and also
821 * that neither of these is marked fixUpperEdge (since in the worst
822 * case it might splice one of these edges into tess->event, and
823 * violate the invariant that fixable edges are the only right-going
824 * edge from their associated vertex).
825 */
826 if( CheckForIntersect( tess, regUp )) {
827 /* WalkDirtyRegions() was called recursively; we're done */
828 return;
829 }
830 } else {
831 /* Even though we can't use CheckForIntersect(), the Org vertices
832 * may violate the dictionary edge ordering. Check and correct this.
833 */
834 (void) CheckForRightSplice( tess, regUp );
835 }
836 }
837 if( eUp->Org == eLo->Org && eUp->Dst == eLo->Dst ) {
838 /* A degenerate loop consisting of only two edges -- delete it. */
839 AddWinding( eLo, eUp );
840 DeleteRegion( tess, regUp );
841 if ( !__gl_meshDelete( eUp ) ) longjmp(tess->env,1);
842 regUp = RegionAbove( regLo );
843 }
844 }
845 }
846
847
848 static void ConnectRightVertex( GLUtesselator *tess, ActiveRegion *regUp,
849 GLUhalfEdge *eBottomLeft )
850 /*
851 * Purpose: connect a "right" vertex vEvent (one where all edges go left)
852 * to the unprocessed portion of the mesh. Since there are no right-going
853 * edges, two regions (one above vEvent and one below) are being merged
854 * into one. "regUp" is the upper of these two regions.
855 *
856 * There are two reasons for doing this (adding a right-going edge):
857 * - if the two regions being merged are "inside", we must add an edge
858 * to keep them separated (the combined region would not be monotone).
859 * - in any case, we must leave some record of vEvent in the dictionary,
860 * so that we can merge vEvent with features that we have not seen yet.
861 * For example, maybe there is a vertical edge which passes just to
862 * the right of vEvent; we would like to splice vEvent into this edge.
863 *
864 * However, we don't want to connect vEvent to just any vertex. We don''t
865 * want the new edge to cross any other edges; otherwise we will create
866 * intersection vertices even when the input data had no self-intersections.
867 * (This is a bad thing; if the user's input data has no intersections,
868 * we don't want to generate any false intersections ourselves.)
869 *
870 * Our eventual goal is to connect vEvent to the leftmost unprocessed
871 * vertex of the combined region (the union of regUp and regLo).
872 * But because of unseen vertices with all right-going edges, and also
873 * new vertices which may be created by edge intersections, we don''t
874 * know where that leftmost unprocessed vertex is. In the meantime, we
875 * connect vEvent to the closest vertex of either chain, and mark the region
876 * as "fixUpperEdge". This flag says to delete and reconnect this edge
877 * to the next processed vertex on the boundary of the combined region.
878 * Quite possibly the vertex we connected to will turn out to be the
879 * closest one, in which case we won''t need to make any changes.
880 */
881 {
882 GLUhalfEdge *eNew;
883 GLUhalfEdge *eTopLeft = eBottomLeft->Onext;
884 ActiveRegion *regLo = RegionBelow(regUp);
885 GLUhalfEdge *eUp = regUp->eUp;
886 GLUhalfEdge *eLo = regLo->eUp;
887 int degenerate = FALSE;
888
889 if( eUp->Dst != eLo->Dst ) {
890 (void) CheckForIntersect( tess, regUp );
891 }
892
893 /* Possible new degeneracies: upper or lower edge of regUp may pass
894 * through vEvent, or may coincide with new intersection vertex
895 */
896 if( VertEq( eUp->Org, tess->event )) {
897 if ( !__gl_meshSplice( eTopLeft->Oprev, eUp ) ) longjmp(tess->env,1);
898 regUp = TopLeftRegion( regUp );
899 if (regUp == NULL) longjmp(tess->env,1);
900 eTopLeft = RegionBelow( regUp )->eUp;
901 FinishLeftRegions( tess, RegionBelow(regUp), regLo );
902 degenerate = TRUE;
903 }
904 if( VertEq( eLo->Org, tess->event )) {
905 if ( !__gl_meshSplice( eBottomLeft, eLo->Oprev ) ) longjmp(tess->env,1);
906 eBottomLeft = FinishLeftRegions( tess, regLo, NULL );
907 degenerate = TRUE;
908 }
909 if( degenerate ) {
910 AddRightEdges( tess, regUp, eBottomLeft->Onext, eTopLeft, eTopLeft, TRUE );
911 return;
912 }
913
914 /* Non-degenerate situation -- need to add a temporary, fixable edge.
915 * Connect to the closer of eLo->Org, eUp->Org.
916 */
917 if( VertLeq( eLo->Org, eUp->Org )) {
918 eNew = eLo->Oprev;
919 } else {
920 eNew = eUp;
921 }
922 eNew = __gl_meshConnect( eBottomLeft->Lprev, eNew );
923 if (eNew == NULL) longjmp(tess->env,1);
924
925 /* Prevent cleanup, otherwise eNew might disappear before we've even
926 * had a chance to mark it as a temporary edge.
927 */
928 AddRightEdges( tess, regUp, eNew, eNew->Onext, eNew->Onext, FALSE );
929 eNew->Sym->activeRegion->fixUpperEdge = TRUE;
930 WalkDirtyRegions( tess, regUp );
931 }
932
933 /* Because vertices at exactly the same location are merged together
934 * before we process the sweep event, some degenerate cases can't occur.
935 * However if someone eventually makes the modifications required to
936 * merge features which are close together, the cases below marked
937 * TOLERANCE_NONZERO will be useful. They were debugged before the
938 * code to merge identical vertices in the main loop was added.
939 */
940 #define TOLERANCE_NONZERO FALSE
941
942 static void ConnectLeftDegenerate( GLUtesselator *tess,
943 ActiveRegion *regUp, GLUvertex *vEvent )
944 /*
945 * The event vertex lies exacty on an already-processed edge or vertex.
946 * Adding the new vertex involves splicing it into the already-processed
947 * part of the mesh.
948 */
949 {
950 GLUhalfEdge *e, *eTopLeft, *eTopRight, *eLast;
951 ActiveRegion *reg;
952
953 e = regUp->eUp;
954 if( VertEq( e->Org, vEvent )) {
955 /* e->Org is an unprocessed vertex - just combine them, and wait
956 * for e->Org to be pulled from the queue
957 */
958 assert( TOLERANCE_NONZERO );
959 SpliceMergeVertices( tess, e, vEvent->anEdge );
960 return;
961 }
962
963 if( ! VertEq( e->Dst, vEvent )) {
964 /* General case -- splice vEvent into edge e which passes through it */
965 if (__gl_meshSplitEdge( e->Sym ) == NULL) longjmp(tess->env,1);
966 if( regUp->fixUpperEdge ) {
967 /* This edge was fixable -- delete unused portion of original edge */
968 if ( !__gl_meshDelete( e->Onext ) ) longjmp(tess->env,1);
969 regUp->fixUpperEdge = FALSE;
970 }
971 if ( !__gl_meshSplice( vEvent->anEdge, e ) ) longjmp(tess->env,1);
972 SweepEvent( tess, vEvent ); /* recurse */
973 return;
974 }
975
976 /* vEvent coincides with e->Dst, which has already been processed.
977 * Splice in the additional right-going edges.
978 */
979 assert( TOLERANCE_NONZERO );
980 regUp = TopRightRegion( regUp );
981 reg = RegionBelow( regUp );
982 eTopRight = reg->eUp->Sym;
983 eTopLeft = eLast = eTopRight->Onext;
984 if( reg->fixUpperEdge ) {
985 /* Here e->Dst has only a single fixable edge going right.
986 * We can delete it since now we have some real right-going edges.
987 */
988 assert( eTopLeft != eTopRight ); /* there are some left edges too */
989 DeleteRegion( tess, reg );
990 if ( !__gl_meshDelete( eTopRight ) ) longjmp(tess->env,1);
991 eTopRight = eTopLeft->Oprev;
992 }
993 if ( !__gl_meshSplice( vEvent->anEdge, eTopRight ) ) longjmp(tess->env,1);
994 if( ! EdgeGoesLeft( eTopLeft )) {
995 /* e->Dst had no left-going edges -- indicate this to AddRightEdges() */
996 eTopLeft = NULL;
997 }
998 AddRightEdges( tess, regUp, eTopRight->Onext, eLast, eTopLeft, TRUE );
999 }
1000
1001
1002 static void ConnectLeftVertex( GLUtesselator *tess, GLUvertex *vEvent )
1003 /*
1004 * Purpose: connect a "left" vertex (one where both edges go right)
1005 * to the processed portion of the mesh. Let R be the active region
1006 * containing vEvent, and let U and L be the upper and lower edge
1007 * chains of R. There are two possibilities:
1008 *
1009 * - the normal case: split R into two regions, by connecting vEvent to
1010 * the rightmost vertex of U or L lying to the left of the sweep line
1011 *
1012 * - the degenerate case: if vEvent is close enough to U or L, we
1013 * merge vEvent into that edge chain. The subcases are:
1014 * - merging with the rightmost vertex of U or L
1015 * - merging with the active edge of U or L
1016 * - merging with an already-processed portion of U or L
1017 */
1018 {
1019 ActiveRegion *regUp, *regLo, *reg;
1020 GLUhalfEdge *eUp, *eLo, *eNew;
1021 ActiveRegion tmp;
1022
1023 /* assert( vEvent->anEdge->Onext->Onext == vEvent->anEdge ); */
1024
1025 /* Get a pointer to the active region containing vEvent */
1026 tmp.eUp = vEvent->anEdge->Sym;
1027 /* __GL_DICTLISTKEY */ /* __gl_dictListSearch */
1028 regUp = (ActiveRegion *)dictKey( dictSearch( tess->dict, &tmp ));
1029 regLo = RegionBelow( regUp );
1030 eUp = regUp->eUp;
1031 eLo = regLo->eUp;
1032
1033 /* Try merging with U or L first */
1034 if( EdgeSign( eUp->Dst, vEvent, eUp->Org ) == 0 ) {
1035 ConnectLeftDegenerate( tess, regUp, vEvent );
1036 return;
1037 }
1038
1039 /* Connect vEvent to rightmost processed vertex of either chain.
1040 * e->Dst is the vertex that we will connect to vEvent.
1041 */
1042 reg = VertLeq( eLo->Dst, eUp->Dst ) ? regUp : regLo;
1043
1044 if( regUp->inside || reg->fixUpperEdge) {
1045 if( reg == regUp ) {
1046 eNew = __gl_meshConnect( vEvent->anEdge->Sym, eUp->Lnext );
1047 if (eNew == NULL) longjmp(tess->env,1);
1048 } else {
1049 GLUhalfEdge *tempHalfEdge= __gl_meshConnect( eLo->Dnext, vEvent->anEdge);
1050 if (tempHalfEdge == NULL) longjmp(tess->env,1);
1051
1052 eNew = tempHalfEdge->Sym;
1053 }
1054 if( reg->fixUpperEdge ) {
1055 if ( !FixUpperEdge( reg, eNew ) ) longjmp(tess->env,1);
1056 } else {
1057 ComputeWinding( tess, AddRegionBelow( tess, regUp, eNew ));
1058 }
1059 SweepEvent( tess, vEvent );
1060 } else {
1061 /* The new vertex is in a region which does not belong to the polygon.
1062 * We don''t need to connect this vertex to the rest of the mesh.
1063 */
1064 AddRightEdges( tess, regUp, vEvent->anEdge, vEvent->anEdge, NULL, TRUE );
1065 }
1066 }
1067
1068
1069 static void SweepEvent( GLUtesselator *tess, GLUvertex *vEvent )
1070 /*
1071 * Does everything necessary when the sweep line crosses a vertex.
1072 * Updates the mesh and the edge dictionary.
1073 */
1074 {
1075 ActiveRegion *regUp, *reg;
1076 GLUhalfEdge *e, *eTopLeft, *eBottomLeft;
1077
1078 tess->event = vEvent; /* for access in EdgeLeq() */
1079 DebugEvent( tess );
1080
1081 /* Check if this vertex is the right endpoint of an edge that is
1082 * already in the dictionary. In this case we don't need to waste
1083 * time searching for the location to insert new edges.
1084 */
1085 e = vEvent->anEdge;
1086 while( e->activeRegion == NULL ) {
1087 e = e->Onext;
1088 if( e == vEvent->anEdge ) {
1089 /* All edges go right -- not incident to any processed edges */
1090 ConnectLeftVertex( tess, vEvent );
1091 return;
1092 }
1093 }
1094
1095 /* Processing consists of two phases: first we "finish" all the
1096 * active regions where both the upper and lower edges terminate
1097 * at vEvent (ie. vEvent is closing off these regions).
1098 * We mark these faces "inside" or "outside" the polygon according
1099 * to their winding number, and delete the edges from the dictionary.
1100 * This takes care of all the left-going edges from vEvent.
1101 */
1102 regUp = TopLeftRegion( e->activeRegion );
1103 if (regUp == NULL) longjmp(tess->env,1);
1104 reg = RegionBelow( regUp );
1105 eTopLeft = reg->eUp;
1106 eBottomLeft = FinishLeftRegions( tess, reg, NULL );
1107
1108 /* Next we process all the right-going edges from vEvent. This
1109 * involves adding the edges to the dictionary, and creating the
1110 * associated "active regions" which record information about the
1111 * regions between adjacent dictionary edges.
1112 */
1113 if( eBottomLeft->Onext == eTopLeft ) {
1114 /* No right-going edges -- add a temporary "fixable" edge */
1115 ConnectRightVertex( tess, regUp, eBottomLeft );
1116 } else {
1117 AddRightEdges( tess, regUp, eBottomLeft->Onext, eTopLeft, eTopLeft, TRUE );
1118 }
1119 }
1120
1121
1122 /* Make the sentinel coordinates big enough that they will never be
1123 * merged with real input features. (Even with the largest possible
1124 * input contour and the maximum tolerance of 1.0, no merging will be
1125 * done with coordinates larger than 3 * GLU_TESS_MAX_COORD).
1126 */
1127 #define SENTINEL_COORD (4 * GLU_TESS_MAX_COORD)
1128
1129 static void AddSentinel( GLUtesselator *tess, GLdouble t )
1130 /*
1131 * We add two sentinel edges above and below all other edges,
1132 * to avoid special cases at the top and bottom.
1133 */
1134 {
1135 GLUhalfEdge *e;
1136 ActiveRegion *reg = (ActiveRegion *)memAlloc( sizeof( ActiveRegion ));
1137 if (reg == NULL) longjmp(tess->env,1);
1138
1139 e = __gl_meshMakeEdge( tess->mesh );
1140 if (e == NULL) longjmp(tess->env,1);
1141
1142 e->Org->s = SENTINEL_COORD;
1143 e->Org->t = t;
1144 e->Dst->s = -SENTINEL_COORD;
1145 e->Dst->t = t;
1146 tess->event = e->Dst; /* initialize it */
1147
1148 reg->eUp = e;
1149 reg->windingNumber = 0;
1150 reg->inside = FALSE;
1151 reg->fixUpperEdge = FALSE;
1152 reg->sentinel = TRUE;
1153 reg->dirty = FALSE;
1154 reg->nodeUp = dictInsert( tess->dict, reg ); /* __gl_dictListInsertBefore */
1155 if (reg->nodeUp == NULL) longjmp(tess->env,1);
1156 }
1157
1158
1159 static void InitEdgeDict( GLUtesselator *tess )
1160 /*
1161 * We maintain an ordering of edge intersections with the sweep line.
1162 * This order is maintained in a dynamic dictionary.
1163 */
1164 {
1165 /* __gl_dictListNewDict */
1166 tess->dict = dictNewDict( tess, (int (*)(void *, DictKey, DictKey)) EdgeLeq );
1167 if (tess->dict == NULL) longjmp(tess->env,1);
1168
1169 AddSentinel( tess, -SENTINEL_COORD );
1170 AddSentinel( tess, SENTINEL_COORD );
1171 }
1172
1173
1174 static void DoneEdgeDict( GLUtesselator *tess )
1175 {
1176 ActiveRegion *reg;
1177 #ifndef NDEBUG
1178 int fixedEdges = 0;
1179 #endif
1180
1181 /* __GL_DICTLISTKEY */ /* __GL_DICTLISTMIN */
1182 while( (reg = (ActiveRegion *)dictKey( dictMin( tess->dict ))) != NULL ) {
1183 /*
1184 * At the end of all processing, the dictionary should contain
1185 * only the two sentinel edges, plus at most one "fixable" edge
1186 * created by ConnectRightVertex().
1187 */
1188 if( ! reg->sentinel ) {
1189 assert( reg->fixUpperEdge );
1190 assert( ++fixedEdges == 1 );
1191 }
1192 assert( reg->windingNumber == 0 );
1193 DeleteRegion( tess, reg );
1194 /* __gl_meshDelete( reg->eUp );*/
1195 }
1196 dictDeleteDict( tess->dict ); /* __gl_dictListDeleteDict */
1197 }
1198
1199
1200 static void RemoveDegenerateEdges( GLUtesselator *tess )
1201 /*
1202 * Remove zero-length edges, and contours with fewer than 3 vertices.
1203 */
1204 {
1205 GLUhalfEdge *e, *eNext, *eLnext;
1206 GLUhalfEdge *eHead = &tess->mesh->eHead;
1207
1208 /*LINTED*/
1209 for( e = eHead->next; e != eHead; e = eNext ) {
1210 eNext = e->next;
1211 eLnext = e->Lnext;
1212
1213 if( VertEq( e->Org, e->Dst ) && e->Lnext->Lnext != e ) {
1214 /* Zero-length edge, contour has at least 3 edges */
1215
1216 SpliceMergeVertices( tess, eLnext, e ); /* deletes e->Org */
1217 if ( !__gl_meshDelete( e ) ) longjmp(tess->env,1); /* e is a self-loop */
1218 e = eLnext;
1219 eLnext = e->Lnext;
1220 }
1221 if( eLnext->Lnext == e ) {
1222 /* Degenerate contour (one or two edges) */
1223
1224 if( eLnext != e ) {
1225 if( eLnext == eNext || eLnext == eNext->Sym ) { eNext = eNext->next; }
1226 if ( !__gl_meshDelete( eLnext ) ) longjmp(tess->env,1);
1227 }
1228 if( e == eNext || e == eNext->Sym ) { eNext = eNext->next; }
1229 if ( !__gl_meshDelete( e ) ) longjmp(tess->env,1);
1230 }
1231 }
1232 }
1233
1234 static int InitPriorityQ( GLUtesselator *tess )
1235 /*
1236 * Insert all vertices into the priority queue which determines the
1237 * order in which vertices cross the sweep line.
1238 */
1239 {
1240 PriorityQ *pq;
1241 GLUvertex *v, *vHead;
1242
1243 /* __gl_pqSortNewPriorityQ */
1244 pq = tess->pq = pqNewPriorityQ( (int (*)(PQkey, PQkey)) __gl_vertLeq );
1245 if (pq == NULL) return 0;
1246
1247 vHead = &tess->mesh->vHead;
1248 for( v = vHead->next; v != vHead; v = v->next ) {
1249 v->pqHandle = pqInsert( pq, v ); /* __gl_pqSortInsert */
1250 if (v->pqHandle == LONG_MAX) break;
1251 }
1252 if (v != vHead || !pqInit( pq ) ) { /* __gl_pqSortInit */
1253 pqDeletePriorityQ(tess->pq); /* __gl_pqSortDeletePriorityQ */
1254 tess->pq = NULL;
1255 return 0;
1256 }
1257
1258 return 1;
1259 }
1260
1261
1262 static void DonePriorityQ( GLUtesselator *tess )
1263 {
1264 pqDeletePriorityQ( tess->pq ); /* __gl_pqSortDeletePriorityQ */
1265 }
1266
1267
1268 static int RemoveDegenerateFaces( GLUmesh *mesh )
1269 /*
1270 * Delete any degenerate faces with only two edges. WalkDirtyRegions()
1271 * will catch almost all of these, but it won't catch degenerate faces
1272 * produced by splice operations on already-processed edges.
1273 * The two places this can happen are in FinishLeftRegions(), when
1274 * we splice in a "temporary" edge produced by ConnectRightVertex(),
1275 * and in CheckForLeftSplice(), where we splice already-processed
1276 * edges to ensure that our dictionary invariants are not violated
1277 * by numerical errors.
1278 *
1279 * In both these cases it is *very* dangerous to delete the offending
1280 * edge at the time, since one of the routines further up the stack
1281 * will sometimes be keeping a pointer to that edge.
1282 */
1283 {
1284 GLUface *f, *fNext;
1285 GLUhalfEdge *e;
1286
1287 /*LINTED*/
1288 for( f = mesh->fHead.next; f != &mesh->fHead; f = fNext ) {
1289 fNext = f->next;
1290 e = f->anEdge;
1291 assert( e->Lnext != e );
1292
1293 if( e->Lnext->Lnext == e ) {
1294 /* A face with only two edges */
1295 AddWinding( e->Onext, e );
1296 if ( !__gl_meshDelete( e ) ) return 0;
1297 }
1298 }
1299 return 1;
1300 }
1301
1302 int __gl_computeInterior( GLUtesselator *tess )
1303 /*
1304 * __gl_computeInterior( tess ) computes the planar arrangement specified
1305 * by the given contours, and further subdivides this arrangement
1306 * into regions. Each region is marked "inside" if it belongs
1307 * to the polygon, according to the rule given by tess->windingRule.
1308 * Each interior region is guaranteed be monotone.
1309 */
1310 {
1311 GLUvertex *v, *vNext;
1312
1313 tess->fatalError = FALSE;
1314
1315 /* Each vertex defines an event for our sweep line. Start by inserting
1316 * all the vertices in a priority queue. Events are processed in
1317 * lexicographic order, ie.
1318 *
1319 * e1 < e2 iff e1.x < e2.x || (e1.x == e2.x && e1.y < e2.y)
1320 */
1321 RemoveDegenerateEdges( tess );
1322 if ( !InitPriorityQ( tess ) ) return 0; /* if error */
1323 InitEdgeDict( tess );
1324
1325 /* __gl_pqSortExtractMin */
1326 while( (v = (GLUvertex *)pqExtractMin( tess->pq )) != NULL ) {
1327 for( ;; ) {
1328 vNext = (GLUvertex *)pqMinimum( tess->pq ); /* __gl_pqSortMinimum */
1329 if( vNext == NULL || ! VertEq( vNext, v )) break;
1330
1331 /* Merge together all vertices at exactly the same location.
1332 * This is more efficient than processing them one at a time,
1333 * simplifies the code (see ConnectLeftDegenerate), and is also
1334 * important for correct handling of certain degenerate cases.
1335 * For example, suppose there are two identical edges A and B
1336 * that belong to different contours (so without this code they would
1337 * be processed by separate sweep events). Suppose another edge C
1338 * crosses A and B from above. When A is processed, we split it
1339 * at its intersection point with C. However this also splits C,
1340 * so when we insert B we may compute a slightly different
1341 * intersection point. This might leave two edges with a small
1342 * gap between them. This kind of error is especially obvious
1343 * when using boundary extraction (GLU_TESS_BOUNDARY_ONLY).
1344 */
1345 vNext = (GLUvertex *)pqExtractMin( tess->pq ); /* __gl_pqSortExtractMin*/
1346 SpliceMergeVertices( tess, v->anEdge, vNext->anEdge );
1347 }
1348 SweepEvent( tess, v );
1349 }
1350
1351 /* Set tess->event for debugging purposes */
1352 /* __GL_DICTLISTKEY */ /* __GL_DICTLISTMIN */
1353 tess->event = ((ActiveRegion *) dictKey( dictMin( tess->dict )))->eUp->Org;
1354 DebugEvent( tess );
1355 DoneEdgeDict( tess );
1356 DonePriorityQ( tess );
1357
1358 if ( !RemoveDegenerateFaces( tess->mesh ) ) return 0;
1359 __gl_meshCheckMesh( tess->mesh );
1360
1361 return 1;
1362 }