[OLEAUT32] Sync with Wine Staging 1.7.55. CORE-10536
[reactos.git] / reactos / dll / win32 / oleaut32 / variant.c
1 /*
2 * VARIANT
3 *
4 * Copyright 1998 Jean-Claude Cote
5 * Copyright 2003 Jon Griffiths
6 * Copyright 2005 Daniel Remenak
7 * Copyright 2006 Google (Benjamin Arai)
8 *
9 * The algorithm for conversion from Julian days to day/month/year is based on
10 * that devised by Henry Fliegel, as implemented in PostgreSQL, which is
11 * Copyright 1994-7 Regents of the University of California
12 *
13 * This library is free software; you can redistribute it and/or
14 * modify it under the terms of the GNU Lesser General Public
15 * License as published by the Free Software Foundation; either
16 * version 2.1 of the License, or (at your option) any later version.
17 *
18 * This library is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 * Lesser General Public License for more details.
22 *
23 * You should have received a copy of the GNU Lesser General Public
24 * License along with this library; if not, write to the Free Software
25 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
26 */
27
28 #include "precomp.h"
29
30 WINE_DEFAULT_DEBUG_CHANNEL(variant);
31
32 /* Convert a variant from one type to another */
33 static inline HRESULT VARIANT_Coerce(VARIANTARG* pd, LCID lcid, USHORT wFlags,
34 VARIANTARG* ps, VARTYPE vt)
35 {
36 HRESULT res = DISP_E_TYPEMISMATCH;
37 VARTYPE vtFrom = V_TYPE(ps);
38 DWORD dwFlags = 0;
39
40 TRACE("(%s,0x%08x,0x%04x,%s,%s)\n", debugstr_variant(pd), lcid, wFlags,
41 debugstr_variant(ps), debugstr_vt(vt));
42
43 if (vt == VT_BSTR || vtFrom == VT_BSTR)
44 {
45 /* All flags passed to low level function are only used for
46 * changing to or from strings. Map these here.
47 */
48 if (wFlags & VARIANT_LOCALBOOL)
49 dwFlags |= VAR_LOCALBOOL;
50 if (wFlags & VARIANT_CALENDAR_HIJRI)
51 dwFlags |= VAR_CALENDAR_HIJRI;
52 if (wFlags & VARIANT_CALENDAR_THAI)
53 dwFlags |= VAR_CALENDAR_THAI;
54 if (wFlags & VARIANT_CALENDAR_GREGORIAN)
55 dwFlags |= VAR_CALENDAR_GREGORIAN;
56 if (wFlags & VARIANT_NOUSEROVERRIDE)
57 dwFlags |= LOCALE_NOUSEROVERRIDE;
58 if (wFlags & VARIANT_USE_NLS)
59 dwFlags |= LOCALE_USE_NLS;
60 }
61
62 /* Map int/uint to i4/ui4 */
63 if (vt == VT_INT)
64 vt = VT_I4;
65 else if (vt == VT_UINT)
66 vt = VT_UI4;
67
68 if (vtFrom == VT_INT)
69 vtFrom = VT_I4;
70 else if (vtFrom == VT_UINT)
71 vtFrom = VT_UI4;
72
73 if (vt == vtFrom)
74 return VariantCopy(pd, ps);
75
76 if (wFlags & VARIANT_NOVALUEPROP && vtFrom == VT_DISPATCH && vt != VT_UNKNOWN)
77 {
78 /* VARIANT_NOVALUEPROP prevents IDispatch objects from being coerced by
79 * accessing the default object property.
80 */
81 return DISP_E_TYPEMISMATCH;
82 }
83
84 switch (vt)
85 {
86 case VT_EMPTY:
87 if (vtFrom == VT_NULL)
88 return DISP_E_TYPEMISMATCH;
89 /* ... Fall through */
90 case VT_NULL:
91 if (vtFrom <= VT_UINT && vtFrom != (VARTYPE)15 && vtFrom != VT_ERROR)
92 {
93 res = VariantClear( pd );
94 if (vt == VT_NULL && SUCCEEDED(res))
95 V_VT(pd) = VT_NULL;
96 }
97 return res;
98
99 case VT_I1:
100 switch (vtFrom)
101 {
102 case VT_EMPTY: V_I1(pd) = 0; return S_OK;
103 case VT_I2: return VarI1FromI2(V_I2(ps), &V_I1(pd));
104 case VT_I4: return VarI1FromI4(V_I4(ps), &V_I1(pd));
105 case VT_UI1: V_I1(pd) = V_UI1(ps); return S_OK;
106 case VT_UI2: return VarI1FromUI2(V_UI2(ps), &V_I1(pd));
107 case VT_UI4: return VarI1FromUI4(V_UI4(ps), &V_I1(pd));
108 case VT_I8: return VarI1FromI8(V_I8(ps), &V_I1(pd));
109 case VT_UI8: return VarI1FromUI8(V_UI8(ps), &V_I1(pd));
110 case VT_R4: return VarI1FromR4(V_R4(ps), &V_I1(pd));
111 case VT_R8: return VarI1FromR8(V_R8(ps), &V_I1(pd));
112 case VT_DATE: return VarI1FromDate(V_DATE(ps), &V_I1(pd));
113 case VT_BOOL: return VarI1FromBool(V_BOOL(ps), &V_I1(pd));
114 case VT_CY: return VarI1FromCy(V_CY(ps), &V_I1(pd));
115 case VT_DECIMAL: return VarI1FromDec(&V_DECIMAL(ps), &V_I1(pd) );
116 case VT_DISPATCH: return VarI1FromDisp(V_DISPATCH(ps), lcid, &V_I1(pd) );
117 case VT_BSTR: return VarI1FromStr(V_BSTR(ps), lcid, dwFlags, &V_I1(pd) );
118 }
119 break;
120
121 case VT_I2:
122 switch (vtFrom)
123 {
124 case VT_EMPTY: V_I2(pd) = 0; return S_OK;
125 case VT_I1: return VarI2FromI1(V_I1(ps), &V_I2(pd));
126 case VT_I4: return VarI2FromI4(V_I4(ps), &V_I2(pd));
127 case VT_UI1: return VarI2FromUI1(V_UI1(ps), &V_I2(pd));
128 case VT_UI2: V_I2(pd) = V_UI2(ps); return S_OK;
129 case VT_UI4: return VarI2FromUI4(V_UI4(ps), &V_I2(pd));
130 case VT_I8: return VarI2FromI8(V_I8(ps), &V_I2(pd));
131 case VT_UI8: return VarI2FromUI8(V_UI8(ps), &V_I2(pd));
132 case VT_R4: return VarI2FromR4(V_R4(ps), &V_I2(pd));
133 case VT_R8: return VarI2FromR8(V_R8(ps), &V_I2(pd));
134 case VT_DATE: return VarI2FromDate(V_DATE(ps), &V_I2(pd));
135 case VT_BOOL: return VarI2FromBool(V_BOOL(ps), &V_I2(pd));
136 case VT_CY: return VarI2FromCy(V_CY(ps), &V_I2(pd));
137 case VT_DECIMAL: return VarI2FromDec(&V_DECIMAL(ps), &V_I2(pd));
138 case VT_DISPATCH: return VarI2FromDisp(V_DISPATCH(ps), lcid, &V_I2(pd));
139 case VT_BSTR: return VarI2FromStr(V_BSTR(ps), lcid, dwFlags, &V_I2(pd));
140 }
141 break;
142
143 case VT_I4:
144 switch (vtFrom)
145 {
146 case VT_EMPTY: V_I4(pd) = 0; return S_OK;
147 case VT_I1: return VarI4FromI1(V_I1(ps), &V_I4(pd));
148 case VT_I2: return VarI4FromI2(V_I2(ps), &V_I4(pd));
149 case VT_UI1: return VarI4FromUI1(V_UI1(ps), &V_I4(pd));
150 case VT_UI2: return VarI4FromUI2(V_UI2(ps), &V_I4(pd));
151 case VT_UI4: V_I4(pd) = V_UI4(ps); return S_OK;
152 case VT_I8: return VarI4FromI8(V_I8(ps), &V_I4(pd));
153 case VT_UI8: return VarI4FromUI8(V_UI8(ps), &V_I4(pd));
154 case VT_R4: return VarI4FromR4(V_R4(ps), &V_I4(pd));
155 case VT_R8: return VarI4FromR8(V_R8(ps), &V_I4(pd));
156 case VT_DATE: return VarI4FromDate(V_DATE(ps), &V_I4(pd));
157 case VT_BOOL: return VarI4FromBool(V_BOOL(ps), &V_I4(pd));
158 case VT_CY: return VarI4FromCy(V_CY(ps), &V_I4(pd));
159 case VT_DECIMAL: return VarI4FromDec(&V_DECIMAL(ps), &V_I4(pd));
160 case VT_DISPATCH: return VarI4FromDisp(V_DISPATCH(ps), lcid, &V_I4(pd));
161 case VT_BSTR: return VarI4FromStr(V_BSTR(ps), lcid, dwFlags, &V_I4(pd));
162 }
163 break;
164
165 case VT_UI1:
166 switch (vtFrom)
167 {
168 case VT_EMPTY: V_UI1(pd) = 0; return S_OK;
169 case VT_I1: V_UI1(pd) = V_I1(ps); return S_OK;
170 case VT_I2: return VarUI1FromI2(V_I2(ps), &V_UI1(pd));
171 case VT_I4: return VarUI1FromI4(V_I4(ps), &V_UI1(pd));
172 case VT_UI2: return VarUI1FromUI2(V_UI2(ps), &V_UI1(pd));
173 case VT_UI4: return VarUI1FromUI4(V_UI4(ps), &V_UI1(pd));
174 case VT_I8: return VarUI1FromI8(V_I8(ps), &V_UI1(pd));
175 case VT_UI8: return VarUI1FromUI8(V_UI8(ps), &V_UI1(pd));
176 case VT_R4: return VarUI1FromR4(V_R4(ps), &V_UI1(pd));
177 case VT_R8: return VarUI1FromR8(V_R8(ps), &V_UI1(pd));
178 case VT_DATE: return VarUI1FromDate(V_DATE(ps), &V_UI1(pd));
179 case VT_BOOL: return VarUI1FromBool(V_BOOL(ps), &V_UI1(pd));
180 case VT_CY: return VarUI1FromCy(V_CY(ps), &V_UI1(pd));
181 case VT_DECIMAL: return VarUI1FromDec(&V_DECIMAL(ps), &V_UI1(pd));
182 case VT_DISPATCH: return VarUI1FromDisp(V_DISPATCH(ps), lcid, &V_UI1(pd));
183 case VT_BSTR: return VarUI1FromStr(V_BSTR(ps), lcid, dwFlags, &V_UI1(pd));
184 }
185 break;
186
187 case VT_UI2:
188 switch (vtFrom)
189 {
190 case VT_EMPTY: V_UI2(pd) = 0; return S_OK;
191 case VT_I1: return VarUI2FromI1(V_I1(ps), &V_UI2(pd));
192 case VT_I2: V_UI2(pd) = V_I2(ps); return S_OK;
193 case VT_I4: return VarUI2FromI4(V_I4(ps), &V_UI2(pd));
194 case VT_UI1: return VarUI2FromUI1(V_UI1(ps), &V_UI2(pd));
195 case VT_UI4: return VarUI2FromUI4(V_UI4(ps), &V_UI2(pd));
196 case VT_I8: return VarUI4FromI8(V_I8(ps), &V_UI4(pd));
197 case VT_UI8: return VarUI4FromUI8(V_UI8(ps), &V_UI4(pd));
198 case VT_R4: return VarUI2FromR4(V_R4(ps), &V_UI2(pd));
199 case VT_R8: return VarUI2FromR8(V_R8(ps), &V_UI2(pd));
200 case VT_DATE: return VarUI2FromDate(V_DATE(ps), &V_UI2(pd));
201 case VT_BOOL: return VarUI2FromBool(V_BOOL(ps), &V_UI2(pd));
202 case VT_CY: return VarUI2FromCy(V_CY(ps), &V_UI2(pd));
203 case VT_DECIMAL: return VarUI2FromDec(&V_DECIMAL(ps), &V_UI2(pd));
204 case VT_DISPATCH: return VarUI2FromDisp(V_DISPATCH(ps), lcid, &V_UI2(pd));
205 case VT_BSTR: return VarUI2FromStr(V_BSTR(ps), lcid, dwFlags, &V_UI2(pd));
206 }
207 break;
208
209 case VT_UI4:
210 switch (vtFrom)
211 {
212 case VT_EMPTY: V_UI4(pd) = 0; return S_OK;
213 case VT_I1: return VarUI4FromI1(V_I1(ps), &V_UI4(pd));
214 case VT_I2: return VarUI4FromI2(V_I2(ps), &V_UI4(pd));
215 case VT_I4: V_UI4(pd) = V_I4(ps); return S_OK;
216 case VT_UI1: return VarUI4FromUI1(V_UI1(ps), &V_UI4(pd));
217 case VT_UI2: return VarUI4FromUI2(V_UI2(ps), &V_UI4(pd));
218 case VT_I8: return VarUI4FromI8(V_I8(ps), &V_UI4(pd));
219 case VT_UI8: return VarUI4FromUI8(V_UI8(ps), &V_UI4(pd));
220 case VT_R4: return VarUI4FromR4(V_R4(ps), &V_UI4(pd));
221 case VT_R8: return VarUI4FromR8(V_R8(ps), &V_UI4(pd));
222 case VT_DATE: return VarUI4FromDate(V_DATE(ps), &V_UI4(pd));
223 case VT_BOOL: return VarUI4FromBool(V_BOOL(ps), &V_UI4(pd));
224 case VT_CY: return VarUI4FromCy(V_CY(ps), &V_UI4(pd));
225 case VT_DECIMAL: return VarUI4FromDec(&V_DECIMAL(ps), &V_UI4(pd));
226 case VT_DISPATCH: return VarUI4FromDisp(V_DISPATCH(ps), lcid, &V_UI4(pd));
227 case VT_BSTR: return VarUI4FromStr(V_BSTR(ps), lcid, dwFlags, &V_UI4(pd));
228 }
229 break;
230
231 case VT_UI8:
232 switch (vtFrom)
233 {
234 case VT_EMPTY: V_UI8(pd) = 0; return S_OK;
235 case VT_I4: if (V_I4(ps) < 0) return DISP_E_OVERFLOW; V_UI8(pd) = V_I4(ps); return S_OK;
236 case VT_I1: return VarUI8FromI1(V_I1(ps), &V_UI8(pd));
237 case VT_I2: return VarUI8FromI2(V_I2(ps), &V_UI8(pd));
238 case VT_UI1: return VarUI8FromUI1(V_UI1(ps), &V_UI8(pd));
239 case VT_UI2: return VarUI8FromUI2(V_UI2(ps), &V_UI8(pd));
240 case VT_UI4: return VarUI8FromUI4(V_UI4(ps), &V_UI8(pd));
241 case VT_I8: V_UI8(pd) = V_I8(ps); return S_OK;
242 case VT_R4: return VarUI8FromR4(V_R4(ps), &V_UI8(pd));
243 case VT_R8: return VarUI8FromR8(V_R8(ps), &V_UI8(pd));
244 case VT_DATE: return VarUI8FromDate(V_DATE(ps), &V_UI8(pd));
245 case VT_BOOL: return VarUI8FromBool(V_BOOL(ps), &V_UI8(pd));
246 case VT_CY: return VarUI8FromCy(V_CY(ps), &V_UI8(pd));
247 case VT_DECIMAL: return VarUI8FromDec(&V_DECIMAL(ps), &V_UI8(pd));
248 case VT_DISPATCH: return VarUI8FromDisp(V_DISPATCH(ps), lcid, &V_UI8(pd));
249 case VT_BSTR: return VarUI8FromStr(V_BSTR(ps), lcid, dwFlags, &V_UI8(pd));
250 }
251 break;
252
253 case VT_I8:
254 switch (vtFrom)
255 {
256 case VT_EMPTY: V_I8(pd) = 0; return S_OK;
257 case VT_I4: V_I8(pd) = V_I4(ps); return S_OK;
258 case VT_I1: return VarI8FromI1(V_I1(ps), &V_I8(pd));
259 case VT_I2: return VarI8FromI2(V_I2(ps), &V_I8(pd));
260 case VT_UI1: return VarI8FromUI1(V_UI1(ps), &V_I8(pd));
261 case VT_UI2: return VarI8FromUI2(V_UI2(ps), &V_I8(pd));
262 case VT_UI4: return VarI8FromUI4(V_UI4(ps), &V_I8(pd));
263 case VT_UI8: V_I8(pd) = V_UI8(ps); return S_OK;
264 case VT_R4: return VarI8FromR4(V_R4(ps), &V_I8(pd));
265 case VT_R8: return VarI8FromR8(V_R8(ps), &V_I8(pd));
266 case VT_DATE: return VarI8FromDate(V_DATE(ps), &V_I8(pd));
267 case VT_BOOL: return VarI8FromBool(V_BOOL(ps), &V_I8(pd));
268 case VT_CY: return VarI8FromCy(V_CY(ps), &V_I8(pd));
269 case VT_DECIMAL: return VarI8FromDec(&V_DECIMAL(ps), &V_I8(pd));
270 case VT_DISPATCH: return VarI8FromDisp(V_DISPATCH(ps), lcid, &V_I8(pd));
271 case VT_BSTR: return VarI8FromStr(V_BSTR(ps), lcid, dwFlags, &V_I8(pd));
272 }
273 break;
274
275 case VT_R4:
276 switch (vtFrom)
277 {
278 case VT_EMPTY: V_R4(pd) = 0.0f; return S_OK;
279 case VT_I1: return VarR4FromI1(V_I1(ps), &V_R4(pd));
280 case VT_I2: return VarR4FromI2(V_I2(ps), &V_R4(pd));
281 case VT_I4: return VarR4FromI4(V_I4(ps), &V_R4(pd));
282 case VT_UI1: return VarR4FromUI1(V_UI1(ps), &V_R4(pd));
283 case VT_UI2: return VarR4FromUI2(V_UI2(ps), &V_R4(pd));
284 case VT_UI4: return VarR4FromUI4(V_UI4(ps), &V_R4(pd));
285 case VT_I8: return VarR4FromI8(V_I8(ps), &V_R4(pd));
286 case VT_UI8: return VarR4FromUI8(V_UI8(ps), &V_R4(pd));
287 case VT_R8: return VarR4FromR8(V_R8(ps), &V_R4(pd));
288 case VT_DATE: return VarR4FromDate(V_DATE(ps), &V_R4(pd));
289 case VT_BOOL: return VarR4FromBool(V_BOOL(ps), &V_R4(pd));
290 case VT_CY: return VarR4FromCy(V_CY(ps), &V_R4(pd));
291 case VT_DECIMAL: return VarR4FromDec(&V_DECIMAL(ps), &V_R4(pd));
292 case VT_DISPATCH: return VarR4FromDisp(V_DISPATCH(ps), lcid, &V_R4(pd));
293 case VT_BSTR: return VarR4FromStr(V_BSTR(ps), lcid, dwFlags, &V_R4(pd));
294 }
295 break;
296
297 case VT_R8:
298 switch (vtFrom)
299 {
300 case VT_EMPTY: V_R8(pd) = 0.0; return S_OK;
301 case VT_I1: return VarR8FromI1(V_I1(ps), &V_R8(pd));
302 case VT_I2: return VarR8FromI2(V_I2(ps), &V_R8(pd));
303 case VT_I4: return VarR8FromI4(V_I4(ps), &V_R8(pd));
304 case VT_UI1: return VarR8FromUI1(V_UI1(ps), &V_R8(pd));
305 case VT_UI2: return VarR8FromUI2(V_UI2(ps), &V_R8(pd));
306 case VT_UI4: return VarR8FromUI4(V_UI4(ps), &V_R8(pd));
307 case VT_I8: return VarR8FromI8(V_I8(ps), &V_R8(pd));
308 case VT_UI8: return VarR8FromUI8(V_UI8(ps), &V_R8(pd));
309 case VT_R4: return VarR8FromR4(V_R4(ps), &V_R8(pd));
310 case VT_DATE: return VarR8FromDate(V_DATE(ps), &V_R8(pd));
311 case VT_BOOL: return VarR8FromBool(V_BOOL(ps), &V_R8(pd));
312 case VT_CY: return VarR8FromCy(V_CY(ps), &V_R8(pd));
313 case VT_DECIMAL: return VarR8FromDec(&V_DECIMAL(ps), &V_R8(pd));
314 case VT_DISPATCH: return VarR8FromDisp(V_DISPATCH(ps), lcid, &V_R8(pd));
315 case VT_BSTR: return VarR8FromStr(V_BSTR(ps), lcid, dwFlags, &V_R8(pd));
316 }
317 break;
318
319 case VT_DATE:
320 switch (vtFrom)
321 {
322 case VT_EMPTY: V_DATE(pd) = 0.0; return S_OK;
323 case VT_I1: return VarDateFromI1(V_I1(ps), &V_DATE(pd));
324 case VT_I2: return VarDateFromI2(V_I2(ps), &V_DATE(pd));
325 case VT_I4: return VarDateFromI4(V_I4(ps), &V_DATE(pd));
326 case VT_UI1: return VarDateFromUI1(V_UI1(ps), &V_DATE(pd));
327 case VT_UI2: return VarDateFromUI2(V_UI2(ps), &V_DATE(pd));
328 case VT_UI4: return VarDateFromUI4(V_UI4(ps), &V_DATE(pd));
329 case VT_I8: return VarDateFromI8(V_I8(ps), &V_DATE(pd));
330 case VT_UI8: return VarDateFromUI8(V_UI8(ps), &V_DATE(pd));
331 case VT_R4: return VarDateFromR4(V_R4(ps), &V_DATE(pd));
332 case VT_R8: return VarDateFromR8(V_R8(ps), &V_DATE(pd));
333 case VT_BOOL: return VarDateFromBool(V_BOOL(ps), &V_DATE(pd));
334 case VT_CY: return VarDateFromCy(V_CY(ps), &V_DATE(pd));
335 case VT_DECIMAL: return VarDateFromDec(&V_DECIMAL(ps), &V_DATE(pd));
336 case VT_DISPATCH: return VarDateFromDisp(V_DISPATCH(ps), lcid, &V_DATE(pd));
337 case VT_BSTR: return VarDateFromStr(V_BSTR(ps), lcid, dwFlags, &V_DATE(pd));
338 }
339 break;
340
341 case VT_BOOL:
342 switch (vtFrom)
343 {
344 case VT_EMPTY: V_BOOL(pd) = 0; return S_OK;
345 case VT_I1: return VarBoolFromI1(V_I1(ps), &V_BOOL(pd));
346 case VT_I2: return VarBoolFromI2(V_I2(ps), &V_BOOL(pd));
347 case VT_I4: return VarBoolFromI4(V_I4(ps), &V_BOOL(pd));
348 case VT_UI1: return VarBoolFromUI1(V_UI1(ps), &V_BOOL(pd));
349 case VT_UI2: return VarBoolFromUI2(V_UI2(ps), &V_BOOL(pd));
350 case VT_UI4: return VarBoolFromUI4(V_UI4(ps), &V_BOOL(pd));
351 case VT_I8: return VarBoolFromI8(V_I8(ps), &V_BOOL(pd));
352 case VT_UI8: return VarBoolFromUI8(V_UI8(ps), &V_BOOL(pd));
353 case VT_R4: return VarBoolFromR4(V_R4(ps), &V_BOOL(pd));
354 case VT_R8: return VarBoolFromR8(V_R8(ps), &V_BOOL(pd));
355 case VT_DATE: return VarBoolFromDate(V_DATE(ps), &V_BOOL(pd));
356 case VT_CY: return VarBoolFromCy(V_CY(ps), &V_BOOL(pd));
357 case VT_DECIMAL: return VarBoolFromDec(&V_DECIMAL(ps), &V_BOOL(pd));
358 case VT_DISPATCH: return VarBoolFromDisp(V_DISPATCH(ps), lcid, &V_BOOL(pd));
359 case VT_BSTR: return VarBoolFromStr(V_BSTR(ps), lcid, dwFlags, &V_BOOL(pd));
360 }
361 break;
362
363 case VT_BSTR:
364 switch (vtFrom)
365 {
366 case VT_EMPTY:
367 V_BSTR(pd) = SysAllocStringLen(NULL, 0);
368 return V_BSTR(pd) ? S_OK : E_OUTOFMEMORY;
369 case VT_BOOL:
370 if (wFlags & (VARIANT_ALPHABOOL|VARIANT_LOCALBOOL))
371 return VarBstrFromBool(V_BOOL(ps), lcid, dwFlags, &V_BSTR(pd));
372 return VarBstrFromI2(V_BOOL(ps), lcid, dwFlags, &V_BSTR(pd));
373 case VT_I1: return VarBstrFromI1(V_I1(ps), lcid, dwFlags, &V_BSTR(pd));
374 case VT_I2: return VarBstrFromI2(V_I2(ps), lcid, dwFlags, &V_BSTR(pd));
375 case VT_I4: return VarBstrFromI4(V_I4(ps), lcid, dwFlags, &V_BSTR(pd));
376 case VT_UI1: return VarBstrFromUI1(V_UI1(ps), lcid, dwFlags, &V_BSTR(pd));
377 case VT_UI2: return VarBstrFromUI2(V_UI2(ps), lcid, dwFlags, &V_BSTR(pd));
378 case VT_UI4: return VarBstrFromUI4(V_UI4(ps), lcid, dwFlags, &V_BSTR(pd));
379 case VT_I8: return VarBstrFromI8(V_I8(ps), lcid, dwFlags, &V_BSTR(pd));
380 case VT_UI8: return VarBstrFromUI8(V_UI8(ps), lcid, dwFlags, &V_BSTR(pd));
381 case VT_R4: return VarBstrFromR4(V_R4(ps), lcid, dwFlags, &V_BSTR(pd));
382 case VT_R8: return VarBstrFromR8(V_R8(ps), lcid, dwFlags, &V_BSTR(pd));
383 case VT_DATE: return VarBstrFromDate(V_DATE(ps), lcid, dwFlags, &V_BSTR(pd));
384 case VT_CY: return VarBstrFromCy(V_CY(ps), lcid, dwFlags, &V_BSTR(pd));
385 case VT_DECIMAL: return VarBstrFromDec(&V_DECIMAL(ps), lcid, dwFlags, &V_BSTR(pd));
386 case VT_DISPATCH: return VarBstrFromDisp(V_DISPATCH(ps), lcid, dwFlags, &V_BSTR(pd));
387 }
388 break;
389
390 case VT_CY:
391 switch (vtFrom)
392 {
393 case VT_EMPTY: V_CY(pd).int64 = 0; return S_OK;
394 case VT_I1: return VarCyFromI1(V_I1(ps), &V_CY(pd));
395 case VT_I2: return VarCyFromI2(V_I2(ps), &V_CY(pd));
396 case VT_I4: return VarCyFromI4(V_I4(ps), &V_CY(pd));
397 case VT_UI1: return VarCyFromUI1(V_UI1(ps), &V_CY(pd));
398 case VT_UI2: return VarCyFromUI2(V_UI2(ps), &V_CY(pd));
399 case VT_UI4: return VarCyFromUI4(V_UI4(ps), &V_CY(pd));
400 case VT_I8: return VarCyFromI8(V_I8(ps), &V_CY(pd));
401 case VT_UI8: return VarCyFromUI8(V_UI8(ps), &V_CY(pd));
402 case VT_R4: return VarCyFromR4(V_R4(ps), &V_CY(pd));
403 case VT_R8: return VarCyFromR8(V_R8(ps), &V_CY(pd));
404 case VT_DATE: return VarCyFromDate(V_DATE(ps), &V_CY(pd));
405 case VT_BOOL: return VarCyFromBool(V_BOOL(ps), &V_CY(pd));
406 case VT_DECIMAL: return VarCyFromDec(&V_DECIMAL(ps), &V_CY(pd));
407 case VT_DISPATCH: return VarCyFromDisp(V_DISPATCH(ps), lcid, &V_CY(pd));
408 case VT_BSTR: return VarCyFromStr(V_BSTR(ps), lcid, dwFlags, &V_CY(pd));
409 }
410 break;
411
412 case VT_DECIMAL:
413 switch (vtFrom)
414 {
415 case VT_EMPTY:
416 case VT_BOOL:
417 DEC_SIGNSCALE(&V_DECIMAL(pd)) = SIGNSCALE(DECIMAL_POS,0);
418 DEC_HI32(&V_DECIMAL(pd)) = 0;
419 DEC_MID32(&V_DECIMAL(pd)) = 0;
420 /* VarDecFromBool() coerces to -1/0, ChangeTypeEx() coerces to 1/0.
421 * VT_NULL and VT_EMPTY always give a 0 value.
422 */
423 DEC_LO32(&V_DECIMAL(pd)) = vtFrom == VT_BOOL && V_BOOL(ps) ? 1 : 0;
424 return S_OK;
425 case VT_I1: return VarDecFromI1(V_I1(ps), &V_DECIMAL(pd));
426 case VT_I2: return VarDecFromI2(V_I2(ps), &V_DECIMAL(pd));
427 case VT_I4: return VarDecFromI4(V_I4(ps), &V_DECIMAL(pd));
428 case VT_UI1: return VarDecFromUI1(V_UI1(ps), &V_DECIMAL(pd));
429 case VT_UI2: return VarDecFromUI2(V_UI2(ps), &V_DECIMAL(pd));
430 case VT_UI4: return VarDecFromUI4(V_UI4(ps), &V_DECIMAL(pd));
431 case VT_I8: return VarDecFromI8(V_I8(ps), &V_DECIMAL(pd));
432 case VT_UI8: return VarDecFromUI8(V_UI8(ps), &V_DECIMAL(pd));
433 case VT_R4: return VarDecFromR4(V_R4(ps), &V_DECIMAL(pd));
434 case VT_R8: return VarDecFromR8(V_R8(ps), &V_DECIMAL(pd));
435 case VT_DATE: return VarDecFromDate(V_DATE(ps), &V_DECIMAL(pd));
436 case VT_CY: return VarDecFromCy(V_CY(ps), &V_DECIMAL(pd));
437 case VT_DISPATCH: return VarDecFromDisp(V_DISPATCH(ps), lcid, &V_DECIMAL(pd));
438 case VT_BSTR: return VarDecFromStr(V_BSTR(ps), lcid, dwFlags, &V_DECIMAL(pd));
439 }
440 break;
441
442 case VT_UNKNOWN:
443 switch (vtFrom)
444 {
445 case VT_DISPATCH:
446 if (V_DISPATCH(ps) == NULL)
447 V_UNKNOWN(pd) = NULL;
448 else
449 res = IDispatch_QueryInterface(V_DISPATCH(ps), &IID_IUnknown, (LPVOID*)&V_UNKNOWN(pd));
450 break;
451 }
452 break;
453
454 case VT_DISPATCH:
455 switch (vtFrom)
456 {
457 case VT_UNKNOWN:
458 if (V_UNKNOWN(ps) == NULL)
459 V_DISPATCH(pd) = NULL;
460 else
461 res = IUnknown_QueryInterface(V_UNKNOWN(ps), &IID_IDispatch, (LPVOID*)&V_DISPATCH(pd));
462 break;
463 }
464 break;
465
466 case VT_RECORD:
467 break;
468 }
469 return res;
470 }
471
472 /* Coerce to/from an array */
473 static inline HRESULT VARIANT_CoerceArray(VARIANTARG* pd, VARIANTARG* ps, VARTYPE vt)
474 {
475 if (vt == VT_BSTR && V_VT(ps) == (VT_ARRAY|VT_UI1))
476 return BstrFromVector(V_ARRAY(ps), &V_BSTR(pd));
477
478 if (V_VT(ps) == VT_BSTR && vt == (VT_ARRAY|VT_UI1))
479 return VectorFromBstr(V_BSTR(ps), &V_ARRAY(pd));
480
481 if (V_VT(ps) == vt)
482 return SafeArrayCopy(V_ARRAY(ps), &V_ARRAY(pd));
483
484 return DISP_E_TYPEMISMATCH;
485 }
486
487 /******************************************************************************
488 * Check if a variants type is valid.
489 */
490 static inline HRESULT VARIANT_ValidateType(VARTYPE vt)
491 {
492 VARTYPE vtExtra = vt & VT_EXTRA_TYPE;
493
494 vt &= VT_TYPEMASK;
495
496 if (!(vtExtra & (VT_VECTOR|VT_RESERVED)))
497 {
498 if (vt < VT_VOID || vt == VT_RECORD || vt == VT_CLSID)
499 {
500 if ((vtExtra & (VT_BYREF|VT_ARRAY)) && vt <= VT_NULL)
501 return DISP_E_BADVARTYPE;
502 if (vt != (VARTYPE)15)
503 return S_OK;
504 }
505 }
506 return DISP_E_BADVARTYPE;
507 }
508
509 /******************************************************************************
510 * VariantInit [OLEAUT32.8]
511 *
512 * Initialise a variant.
513 *
514 * PARAMS
515 * pVarg [O] Variant to initialise
516 *
517 * RETURNS
518 * Nothing.
519 *
520 * NOTES
521 * This function simply sets the type of the variant to VT_EMPTY. It does not
522 * free any existing value, use VariantClear() for that.
523 */
524 void WINAPI VariantInit(VARIANTARG* pVarg)
525 {
526 TRACE("(%p)\n", pVarg);
527
528 /* Win8.1 zeroes whole struct. Previous implementations don't set any other fields. */
529 V_VT(pVarg) = VT_EMPTY;
530 }
531
532 HRESULT VARIANT_ClearInd(VARIANTARG *pVarg)
533 {
534 HRESULT hres;
535
536 TRACE("(%s)\n", debugstr_variant(pVarg));
537
538 hres = VARIANT_ValidateType(V_VT(pVarg));
539 if (FAILED(hres))
540 return hres;
541
542 switch (V_VT(pVarg))
543 {
544 case VT_DISPATCH:
545 case VT_UNKNOWN:
546 if (V_UNKNOWN(pVarg))
547 IUnknown_Release(V_UNKNOWN(pVarg));
548 break;
549 case VT_UNKNOWN | VT_BYREF:
550 case VT_DISPATCH | VT_BYREF:
551 if(*V_UNKNOWNREF(pVarg))
552 IUnknown_Release(*V_UNKNOWNREF(pVarg));
553 break;
554 case VT_BSTR:
555 SysFreeString(V_BSTR(pVarg));
556 break;
557 case VT_BSTR | VT_BYREF:
558 SysFreeString(*V_BSTRREF(pVarg));
559 break;
560 case VT_VARIANT | VT_BYREF:
561 VariantClear(V_VARIANTREF(pVarg));
562 break;
563 case VT_RECORD:
564 case VT_RECORD | VT_BYREF:
565 {
566 struct __tagBRECORD* pBr = &V_UNION(pVarg,brecVal);
567 if (pBr->pRecInfo)
568 {
569 IRecordInfo_RecordClear(pBr->pRecInfo, pBr->pvRecord);
570 IRecordInfo_Release(pBr->pRecInfo);
571 }
572 break;
573 }
574 default:
575 if (V_ISARRAY(pVarg) || (V_VT(pVarg) & ~VT_BYREF) == VT_SAFEARRAY)
576 {
577 if (V_ISBYREF(pVarg))
578 {
579 if (*V_ARRAYREF(pVarg))
580 hres = SafeArrayDestroy(*V_ARRAYREF(pVarg));
581 }
582 else if (V_ARRAY(pVarg))
583 hres = SafeArrayDestroy(V_ARRAY(pVarg));
584 }
585 break;
586 }
587
588 V_VT(pVarg) = VT_EMPTY;
589 return hres;
590 }
591
592 /******************************************************************************
593 * VariantClear [OLEAUT32.9]
594 *
595 * Clear a variant.
596 *
597 * PARAMS
598 * pVarg [I/O] Variant to clear
599 *
600 * RETURNS
601 * Success: S_OK. Any previous value in pVarg is freed and its type is set to VT_EMPTY.
602 * Failure: DISP_E_BADVARTYPE, if the variant is not a valid variant type.
603 */
604 HRESULT WINAPI VariantClear(VARIANTARG* pVarg)
605 {
606 HRESULT hres;
607
608 TRACE("(%s)\n", debugstr_variant(pVarg));
609
610 hres = VARIANT_ValidateType(V_VT(pVarg));
611
612 if (SUCCEEDED(hres))
613 {
614 if (!V_ISBYREF(pVarg))
615 {
616 if (V_ISARRAY(pVarg) || V_VT(pVarg) == VT_SAFEARRAY)
617 {
618 hres = SafeArrayDestroy(V_ARRAY(pVarg));
619 }
620 else if (V_VT(pVarg) == VT_BSTR)
621 {
622 SysFreeString(V_BSTR(pVarg));
623 }
624 else if (V_VT(pVarg) == VT_RECORD)
625 {
626 struct __tagBRECORD* pBr = &V_UNION(pVarg,brecVal);
627 if (pBr->pRecInfo)
628 {
629 IRecordInfo_RecordClear(pBr->pRecInfo, pBr->pvRecord);
630 IRecordInfo_Release(pBr->pRecInfo);
631 }
632 }
633 else if (V_VT(pVarg) == VT_DISPATCH ||
634 V_VT(pVarg) == VT_UNKNOWN)
635 {
636 if (V_UNKNOWN(pVarg))
637 IUnknown_Release(V_UNKNOWN(pVarg));
638 }
639 }
640 V_VT(pVarg) = VT_EMPTY;
641 }
642 return hres;
643 }
644
645 /******************************************************************************
646 * Copy an IRecordInfo object contained in a variant.
647 */
648 static HRESULT VARIANT_CopyIRecordInfo(VARIANT *dest, VARIANT *src)
649 {
650 struct __tagBRECORD *dest_rec = &V_UNION(dest, brecVal);
651 struct __tagBRECORD *src_rec = &V_UNION(src, brecVal);
652 HRESULT hr = S_OK;
653 ULONG size;
654
655 if (!src_rec->pRecInfo)
656 {
657 if (src_rec->pvRecord) return E_INVALIDARG;
658 return S_OK;
659 }
660
661 hr = IRecordInfo_GetSize(src_rec->pRecInfo, &size);
662 if (FAILED(hr)) return hr;
663
664 /* This could look cleaner if only RecordCreate() was used, but native doesn't use it.
665 Memory should be allocated in a same way as RecordCreate() does, so RecordDestroy()
666 could free it later. */
667 dest_rec->pvRecord = HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, size);
668 if (!dest_rec->pvRecord) return E_OUTOFMEMORY;
669
670 dest_rec->pRecInfo = src_rec->pRecInfo;
671 IRecordInfo_AddRef(src_rec->pRecInfo);
672
673 return IRecordInfo_RecordCopy(src_rec->pRecInfo, src_rec->pvRecord, dest_rec->pvRecord);
674 }
675
676 /******************************************************************************
677 * VariantCopy [OLEAUT32.10]
678 *
679 * Copy a variant.
680 *
681 * PARAMS
682 * pvargDest [O] Destination for copy
683 * pvargSrc [I] Source variant to copy
684 *
685 * RETURNS
686 * Success: S_OK. pvargDest contains a copy of pvargSrc.
687 * Failure: DISP_E_BADVARTYPE, if either variant has an invalid type.
688 * E_OUTOFMEMORY, if memory cannot be allocated. Otherwise an
689 * HRESULT error code from SafeArrayCopy(), IRecordInfo_GetSize(),
690 * or IRecordInfo_RecordCopy(), depending on the type of pvargSrc.
691 *
692 * NOTES
693 * - If pvargSrc == pvargDest, this function does nothing, and succeeds if
694 * pvargSrc is valid. Otherwise, pvargDest is always cleared using
695 * VariantClear() before pvargSrc is copied to it. If clearing pvargDest
696 * fails, so does this function.
697 * - VT_CLSID is a valid type type for pvargSrc, but not for pvargDest.
698 * - For by-value non-intrinsic types, a deep copy is made, i.e. The whole value
699 * is copied rather than just any pointers to it.
700 * - For by-value object types the object pointer is copied and the objects
701 * reference count increased using IUnknown_AddRef().
702 * - For all by-reference types, only the referencing pointer is copied.
703 */
704 HRESULT WINAPI VariantCopy(VARIANTARG* pvargDest, VARIANTARG* pvargSrc)
705 {
706 HRESULT hres = S_OK;
707
708 TRACE("(%s,%s)\n", debugstr_variant(pvargDest), debugstr_variant(pvargSrc));
709
710 if (V_TYPE(pvargSrc) == VT_CLSID || /* VT_CLSID is a special case */
711 FAILED(VARIANT_ValidateType(V_VT(pvargSrc))))
712 return DISP_E_BADVARTYPE;
713
714 if (pvargSrc != pvargDest &&
715 SUCCEEDED(hres = VariantClear(pvargDest)))
716 {
717 *pvargDest = *pvargSrc; /* Shallow copy the value */
718
719 if (!V_ISBYREF(pvargSrc))
720 {
721 switch (V_VT(pvargSrc))
722 {
723 case VT_BSTR:
724 V_BSTR(pvargDest) = SysAllocStringByteLen((char*)V_BSTR(pvargSrc), SysStringByteLen(V_BSTR(pvargSrc)));
725 if (!V_BSTR(pvargDest))
726 hres = E_OUTOFMEMORY;
727 break;
728 case VT_RECORD:
729 hres = VARIANT_CopyIRecordInfo(pvargDest, pvargSrc);
730 break;
731 case VT_DISPATCH:
732 case VT_UNKNOWN:
733 V_UNKNOWN(pvargDest) = V_UNKNOWN(pvargSrc);
734 if (V_UNKNOWN(pvargSrc))
735 IUnknown_AddRef(V_UNKNOWN(pvargSrc));
736 break;
737 default:
738 if (V_ISARRAY(pvargSrc))
739 hres = SafeArrayCopy(V_ARRAY(pvargSrc), &V_ARRAY(pvargDest));
740 }
741 }
742 }
743 return hres;
744 }
745
746 /* Return the byte size of a variants data */
747 static inline size_t VARIANT_DataSize(const VARIANT* pv)
748 {
749 switch (V_TYPE(pv))
750 {
751 case VT_I1:
752 case VT_UI1: return sizeof(BYTE);
753 case VT_I2:
754 case VT_UI2: return sizeof(SHORT);
755 case VT_INT:
756 case VT_UINT:
757 case VT_I4:
758 case VT_UI4: return sizeof(LONG);
759 case VT_I8:
760 case VT_UI8: return sizeof(LONGLONG);
761 case VT_R4: return sizeof(float);
762 case VT_R8: return sizeof(double);
763 case VT_DATE: return sizeof(DATE);
764 case VT_BOOL: return sizeof(VARIANT_BOOL);
765 case VT_DISPATCH:
766 case VT_UNKNOWN:
767 case VT_BSTR: return sizeof(void*);
768 case VT_CY: return sizeof(CY);
769 case VT_ERROR: return sizeof(SCODE);
770 }
771 TRACE("Shouldn't be called for variant %s!\n", debugstr_variant(pv));
772 return 0;
773 }
774
775 /******************************************************************************
776 * VariantCopyInd [OLEAUT32.11]
777 *
778 * Copy a variant, dereferencing it if it is by-reference.
779 *
780 * PARAMS
781 * pvargDest [O] Destination for copy
782 * pvargSrc [I] Source variant to copy
783 *
784 * RETURNS
785 * Success: S_OK. pvargDest contains a copy of pvargSrc.
786 * Failure: An HRESULT error code indicating the error.
787 *
788 * NOTES
789 * Failure: DISP_E_BADVARTYPE, if either variant has an invalid by-value type.
790 * E_INVALIDARG, if pvargSrc is an invalid by-reference type.
791 * E_OUTOFMEMORY, if memory cannot be allocated. Otherwise an
792 * HRESULT error code from SafeArrayCopy(), IRecordInfo_GetSize(),
793 * or IRecordInfo_RecordCopy(), depending on the type of pvargSrc.
794 *
795 * NOTES
796 * - If pvargSrc is by-value, this function behaves exactly as VariantCopy().
797 * - If pvargSrc is by-reference, the value copied to pvargDest is the pointed-to
798 * value.
799 * - if pvargSrc == pvargDest, this function dereferences in place. Otherwise,
800 * pvargDest is always cleared using VariantClear() before pvargSrc is copied
801 * to it. If clearing pvargDest fails, so does this function.
802 */
803 HRESULT WINAPI VariantCopyInd(VARIANT* pvargDest, VARIANTARG* pvargSrc)
804 {
805 VARIANTARG vTmp, *pSrc = pvargSrc;
806 VARTYPE vt;
807 HRESULT hres = S_OK;
808
809 TRACE("(%s,%s)\n", debugstr_variant(pvargDest), debugstr_variant(pvargSrc));
810
811 if (!V_ISBYREF(pvargSrc))
812 return VariantCopy(pvargDest, pvargSrc);
813
814 /* Argument checking is more lax than VariantCopy()... */
815 vt = V_TYPE(pvargSrc);
816 if (V_ISARRAY(pvargSrc) || (V_VT(pvargSrc) == (VT_RECORD|VT_BYREF)) ||
817 (vt > VT_NULL && vt != (VARTYPE)15 && vt < VT_VOID &&
818 !(V_VT(pvargSrc) & (VT_VECTOR|VT_RESERVED))))
819 {
820 /* OK */
821 }
822 else
823 return E_INVALIDARG; /* ...And the return value for invalid types differs too */
824
825 if (pvargSrc == pvargDest)
826 {
827 /* In place copy. Use a shallow copy of pvargSrc & init pvargDest.
828 * This avoids an expensive VariantCopy() call - e.g. SafeArrayCopy().
829 */
830 vTmp = *pvargSrc;
831 pSrc = &vTmp;
832 V_VT(pvargDest) = VT_EMPTY;
833 }
834 else
835 {
836 /* Copy into another variant. Free the variant in pvargDest */
837 if (FAILED(hres = VariantClear(pvargDest)))
838 {
839 TRACE("VariantClear() of destination failed\n");
840 return hres;
841 }
842 }
843
844 if (V_ISARRAY(pSrc))
845 {
846 /* Native doesn't check that *V_ARRAYREF(pSrc) is valid */
847 hres = SafeArrayCopy(*V_ARRAYREF(pSrc), &V_ARRAY(pvargDest));
848 }
849 else if (V_VT(pSrc) == (VT_BSTR|VT_BYREF))
850 {
851 /* Native doesn't check that *V_BSTRREF(pSrc) is valid */
852 V_BSTR(pvargDest) = SysAllocStringByteLen((char*)*V_BSTRREF(pSrc), SysStringByteLen(*V_BSTRREF(pSrc)));
853 }
854 else if (V_VT(pSrc) == (VT_RECORD|VT_BYREF))
855 {
856 hres = VARIANT_CopyIRecordInfo(pvargDest, pvargSrc);
857 }
858 else if (V_VT(pSrc) == (VT_DISPATCH|VT_BYREF) ||
859 V_VT(pSrc) == (VT_UNKNOWN|VT_BYREF))
860 {
861 /* Native doesn't check that *V_UNKNOWNREF(pSrc) is valid */
862 V_UNKNOWN(pvargDest) = *V_UNKNOWNREF(pSrc);
863 if (*V_UNKNOWNREF(pSrc))
864 IUnknown_AddRef(*V_UNKNOWNREF(pSrc));
865 }
866 else if (V_VT(pSrc) == (VT_VARIANT|VT_BYREF))
867 {
868 /* Native doesn't check that *V_VARIANTREF(pSrc) is valid */
869 if (V_VT(V_VARIANTREF(pSrc)) == (VT_VARIANT|VT_BYREF))
870 hres = E_INVALIDARG; /* Don't dereference more than one level */
871 else
872 hres = VariantCopyInd(pvargDest, V_VARIANTREF(pSrc));
873
874 /* Use the dereferenced variants type value, not VT_VARIANT */
875 goto VariantCopyInd_Return;
876 }
877 else if (V_VT(pSrc) == (VT_DECIMAL|VT_BYREF))
878 {
879 memcpy(&DEC_SCALE(&V_DECIMAL(pvargDest)), &DEC_SCALE(V_DECIMALREF(pSrc)),
880 sizeof(DECIMAL) - sizeof(USHORT));
881 }
882 else
883 {
884 /* Copy the pointed to data into this variant */
885 memcpy(&V_BYREF(pvargDest), V_BYREF(pSrc), VARIANT_DataSize(pSrc));
886 }
887
888 V_VT(pvargDest) = V_VT(pSrc) & ~VT_BYREF;
889
890 VariantCopyInd_Return:
891
892 if (pSrc != pvargSrc)
893 VariantClear(pSrc);
894
895 TRACE("returning 0x%08x, %s\n", hres, debugstr_variant(pvargDest));
896 return hres;
897 }
898
899 /******************************************************************************
900 * VariantChangeType [OLEAUT32.12]
901 *
902 * Change the type of a variant.
903 *
904 * PARAMS
905 * pvargDest [O] Destination for the converted variant
906 * pvargSrc [O] Source variant to change the type of
907 * wFlags [I] VARIANT_ flags from "oleauto.h"
908 * vt [I] Variant type to change pvargSrc into
909 *
910 * RETURNS
911 * Success: S_OK. pvargDest contains the converted value.
912 * Failure: An HRESULT error code describing the failure.
913 *
914 * NOTES
915 * The LCID used for the conversion is LOCALE_USER_DEFAULT.
916 * See VariantChangeTypeEx.
917 */
918 HRESULT WINAPI VariantChangeType(VARIANTARG* pvargDest, VARIANTARG* pvargSrc,
919 USHORT wFlags, VARTYPE vt)
920 {
921 return VariantChangeTypeEx( pvargDest, pvargSrc, LOCALE_USER_DEFAULT, wFlags, vt );
922 }
923
924 /******************************************************************************
925 * VariantChangeTypeEx [OLEAUT32.147]
926 *
927 * Change the type of a variant.
928 *
929 * PARAMS
930 * pvargDest [O] Destination for the converted variant
931 * pvargSrc [O] Source variant to change the type of
932 * lcid [I] LCID for the conversion
933 * wFlags [I] VARIANT_ flags from "oleauto.h"
934 * vt [I] Variant type to change pvargSrc into
935 *
936 * RETURNS
937 * Success: S_OK. pvargDest contains the converted value.
938 * Failure: An HRESULT error code describing the failure.
939 *
940 * NOTES
941 * pvargDest and pvargSrc can point to the same variant to perform an in-place
942 * conversion. If the conversion is successful, pvargSrc will be freed.
943 */
944 HRESULT WINAPI VariantChangeTypeEx(VARIANTARG* pvargDest, VARIANTARG* pvargSrc,
945 LCID lcid, USHORT wFlags, VARTYPE vt)
946 {
947 HRESULT res = S_OK;
948
949 TRACE("(%s,%s,0x%08x,0x%04x,%s)\n", debugstr_variant(pvargDest),
950 debugstr_variant(pvargSrc), lcid, wFlags, debugstr_vt(vt));
951
952 if (vt == VT_CLSID)
953 res = DISP_E_BADVARTYPE;
954 else
955 {
956 res = VARIANT_ValidateType(V_VT(pvargSrc));
957
958 if (SUCCEEDED(res))
959 {
960 res = VARIANT_ValidateType(vt);
961
962 if (SUCCEEDED(res))
963 {
964 VARIANTARG vTmp, vSrcDeref;
965
966 if(V_ISBYREF(pvargSrc) && !V_BYREF(pvargSrc))
967 res = DISP_E_TYPEMISMATCH;
968 else
969 {
970 V_VT(&vTmp) = VT_EMPTY;
971 V_VT(&vSrcDeref) = VT_EMPTY;
972 VariantClear(&vTmp);
973 VariantClear(&vSrcDeref);
974 }
975
976 if (SUCCEEDED(res))
977 {
978 res = VariantCopyInd(&vSrcDeref, pvargSrc);
979 if (SUCCEEDED(res))
980 {
981 if (V_ISARRAY(&vSrcDeref) || (vt & VT_ARRAY))
982 res = VARIANT_CoerceArray(&vTmp, &vSrcDeref, vt);
983 else
984 res = VARIANT_Coerce(&vTmp, lcid, wFlags, &vSrcDeref, vt);
985
986 if (SUCCEEDED(res)) {
987 V_VT(&vTmp) = vt;
988 res = VariantCopy(pvargDest, &vTmp);
989 }
990 VariantClear(&vTmp);
991 VariantClear(&vSrcDeref);
992 }
993 }
994 }
995 }
996 }
997
998 TRACE("returning 0x%08x, %s\n", res, debugstr_variant(pvargDest));
999 return res;
1000 }
1001
1002 /* Date Conversions */
1003
1004 #define IsLeapYear(y) (((y % 4) == 0) && (((y % 100) != 0) || ((y % 400) == 0)))
1005
1006 /* Convert a VT_DATE value to a Julian Date */
1007 static inline int VARIANT_JulianFromDate(int dateIn)
1008 {
1009 int julianDays = dateIn;
1010
1011 julianDays -= DATE_MIN; /* Convert to + days from 1 Jan 100 AD */
1012 julianDays += 1757585; /* Convert to + days from 23 Nov 4713 BC (Julian) */
1013 return julianDays;
1014 }
1015
1016 /* Convert a Julian Date to a VT_DATE value */
1017 static inline int VARIANT_DateFromJulian(int dateIn)
1018 {
1019 int julianDays = dateIn;
1020
1021 julianDays -= 1757585; /* Convert to + days from 1 Jan 100 AD */
1022 julianDays += DATE_MIN; /* Convert to +/- days from 1 Jan 1899 AD */
1023 return julianDays;
1024 }
1025
1026 /* Convert a Julian date to Day/Month/Year - from PostgreSQL */
1027 static inline void VARIANT_DMYFromJulian(int jd, USHORT *year, USHORT *month, USHORT *day)
1028 {
1029 int j, i, l, n;
1030
1031 l = jd + 68569;
1032 n = l * 4 / 146097;
1033 l -= (n * 146097 + 3) / 4;
1034 i = (4000 * (l + 1)) / 1461001;
1035 l += 31 - (i * 1461) / 4;
1036 j = (l * 80) / 2447;
1037 *day = l - (j * 2447) / 80;
1038 l = j / 11;
1039 *month = (j + 2) - (12 * l);
1040 *year = 100 * (n - 49) + i + l;
1041 }
1042
1043 /* Convert Day/Month/Year to a Julian date - from PostgreSQL */
1044 static inline double VARIANT_JulianFromDMY(USHORT year, USHORT month, USHORT day)
1045 {
1046 int m12 = (month - 14) / 12;
1047
1048 return ((1461 * (year + 4800 + m12)) / 4 + (367 * (month - 2 - 12 * m12)) / 12 -
1049 (3 * ((year + 4900 + m12) / 100)) / 4 + day - 32075);
1050 }
1051
1052 /* Macros for accessing DOS format date/time fields */
1053 #define DOS_YEAR(x) (1980 + (x >> 9))
1054 #define DOS_MONTH(x) ((x >> 5) & 0xf)
1055 #define DOS_DAY(x) (x & 0x1f)
1056 #define DOS_HOUR(x) (x >> 11)
1057 #define DOS_MINUTE(x) ((x >> 5) & 0x3f)
1058 #define DOS_SECOND(x) ((x & 0x1f) << 1)
1059 /* Create a DOS format date/time */
1060 #define DOS_DATE(d,m,y) (d | (m << 5) | ((y-1980) << 9))
1061 #define DOS_TIME(h,m,s) ((s >> 1) | (m << 5) | (h << 11))
1062
1063 /* Roll a date forwards or backwards to correct it */
1064 static HRESULT VARIANT_RollUdate(UDATE *lpUd)
1065 {
1066 static const BYTE days[] = { 0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
1067 short iYear, iMonth, iDay, iHour, iMinute, iSecond;
1068
1069 /* interpret values signed */
1070 iYear = lpUd->st.wYear;
1071 iMonth = lpUd->st.wMonth;
1072 iDay = lpUd->st.wDay;
1073 iHour = lpUd->st.wHour;
1074 iMinute = lpUd->st.wMinute;
1075 iSecond = lpUd->st.wSecond;
1076
1077 TRACE("Raw date: %d/%d/%d %d:%d:%d\n", iDay, iMonth,
1078 iYear, iHour, iMinute, iSecond);
1079
1080 if (iYear > 9999 || iYear < -9999)
1081 return E_INVALIDARG; /* Invalid value */
1082 /* Year 0 to 29 are treated as 2000 + year */
1083 if (iYear >= 0 && iYear < 30)
1084 iYear += 2000;
1085 /* Remaining years < 100 are treated as 1900 + year */
1086 else if (iYear >= 30 && iYear < 100)
1087 iYear += 1900;
1088
1089 iMinute += iSecond / 60;
1090 iSecond = iSecond % 60;
1091 iHour += iMinute / 60;
1092 iMinute = iMinute % 60;
1093 iDay += iHour / 24;
1094 iHour = iHour % 24;
1095 iYear += iMonth / 12;
1096 iMonth = iMonth % 12;
1097 if (iMonth<=0) {iMonth+=12; iYear--;}
1098 while (iDay > days[iMonth])
1099 {
1100 if (iMonth == 2 && IsLeapYear(iYear))
1101 iDay -= 29;
1102 else
1103 iDay -= days[iMonth];
1104 iMonth++;
1105 iYear += iMonth / 12;
1106 iMonth = iMonth % 12;
1107 }
1108 while (iDay <= 0)
1109 {
1110 iMonth--;
1111 if (iMonth<=0) {iMonth+=12; iYear--;}
1112 if (iMonth == 2 && IsLeapYear(iYear))
1113 iDay += 29;
1114 else
1115 iDay += days[iMonth];
1116 }
1117
1118 if (iSecond<0){iSecond+=60; iMinute--;}
1119 if (iMinute<0){iMinute+=60; iHour--;}
1120 if (iHour<0) {iHour+=24; iDay--;}
1121 if (iYear<=0) iYear+=2000;
1122
1123 lpUd->st.wYear = iYear;
1124 lpUd->st.wMonth = iMonth;
1125 lpUd->st.wDay = iDay;
1126 lpUd->st.wHour = iHour;
1127 lpUd->st.wMinute = iMinute;
1128 lpUd->st.wSecond = iSecond;
1129
1130 TRACE("Rolled date: %d/%d/%d %d:%d:%d\n", lpUd->st.wDay, lpUd->st.wMonth,
1131 lpUd->st.wYear, lpUd->st.wHour, lpUd->st.wMinute, lpUd->st.wSecond);
1132 return S_OK;
1133 }
1134
1135 /**********************************************************************
1136 * DosDateTimeToVariantTime [OLEAUT32.14]
1137 *
1138 * Convert a Dos format date and time into variant VT_DATE format.
1139 *
1140 * PARAMS
1141 * wDosDate [I] Dos format date
1142 * wDosTime [I] Dos format time
1143 * pDateOut [O] Destination for VT_DATE format
1144 *
1145 * RETURNS
1146 * Success: TRUE. pDateOut contains the converted time.
1147 * Failure: FALSE, if wDosDate or wDosTime are invalid (see notes).
1148 *
1149 * NOTES
1150 * - Dos format dates can only hold dates from 1-Jan-1980 to 31-Dec-2099.
1151 * - Dos format times are accurate to only 2 second precision.
1152 * - The format of a Dos Date is:
1153 *| Bits Values Meaning
1154 *| ---- ------ -------
1155 *| 0-4 1-31 Day of the week. 0 rolls back one day. A value greater than
1156 *| the days in the month rolls forward the extra days.
1157 *| 5-8 1-12 Month of the year. 0 rolls back to December of the previous
1158 *| year. 13-15 are invalid.
1159 *| 9-15 0-119 Year based from 1980 (Max 2099). 120-127 are invalid.
1160 * - The format of a Dos Time is:
1161 *| Bits Values Meaning
1162 *| ---- ------ -------
1163 *| 0-4 0-29 Seconds/2. 30 and 31 are invalid.
1164 *| 5-10 0-59 Minutes. 60-63 are invalid.
1165 *| 11-15 0-23 Hours (24 hour clock). 24-32 are invalid.
1166 */
1167 INT WINAPI DosDateTimeToVariantTime(USHORT wDosDate, USHORT wDosTime,
1168 double *pDateOut)
1169 {
1170 UDATE ud;
1171
1172 TRACE("(0x%x(%d/%d/%d),0x%x(%d:%d:%d),%p)\n",
1173 wDosDate, DOS_YEAR(wDosDate), DOS_MONTH(wDosDate), DOS_DAY(wDosDate),
1174 wDosTime, DOS_HOUR(wDosTime), DOS_MINUTE(wDosTime), DOS_SECOND(wDosTime),
1175 pDateOut);
1176
1177 ud.st.wYear = DOS_YEAR(wDosDate);
1178 ud.st.wMonth = DOS_MONTH(wDosDate);
1179 if (ud.st.wYear > 2099 || ud.st.wMonth > 12)
1180 return FALSE;
1181 ud.st.wDay = DOS_DAY(wDosDate);
1182 ud.st.wHour = DOS_HOUR(wDosTime);
1183 ud.st.wMinute = DOS_MINUTE(wDosTime);
1184 ud.st.wSecond = DOS_SECOND(wDosTime);
1185 ud.st.wDayOfWeek = ud.st.wMilliseconds = 0;
1186 if (ud.st.wHour > 23 || ud.st.wMinute > 59 || ud.st.wSecond > 59)
1187 return FALSE; /* Invalid values in Dos*/
1188
1189 return VarDateFromUdate(&ud, 0, pDateOut) == S_OK;
1190 }
1191
1192 /**********************************************************************
1193 * VariantTimeToDosDateTime [OLEAUT32.13]
1194 *
1195 * Convert a variant format date into a Dos format date and time.
1196 *
1197 * dateIn [I] VT_DATE time format
1198 * pwDosDate [O] Destination for Dos format date
1199 * pwDosTime [O] Destination for Dos format time
1200 *
1201 * RETURNS
1202 * Success: TRUE. pwDosDate and pwDosTime contains the converted values.
1203 * Failure: FALSE, if dateIn cannot be represented in Dos format.
1204 *
1205 * NOTES
1206 * See DosDateTimeToVariantTime() for Dos format details and bugs.
1207 */
1208 INT WINAPI VariantTimeToDosDateTime(double dateIn, USHORT *pwDosDate, USHORT *pwDosTime)
1209 {
1210 UDATE ud;
1211
1212 TRACE("(%g,%p,%p)\n", dateIn, pwDosDate, pwDosTime);
1213
1214 if (FAILED(VarUdateFromDate(dateIn, 0, &ud)))
1215 return FALSE;
1216
1217 if (ud.st.wYear < 1980 || ud.st.wYear > 2099)
1218 return FALSE;
1219
1220 *pwDosDate = DOS_DATE(ud.st.wDay, ud.st.wMonth, ud.st.wYear);
1221 *pwDosTime = DOS_TIME(ud.st.wHour, ud.st.wMinute, ud.st.wSecond);
1222
1223 TRACE("Returning 0x%x(%d/%d/%d), 0x%x(%d:%d:%d)\n",
1224 *pwDosDate, DOS_YEAR(*pwDosDate), DOS_MONTH(*pwDosDate), DOS_DAY(*pwDosDate),
1225 *pwDosTime, DOS_HOUR(*pwDosTime), DOS_MINUTE(*pwDosTime), DOS_SECOND(*pwDosTime));
1226 return TRUE;
1227 }
1228
1229 /***********************************************************************
1230 * SystemTimeToVariantTime [OLEAUT32.184]
1231 *
1232 * Convert a System format date and time into variant VT_DATE format.
1233 *
1234 * PARAMS
1235 * lpSt [I] System format date and time
1236 * pDateOut [O] Destination for VT_DATE format date
1237 *
1238 * RETURNS
1239 * Success: TRUE. *pDateOut contains the converted value.
1240 * Failure: FALSE, if lpSt cannot be represented in VT_DATE format.
1241 */
1242 INT WINAPI SystemTimeToVariantTime(LPSYSTEMTIME lpSt, double *pDateOut)
1243 {
1244 UDATE ud;
1245
1246 TRACE("(%p->%d/%d/%d %d:%d:%d,%p)\n", lpSt, lpSt->wDay, lpSt->wMonth,
1247 lpSt->wYear, lpSt->wHour, lpSt->wMinute, lpSt->wSecond, pDateOut);
1248
1249 if (lpSt->wMonth > 12)
1250 return FALSE;
1251 if (lpSt->wDay > 31)
1252 return FALSE;
1253 if ((short)lpSt->wYear < 0)
1254 return FALSE;
1255
1256 ud.st = *lpSt;
1257 return VarDateFromUdate(&ud, 0, pDateOut) == S_OK;
1258 }
1259
1260 /***********************************************************************
1261 * VariantTimeToSystemTime [OLEAUT32.185]
1262 *
1263 * Convert a variant VT_DATE into a System format date and time.
1264 *
1265 * PARAMS
1266 * datein [I] Variant VT_DATE format date
1267 * lpSt [O] Destination for System format date and time
1268 *
1269 * RETURNS
1270 * Success: TRUE. *lpSt contains the converted value.
1271 * Failure: FALSE, if dateIn is too large or small.
1272 */
1273 INT WINAPI VariantTimeToSystemTime(double dateIn, LPSYSTEMTIME lpSt)
1274 {
1275 UDATE ud;
1276
1277 TRACE("(%g,%p)\n", dateIn, lpSt);
1278
1279 if (FAILED(VarUdateFromDate(dateIn, 0, &ud)))
1280 return FALSE;
1281
1282 *lpSt = ud.st;
1283 return TRUE;
1284 }
1285
1286 /***********************************************************************
1287 * VarDateFromUdateEx [OLEAUT32.319]
1288 *
1289 * Convert an unpacked format date and time to a variant VT_DATE.
1290 *
1291 * PARAMS
1292 * pUdateIn [I] Unpacked format date and time to convert
1293 * lcid [I] Locale identifier for the conversion
1294 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
1295 * pDateOut [O] Destination for variant VT_DATE.
1296 *
1297 * RETURNS
1298 * Success: S_OK. *pDateOut contains the converted value.
1299 * Failure: E_INVALIDARG, if pUdateIn cannot be represented in VT_DATE format.
1300 */
1301 HRESULT WINAPI VarDateFromUdateEx(UDATE *pUdateIn, LCID lcid, ULONG dwFlags, DATE *pDateOut)
1302 {
1303 UDATE ud;
1304 double dateVal = 0;
1305
1306 TRACE("(%p->%d/%d/%d %d:%d:%d:%d %d %d,0x%08x,0x%08x,%p)\n", pUdateIn,
1307 pUdateIn->st.wMonth, pUdateIn->st.wDay, pUdateIn->st.wYear,
1308 pUdateIn->st.wHour, pUdateIn->st.wMinute, pUdateIn->st.wSecond,
1309 pUdateIn->st.wMilliseconds, pUdateIn->st.wDayOfWeek,
1310 pUdateIn->wDayOfYear, lcid, dwFlags, pDateOut);
1311
1312 if (lcid != MAKELCID(MAKELANGID(LANG_ENGLISH, SUBLANG_ENGLISH_US), SORT_DEFAULT))
1313 FIXME("lcid possibly not handled, treating as en-us\n");
1314 if (dwFlags & ~(VAR_TIMEVALUEONLY|VAR_DATEVALUEONLY))
1315 FIXME("unsupported flags: %x\n", dwFlags);
1316
1317 ud = *pUdateIn;
1318
1319 if (dwFlags & VAR_VALIDDATE)
1320 WARN("Ignoring VAR_VALIDDATE\n");
1321
1322 if (FAILED(VARIANT_RollUdate(&ud)))
1323 return E_INVALIDARG;
1324
1325 /* Date */
1326 if (!(dwFlags & VAR_TIMEVALUEONLY))
1327 dateVal = VARIANT_DateFromJulian(VARIANT_JulianFromDMY(ud.st.wYear, ud.st.wMonth, ud.st.wDay));
1328
1329 if ((dwFlags & VAR_TIMEVALUEONLY) || !(dwFlags & VAR_DATEVALUEONLY))
1330 {
1331 double dateSign = (dateVal < 0.0) ? -1.0 : 1.0;
1332
1333 /* Time */
1334 dateVal += ud.st.wHour / 24.0 * dateSign;
1335 dateVal += ud.st.wMinute / 1440.0 * dateSign;
1336 dateVal += ud.st.wSecond / 86400.0 * dateSign;
1337 }
1338
1339 TRACE("Returning %g\n", dateVal);
1340 *pDateOut = dateVal;
1341 return S_OK;
1342 }
1343
1344 /***********************************************************************
1345 * VarDateFromUdate [OLEAUT32.330]
1346 *
1347 * Convert an unpacked format date and time to a variant VT_DATE.
1348 *
1349 * PARAMS
1350 * pUdateIn [I] Unpacked format date and time to convert
1351 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
1352 * pDateOut [O] Destination for variant VT_DATE.
1353 *
1354 * RETURNS
1355 * Success: S_OK. *pDateOut contains the converted value.
1356 * Failure: E_INVALIDARG, if pUdateIn cannot be represented in VT_DATE format.
1357 *
1358 * NOTES
1359 * This function uses the United States English locale for the conversion. Use
1360 * VarDateFromUdateEx() for alternate locales.
1361 */
1362 HRESULT WINAPI VarDateFromUdate(UDATE *pUdateIn, ULONG dwFlags, DATE *pDateOut)
1363 {
1364 LCID lcid = MAKELCID(MAKELANGID(LANG_ENGLISH, SUBLANG_ENGLISH_US), SORT_DEFAULT);
1365
1366 return VarDateFromUdateEx(pUdateIn, lcid, dwFlags, pDateOut);
1367 }
1368
1369 /***********************************************************************
1370 * VarUdateFromDate [OLEAUT32.331]
1371 *
1372 * Convert a variant VT_DATE into an unpacked format date and time.
1373 *
1374 * PARAMS
1375 * datein [I] Variant VT_DATE format date
1376 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
1377 * lpUdate [O] Destination for unpacked format date and time
1378 *
1379 * RETURNS
1380 * Success: S_OK. *lpUdate contains the converted value.
1381 * Failure: E_INVALIDARG, if dateIn is too large or small.
1382 */
1383 HRESULT WINAPI VarUdateFromDate(DATE dateIn, ULONG dwFlags, UDATE *lpUdate)
1384 {
1385 /* Cumulative totals of days per month */
1386 static const USHORT cumulativeDays[] =
1387 {
1388 0, 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334
1389 };
1390 double datePart, timePart;
1391 int julianDays;
1392
1393 TRACE("(%g,0x%08x,%p)\n", dateIn, dwFlags, lpUdate);
1394
1395 if (dateIn <= (DATE_MIN - 1.0) || dateIn >= (DATE_MAX + 1.0))
1396 return E_INVALIDARG;
1397
1398 datePart = dateIn < 0.0 ? ceil(dateIn) : floor(dateIn);
1399 /* Compensate for int truncation (always downwards) */
1400 timePart = fabs(dateIn - datePart) + 0.00000000001;
1401 if (timePart >= 1.0)
1402 timePart -= 0.00000000001;
1403
1404 /* Date */
1405 julianDays = VARIANT_JulianFromDate(dateIn);
1406 VARIANT_DMYFromJulian(julianDays, &lpUdate->st.wYear, &lpUdate->st.wMonth,
1407 &lpUdate->st.wDay);
1408
1409 datePart = (datePart + 1.5) / 7.0;
1410 lpUdate->st.wDayOfWeek = (datePart - floor(datePart)) * 7;
1411 if (lpUdate->st.wDayOfWeek == 0)
1412 lpUdate->st.wDayOfWeek = 5;
1413 else if (lpUdate->st.wDayOfWeek == 1)
1414 lpUdate->st.wDayOfWeek = 6;
1415 else
1416 lpUdate->st.wDayOfWeek -= 2;
1417
1418 if (lpUdate->st.wMonth > 2 && IsLeapYear(lpUdate->st.wYear))
1419 lpUdate->wDayOfYear = 1; /* After February, in a leap year */
1420 else
1421 lpUdate->wDayOfYear = 0;
1422
1423 lpUdate->wDayOfYear += cumulativeDays[lpUdate->st.wMonth];
1424 lpUdate->wDayOfYear += lpUdate->st.wDay;
1425
1426 /* Time */
1427 timePart *= 24.0;
1428 lpUdate->st.wHour = timePart;
1429 timePart -= lpUdate->st.wHour;
1430 timePart *= 60.0;
1431 lpUdate->st.wMinute = timePart;
1432 timePart -= lpUdate->st.wMinute;
1433 timePart *= 60.0;
1434 lpUdate->st.wSecond = timePart;
1435 timePart -= lpUdate->st.wSecond;
1436 lpUdate->st.wMilliseconds = 0;
1437 if (timePart > 0.5)
1438 {
1439 /* Round the milliseconds, adjusting the time/date forward if needed */
1440 if (lpUdate->st.wSecond < 59)
1441 lpUdate->st.wSecond++;
1442 else
1443 {
1444 lpUdate->st.wSecond = 0;
1445 if (lpUdate->st.wMinute < 59)
1446 lpUdate->st.wMinute++;
1447 else
1448 {
1449 lpUdate->st.wMinute = 0;
1450 if (lpUdate->st.wHour < 23)
1451 lpUdate->st.wHour++;
1452 else
1453 {
1454 lpUdate->st.wHour = 0;
1455 /* Roll over a whole day */
1456 if (++lpUdate->st.wDay > 28)
1457 VARIANT_RollUdate(lpUdate);
1458 }
1459 }
1460 }
1461 }
1462 return S_OK;
1463 }
1464
1465 #define GET_NUMBER_TEXT(fld,name) \
1466 buff[0] = 0; \
1467 if (!GetLocaleInfoW(lcid, lctype|fld, buff, 2)) \
1468 WARN("buffer too small for " #fld "\n"); \
1469 else \
1470 if (buff[0]) lpChars->name = buff[0]; \
1471 TRACE("lcid 0x%x, " #name "=%d '%c'\n", lcid, lpChars->name, lpChars->name)
1472
1473 /* Get the valid number characters for an lcid */
1474 static void VARIANT_GetLocalisedNumberChars(VARIANT_NUMBER_CHARS *lpChars, LCID lcid, DWORD dwFlags)
1475 {
1476 static const VARIANT_NUMBER_CHARS defaultChars = { '-','+','.',',','$',0,'.',',' };
1477 static CRITICAL_SECTION csLastChars = { NULL, -1, 0, 0, 0, 0 };
1478 static VARIANT_NUMBER_CHARS lastChars;
1479 static LCID lastLcid = -1;
1480 static DWORD lastFlags = 0;
1481 LCTYPE lctype = dwFlags & LOCALE_NOUSEROVERRIDE;
1482 WCHAR buff[4];
1483
1484 /* To make caching thread-safe, a critical section is needed */
1485 EnterCriticalSection(&csLastChars);
1486
1487 /* Asking for default locale entries is very expensive: It is a registry
1488 server call. So cache one locally, as Microsoft does it too */
1489 if(lcid == lastLcid && dwFlags == lastFlags)
1490 {
1491 memcpy(lpChars, &lastChars, sizeof(defaultChars));
1492 LeaveCriticalSection(&csLastChars);
1493 return;
1494 }
1495
1496 memcpy(lpChars, &defaultChars, sizeof(defaultChars));
1497 GET_NUMBER_TEXT(LOCALE_SNEGATIVESIGN, cNegativeSymbol);
1498 GET_NUMBER_TEXT(LOCALE_SPOSITIVESIGN, cPositiveSymbol);
1499 GET_NUMBER_TEXT(LOCALE_SDECIMAL, cDecimalPoint);
1500 GET_NUMBER_TEXT(LOCALE_STHOUSAND, cDigitSeparator);
1501 GET_NUMBER_TEXT(LOCALE_SMONDECIMALSEP, cCurrencyDecimalPoint);
1502 GET_NUMBER_TEXT(LOCALE_SMONTHOUSANDSEP, cCurrencyDigitSeparator);
1503
1504 /* Local currency symbols are often 2 characters */
1505 lpChars->cCurrencyLocal2 = '\0';
1506 switch(GetLocaleInfoW(lcid, lctype|LOCALE_SCURRENCY, buff, sizeof(buff)/sizeof(WCHAR)))
1507 {
1508 case 3: lpChars->cCurrencyLocal2 = buff[1]; /* Fall through */
1509 case 2: lpChars->cCurrencyLocal = buff[0];
1510 break;
1511 default: WARN("buffer too small for LOCALE_SCURRENCY\n");
1512 }
1513 TRACE("lcid 0x%x, cCurrencyLocal =%d,%d '%c','%c'\n", lcid, lpChars->cCurrencyLocal,
1514 lpChars->cCurrencyLocal2, lpChars->cCurrencyLocal, lpChars->cCurrencyLocal2);
1515
1516 memcpy(&lastChars, lpChars, sizeof(defaultChars));
1517 lastLcid = lcid;
1518 lastFlags = dwFlags;
1519 LeaveCriticalSection(&csLastChars);
1520 }
1521
1522 /* Number Parsing States */
1523 #define B_PROCESSING_EXPONENT 0x1
1524 #define B_NEGATIVE_EXPONENT 0x2
1525 #define B_EXPONENT_START 0x4
1526 #define B_INEXACT_ZEROS 0x8
1527 #define B_LEADING_ZERO 0x10
1528 #define B_PROCESSING_HEX 0x20
1529 #define B_PROCESSING_OCT 0x40
1530
1531 /**********************************************************************
1532 * VarParseNumFromStr [OLEAUT32.46]
1533 *
1534 * Parse a string containing a number into a NUMPARSE structure.
1535 *
1536 * PARAMS
1537 * lpszStr [I] String to parse number from
1538 * lcid [I] Locale Id for the conversion
1539 * dwFlags [I] 0, or LOCALE_NOUSEROVERRIDE to use system default number chars
1540 * pNumprs [I/O] Destination for parsed number
1541 * rgbDig [O] Destination for digits read in
1542 *
1543 * RETURNS
1544 * Success: S_OK. pNumprs and rgbDig contain the parsed representation of
1545 * the number.
1546 * Failure: E_INVALIDARG, if any parameter is invalid.
1547 * DISP_E_TYPEMISMATCH, if the string is not a number or is formatted
1548 * incorrectly.
1549 * DISP_E_OVERFLOW, if rgbDig is too small to hold the number.
1550 *
1551 * NOTES
1552 * pNumprs must have the following fields set:
1553 * cDig: Set to the size of rgbDig.
1554 * dwInFlags: Set to the allowable syntax of the number using NUMPRS_ flags
1555 * from "oleauto.h".
1556 *
1557 * FIXME
1558 * - I am unsure if this function should parse non-Arabic (e.g. Thai)
1559 * numerals, so this has not been implemented.
1560 */
1561 HRESULT WINAPI VarParseNumFromStr(OLECHAR *lpszStr, LCID lcid, ULONG dwFlags,
1562 NUMPARSE *pNumprs, BYTE *rgbDig)
1563 {
1564 VARIANT_NUMBER_CHARS chars;
1565 BYTE rgbTmp[1024];
1566 DWORD dwState = B_EXPONENT_START|B_INEXACT_ZEROS;
1567 int iMaxDigits = sizeof(rgbTmp) / sizeof(BYTE);
1568 int cchUsed = 0;
1569
1570 TRACE("(%s,%d,0x%08x,%p,%p)\n", debugstr_w(lpszStr), lcid, dwFlags, pNumprs, rgbDig);
1571
1572 if (!pNumprs || !rgbDig)
1573 return E_INVALIDARG;
1574
1575 if (pNumprs->cDig < iMaxDigits)
1576 iMaxDigits = pNumprs->cDig;
1577
1578 pNumprs->cDig = 0;
1579 pNumprs->dwOutFlags = 0;
1580 pNumprs->cchUsed = 0;
1581 pNumprs->nBaseShift = 0;
1582 pNumprs->nPwr10 = 0;
1583
1584 if (!lpszStr)
1585 return DISP_E_TYPEMISMATCH;
1586
1587 VARIANT_GetLocalisedNumberChars(&chars, lcid, dwFlags);
1588
1589 /* First consume all the leading symbols and space from the string */
1590 while (1)
1591 {
1592 if (pNumprs->dwInFlags & NUMPRS_LEADING_WHITE && isspaceW(*lpszStr))
1593 {
1594 pNumprs->dwOutFlags |= NUMPRS_LEADING_WHITE;
1595 do
1596 {
1597 cchUsed++;
1598 lpszStr++;
1599 } while (isspaceW(*lpszStr));
1600 }
1601 else if (pNumprs->dwInFlags & NUMPRS_LEADING_PLUS &&
1602 *lpszStr == chars.cPositiveSymbol &&
1603 !(pNumprs->dwOutFlags & NUMPRS_LEADING_PLUS))
1604 {
1605 pNumprs->dwOutFlags |= NUMPRS_LEADING_PLUS;
1606 cchUsed++;
1607 lpszStr++;
1608 }
1609 else if (pNumprs->dwInFlags & NUMPRS_LEADING_MINUS &&
1610 *lpszStr == chars.cNegativeSymbol &&
1611 !(pNumprs->dwOutFlags & NUMPRS_LEADING_MINUS))
1612 {
1613 pNumprs->dwOutFlags |= (NUMPRS_LEADING_MINUS|NUMPRS_NEG);
1614 cchUsed++;
1615 lpszStr++;
1616 }
1617 else if (pNumprs->dwInFlags & NUMPRS_CURRENCY &&
1618 !(pNumprs->dwOutFlags & NUMPRS_CURRENCY) &&
1619 *lpszStr == chars.cCurrencyLocal &&
1620 (!chars.cCurrencyLocal2 || lpszStr[1] == chars.cCurrencyLocal2))
1621 {
1622 pNumprs->dwOutFlags |= NUMPRS_CURRENCY;
1623 cchUsed++;
1624 lpszStr++;
1625 /* Only accept currency characters */
1626 chars.cDecimalPoint = chars.cCurrencyDecimalPoint;
1627 chars.cDigitSeparator = chars.cCurrencyDigitSeparator;
1628 }
1629 else if (pNumprs->dwInFlags & NUMPRS_PARENS && *lpszStr == '(' &&
1630 !(pNumprs->dwOutFlags & NUMPRS_PARENS))
1631 {
1632 pNumprs->dwOutFlags |= NUMPRS_PARENS;
1633 cchUsed++;
1634 lpszStr++;
1635 }
1636 else
1637 break;
1638 }
1639
1640 if (!(pNumprs->dwOutFlags & NUMPRS_CURRENCY))
1641 {
1642 /* Only accept non-currency characters */
1643 chars.cCurrencyDecimalPoint = chars.cDecimalPoint;
1644 chars.cCurrencyDigitSeparator = chars.cDigitSeparator;
1645 }
1646
1647 if ((*lpszStr == '&' && (*(lpszStr+1) == 'H' || *(lpszStr+1) == 'h')) &&
1648 pNumprs->dwInFlags & NUMPRS_HEX_OCT)
1649 {
1650 dwState |= B_PROCESSING_HEX;
1651 pNumprs->dwOutFlags |= NUMPRS_HEX_OCT;
1652 cchUsed=cchUsed+2;
1653 lpszStr=lpszStr+2;
1654 }
1655 else if ((*lpszStr == '&' && (*(lpszStr+1) == 'O' || *(lpszStr+1) == 'o')) &&
1656 pNumprs->dwInFlags & NUMPRS_HEX_OCT)
1657 {
1658 dwState |= B_PROCESSING_OCT;
1659 pNumprs->dwOutFlags |= NUMPRS_HEX_OCT;
1660 cchUsed=cchUsed+2;
1661 lpszStr=lpszStr+2;
1662 }
1663
1664 /* Strip Leading zeros */
1665 while (*lpszStr == '0')
1666 {
1667 dwState |= B_LEADING_ZERO;
1668 cchUsed++;
1669 lpszStr++;
1670 }
1671
1672 while (*lpszStr)
1673 {
1674 if (isdigitW(*lpszStr))
1675 {
1676 if (dwState & B_PROCESSING_EXPONENT)
1677 {
1678 int exponentSize = 0;
1679 if (dwState & B_EXPONENT_START)
1680 {
1681 if (!isdigitW(*lpszStr))
1682 break; /* No exponent digits - invalid */
1683 while (*lpszStr == '0')
1684 {
1685 /* Skip leading zero's in the exponent */
1686 cchUsed++;
1687 lpszStr++;
1688 }
1689 }
1690
1691 while (isdigitW(*lpszStr))
1692 {
1693 exponentSize *= 10;
1694 exponentSize += *lpszStr - '0';
1695 cchUsed++;
1696 lpszStr++;
1697 }
1698 if (dwState & B_NEGATIVE_EXPONENT)
1699 exponentSize = -exponentSize;
1700 /* Add the exponent into the powers of 10 */
1701 pNumprs->nPwr10 += exponentSize;
1702 dwState &= ~(B_PROCESSING_EXPONENT|B_EXPONENT_START);
1703 lpszStr--; /* back up to allow processing of next char */
1704 }
1705 else
1706 {
1707 if ((pNumprs->cDig >= iMaxDigits) && !(dwState & B_PROCESSING_HEX)
1708 && !(dwState & B_PROCESSING_OCT))
1709 {
1710 pNumprs->dwOutFlags |= NUMPRS_INEXACT;
1711
1712 if (*lpszStr != '0')
1713 dwState &= ~B_INEXACT_ZEROS; /* Inexact number with non-trailing zeros */
1714
1715 /* This digit can't be represented, but count it in nPwr10 */
1716 if (pNumprs->dwOutFlags & NUMPRS_DECIMAL)
1717 pNumprs->nPwr10--;
1718 else
1719 pNumprs->nPwr10++;
1720 }
1721 else
1722 {
1723 if ((dwState & B_PROCESSING_OCT) && ((*lpszStr == '8') || (*lpszStr == '9')))
1724 break;
1725
1726 if (pNumprs->dwOutFlags & NUMPRS_DECIMAL)
1727 pNumprs->nPwr10--; /* Count decimal points in nPwr10 */
1728
1729 rgbTmp[pNumprs->cDig] = *lpszStr - '0';
1730 }
1731 pNumprs->cDig++;
1732 cchUsed++;
1733 }
1734 }
1735 else if (*lpszStr == chars.cDigitSeparator && pNumprs->dwInFlags & NUMPRS_THOUSANDS)
1736 {
1737 pNumprs->dwOutFlags |= NUMPRS_THOUSANDS;
1738 cchUsed++;
1739 }
1740 else if (*lpszStr == chars.cDecimalPoint &&
1741 pNumprs->dwInFlags & NUMPRS_DECIMAL &&
1742 !(pNumprs->dwOutFlags & (NUMPRS_DECIMAL|NUMPRS_EXPONENT)))
1743 {
1744 pNumprs->dwOutFlags |= NUMPRS_DECIMAL;
1745 cchUsed++;
1746
1747 /* If we have no digits so far, skip leading zeros */
1748 if (!pNumprs->cDig)
1749 {
1750 while (lpszStr[1] == '0')
1751 {
1752 dwState |= B_LEADING_ZERO;
1753 cchUsed++;
1754 lpszStr++;
1755 pNumprs->nPwr10--;
1756 }
1757 }
1758 }
1759 else if (((*lpszStr >= 'a' && *lpszStr <= 'f') ||
1760 (*lpszStr >= 'A' && *lpszStr <= 'F')) &&
1761 dwState & B_PROCESSING_HEX)
1762 {
1763 if (pNumprs->cDig >= iMaxDigits)
1764 {
1765 return DISP_E_OVERFLOW;
1766 }
1767 else
1768 {
1769 if (*lpszStr >= 'a')
1770 rgbTmp[pNumprs->cDig] = *lpszStr - 'a' + 10;
1771 else
1772 rgbTmp[pNumprs->cDig] = *lpszStr - 'A' + 10;
1773 }
1774 pNumprs->cDig++;
1775 cchUsed++;
1776 }
1777 else if ((*lpszStr == 'e' || *lpszStr == 'E') &&
1778 pNumprs->dwInFlags & NUMPRS_EXPONENT &&
1779 !(pNumprs->dwOutFlags & NUMPRS_EXPONENT))
1780 {
1781 dwState |= B_PROCESSING_EXPONENT;
1782 pNumprs->dwOutFlags |= NUMPRS_EXPONENT;
1783 cchUsed++;
1784 }
1785 else if (dwState & B_PROCESSING_EXPONENT && *lpszStr == chars.cPositiveSymbol)
1786 {
1787 cchUsed++; /* Ignore positive exponent */
1788 }
1789 else if (dwState & B_PROCESSING_EXPONENT && *lpszStr == chars.cNegativeSymbol)
1790 {
1791 dwState |= B_NEGATIVE_EXPONENT;
1792 cchUsed++;
1793 }
1794 else
1795 break; /* Stop at an unrecognised character */
1796
1797 lpszStr++;
1798 }
1799
1800 if (!pNumprs->cDig && dwState & B_LEADING_ZERO)
1801 {
1802 /* Ensure a 0 on its own gets stored */
1803 pNumprs->cDig = 1;
1804 rgbTmp[0] = 0;
1805 }
1806
1807 if (pNumprs->dwOutFlags & NUMPRS_EXPONENT && dwState & B_PROCESSING_EXPONENT)
1808 {
1809 pNumprs->cchUsed = cchUsed;
1810 WARN("didn't completely parse exponent\n");
1811 return DISP_E_TYPEMISMATCH; /* Failed to completely parse the exponent */
1812 }
1813
1814 if (pNumprs->dwOutFlags & NUMPRS_INEXACT)
1815 {
1816 if (dwState & B_INEXACT_ZEROS)
1817 pNumprs->dwOutFlags &= ~NUMPRS_INEXACT; /* All zeros doesn't set NUMPRS_INEXACT */
1818 } else if(pNumprs->dwInFlags & NUMPRS_HEX_OCT)
1819 {
1820 /* copy all of the digits into the output digit buffer */
1821 /* this is exactly what windows does although it also returns */
1822 /* cDig of X and writes X+Y where Y>=0 number of digits to rgbDig */
1823 memcpy(rgbDig, rgbTmp, pNumprs->cDig * sizeof(BYTE));
1824
1825 if (dwState & B_PROCESSING_HEX) {
1826 /* hex numbers have always the same format */
1827 pNumprs->nPwr10=0;
1828 pNumprs->nBaseShift=4;
1829 } else {
1830 if (dwState & B_PROCESSING_OCT) {
1831 /* oct numbers have always the same format */
1832 pNumprs->nPwr10=0;
1833 pNumprs->nBaseShift=3;
1834 } else {
1835 while (pNumprs->cDig > 1 && !rgbTmp[pNumprs->cDig - 1])
1836 {
1837 pNumprs->nPwr10++;
1838 pNumprs->cDig--;
1839 }
1840 }
1841 }
1842 } else
1843 {
1844 /* Remove trailing zeros from the last (whole number or decimal) part */
1845 while (pNumprs->cDig > 1 && !rgbTmp[pNumprs->cDig - 1])
1846 {
1847 pNumprs->nPwr10++;
1848 pNumprs->cDig--;
1849 }
1850 }
1851
1852 if (pNumprs->cDig <= iMaxDigits)
1853 pNumprs->dwOutFlags &= ~NUMPRS_INEXACT; /* Ignore stripped zeros for NUMPRS_INEXACT */
1854 else
1855 pNumprs->cDig = iMaxDigits; /* Only return iMaxDigits worth of digits */
1856
1857 /* Copy the digits we processed into rgbDig */
1858 memcpy(rgbDig, rgbTmp, pNumprs->cDig * sizeof(BYTE));
1859
1860 /* Consume any trailing symbols and space */
1861 while (1)
1862 {
1863 if ((pNumprs->dwInFlags & NUMPRS_TRAILING_WHITE) && isspaceW(*lpszStr))
1864 {
1865 pNumprs->dwOutFlags |= NUMPRS_TRAILING_WHITE;
1866 do
1867 {
1868 cchUsed++;
1869 lpszStr++;
1870 } while (isspaceW(*lpszStr));
1871 }
1872 else if (pNumprs->dwInFlags & NUMPRS_TRAILING_PLUS &&
1873 !(pNumprs->dwOutFlags & NUMPRS_LEADING_PLUS) &&
1874 *lpszStr == chars.cPositiveSymbol)
1875 {
1876 pNumprs->dwOutFlags |= NUMPRS_TRAILING_PLUS;
1877 cchUsed++;
1878 lpszStr++;
1879 }
1880 else if (pNumprs->dwInFlags & NUMPRS_TRAILING_MINUS &&
1881 !(pNumprs->dwOutFlags & NUMPRS_LEADING_MINUS) &&
1882 *lpszStr == chars.cNegativeSymbol)
1883 {
1884 pNumprs->dwOutFlags |= (NUMPRS_TRAILING_MINUS|NUMPRS_NEG);
1885 cchUsed++;
1886 lpszStr++;
1887 }
1888 else if (pNumprs->dwInFlags & NUMPRS_PARENS && *lpszStr == ')' &&
1889 pNumprs->dwOutFlags & NUMPRS_PARENS)
1890 {
1891 cchUsed++;
1892 lpszStr++;
1893 pNumprs->dwOutFlags |= NUMPRS_NEG;
1894 }
1895 else
1896 break;
1897 }
1898
1899 if (pNumprs->dwOutFlags & NUMPRS_PARENS && !(pNumprs->dwOutFlags & NUMPRS_NEG))
1900 {
1901 pNumprs->cchUsed = cchUsed;
1902 return DISP_E_TYPEMISMATCH; /* Opening parenthesis not matched */
1903 }
1904
1905 if (pNumprs->dwInFlags & NUMPRS_USE_ALL && *lpszStr != '\0')
1906 return DISP_E_TYPEMISMATCH; /* Not all chars were consumed */
1907
1908 if (!pNumprs->cDig)
1909 return DISP_E_TYPEMISMATCH; /* No Number found */
1910
1911 pNumprs->cchUsed = cchUsed;
1912 return S_OK;
1913 }
1914
1915 /* VTBIT flags indicating an integer value */
1916 #define INTEGER_VTBITS (VTBIT_I1|VTBIT_UI1|VTBIT_I2|VTBIT_UI2|VTBIT_I4|VTBIT_UI4|VTBIT_I8|VTBIT_UI8)
1917 /* VTBIT flags indicating a real number value */
1918 #define REAL_VTBITS (VTBIT_R4|VTBIT_R8|VTBIT_CY)
1919
1920 /* Helper macros to check whether bit pattern fits in VARIANT (x is a ULONG64 ) */
1921 #define FITS_AS_I1(x) ((x) >> 8 == 0)
1922 #define FITS_AS_I2(x) ((x) >> 16 == 0)
1923 #define FITS_AS_I4(x) ((x) >> 32 == 0)
1924
1925 /**********************************************************************
1926 * VarNumFromParseNum [OLEAUT32.47]
1927 *
1928 * Convert a NUMPARSE structure into a numeric Variant type.
1929 *
1930 * PARAMS
1931 * pNumprs [I] Source for parsed number. cDig must be set to the size of rgbDig
1932 * rgbDig [I] Source for the numbers digits
1933 * dwVtBits [I] VTBIT_ flags from "oleauto.h" indicating the acceptable dest types
1934 * pVarDst [O] Destination for the converted Variant value.
1935 *
1936 * RETURNS
1937 * Success: S_OK. pVarDst contains the converted value.
1938 * Failure: E_INVALIDARG, if any parameter is invalid.
1939 * DISP_E_OVERFLOW, if the number is too big for the types set in dwVtBits.
1940 *
1941 * NOTES
1942 * - The smallest favoured type present in dwVtBits that can represent the
1943 * number in pNumprs without losing precision is used.
1944 * - Signed types are preferred over unsigned types of the same size.
1945 * - Preferred types in order are: integer, float, double, currency then decimal.
1946 * - Rounding (dropping of decimal points) occurs without error. See VarI8FromR8()
1947 * for details of the rounding method.
1948 * - pVarDst is not cleared before the result is stored in it.
1949 * - WinXP and Win2003 support VTBIT_I8, VTBIT_UI8 but that's buggy (by
1950 * design?): If some other VTBIT's for integers are specified together
1951 * with VTBIT_I8 and the number will fit only in a VT_I8 Windows will "cast"
1952 * the number to the smallest requested integer truncating this way the
1953 * number. Wine doesn't implement this "feature" (yet?).
1954 */
1955 HRESULT WINAPI VarNumFromParseNum(NUMPARSE *pNumprs, BYTE *rgbDig,
1956 ULONG dwVtBits, VARIANT *pVarDst)
1957 {
1958 /* Scale factors and limits for double arithmetic */
1959 static const double dblMultipliers[11] = {
1960 1.0, 10.0, 100.0, 1000.0, 10000.0, 100000.0,
1961 1000000.0, 10000000.0, 100000000.0, 1000000000.0, 10000000000.0
1962 };
1963 static const double dblMinimums[11] = {
1964 R8_MIN, R8_MIN*10.0, R8_MIN*100.0, R8_MIN*1000.0, R8_MIN*10000.0,
1965 R8_MIN*100000.0, R8_MIN*1000000.0, R8_MIN*10000000.0,
1966 R8_MIN*100000000.0, R8_MIN*1000000000.0, R8_MIN*10000000000.0
1967 };
1968 static const double dblMaximums[11] = {
1969 R8_MAX, R8_MAX/10.0, R8_MAX/100.0, R8_MAX/1000.0, R8_MAX/10000.0,
1970 R8_MAX/100000.0, R8_MAX/1000000.0, R8_MAX/10000000.0,
1971 R8_MAX/100000000.0, R8_MAX/1000000000.0, R8_MAX/10000000000.0
1972 };
1973
1974 int wholeNumberDigits, fractionalDigits, divisor10 = 0, multiplier10 = 0;
1975
1976 TRACE("(%p,%p,0x%x,%p)\n", pNumprs, rgbDig, dwVtBits, pVarDst);
1977
1978 if (pNumprs->nBaseShift)
1979 {
1980 /* nBaseShift indicates a hex or octal number */
1981 ULONG64 ul64 = 0;
1982 LONG64 l64;
1983 int i;
1984
1985 /* Convert the hex or octal number string into a UI64 */
1986 for (i = 0; i < pNumprs->cDig; i++)
1987 {
1988 if (ul64 > ((UI8_MAX>>pNumprs->nBaseShift) - rgbDig[i]))
1989 {
1990 TRACE("Overflow multiplying digits\n");
1991 return DISP_E_OVERFLOW;
1992 }
1993 ul64 = (ul64<<pNumprs->nBaseShift) + rgbDig[i];
1994 }
1995
1996 /* also make a negative representation */
1997 l64=-ul64;
1998
1999 /* Try signed and unsigned types in size order */
2000 if (dwVtBits & VTBIT_I1 && FITS_AS_I1(ul64))
2001 {
2002 V_VT(pVarDst) = VT_I1;
2003 V_I1(pVarDst) = ul64;
2004 return S_OK;
2005 }
2006 else if (dwVtBits & VTBIT_UI1 && FITS_AS_I1(ul64))
2007 {
2008 V_VT(pVarDst) = VT_UI1;
2009 V_UI1(pVarDst) = ul64;
2010 return S_OK;
2011 }
2012 else if (dwVtBits & VTBIT_I2 && FITS_AS_I2(ul64))
2013 {
2014 V_VT(pVarDst) = VT_I2;
2015 V_I2(pVarDst) = ul64;
2016 return S_OK;
2017 }
2018 else if (dwVtBits & VTBIT_UI2 && FITS_AS_I2(ul64))
2019 {
2020 V_VT(pVarDst) = VT_UI2;
2021 V_UI2(pVarDst) = ul64;
2022 return S_OK;
2023 }
2024 else if (dwVtBits & VTBIT_I4 && FITS_AS_I4(ul64))
2025 {
2026 V_VT(pVarDst) = VT_I4;
2027 V_I4(pVarDst) = ul64;
2028 return S_OK;
2029 }
2030 else if (dwVtBits & VTBIT_UI4 && FITS_AS_I4(ul64))
2031 {
2032 V_VT(pVarDst) = VT_UI4;
2033 V_UI4(pVarDst) = ul64;
2034 return S_OK;
2035 }
2036 else if (dwVtBits & VTBIT_I8 && ((ul64 <= I8_MAX)||(l64>=I8_MIN)))
2037 {
2038 V_VT(pVarDst) = VT_I8;
2039 V_I8(pVarDst) = ul64;
2040 return S_OK;
2041 }
2042 else if (dwVtBits & VTBIT_UI8)
2043 {
2044 V_VT(pVarDst) = VT_UI8;
2045 V_UI8(pVarDst) = ul64;
2046 return S_OK;
2047 }
2048 else if ((dwVtBits & VTBIT_DECIMAL) == VTBIT_DECIMAL)
2049 {
2050 V_VT(pVarDst) = VT_DECIMAL;
2051 DEC_SIGNSCALE(&V_DECIMAL(pVarDst)) = SIGNSCALE(DECIMAL_POS,0);
2052 DEC_HI32(&V_DECIMAL(pVarDst)) = 0;
2053 DEC_LO64(&V_DECIMAL(pVarDst)) = ul64;
2054 return S_OK;
2055 }
2056 else if (dwVtBits & VTBIT_R4 && ((ul64 <= I4_MAX)||(l64 >= I4_MIN)))
2057 {
2058 V_VT(pVarDst) = VT_R4;
2059 if (ul64 <= I4_MAX)
2060 V_R4(pVarDst) = ul64;
2061 else
2062 V_R4(pVarDst) = l64;
2063 return S_OK;
2064 }
2065 else if (dwVtBits & VTBIT_R8 && ((ul64 <= I4_MAX)||(l64 >= I4_MIN)))
2066 {
2067 V_VT(pVarDst) = VT_R8;
2068 if (ul64 <= I4_MAX)
2069 V_R8(pVarDst) = ul64;
2070 else
2071 V_R8(pVarDst) = l64;
2072 return S_OK;
2073 }
2074
2075 TRACE("Overflow: possible return types: 0x%x, value: %s\n", dwVtBits, wine_dbgstr_longlong(ul64));
2076 return DISP_E_OVERFLOW;
2077 }
2078
2079 /* Count the number of relevant fractional and whole digits stored,
2080 * And compute the divisor/multiplier to scale the number by.
2081 */
2082 if (pNumprs->nPwr10 < 0)
2083 {
2084 if (-pNumprs->nPwr10 >= pNumprs->cDig)
2085 {
2086 /* A real number < +/- 1.0 e.g. 0.1024 or 0.01024 */
2087 wholeNumberDigits = 0;
2088 fractionalDigits = pNumprs->cDig;
2089 divisor10 = -pNumprs->nPwr10;
2090 }
2091 else
2092 {
2093 /* An exactly represented real number e.g. 1.024 */
2094 wholeNumberDigits = pNumprs->cDig + pNumprs->nPwr10;
2095 fractionalDigits = pNumprs->cDig - wholeNumberDigits;
2096 divisor10 = pNumprs->cDig - wholeNumberDigits;
2097 }
2098 }
2099 else if (pNumprs->nPwr10 == 0)
2100 {
2101 /* An exactly represented whole number e.g. 1024 */
2102 wholeNumberDigits = pNumprs->cDig;
2103 fractionalDigits = 0;
2104 }
2105 else /* pNumprs->nPwr10 > 0 */
2106 {
2107 /* A whole number followed by nPwr10 0's e.g. 102400 */
2108 wholeNumberDigits = pNumprs->cDig;
2109 fractionalDigits = 0;
2110 multiplier10 = pNumprs->nPwr10;
2111 }
2112
2113 TRACE("cDig %d; nPwr10 %d, whole %d, frac %d mult %d; div %d\n",
2114 pNumprs->cDig, pNumprs->nPwr10, wholeNumberDigits, fractionalDigits,
2115 multiplier10, divisor10);
2116
2117 if (dwVtBits & (INTEGER_VTBITS|VTBIT_DECIMAL) &&
2118 (!fractionalDigits || !(dwVtBits & (REAL_VTBITS|VTBIT_CY|VTBIT_DECIMAL))))
2119 {
2120 /* We have one or more integer output choices, and either:
2121 * 1) An integer input value, or
2122 * 2) A real number input value but no floating output choices.
2123 * Alternately, we have a DECIMAL output available and an integer input.
2124 *
2125 * So, place the integer value into pVarDst, using the smallest type
2126 * possible and preferring signed over unsigned types.
2127 */
2128 BOOL bOverflow = FALSE, bNegative;
2129 ULONG64 ul64 = 0;
2130 int i;
2131
2132 /* Convert the integer part of the number into a UI8 */
2133 for (i = 0; i < wholeNumberDigits; i++)
2134 {
2135 if (ul64 > UI8_MAX / 10 || (ul64 == UI8_MAX / 10 && rgbDig[i] > UI8_MAX % 10))
2136 {
2137 TRACE("Overflow multiplying digits\n");
2138 bOverflow = TRUE;
2139 break;
2140 }
2141 ul64 = ul64 * 10 + rgbDig[i];
2142 }
2143
2144 /* Account for the scale of the number */
2145 if (!bOverflow && multiplier10)
2146 {
2147 for (i = 0; i < multiplier10; i++)
2148 {
2149 if (ul64 > (UI8_MAX / 10))
2150 {
2151 TRACE("Overflow scaling number\n");
2152 bOverflow = TRUE;
2153 break;
2154 }
2155 ul64 = ul64 * 10;
2156 }
2157 }
2158
2159 /* If we have any fractional digits, round the value.
2160 * Note we don't have to do this if divisor10 is < 1,
2161 * because this means the fractional part must be < 0.5
2162 */
2163 if (!bOverflow && fractionalDigits && divisor10 > 0)
2164 {
2165 const BYTE* fracDig = rgbDig + wholeNumberDigits;
2166 BOOL bAdjust = FALSE;
2167
2168 TRACE("first decimal value is %d\n", *fracDig);
2169
2170 if (*fracDig > 5)
2171 bAdjust = TRUE; /* > 0.5 */
2172 else if (*fracDig == 5)
2173 {
2174 for (i = 1; i < fractionalDigits; i++)
2175 {
2176 if (fracDig[i])
2177 {
2178 bAdjust = TRUE; /* > 0.5 */
2179 break;
2180 }
2181 }
2182 /* If exactly 0.5, round only odd values */
2183 if (i == fractionalDigits && (ul64 & 1))
2184 bAdjust = TRUE;
2185 }
2186
2187 if (bAdjust)
2188 {
2189 if (ul64 == UI8_MAX)
2190 {
2191 TRACE("Overflow after rounding\n");
2192 bOverflow = TRUE;
2193 }
2194 ul64++;
2195 }
2196 }
2197
2198 /* Zero is not a negative number */
2199 bNegative = pNumprs->dwOutFlags & NUMPRS_NEG && ul64;
2200
2201 TRACE("Integer value is 0x%s, bNeg %d\n", wine_dbgstr_longlong(ul64), bNegative);
2202
2203 /* For negative integers, try the signed types in size order */
2204 if (!bOverflow && bNegative)
2205 {
2206 if (dwVtBits & (VTBIT_I1|VTBIT_I2|VTBIT_I4|VTBIT_I8))
2207 {
2208 if (dwVtBits & VTBIT_I1 && ul64 <= -I1_MIN)
2209 {
2210 V_VT(pVarDst) = VT_I1;
2211 V_I1(pVarDst) = -ul64;
2212 return S_OK;
2213 }
2214 else if (dwVtBits & VTBIT_I2 && ul64 <= -I2_MIN)
2215 {
2216 V_VT(pVarDst) = VT_I2;
2217 V_I2(pVarDst) = -ul64;
2218 return S_OK;
2219 }
2220 else if (dwVtBits & VTBIT_I4 && ul64 <= -((LONGLONG)I4_MIN))
2221 {
2222 V_VT(pVarDst) = VT_I4;
2223 V_I4(pVarDst) = -ul64;
2224 return S_OK;
2225 }
2226 else if (dwVtBits & VTBIT_I8 && ul64 <= (ULONGLONG)I8_MAX + 1)
2227 {
2228 V_VT(pVarDst) = VT_I8;
2229 V_I8(pVarDst) = -ul64;
2230 return S_OK;
2231 }
2232 else if ((dwVtBits & REAL_VTBITS) == VTBIT_DECIMAL)
2233 {
2234 /* Decimal is only output choice left - fast path */
2235 V_VT(pVarDst) = VT_DECIMAL;
2236 DEC_SIGNSCALE(&V_DECIMAL(pVarDst)) = SIGNSCALE(DECIMAL_NEG,0);
2237 DEC_HI32(&V_DECIMAL(pVarDst)) = 0;
2238 DEC_LO64(&V_DECIMAL(pVarDst)) = -ul64;
2239 return S_OK;
2240 }
2241 }
2242 }
2243 else if (!bOverflow)
2244 {
2245 /* For positive integers, try signed then unsigned types in size order */
2246 if (dwVtBits & VTBIT_I1 && ul64 <= I1_MAX)
2247 {
2248 V_VT(pVarDst) = VT_I1;
2249 V_I1(pVarDst) = ul64;
2250 return S_OK;
2251 }
2252 else if (dwVtBits & VTBIT_UI1 && ul64 <= UI1_MAX)
2253 {
2254 V_VT(pVarDst) = VT_UI1;
2255 V_UI1(pVarDst) = ul64;
2256 return S_OK;
2257 }
2258 else if (dwVtBits & VTBIT_I2 && ul64 <= I2_MAX)
2259 {
2260 V_VT(pVarDst) = VT_I2;
2261 V_I2(pVarDst) = ul64;
2262 return S_OK;
2263 }
2264 else if (dwVtBits & VTBIT_UI2 && ul64 <= UI2_MAX)
2265 {
2266 V_VT(pVarDst) = VT_UI2;
2267 V_UI2(pVarDst) = ul64;
2268 return S_OK;
2269 }
2270 else if (dwVtBits & VTBIT_I4 && ul64 <= I4_MAX)
2271 {
2272 V_VT(pVarDst) = VT_I4;
2273 V_I4(pVarDst) = ul64;
2274 return S_OK;
2275 }
2276 else if (dwVtBits & VTBIT_UI4 && ul64 <= UI4_MAX)
2277 {
2278 V_VT(pVarDst) = VT_UI4;
2279 V_UI4(pVarDst) = ul64;
2280 return S_OK;
2281 }
2282 else if (dwVtBits & VTBIT_I8 && ul64 <= I8_MAX)
2283 {
2284 V_VT(pVarDst) = VT_I8;
2285 V_I8(pVarDst) = ul64;
2286 return S_OK;
2287 }
2288 else if (dwVtBits & VTBIT_UI8)
2289 {
2290 V_VT(pVarDst) = VT_UI8;
2291 V_UI8(pVarDst) = ul64;
2292 return S_OK;
2293 }
2294 else if ((dwVtBits & REAL_VTBITS) == VTBIT_DECIMAL)
2295 {
2296 /* Decimal is only output choice left - fast path */
2297 V_VT(pVarDst) = VT_DECIMAL;
2298 DEC_SIGNSCALE(&V_DECIMAL(pVarDst)) = SIGNSCALE(DECIMAL_POS,0);
2299 DEC_HI32(&V_DECIMAL(pVarDst)) = 0;
2300 DEC_LO64(&V_DECIMAL(pVarDst)) = ul64;
2301 return S_OK;
2302 }
2303 }
2304 }
2305
2306 if (dwVtBits & REAL_VTBITS)
2307 {
2308 /* Try to put the number into a float or real */
2309 BOOL bOverflow = FALSE, bNegative = pNumprs->dwOutFlags & NUMPRS_NEG;
2310 double whole = 0.0;
2311 int i;
2312
2313 /* Convert the number into a double */
2314 for (i = 0; i < pNumprs->cDig; i++)
2315 whole = whole * 10.0 + rgbDig[i];
2316
2317 TRACE("Whole double value is %16.16g\n", whole);
2318
2319 /* Account for the scale */
2320 while (multiplier10 > 10)
2321 {
2322 if (whole > dblMaximums[10])
2323 {
2324 dwVtBits &= ~(VTBIT_R4|VTBIT_R8|VTBIT_CY);
2325 bOverflow = TRUE;
2326 break;
2327 }
2328 whole = whole * dblMultipliers[10];
2329 multiplier10 -= 10;
2330 }
2331 if (multiplier10 && !bOverflow)
2332 {
2333 if (whole > dblMaximums[multiplier10])
2334 {
2335 dwVtBits &= ~(VTBIT_R4|VTBIT_R8|VTBIT_CY);
2336 bOverflow = TRUE;
2337 }
2338 else
2339 whole = whole * dblMultipliers[multiplier10];
2340 }
2341
2342 if (!bOverflow)
2343 TRACE("Scaled double value is %16.16g\n", whole);
2344
2345 while (divisor10 > 10 && !bOverflow)
2346 {
2347 if (whole < dblMinimums[10] && whole != 0)
2348 {
2349 dwVtBits &= ~(VTBIT_R4|VTBIT_R8|VTBIT_CY); /* Underflow */
2350 bOverflow = TRUE;
2351 break;
2352 }
2353 whole = whole / dblMultipliers[10];
2354 divisor10 -= 10;
2355 }
2356 if (divisor10 && !bOverflow)
2357 {
2358 if (whole < dblMinimums[divisor10] && whole != 0)
2359 {
2360 dwVtBits &= ~(VTBIT_R4|VTBIT_R8|VTBIT_CY); /* Underflow */
2361 bOverflow = TRUE;
2362 }
2363 else
2364 whole = whole / dblMultipliers[divisor10];
2365 }
2366 if (!bOverflow)
2367 TRACE("Final double value is %16.16g\n", whole);
2368
2369 if (dwVtBits & VTBIT_R4 &&
2370 ((whole <= R4_MAX && whole >= R4_MIN) || whole == 0.0))
2371 {
2372 TRACE("Set R4 to final value\n");
2373 V_VT(pVarDst) = VT_R4; /* Fits into a float */
2374 V_R4(pVarDst) = pNumprs->dwOutFlags & NUMPRS_NEG ? -whole : whole;
2375 return S_OK;
2376 }
2377
2378 if (dwVtBits & VTBIT_R8)
2379 {
2380 TRACE("Set R8 to final value\n");
2381 V_VT(pVarDst) = VT_R8; /* Fits into a double */
2382 V_R8(pVarDst) = pNumprs->dwOutFlags & NUMPRS_NEG ? -whole : whole;
2383 return S_OK;
2384 }
2385
2386 if (dwVtBits & VTBIT_CY)
2387 {
2388 if (SUCCEEDED(VarCyFromR8(bNegative ? -whole : whole, &V_CY(pVarDst))))
2389 {
2390 V_VT(pVarDst) = VT_CY; /* Fits into a currency */
2391 TRACE("Set CY to final value\n");
2392 return S_OK;
2393 }
2394 TRACE("Value Overflows CY\n");
2395 }
2396 }
2397
2398 if (dwVtBits & VTBIT_DECIMAL)
2399 {
2400 int i;
2401 ULONG carry;
2402 ULONG64 tmp;
2403 DECIMAL* pDec = &V_DECIMAL(pVarDst);
2404
2405 DECIMAL_SETZERO(*pDec);
2406 DEC_LO32(pDec) = 0;
2407
2408 if (pNumprs->dwOutFlags & NUMPRS_NEG)
2409 DEC_SIGN(pDec) = DECIMAL_NEG;
2410 else
2411 DEC_SIGN(pDec) = DECIMAL_POS;
2412
2413 /* Factor the significant digits */
2414 for (i = 0; i < pNumprs->cDig; i++)
2415 {
2416 tmp = (ULONG64)DEC_LO32(pDec) * 10 + rgbDig[i];
2417 carry = (ULONG)(tmp >> 32);
2418 DEC_LO32(pDec) = (ULONG)(tmp & UI4_MAX);
2419 tmp = (ULONG64)DEC_MID32(pDec) * 10 + carry;
2420 carry = (ULONG)(tmp >> 32);
2421 DEC_MID32(pDec) = (ULONG)(tmp & UI4_MAX);
2422 tmp = (ULONG64)DEC_HI32(pDec) * 10 + carry;
2423 DEC_HI32(pDec) = (ULONG)(tmp & UI4_MAX);
2424
2425 if (tmp >> 32 & UI4_MAX)
2426 {
2427 VarNumFromParseNum_DecOverflow:
2428 TRACE("Overflow\n");
2429 DEC_LO32(pDec) = DEC_MID32(pDec) = DEC_HI32(pDec) = UI4_MAX;
2430 return DISP_E_OVERFLOW;
2431 }
2432 }
2433
2434 /* Account for the scale of the number */
2435 while (multiplier10 > 0)
2436 {
2437 tmp = (ULONG64)DEC_LO32(pDec) * 10;
2438 carry = (ULONG)(tmp >> 32);
2439 DEC_LO32(pDec) = (ULONG)(tmp & UI4_MAX);
2440 tmp = (ULONG64)DEC_MID32(pDec) * 10 + carry;
2441 carry = (ULONG)(tmp >> 32);
2442 DEC_MID32(pDec) = (ULONG)(tmp & UI4_MAX);
2443 tmp = (ULONG64)DEC_HI32(pDec) * 10 + carry;
2444 DEC_HI32(pDec) = (ULONG)(tmp & UI4_MAX);
2445
2446 if (tmp >> 32 & UI4_MAX)
2447 goto VarNumFromParseNum_DecOverflow;
2448 multiplier10--;
2449 }
2450 DEC_SCALE(pDec) = divisor10;
2451
2452 V_VT(pVarDst) = VT_DECIMAL;
2453 return S_OK;
2454 }
2455 return DISP_E_OVERFLOW; /* No more output choices */
2456 }
2457
2458 /**********************************************************************
2459 * VarCat [OLEAUT32.318]
2460 *
2461 * Concatenates one variant onto another.
2462 *
2463 * PARAMS
2464 * left [I] First variant
2465 * right [I] Second variant
2466 * result [O] Result variant
2467 *
2468 * RETURNS
2469 * Success: S_OK.
2470 * Failure: An HRESULT error code indicating the error.
2471 */
2472 HRESULT WINAPI VarCat(LPVARIANT left, LPVARIANT right, LPVARIANT out)
2473 {
2474 VARTYPE leftvt,rightvt,resultvt;
2475 HRESULT hres;
2476 static WCHAR str_true[32];
2477 static WCHAR str_false[32];
2478 static const WCHAR sz_empty[] = {'\0'};
2479 leftvt = V_VT(left);
2480 rightvt = V_VT(right);
2481
2482 TRACE("%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), out);
2483
2484 if (!str_true[0]) {
2485 VARIANT_GetLocalisedText(LOCALE_USER_DEFAULT, IDS_FALSE, str_false);
2486 VARIANT_GetLocalisedText(LOCALE_USER_DEFAULT, IDS_TRUE, str_true);
2487 }
2488
2489 /* when both left and right are NULL the result is NULL */
2490 if (leftvt == VT_NULL && rightvt == VT_NULL)
2491 {
2492 V_VT(out) = VT_NULL;
2493 return S_OK;
2494 }
2495
2496 hres = S_OK;
2497 resultvt = VT_EMPTY;
2498
2499 /* There are many special case for errors and return types */
2500 if (leftvt == VT_VARIANT && (rightvt == VT_ERROR ||
2501 rightvt == VT_DATE || rightvt == VT_DECIMAL))
2502 hres = DISP_E_TYPEMISMATCH;
2503 else if ((leftvt == VT_I2 || leftvt == VT_I4 ||
2504 leftvt == VT_R4 || leftvt == VT_R8 ||
2505 leftvt == VT_CY || leftvt == VT_BOOL ||
2506 leftvt == VT_BSTR || leftvt == VT_I1 ||
2507 leftvt == VT_UI1 || leftvt == VT_UI2 ||
2508 leftvt == VT_UI4 || leftvt == VT_I8 ||
2509 leftvt == VT_UI8 || leftvt == VT_INT ||
2510 leftvt == VT_UINT || leftvt == VT_EMPTY ||
2511 leftvt == VT_NULL || leftvt == VT_DATE ||
2512 leftvt == VT_DECIMAL || leftvt == VT_DISPATCH)
2513 &&
2514 (rightvt == VT_I2 || rightvt == VT_I4 ||
2515 rightvt == VT_R4 || rightvt == VT_R8 ||
2516 rightvt == VT_CY || rightvt == VT_BOOL ||
2517 rightvt == VT_BSTR || rightvt == VT_I1 ||
2518 rightvt == VT_UI1 || rightvt == VT_UI2 ||
2519 rightvt == VT_UI4 || rightvt == VT_I8 ||
2520 rightvt == VT_UI8 || rightvt == VT_INT ||
2521 rightvt == VT_UINT || rightvt == VT_EMPTY ||
2522 rightvt == VT_NULL || rightvt == VT_DATE ||
2523 rightvt == VT_DECIMAL || rightvt == VT_DISPATCH))
2524 resultvt = VT_BSTR;
2525 else if (rightvt == VT_ERROR && leftvt < VT_VOID)
2526 hres = DISP_E_TYPEMISMATCH;
2527 else if (leftvt == VT_ERROR && (rightvt == VT_DATE ||
2528 rightvt == VT_ERROR || rightvt == VT_DECIMAL))
2529 hres = DISP_E_TYPEMISMATCH;
2530 else if (rightvt == VT_DATE || rightvt == VT_ERROR ||
2531 rightvt == VT_DECIMAL)
2532 hres = DISP_E_BADVARTYPE;
2533 else if (leftvt == VT_ERROR || rightvt == VT_ERROR)
2534 hres = DISP_E_TYPEMISMATCH;
2535 else if (leftvt == VT_VARIANT)
2536 hres = DISP_E_TYPEMISMATCH;
2537 else if (rightvt == VT_VARIANT && (leftvt == VT_EMPTY ||
2538 leftvt == VT_NULL || leftvt == VT_I2 ||
2539 leftvt == VT_I4 || leftvt == VT_R4 ||
2540 leftvt == VT_R8 || leftvt == VT_CY ||
2541 leftvt == VT_DATE || leftvt == VT_BSTR ||
2542 leftvt == VT_BOOL || leftvt == VT_DECIMAL ||
2543 leftvt == VT_I1 || leftvt == VT_UI1 ||
2544 leftvt == VT_UI2 || leftvt == VT_UI4 ||
2545 leftvt == VT_I8 || leftvt == VT_UI8 ||
2546 leftvt == VT_INT || leftvt == VT_UINT))
2547 hres = DISP_E_TYPEMISMATCH;
2548 else
2549 hres = DISP_E_BADVARTYPE;
2550
2551 /* if result type is not S_OK, then no need to go further */
2552 if (hres != S_OK)
2553 {
2554 V_VT(out) = resultvt;
2555 return hres;
2556 }
2557 /* Else proceed with formatting inputs to strings */
2558 else
2559 {
2560 VARIANT bstrvar_left, bstrvar_right;
2561 V_VT(out) = VT_BSTR;
2562
2563 VariantInit(&bstrvar_left);
2564 VariantInit(&bstrvar_right);
2565
2566 /* Convert left side variant to string */
2567 if (leftvt != VT_BSTR)
2568 {
2569 if (leftvt == VT_BOOL)
2570 {
2571 /* Bools are handled as localized True/False strings instead of 0/-1 as in MSDN */
2572 V_VT(&bstrvar_left) = VT_BSTR;
2573 if (V_BOOL(left))
2574 V_BSTR(&bstrvar_left) = SysAllocString(str_true);
2575 else
2576 V_BSTR(&bstrvar_left) = SysAllocString(str_false);
2577 }
2578 /* Fill with empty string for later concat with right side */
2579 else if (leftvt == VT_NULL)
2580 {
2581 V_VT(&bstrvar_left) = VT_BSTR;
2582 V_BSTR(&bstrvar_left) = SysAllocString(sz_empty);
2583 }
2584 else
2585 {
2586 hres = VariantChangeTypeEx(&bstrvar_left,left,0,0,VT_BSTR);
2587 if (hres != S_OK) {
2588 VariantClear(&bstrvar_left);
2589 VariantClear(&bstrvar_right);
2590 if (leftvt == VT_NULL && (rightvt == VT_EMPTY ||
2591 rightvt == VT_NULL || rightvt == VT_I2 ||
2592 rightvt == VT_I4 || rightvt == VT_R4 ||
2593 rightvt == VT_R8 || rightvt == VT_CY ||
2594 rightvt == VT_DATE || rightvt == VT_BSTR ||
2595 rightvt == VT_BOOL || rightvt == VT_DECIMAL ||
2596 rightvt == VT_I1 || rightvt == VT_UI1 ||
2597 rightvt == VT_UI2 || rightvt == VT_UI4 ||
2598 rightvt == VT_I8 || rightvt == VT_UI8 ||
2599 rightvt == VT_INT || rightvt == VT_UINT))
2600 return DISP_E_BADVARTYPE;
2601 return hres;
2602 }
2603 }
2604 }
2605
2606 /* convert right side variant to string */
2607 if (rightvt != VT_BSTR)
2608 {
2609 if (rightvt == VT_BOOL)
2610 {
2611 /* Bools are handled as localized True/False strings instead of 0/-1 as in MSDN */
2612 V_VT(&bstrvar_right) = VT_BSTR;
2613 if (V_BOOL(right))
2614 V_BSTR(&bstrvar_right) = SysAllocString(str_true);
2615 else
2616 V_BSTR(&bstrvar_right) = SysAllocString(str_false);
2617 }
2618 /* Fill with empty string for later concat with right side */
2619 else if (rightvt == VT_NULL)
2620 {
2621 V_VT(&bstrvar_right) = VT_BSTR;
2622 V_BSTR(&bstrvar_right) = SysAllocString(sz_empty);
2623 }
2624 else
2625 {
2626 hres = VariantChangeTypeEx(&bstrvar_right,right,0,0,VT_BSTR);
2627 if (hres != S_OK) {
2628 VariantClear(&bstrvar_left);
2629 VariantClear(&bstrvar_right);
2630 if (rightvt == VT_NULL && (leftvt == VT_EMPTY ||
2631 leftvt == VT_NULL || leftvt == VT_I2 ||
2632 leftvt == VT_I4 || leftvt == VT_R4 ||
2633 leftvt == VT_R8 || leftvt == VT_CY ||
2634 leftvt == VT_DATE || leftvt == VT_BSTR ||
2635 leftvt == VT_BOOL || leftvt == VT_DECIMAL ||
2636 leftvt == VT_I1 || leftvt == VT_UI1 ||
2637 leftvt == VT_UI2 || leftvt == VT_UI4 ||
2638 leftvt == VT_I8 || leftvt == VT_UI8 ||
2639 leftvt == VT_INT || leftvt == VT_UINT))
2640 return DISP_E_BADVARTYPE;
2641 return hres;
2642 }
2643 }
2644 }
2645
2646 /* Concat the resulting strings together */
2647 if (leftvt == VT_BSTR && rightvt == VT_BSTR)
2648 VarBstrCat (V_BSTR(left), V_BSTR(right), &V_BSTR(out));
2649 else if (leftvt != VT_BSTR && rightvt != VT_BSTR)
2650 VarBstrCat (V_BSTR(&bstrvar_left), V_BSTR(&bstrvar_right), &V_BSTR(out));
2651 else if (leftvt != VT_BSTR && rightvt == VT_BSTR)
2652 VarBstrCat (V_BSTR(&bstrvar_left), V_BSTR(right), &V_BSTR(out));
2653 else if (leftvt == VT_BSTR && rightvt != VT_BSTR)
2654 VarBstrCat (V_BSTR(left), V_BSTR(&bstrvar_right), &V_BSTR(out));
2655
2656 VariantClear(&bstrvar_left);
2657 VariantClear(&bstrvar_right);
2658 return S_OK;
2659 }
2660 }
2661
2662
2663 /* Wrapper around VariantChangeTypeEx() which permits changing a
2664 variant with VT_RESERVED flag set. Needed by VarCmp. */
2665 static HRESULT _VarChangeTypeExWrap (VARIANTARG* pvargDest,
2666 VARIANTARG* pvargSrc, LCID lcid, USHORT wFlags, VARTYPE vt)
2667 {
2668 VARIANTARG vtmpsrc = *pvargSrc;
2669
2670 V_VT(&vtmpsrc) &= ~VT_RESERVED;
2671 return VariantChangeTypeEx(pvargDest,&vtmpsrc,lcid,wFlags,vt);
2672 }
2673
2674 /**********************************************************************
2675 * VarCmp [OLEAUT32.176]
2676 *
2677 * Compare two variants.
2678 *
2679 * PARAMS
2680 * left [I] First variant
2681 * right [I] Second variant
2682 * lcid [I] LCID (locale identifier) for the comparison
2683 * flags [I] Flags to be used in the comparison:
2684 * NORM_IGNORECASE, NORM_IGNORENONSPACE, NORM_IGNORESYMBOLS,
2685 * NORM_IGNOREWIDTH, NORM_IGNOREKANATYPE, NORM_IGNOREKASHIDA
2686 *
2687 * RETURNS
2688 * VARCMP_LT: left variant is less than right variant.
2689 * VARCMP_EQ: input variants are equal.
2690 * VARCMP_GT: left variant is greater than right variant.
2691 * VARCMP_NULL: either one of the input variants is NULL.
2692 * Failure: An HRESULT error code indicating the error.
2693 *
2694 * NOTES
2695 * Native VarCmp up to and including WinXP doesn't like I1, UI2, VT_UI4,
2696 * UI8 and UINT as input variants. INT is accepted only as left variant.
2697 *
2698 * If both input variants are ERROR then VARCMP_EQ will be returned, else
2699 * an ERROR variant will trigger an error.
2700 *
2701 * Both input variants can have VT_RESERVED flag set which is ignored
2702 * unless one and only one of the variants is a BSTR and the other one
2703 * is not an EMPTY variant. All four VT_RESERVED combinations have a
2704 * different meaning:
2705 * - BSTR and other: BSTR is always greater than the other variant.
2706 * - BSTR|VT_RESERVED and other: a string comparison is performed.
2707 * - BSTR and other|VT_RESERVED: If the BSTR is a number a numeric
2708 * comparison will take place else the BSTR is always greater.
2709 * - BSTR|VT_RESERVED and other|VT_RESERVED: It seems that the other
2710 * variant is ignored and the return value depends only on the sign
2711 * of the BSTR if it is a number else the BSTR is always greater. A
2712 * positive BSTR is greater, a negative one is smaller than the other
2713 * variant.
2714 *
2715 * SEE
2716 * VarBstrCmp for the lcid and flags usage.
2717 */
2718 HRESULT WINAPI VarCmp(LPVARIANT left, LPVARIANT right, LCID lcid, DWORD flags)
2719 {
2720 VARTYPE lvt, rvt, vt;
2721 VARIANT rv,lv;
2722 DWORD xmask;
2723 HRESULT rc;
2724
2725 TRACE("(%s,%s,0x%08x,0x%08x)\n", debugstr_variant(left), debugstr_variant(right), lcid, flags);
2726
2727 lvt = V_VT(left) & VT_TYPEMASK;
2728 rvt = V_VT(right) & VT_TYPEMASK;
2729 xmask = (1 << lvt) | (1 << rvt);
2730
2731 /* If we have any flag set except VT_RESERVED bail out.
2732 Same for the left input variant type > VT_INT and for the
2733 right input variant type > VT_I8. Yes, VT_INT is only supported
2734 as left variant. Go figure */
2735 if (((V_VT(left) | V_VT(right)) & ~VT_TYPEMASK & ~VT_RESERVED) ||
2736 lvt > VT_INT || rvt > VT_I8) {
2737 return DISP_E_BADVARTYPE;
2738 }
2739
2740 /* Don't ask me why but native VarCmp cannot handle: VT_I1, VT_UI2, VT_UI4,
2741 VT_UINT and VT_UI8. Tested with DCOM98, Win2k, WinXP */
2742 if (rvt == VT_INT || xmask & (VTBIT_I1 | VTBIT_UI2 | VTBIT_UI4 | VTBIT_UI8 |
2743 VTBIT_DISPATCH | VTBIT_VARIANT | VTBIT_UNKNOWN | VTBIT_15))
2744 return DISP_E_TYPEMISMATCH;
2745
2746 /* If both variants are VT_ERROR return VARCMP_EQ */
2747 if (xmask == VTBIT_ERROR)
2748 return VARCMP_EQ;
2749 else if (xmask & VTBIT_ERROR)
2750 return DISP_E_TYPEMISMATCH;
2751
2752 if (xmask & VTBIT_NULL)
2753 return VARCMP_NULL;
2754
2755 VariantInit(&lv);
2756 VariantInit(&rv);
2757
2758 /* Two BSTRs, ignore VT_RESERVED */
2759 if (xmask == VTBIT_BSTR)
2760 return VarBstrCmp(V_BSTR(left), V_BSTR(right), lcid, flags);
2761
2762 /* A BSTR and another variant; we have to take care of VT_RESERVED */
2763 if (xmask & VTBIT_BSTR) {
2764 VARIANT *bstrv, *nonbv;
2765 VARTYPE nonbvt;
2766 int swap = 0;
2767
2768 /* Swap the variants so the BSTR is always on the left */
2769 if (lvt == VT_BSTR) {
2770 bstrv = left;
2771 nonbv = right;
2772 nonbvt = rvt;
2773 } else {
2774 swap = 1;
2775 bstrv = right;
2776 nonbv = left;
2777 nonbvt = lvt;
2778 }
2779
2780 /* BSTR and EMPTY: ignore VT_RESERVED */
2781 if (nonbvt == VT_EMPTY)
2782 rc = (!V_BSTR(bstrv) || !*V_BSTR(bstrv)) ? VARCMP_EQ : VARCMP_GT;
2783 else {
2784 VARTYPE breserv = V_VT(bstrv) & ~VT_TYPEMASK;
2785 VARTYPE nreserv = V_VT(nonbv) & ~VT_TYPEMASK;
2786
2787 if (!breserv && !nreserv)
2788 /* No VT_RESERVED set ==> BSTR always greater */
2789 rc = VARCMP_GT;
2790 else if (breserv && !nreserv) {
2791 /* BSTR has VT_RESERVED set. Do a string comparison */
2792 rc = VariantChangeTypeEx(&rv,nonbv,lcid,0,VT_BSTR);
2793 if (FAILED(rc))
2794 return rc;
2795 rc = VarBstrCmp(V_BSTR(bstrv), V_BSTR(&rv), lcid, flags);
2796 VariantClear(&rv);
2797 } else if (V_BSTR(bstrv) && *V_BSTR(bstrv)) {
2798 /* Non NULL nor empty BSTR */
2799 /* If the BSTR is not a number the BSTR is greater */
2800 rc = _VarChangeTypeExWrap(&lv,bstrv,lcid,0,VT_R8);
2801 if (FAILED(rc))
2802 rc = VARCMP_GT;
2803 else if (breserv && nreserv)
2804 /* FIXME: This is strange: with both VT_RESERVED set it
2805 looks like the result depends only on the sign of
2806 the BSTR number */
2807 rc = (V_R8(&lv) >= 0) ? VARCMP_GT : VARCMP_LT;
2808 else
2809 /* Numeric comparison, will be handled below.
2810 VARCMP_NULL used only to break out. */
2811 rc = VARCMP_NULL;
2812 VariantClear(&lv);
2813 VariantClear(&rv);
2814 } else
2815 /* Empty or NULL BSTR */
2816 rc = VARCMP_GT;
2817 }
2818 /* Fixup the return code if we swapped left and right */
2819 if (swap) {
2820 if (rc == VARCMP_GT)
2821 rc = VARCMP_LT;
2822 else if (rc == VARCMP_LT)
2823 rc = VARCMP_GT;
2824 }
2825 if (rc != VARCMP_NULL)
2826 return rc;
2827 }
2828
2829 if (xmask & VTBIT_DECIMAL)
2830 vt = VT_DECIMAL;
2831 else if (xmask & VTBIT_BSTR)
2832 vt = VT_R8;
2833 else if (xmask & VTBIT_R4)
2834 vt = VT_R4;
2835 else if (xmask & (VTBIT_R8 | VTBIT_DATE))
2836 vt = VT_R8;
2837 else if (xmask & VTBIT_CY)
2838 vt = VT_CY;
2839 else
2840 /* default to I8 */
2841 vt = VT_I8;
2842
2843 /* Coerce the variants */
2844 rc = _VarChangeTypeExWrap(&lv,left,lcid,0,vt);
2845 if (rc == DISP_E_OVERFLOW && vt != VT_R8) {
2846 /* Overflow, change to R8 */
2847 vt = VT_R8;
2848 rc = _VarChangeTypeExWrap(&lv,left,lcid,0,vt);
2849 }
2850 if (FAILED(rc))
2851 return rc;
2852 rc = _VarChangeTypeExWrap(&rv,right,lcid,0,vt);
2853 if (rc == DISP_E_OVERFLOW && vt != VT_R8) {
2854 /* Overflow, change to R8 */
2855 vt = VT_R8;
2856 rc = _VarChangeTypeExWrap(&lv,left,lcid,0,vt);
2857 if (FAILED(rc))
2858 return rc;
2859 rc = _VarChangeTypeExWrap(&rv,right,lcid,0,vt);
2860 }
2861 if (FAILED(rc))
2862 return rc;
2863
2864 #define _VARCMP(a,b) \
2865 (((a) == (b)) ? VARCMP_EQ : (((a) < (b)) ? VARCMP_LT : VARCMP_GT))
2866
2867 switch (vt) {
2868 case VT_CY:
2869 return VarCyCmp(V_CY(&lv), V_CY(&rv));
2870 case VT_DECIMAL:
2871 return VarDecCmp(&V_DECIMAL(&lv), &V_DECIMAL(&rv));
2872 case VT_I8:
2873 return _VARCMP(V_I8(&lv), V_I8(&rv));
2874 case VT_R4:
2875 return _VARCMP(V_R4(&lv), V_R4(&rv));
2876 case VT_R8:
2877 return _VARCMP(V_R8(&lv), V_R8(&rv));
2878 default:
2879 /* We should never get here */
2880 return E_FAIL;
2881 }
2882 #undef _VARCMP
2883 }
2884
2885 static HRESULT VARIANT_FetchDispatchValue(LPVARIANT pvDispatch, LPVARIANT pValue)
2886 {
2887 HRESULT hres;
2888 static DISPPARAMS emptyParams = { NULL, NULL, 0, 0 };
2889
2890 if ((V_VT(pvDispatch) & VT_TYPEMASK) == VT_DISPATCH) {
2891 if (NULL == V_DISPATCH(pvDispatch)) return DISP_E_TYPEMISMATCH;
2892 hres = IDispatch_Invoke(V_DISPATCH(pvDispatch), DISPID_VALUE, &IID_NULL,
2893 LOCALE_USER_DEFAULT, DISPATCH_PROPERTYGET, &emptyParams, pValue,
2894 NULL, NULL);
2895 } else {
2896 hres = DISP_E_TYPEMISMATCH;
2897 }
2898 return hres;
2899 }
2900
2901 /**********************************************************************
2902 * VarAnd [OLEAUT32.142]
2903 *
2904 * Computes the logical AND of two variants.
2905 *
2906 * PARAMS
2907 * left [I] First variant
2908 * right [I] Second variant
2909 * result [O] Result variant
2910 *
2911 * RETURNS
2912 * Success: S_OK.
2913 * Failure: An HRESULT error code indicating the error.
2914 */
2915 HRESULT WINAPI VarAnd(LPVARIANT left, LPVARIANT right, LPVARIANT result)
2916 {
2917 HRESULT hres = S_OK;
2918 VARTYPE resvt = VT_EMPTY;
2919 VARTYPE leftvt,rightvt;
2920 VARTYPE rightExtraFlags,leftExtraFlags,ExtraFlags;
2921 VARIANT varLeft, varRight;
2922 VARIANT tempLeft, tempRight;
2923
2924 VariantInit(&varLeft);
2925 VariantInit(&varRight);
2926 VariantInit(&tempLeft);
2927 VariantInit(&tempRight);
2928
2929 TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
2930
2931 /* Handle VT_DISPATCH by storing and taking address of returned value */
2932 if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH)
2933 {
2934 hres = VARIANT_FetchDispatchValue(left, &tempLeft);
2935 if (FAILED(hres)) goto VarAnd_Exit;
2936 left = &tempLeft;
2937 }
2938 if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH)
2939 {
2940 hres = VARIANT_FetchDispatchValue(right, &tempRight);
2941 if (FAILED(hres)) goto VarAnd_Exit;
2942 right = &tempRight;
2943 }
2944
2945 leftvt = V_VT(left)&VT_TYPEMASK;
2946 rightvt = V_VT(right)&VT_TYPEMASK;
2947 leftExtraFlags = V_VT(left)&(~VT_TYPEMASK);
2948 rightExtraFlags = V_VT(right)&(~VT_TYPEMASK);
2949
2950 if (leftExtraFlags != rightExtraFlags)
2951 {
2952 hres = DISP_E_BADVARTYPE;
2953 goto VarAnd_Exit;
2954 }
2955 ExtraFlags = leftExtraFlags;
2956
2957 /* Native VarAnd always returns an error when using extra
2958 * flags or if the variant combination is I8 and INT.
2959 */
2960 if ((leftvt == VT_I8 && rightvt == VT_INT) ||
2961 (leftvt == VT_INT && rightvt == VT_I8) ||
2962 ExtraFlags != 0)
2963 {
2964 hres = DISP_E_BADVARTYPE;
2965 goto VarAnd_Exit;
2966 }
2967
2968 /* Determine return type */
2969 else if (leftvt == VT_I8 || rightvt == VT_I8)
2970 resvt = VT_I8;
2971 else if (leftvt == VT_I4 || rightvt == VT_I4 ||
2972 leftvt == VT_UINT || rightvt == VT_UINT ||
2973 leftvt == VT_INT || rightvt == VT_INT ||
2974 leftvt == VT_R4 || rightvt == VT_R4 ||
2975 leftvt == VT_R8 || rightvt == VT_R8 ||
2976 leftvt == VT_CY || rightvt == VT_CY ||
2977 leftvt == VT_DATE || rightvt == VT_DATE ||
2978 leftvt == VT_I1 || rightvt == VT_I1 ||
2979 leftvt == VT_UI2 || rightvt == VT_UI2 ||
2980 leftvt == VT_UI4 || rightvt == VT_UI4 ||
2981 leftvt == VT_UI8 || rightvt == VT_UI8 ||
2982 leftvt == VT_DECIMAL || rightvt == VT_DECIMAL)
2983 resvt = VT_I4;
2984 else if (leftvt == VT_UI1 || rightvt == VT_UI1 ||
2985 leftvt == VT_I2 || rightvt == VT_I2 ||
2986 leftvt == VT_EMPTY || rightvt == VT_EMPTY)
2987 if ((leftvt == VT_NULL && rightvt == VT_UI1) ||
2988 (leftvt == VT_UI1 && rightvt == VT_NULL) ||
2989 (leftvt == VT_UI1 && rightvt == VT_UI1))
2990 resvt = VT_UI1;
2991 else
2992 resvt = VT_I2;
2993 else if (leftvt == VT_BOOL || rightvt == VT_BOOL ||
2994 (leftvt == VT_BSTR && rightvt == VT_BSTR))
2995 resvt = VT_BOOL;
2996 else if (leftvt == VT_NULL || rightvt == VT_NULL ||
2997 leftvt == VT_BSTR || rightvt == VT_BSTR)
2998 resvt = VT_NULL;
2999 else
3000 {
3001 hres = DISP_E_BADVARTYPE;
3002 goto VarAnd_Exit;
3003 }
3004
3005 if (leftvt == VT_NULL || rightvt == VT_NULL)
3006 {
3007 /*
3008 * Special cases for when left variant is VT_NULL
3009 * (VT_NULL & 0 = VT_NULL, VT_NULL & value = value)
3010 */
3011 if (leftvt == VT_NULL)
3012 {
3013 VARIANT_BOOL b;
3014 switch(rightvt)
3015 {
3016 case VT_I1: if (V_I1(right)) resvt = VT_NULL; break;
3017 case VT_UI1: if (V_UI1(right)) resvt = VT_NULL; break;
3018 case VT_I2: if (V_I2(right)) resvt = VT_NULL; break;
3019 case VT_UI2: if (V_UI2(right)) resvt = VT_NULL; break;
3020 case VT_I4: if (V_I4(right)) resvt = VT_NULL; break;
3021 case VT_UI4: if (V_UI4(right)) resvt = VT_NULL; break;
3022 case VT_I8: if (V_I8(right)) resvt = VT_NULL; break;
3023 case VT_UI8: if (V_UI8(right)) resvt = VT_NULL; break;
3024 case VT_INT: if (V_INT(right)) resvt = VT_NULL; break;
3025 case VT_UINT: if (V_UINT(right)) resvt = VT_NULL; break;
3026 case VT_BOOL: if (V_BOOL(right)) resvt = VT_NULL; break;
3027 case VT_R4: if (V_R4(right)) resvt = VT_NULL; break;
3028 case VT_R8: if (V_R8(right)) resvt = VT_NULL; break;
3029 case VT_CY:
3030 if(V_CY(right).int64)
3031 resvt = VT_NULL;
3032 break;
3033 case VT_DECIMAL:
3034 if (DEC_HI32(&V_DECIMAL(right)) ||
3035 DEC_LO64(&V_DECIMAL(right)))
3036 resvt = VT_NULL;
3037 break;
3038 case VT_BSTR:
3039 hres = VarBoolFromStr(V_BSTR(right),
3040 LOCALE_USER_DEFAULT, VAR_LOCALBOOL, &b);
3041 if (FAILED(hres))
3042 return hres;
3043 else if (b)
3044 V_VT(result) = VT_NULL;
3045 else
3046 {
3047 V_VT(result) = VT_BOOL;
3048 V_BOOL(result) = b;
3049 }
3050 goto VarAnd_Exit;
3051 }
3052 }
3053 V_VT(result) = resvt;
3054 goto VarAnd_Exit;
3055 }
3056
3057 hres = VariantCopy(&varLeft, left);
3058 if (FAILED(hres)) goto VarAnd_Exit;
3059
3060 hres = VariantCopy(&varRight, right);
3061 if (FAILED(hres)) goto VarAnd_Exit;
3062
3063 if (resvt == VT_I4 && V_VT(&varLeft) == VT_UI4)
3064 V_VT(&varLeft) = VT_I4; /* Don't overflow */
3065 else
3066 {
3067 double d;
3068
3069 if (V_VT(&varLeft) == VT_BSTR &&
3070 FAILED(VarR8FromStr(V_BSTR(&varLeft),
3071 LOCALE_USER_DEFAULT, 0, &d)))
3072 hres = VariantChangeType(&varLeft,&varLeft,
3073 VARIANT_LOCALBOOL, VT_BOOL);
3074 if (SUCCEEDED(hres) && V_VT(&varLeft) != resvt)
3075 hres = VariantChangeType(&varLeft,&varLeft,0,resvt);
3076 if (FAILED(hres)) goto VarAnd_Exit;
3077 }
3078
3079 if (resvt == VT_I4 && V_VT(&varRight) == VT_UI4)
3080 V_VT(&varRight) = VT_I4; /* Don't overflow */
3081 else
3082 {
3083 double d;
3084
3085 if (V_VT(&varRight) == VT_BSTR &&
3086 FAILED(VarR8FromStr(V_BSTR(&varRight),
3087 LOCALE_USER_DEFAULT, 0, &d)))
3088 hres = VariantChangeType(&varRight, &varRight,
3089 VARIANT_LOCALBOOL, VT_BOOL);
3090 if (SUCCEEDED(hres) && V_VT(&varRight) != resvt)
3091 hres = VariantChangeType(&varRight, &varRight, 0, resvt);
3092 if (FAILED(hres)) goto VarAnd_Exit;
3093 }
3094
3095 V_VT(result) = resvt;
3096 switch(resvt)
3097 {
3098 case VT_I8:
3099 V_I8(result) = V_I8(&varLeft) & V_I8(&varRight);
3100 break;
3101 case VT_I4:
3102 V_I4(result) = V_I4(&varLeft) & V_I4(&varRight);
3103 break;
3104 case VT_I2:
3105 V_I2(result) = V_I2(&varLeft) & V_I2(&varRight);
3106 break;
3107 case VT_UI1:
3108 V_UI1(result) = V_UI1(&varLeft) & V_UI1(&varRight);
3109 break;
3110 case VT_BOOL:
3111 V_BOOL(result) = V_BOOL(&varLeft) & V_BOOL(&varRight);
3112 break;
3113 default:
3114 FIXME("Couldn't bitwise AND variant types %d,%d\n",
3115 leftvt,rightvt);
3116 }
3117
3118 VarAnd_Exit:
3119 VariantClear(&varLeft);
3120 VariantClear(&varRight);
3121 VariantClear(&tempLeft);
3122 VariantClear(&tempRight);
3123
3124 return hres;
3125 }
3126
3127 /**********************************************************************
3128 * VarAdd [OLEAUT32.141]
3129 *
3130 * Add two variants.
3131 *
3132 * PARAMS
3133 * left [I] First variant
3134 * right [I] Second variant
3135 * result [O] Result variant
3136 *
3137 * RETURNS
3138 * Success: S_OK.
3139 * Failure: An HRESULT error code indicating the error.
3140 *
3141 * NOTES
3142 * Native VarAdd up to and including WinXP doesn't like I1, UI2, UI4,
3143 * UI8, INT and UINT as input variants.
3144 *
3145 * Native VarAdd doesn't check for NULL in/out pointers and crashes. We do the
3146 * same here.
3147 *
3148 * FIXME
3149 * Overflow checking for R8 (double) overflow. Return DISP_E_OVERFLOW in that
3150 * case.
3151 */
3152 HRESULT WINAPI VarAdd(LPVARIANT left, LPVARIANT right, LPVARIANT result)
3153 {
3154 HRESULT hres;
3155 VARTYPE lvt, rvt, resvt, tvt;
3156 VARIANT lv, rv, tv;
3157 VARIANT tempLeft, tempRight;
3158 double r8res;
3159
3160 /* Variant priority for coercion. Sorted from lowest to highest.
3161 VT_ERROR shows an invalid input variant type. */
3162 enum coerceprio { vt_EMPTY, vt_UI1, vt_I2, vt_I4, vt_I8, vt_BSTR,vt_R4,
3163 vt_R8, vt_CY, vt_DATE, vt_DECIMAL, vt_DISPATCH, vt_NULL,
3164 vt_ERROR };
3165 /* Mapping from priority to variant type. Keep in sync with coerceprio! */
3166 static const VARTYPE prio2vt[] = { VT_EMPTY, VT_UI1, VT_I2, VT_I4, VT_I8, VT_BSTR, VT_R4,
3167 VT_R8, VT_CY, VT_DATE, VT_DECIMAL, VT_DISPATCH,
3168 VT_NULL, VT_ERROR };
3169
3170 /* Mapping for coercion from input variant to priority of result variant. */
3171 static const VARTYPE coerce[] = {
3172 /* VT_EMPTY, VT_NULL, VT_I2, VT_I4, VT_R4 */
3173 vt_EMPTY, vt_NULL, vt_I2, vt_I4, vt_R4,
3174 /* VT_R8, VT_CY, VT_DATE, VT_BSTR, VT_DISPATCH */
3175 vt_R8, vt_CY, vt_DATE, vt_BSTR, vt_DISPATCH,
3176 /* VT_ERROR, VT_BOOL, VT_VARIANT, VT_UNKNOWN, VT_DECIMAL */
3177 vt_ERROR, vt_I2, vt_ERROR, vt_ERROR, vt_DECIMAL,
3178 /* 15, VT_I1, VT_UI1, VT_UI2, VT_UI4 VT_I8 */
3179 vt_ERROR, vt_ERROR, vt_UI1, vt_ERROR, vt_ERROR, vt_I8
3180 };
3181
3182 TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
3183
3184 VariantInit(&lv);
3185 VariantInit(&rv);
3186 VariantInit(&tv);
3187 VariantInit(&tempLeft);
3188 VariantInit(&tempRight);
3189
3190 /* Handle VT_DISPATCH by storing and taking address of returned value */
3191 if ((V_VT(left) & VT_TYPEMASK) != VT_NULL && (V_VT(right) & VT_TYPEMASK) != VT_NULL)
3192 {
3193 if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH)
3194 {
3195 hres = VARIANT_FetchDispatchValue(left, &tempLeft);
3196 if (FAILED(hres)) goto end;
3197 left = &tempLeft;
3198 }
3199 if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH)
3200 {
3201 hres = VARIANT_FetchDispatchValue(right, &tempRight);
3202 if (FAILED(hres)) goto end;
3203 right = &tempRight;
3204 }
3205 }
3206
3207 lvt = V_VT(left)&VT_TYPEMASK;
3208 rvt = V_VT(right)&VT_TYPEMASK;
3209
3210 /* If we have any flag set (VT_ARRAY, VT_VECTOR, etc.) bail out.
3211 Same for any input variant type > VT_I8 */
3212 if (V_VT(left) & ~VT_TYPEMASK || V_VT(right) & ~VT_TYPEMASK ||
3213 lvt > VT_I8 || rvt > VT_I8) {
3214 hres = DISP_E_BADVARTYPE;
3215 goto end;
3216 }
3217
3218 /* Determine the variant type to coerce to. */
3219 if (coerce[lvt] > coerce[rvt]) {
3220 resvt = prio2vt[coerce[lvt]];
3221 tvt = prio2vt[coerce[rvt]];
3222 } else {
3223 resvt = prio2vt[coerce[rvt]];
3224 tvt = prio2vt[coerce[lvt]];
3225 }
3226
3227 /* Special cases where the result variant type is defined by both
3228 input variants and not only that with the highest priority */
3229 if (resvt == VT_BSTR) {
3230 if (tvt == VT_EMPTY || tvt == VT_BSTR)
3231 resvt = VT_BSTR;
3232 else
3233 resvt = VT_R8;
3234 }
3235 if (resvt == VT_R4 && (tvt == VT_BSTR || tvt == VT_I8 || tvt == VT_I4))
3236 resvt = VT_R8;
3237
3238 /* For overflow detection use the biggest compatible type for the
3239 addition */
3240 switch (resvt) {
3241 case VT_ERROR:
3242 hres = DISP_E_BADVARTYPE;
3243 goto end;
3244 case VT_NULL:
3245 hres = S_OK;
3246 V_VT(result) = VT_NULL;
3247 goto end;
3248 case VT_DISPATCH:
3249 FIXME("cannot handle variant type VT_DISPATCH\n");
3250 hres = DISP_E_TYPEMISMATCH;
3251 goto end;
3252 case VT_EMPTY:
3253 resvt = VT_I2;
3254 /* Fall through */
3255 case VT_UI1:
3256 case VT_I2:
3257 case VT_I4:
3258 case VT_I8:
3259 tvt = VT_I8;
3260 break;
3261 case VT_DATE:
3262 case VT_R4:
3263 tvt = VT_R8;
3264 break;
3265 default:
3266 tvt = resvt;
3267 }
3268
3269 /* Now coerce the variants */
3270 hres = VariantChangeType(&lv, left, 0, tvt);
3271 if (FAILED(hres))
3272 goto end;
3273 hres = VariantChangeType(&rv, right, 0, tvt);
3274 if (FAILED(hres))
3275 goto end;
3276
3277 /* Do the math */
3278 hres = S_OK;
3279 V_VT(result) = resvt;
3280 switch (tvt) {
3281 case VT_DECIMAL:
3282 hres = VarDecAdd(&V_DECIMAL(&lv), &V_DECIMAL(&rv),
3283 &V_DECIMAL(result));
3284 goto end;
3285 case VT_CY:
3286 hres = VarCyAdd(V_CY(&lv), V_CY(&rv), &V_CY(result));
3287 goto end;
3288 case VT_BSTR:
3289 /* We do not add those, we concatenate them. */
3290 hres = VarBstrCat(V_BSTR(&lv), V_BSTR(&rv), &V_BSTR(result));
3291 goto end;
3292 case VT_I8:
3293 /* Overflow detection */
3294 r8res = (double)V_I8(&lv) + (double)V_I8(&rv);
3295 if (r8res > (double)I8_MAX || r8res < (double)I8_MIN) {
3296 V_VT(result) = VT_R8;
3297 V_R8(result) = r8res;
3298 goto end;
3299 } else {
3300 V_VT(&tv) = tvt;
3301 V_I8(&tv) = V_I8(&lv) + V_I8(&rv);
3302 }
3303 break;
3304 case VT_R8:
3305 V_VT(&tv) = tvt;
3306 /* FIXME: overflow detection */
3307 V_R8(&tv) = V_R8(&lv) + V_R8(&rv);
3308 break;
3309 default:
3310 ERR("We shouldn't get here! tvt = %d!\n", tvt);
3311 break;
3312 }
3313 if (resvt != tvt) {
3314 if ((hres = VariantChangeType(result, &tv, 0, resvt)) != S_OK) {
3315 /* Overflow! Change to the vartype with the next higher priority.
3316 With one exception: I4 ==> R8 even if it would fit in I8 */
3317 if (resvt == VT_I4)
3318 resvt = VT_R8;
3319 else
3320 resvt = prio2vt[coerce[resvt] + 1];
3321 hres = VariantChangeType(result, &tv, 0, resvt);
3322 }
3323 } else
3324 hres = VariantCopy(result, &tv);
3325
3326 end:
3327 if (hres != S_OK) {
3328 V_VT(result) = VT_EMPTY;
3329 V_I4(result) = 0; /* No V_EMPTY */
3330 }
3331 VariantClear(&lv);
3332 VariantClear(&rv);
3333 VariantClear(&tv);
3334 VariantClear(&tempLeft);
3335 VariantClear(&tempRight);
3336 TRACE("returning 0x%8x %s\n", hres, debugstr_variant(result));
3337 return hres;
3338 }
3339
3340 /**********************************************************************
3341 * VarMul [OLEAUT32.156]
3342 *
3343 * Multiply two variants.
3344 *
3345 * PARAMS
3346 * left [I] First variant
3347 * right [I] Second variant
3348 * result [O] Result variant
3349 *
3350 * RETURNS
3351 * Success: S_OK.
3352 * Failure: An HRESULT error code indicating the error.
3353 *
3354 * NOTES
3355 * Native VarMul up to and including WinXP doesn't like I1, UI2, UI4,
3356 * UI8, INT and UINT as input variants. But it can multiply apples with oranges.
3357 *
3358 * Native VarMul doesn't check for NULL in/out pointers and crashes. We do the
3359 * same here.
3360 *
3361 * FIXME
3362 * Overflow checking for R8 (double) overflow. Return DISP_E_OVERFLOW in that
3363 * case.
3364 */
3365 HRESULT WINAPI VarMul(LPVARIANT left, LPVARIANT right, LPVARIANT result)
3366 {
3367 HRESULT hres;
3368 VARTYPE lvt, rvt, resvt, tvt;
3369 VARIANT lv, rv, tv;
3370 VARIANT tempLeft, tempRight;
3371 double r8res;
3372
3373 /* Variant priority for coercion. Sorted from lowest to highest.
3374 VT_ERROR shows an invalid input variant type. */
3375 enum coerceprio { vt_UI1 = 0, vt_I2, vt_I4, vt_I8, vt_CY, vt_R4, vt_R8,
3376 vt_DECIMAL, vt_NULL, vt_ERROR };
3377 /* Mapping from priority to variant type. Keep in sync with coerceprio! */
3378 static const VARTYPE prio2vt[] = { VT_UI1, VT_I2, VT_I4, VT_I8, VT_CY, VT_R4, VT_R8,
3379 VT_DECIMAL, VT_NULL, VT_ERROR };
3380
3381 /* Mapping for coercion from input variant to priority of result variant. */
3382 static const VARTYPE coerce[] = {
3383 /* VT_EMPTY, VT_NULL, VT_I2, VT_I4, VT_R4 */
3384 vt_UI1, vt_NULL, vt_I2, vt_I4, vt_R4,
3385 /* VT_R8, VT_CY, VT_DATE, VT_BSTR, VT_DISPATCH */
3386 vt_R8, vt_CY, vt_R8, vt_R8, vt_ERROR,
3387 /* VT_ERROR, VT_BOOL, VT_VARIANT, VT_UNKNOWN, VT_DECIMAL */
3388 vt_ERROR, vt_I2, vt_ERROR, vt_ERROR, vt_DECIMAL,
3389 /* 15, VT_I1, VT_UI1, VT_UI2, VT_UI4 VT_I8 */
3390 vt_ERROR, vt_ERROR, vt_UI1, vt_ERROR, vt_ERROR, vt_I8
3391 };
3392
3393 TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
3394
3395 VariantInit(&lv);
3396 VariantInit(&rv);
3397 VariantInit(&tv);
3398 VariantInit(&tempLeft);
3399 VariantInit(&tempRight);
3400
3401 /* Handle VT_DISPATCH by storing and taking address of returned value */
3402 if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH)
3403 {
3404 hres = VARIANT_FetchDispatchValue(left, &tempLeft);
3405 if (FAILED(hres)) goto end;
3406 left = &tempLeft;
3407 }
3408 if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH)
3409 {
3410 hres = VARIANT_FetchDispatchValue(right, &tempRight);
3411 if (FAILED(hres)) goto end;
3412 right = &tempRight;
3413 }
3414
3415 lvt = V_VT(left)&VT_TYPEMASK;
3416 rvt = V_VT(right)&VT_TYPEMASK;
3417
3418 /* If we have any flag set (VT_ARRAY, VT_VECTOR, etc.) bail out.
3419 Same for any input variant type > VT_I8 */
3420 if (V_VT(left) & ~VT_TYPEMASK || V_VT(right) & ~VT_TYPEMASK ||
3421 lvt > VT_I8 || rvt > VT_I8) {
3422 hres = DISP_E_BADVARTYPE;
3423 goto end;
3424 }
3425
3426 /* Determine the variant type to coerce to. */
3427 if (coerce[lvt] > coerce[rvt]) {
3428 resvt = prio2vt[coerce[lvt]];
3429 tvt = prio2vt[coerce[rvt]];
3430 } else {
3431 resvt = prio2vt[coerce[rvt]];
3432 tvt = prio2vt[coerce[lvt]];
3433 }
3434
3435 /* Special cases where the result variant type is defined by both
3436 input variants and not only that with the highest priority */
3437 if (resvt == VT_R4 && (tvt == VT_CY || tvt == VT_I8 || tvt == VT_I4))
3438 resvt = VT_R8;
3439 if (lvt == VT_EMPTY && rvt == VT_EMPTY)
3440 resvt = VT_I2;
3441
3442 /* For overflow detection use the biggest compatible type for the
3443 multiplication */
3444 switch (resvt) {
3445 case VT_ERROR:
3446 hres = DISP_E_BADVARTYPE;
3447 goto end;
3448 case VT_NULL:
3449 hres = S_OK;
3450 V_VT(result) = VT_NULL;
3451 goto end;
3452 case VT_UI1:
3453 case VT_I2:
3454 case VT_I4:
3455 case VT_I8:
3456 tvt = VT_I8;
3457 break;
3458 case VT_R4:
3459 tvt = VT_R8;
3460 break;
3461 default:
3462 tvt = resvt;
3463 }
3464
3465 /* Now coerce the variants */
3466 hres = VariantChangeType(&lv, left, 0, tvt);
3467 if (FAILED(hres))
3468 goto end;
3469 hres = VariantChangeType(&rv, right, 0, tvt);
3470 if (FAILED(hres))
3471 goto end;
3472
3473 /* Do the math */
3474 hres = S_OK;
3475 V_VT(&tv) = tvt;
3476 V_VT(result) = resvt;
3477 switch (tvt) {
3478 case VT_DECIMAL:
3479 hres = VarDecMul(&V_DECIMAL(&lv), &V_DECIMAL(&rv),
3480 &V_DECIMAL(result));
3481 goto end;
3482 case VT_CY:
3483 hres = VarCyMul(V_CY(&lv), V_CY(&rv), &V_CY(result));
3484 goto end;
3485 case VT_I8:
3486 /* Overflow detection */
3487 r8res = (double)V_I8(&lv) * (double)V_I8(&rv);
3488 if (r8res > (double)I8_MAX || r8res < (double)I8_MIN) {
3489 V_VT(result) = VT_R8;
3490 V_R8(result) = r8res;
3491 goto end;
3492 } else
3493 V_I8(&tv) = V_I8(&lv) * V_I8(&rv);
3494 break;
3495 case VT_R8:
3496 /* FIXME: overflow detection */
3497 V_R8(&tv) = V_R8(&lv) * V_R8(&rv);
3498 break;
3499 default:
3500 ERR("We shouldn't get here! tvt = %d!\n", tvt);
3501 break;
3502 }
3503 if (resvt != tvt) {
3504 while ((hres = VariantChangeType(result, &tv, 0, resvt)) != S_OK) {
3505 /* Overflow! Change to the vartype with the next higher priority.
3506 With one exception: I4 ==> R8 even if it would fit in I8 */
3507 if (resvt == VT_I4)
3508 resvt = VT_R8;
3509 else
3510 resvt = prio2vt[coerce[resvt] + 1];
3511 }
3512 } else
3513 hres = VariantCopy(result, &tv);
3514
3515 end:
3516 if (hres != S_OK) {
3517 V_VT(result) = VT_EMPTY;
3518 V_I4(result) = 0; /* No V_EMPTY */
3519 }
3520 VariantClear(&lv);
3521 VariantClear(&rv);
3522 VariantClear(&tv);
3523 VariantClear(&tempLeft);
3524 VariantClear(&tempRight);
3525 TRACE("returning 0x%8x %s\n", hres, debugstr_variant(result));
3526 return hres;
3527 }
3528
3529 /**********************************************************************
3530 * VarDiv [OLEAUT32.143]
3531 *
3532 * Divides one variant with another.
3533 *
3534 * PARAMS
3535 * left [I] First variant
3536 * right [I] Second variant
3537 * result [O] Result variant
3538 *
3539 * RETURNS
3540 * Success: S_OK.
3541 * Failure: An HRESULT error code indicating the error.
3542 */
3543 HRESULT WINAPI VarDiv(LPVARIANT left, LPVARIANT right, LPVARIANT result)
3544 {
3545 HRESULT hres = S_OK;
3546 VARTYPE resvt = VT_EMPTY;
3547 VARTYPE leftvt,rightvt;
3548 VARTYPE rightExtraFlags,leftExtraFlags,ExtraFlags;
3549 VARIANT lv,rv;
3550 VARIANT tempLeft, tempRight;
3551
3552 VariantInit(&tempLeft);
3553 VariantInit(&tempRight);
3554 VariantInit(&lv);
3555 VariantInit(&rv);
3556
3557 TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
3558
3559 /* Handle VT_DISPATCH by storing and taking address of returned value */
3560 if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH)
3561 {
3562 hres = VARIANT_FetchDispatchValue(left, &tempLeft);
3563 if (FAILED(hres)) goto end;
3564 left = &tempLeft;
3565 }
3566 if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH)
3567 {
3568 hres = VARIANT_FetchDispatchValue(right, &tempRight);
3569 if (FAILED(hres)) goto end;
3570 right = &tempRight;
3571 }
3572
3573 leftvt = V_VT(left)&VT_TYPEMASK;
3574 rightvt = V_VT(right)&VT_TYPEMASK;
3575 leftExtraFlags = V_VT(left)&(~VT_TYPEMASK);
3576 rightExtraFlags = V_VT(right)&(~VT_TYPEMASK);
3577
3578 if (leftExtraFlags != rightExtraFlags)
3579 {
3580 hres = DISP_E_BADVARTYPE;
3581 goto end;
3582 }
3583 ExtraFlags = leftExtraFlags;
3584
3585 /* Native VarDiv always returns an error when using extra flags */
3586 if (ExtraFlags != 0)
3587 {
3588 hres = DISP_E_BADVARTYPE;
3589 goto end;
3590 }
3591
3592 /* Determine return type */
3593 if (rightvt != VT_EMPTY)
3594 {
3595 if (leftvt == VT_NULL || rightvt == VT_NULL)
3596 {
3597 V_VT(result) = VT_NULL;
3598 hres = S_OK;
3599 goto end;
3600 }
3601 else if (leftvt == VT_DECIMAL || rightvt == VT_DECIMAL)
3602 resvt = VT_DECIMAL;
3603 else if (leftvt == VT_I8 || rightvt == VT_I8 ||
3604 leftvt == VT_CY || rightvt == VT_CY ||
3605 leftvt == VT_DATE || rightvt == VT_DATE ||
3606 leftvt == VT_I4 || rightvt == VT_I4 ||
3607 leftvt == VT_BSTR || rightvt == VT_BSTR ||
3608 leftvt == VT_I2 || rightvt == VT_I2 ||
3609 leftvt == VT_BOOL || rightvt == VT_BOOL ||
3610 leftvt == VT_R8 || rightvt == VT_R8 ||
3611 leftvt == VT_UI1 || rightvt == VT_UI1)
3612 {
3613 if ((leftvt == VT_UI1 && rightvt == VT_R4) ||
3614 (leftvt == VT_R4 && rightvt == VT_UI1))
3615 resvt = VT_R4;
3616 else if ((leftvt == VT_R4 && (rightvt == VT_BOOL ||
3617 rightvt == VT_I2)) || (rightvt == VT_R4 &&
3618 (leftvt == VT_BOOL || leftvt == VT_I2)))
3619 resvt = VT_R4;
3620 else
3621 resvt = VT_R8;
3622 }
3623 else if (leftvt == VT_R4 || rightvt == VT_R4)
3624 resvt = VT_R4;
3625 }
3626 else if (leftvt == VT_NULL)
3627 {
3628 V_VT(result) = VT_NULL;
3629 hres = S_OK;
3630 goto end;
3631 }
3632 else
3633 {
3634 hres = DISP_E_BADVARTYPE;
3635 goto end;
3636 }
3637
3638 /* coerce to the result type */
3639 hres = VariantChangeType(&lv, left, 0, resvt);
3640 if (hres != S_OK) goto end;
3641
3642 hres = VariantChangeType(&rv, right, 0, resvt);
3643 if (hres != S_OK) goto end;
3644
3645 /* do the math */
3646 V_VT(result) = resvt;
3647 switch (resvt)
3648 {
3649 case VT_R4:
3650 if (V_R4(&lv) == 0.0 && V_R4(&rv) == 0.0)
3651 {
3652 hres = DISP_E_OVERFLOW;
3653 V_VT(result) = VT_EMPTY;
3654 }
3655 else if (V_R4(&rv) == 0.0)
3656 {
3657 hres = DISP_E_DIVBYZERO;
3658 V_VT(result) = VT_EMPTY;
3659 }
3660 else
3661 V_R4(result) = V_R4(&lv) / V_R4(&rv);
3662 break;
3663 case VT_R8:
3664 if (V_R8(&lv) == 0.0 && V_R8(&rv) == 0.0)
3665 {
3666 hres = DISP_E_OVERFLOW;
3667 V_VT(result) = VT_EMPTY;
3668 }
3669 else if (V_R8(&rv) == 0.0)
3670 {
3671 hres = DISP_E_DIVBYZERO;
3672 V_VT(result) = VT_EMPTY;
3673 }
3674 else
3675 V_R8(result) = V_R8(&lv) / V_R8(&rv);
3676 break;
3677 case VT_DECIMAL:
3678 hres = VarDecDiv(&(V_DECIMAL(&lv)), &(V_DECIMAL(&rv)), &(V_DECIMAL(result)));
3679 break;
3680 }
3681
3682 end:
3683 VariantClear(&lv);
3684 VariantClear(&rv);
3685 VariantClear(&tempLeft);
3686 VariantClear(&tempRight);
3687 TRACE("returning 0x%8x %s\n", hres, debugstr_variant(result));
3688 return hres;
3689 }
3690
3691 /**********************************************************************
3692 * VarSub [OLEAUT32.159]
3693 *
3694 * Subtract two variants.
3695 *
3696 * PARAMS
3697 * left [I] First variant
3698 * right [I] Second variant
3699 * result [O] Result variant
3700 *
3701 * RETURNS
3702 * Success: S_OK.
3703 * Failure: An HRESULT error code indicating the error.
3704 */
3705 HRESULT WINAPI VarSub(LPVARIANT left, LPVARIANT right, LPVARIANT result)
3706 {
3707 HRESULT hres = S_OK;
3708 VARTYPE resvt = VT_EMPTY;
3709 VARTYPE leftvt,rightvt;
3710 VARTYPE rightExtraFlags,leftExtraFlags,ExtraFlags;
3711 VARIANT lv,rv;
3712 VARIANT tempLeft, tempRight;
3713
3714 VariantInit(&lv);
3715 VariantInit(&rv);
3716 VariantInit(&tempLeft);
3717 VariantInit(&tempRight);
3718
3719 TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
3720
3721 if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH &&
3722 (V_VT(left)&(~VT_TYPEMASK)) == 0 &&
3723 (V_VT(right) & VT_TYPEMASK) != VT_NULL)
3724 {
3725 if (NULL == V_DISPATCH(left)) {
3726 if ((V_VT(right) & VT_TYPEMASK) >= VT_INT_PTR)
3727 hres = DISP_E_BADVARTYPE;
3728 else if ((V_VT(right) & VT_TYPEMASK) >= VT_UI8 &&
3729 (V_VT(right) & VT_TYPEMASK) < VT_RECORD)
3730 hres = DISP_E_BADVARTYPE;
3731 else switch (V_VT(right) & VT_TYPEMASK)
3732 {
3733 case VT_VARIANT:
3734 case VT_UNKNOWN:
3735 case 15:
3736 case VT_I1:
3737 case VT_UI2:
3738 case VT_UI4:
3739 hres = DISP_E_BADVARTYPE;
3740 }
3741 if (FAILED(hres)) goto end;
3742 }
3743 hres = VARIANT_FetchDispatchValue(left, &tempLeft);
3744 if (FAILED(hres)) goto end;
3745 left = &tempLeft;
3746 }
3747 if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH &&
3748 (V_VT(right)&(~VT_TYPEMASK)) == 0 &&
3749 (V_VT(left) & VT_TYPEMASK) != VT_NULL)
3750 {
3751 if (NULL == V_DISPATCH(right))
3752 {
3753 if ((V_VT(left) & VT_TYPEMASK) >= VT_INT_PTR)
3754 hres = DISP_E_BADVARTYPE;
3755 else if ((V_VT(left) & VT_TYPEMASK) >= VT_UI8 &&
3756 (V_VT(left) & VT_TYPEMASK) < VT_RECORD)
3757 hres = DISP_E_BADVARTYPE;
3758 else switch (V_VT(left) & VT_TYPEMASK)
3759 {
3760 case VT_VARIANT:
3761 case VT_UNKNOWN:
3762 case 15:
3763 case VT_I1:
3764 case VT_UI2:
3765 case VT_UI4:
3766 hres = DISP_E_BADVARTYPE;
3767 }
3768 if (FAILED(hres)) goto end;
3769 }
3770 hres = VARIANT_FetchDispatchValue(right, &tempRight);
3771 if (FAILED(hres)) goto end;
3772 right = &tempRight;
3773 }
3774
3775 leftvt = V_VT(left)&VT_TYPEMASK;
3776 rightvt = V_VT(right)&VT_TYPEMASK;
3777 leftExtraFlags = V_VT(left)&(~VT_TYPEMASK);
3778 rightExtraFlags = V_VT(right)&(~VT_TYPEMASK);
3779
3780 if (leftExtraFlags != rightExtraFlags)
3781 {
3782 hres = DISP_E_BADVARTYPE;
3783 goto end;
3784 }
3785 ExtraFlags = leftExtraFlags;
3786
3787 /* determine return type and return code */
3788 /* All extra flags produce errors */
3789 if (ExtraFlags == (VT_VECTOR|VT_BYREF|VT_RESERVED) ||
3790 ExtraFlags == (VT_VECTOR|VT_RESERVED) ||
3791 ExtraFlags == (VT_VECTOR|VT_BYREF) ||
3792 ExtraFlags == (VT_BYREF|VT_RESERVED) ||
3793 ExtraFlags == VT_VECTOR ||
3794 ExtraFlags == VT_BYREF ||
3795 ExtraFlags == VT_RESERVED)
3796 {
3797 hres = DISP_E_BADVARTYPE;
3798 goto end;
3799 }
3800 else if (ExtraFlags >= VT_ARRAY)
3801 {
3802 hres = DISP_E_TYPEMISMATCH;
3803 goto end;
3804 }
3805 /* Native VarSub cannot handle: VT_I1, VT_UI2, VT_UI4,
3806 VT_INT, VT_UINT and VT_UI8. Tested with WinXP */
3807 else if (leftvt == VT_CLSID || rightvt == VT_CLSID ||
3808 leftvt == VT_VARIANT || rightvt == VT_VARIANT ||
3809 leftvt == VT_I1 || rightvt == VT_I1 ||
3810 leftvt == VT_UI2 || rightvt == VT_UI2 ||
3811 leftvt == VT_UI4 || rightvt == VT_UI4 ||
3812 leftvt == VT_UI8 || rightvt == VT_UI8 ||
3813 leftvt == VT_INT || rightvt == VT_INT ||
3814 leftvt == VT_UINT || rightvt == VT_UINT ||
3815 leftvt == VT_UNKNOWN || rightvt == VT_UNKNOWN ||
3816 leftvt == VT_RECORD || rightvt == VT_RECORD)
3817 {
3818 if (leftvt == VT_RECORD && rightvt == VT_I8)
3819 hres = DISP_E_TYPEMISMATCH;
3820 else if (leftvt < VT_UI1 && rightvt == VT_RECORD)
3821 hres = DISP_E_TYPEMISMATCH;
3822 else if (leftvt >= VT_UI1 && rightvt == VT_RECORD)
3823 hres = DISP_E_TYPEMISMATCH;
3824 else if (leftvt == VT_RECORD && rightvt <= VT_UI1)
3825 hres = DISP_E_TYPEMISMATCH;
3826 else if (leftvt == VT_RECORD && rightvt > VT_UI1)
3827 hres = DISP_E_BADVARTYPE;
3828 else
3829 hres = DISP_E_BADVARTYPE;
3830 goto end;
3831 }
3832 /* The following flags/types are invalid for left variant */
3833 else if (!((leftvt <= VT_LPWSTR || leftvt == VT_RECORD ||
3834 leftvt == VT_CLSID) && leftvt != (VARTYPE)15 /* undefined vt */ &&
3835 (leftvt < VT_VOID || leftvt > VT_LPWSTR)))
3836 {
3837 hres = DISP_E_BADVARTYPE;
3838 goto end;
3839 }
3840 /* The following flags/types are invalid for right variant */
3841 else if (!((rightvt <= VT_LPWSTR || rightvt == VT_RECORD ||
3842 rightvt == VT_CLSID) && rightvt != (VARTYPE)15 /* undefined vt */ &&
3843 (rightvt < VT_VOID || rightvt > VT_LPWSTR)))
3844 {
3845 hres = DISP_E_BADVARTYPE;
3846 goto end;
3847 }
3848 else if ((leftvt == VT_NULL && rightvt == VT_DISPATCH) ||
3849 (leftvt == VT_DISPATCH && rightvt == VT_NULL))
3850 resvt = VT_NULL;
3851 else if (leftvt == VT_DISPATCH || rightvt == VT_DISPATCH ||
3852 leftvt == VT_ERROR || rightvt == VT_ERROR)
3853 {
3854 hres = DISP_E_TYPEMISMATCH;
3855 goto end;
3856 }
3857 else if (leftvt == VT_NULL || rightvt == VT_NULL)
3858 resvt = VT_NULL;
3859 else if ((leftvt == VT_EMPTY && rightvt == VT_BSTR) ||
3860 (leftvt == VT_DATE && rightvt == VT_DATE) ||
3861 (leftvt == VT_BSTR && rightvt == VT_EMPTY) ||
3862 (leftvt == VT_BSTR && rightvt == VT_BSTR))
3863 resvt = VT_R8;
3864 else if (leftvt == VT_DECIMAL || rightvt == VT_DECIMAL)
3865 resvt = VT_DECIMAL;
3866 else if (leftvt == VT_DATE || rightvt == VT_DATE)
3867 resvt = VT_DATE;
3868 else if (leftvt == VT_CY || rightvt == VT_CY)
3869 resvt = VT_CY;
3870 else if (leftvt == VT_R8 || rightvt == VT_R8)
3871 resvt = VT_R8;
3872 else if (leftvt == VT_BSTR || rightvt == VT_BSTR)
3873 resvt = VT_R8;
3874 else if (leftvt == VT_R4 || rightvt == VT_R4)
3875 {
3876 if (leftvt == VT_I4 || rightvt == VT_I4 ||
3877 leftvt == VT_I8 || rightvt == VT_I8)
3878 resvt = VT_R8;
3879 else
3880 resvt = VT_R4;
3881 }
3882 else if (leftvt == VT_I8 || rightvt == VT_I8)
3883 resvt = VT_I8;
3884 else if (leftvt == VT_I4 || rightvt == VT_I4)
3885 resvt = VT_I4;
3886 else if (leftvt == VT_I2 || rightvt == VT_I2 ||
3887 leftvt == VT_BOOL || rightvt == VT_BOOL ||
3888 (leftvt == VT_EMPTY && rightvt == VT_EMPTY))
3889 resvt = VT_I2;
3890 else if (leftvt == VT_UI1 || rightvt == VT_UI1)
3891 resvt = VT_UI1;
3892 else
3893 {
3894 hres = DISP_E_TYPEMISMATCH;
3895 goto end;
3896 }
3897
3898 /* coerce to the result type */
3899 if (leftvt == VT_BSTR && rightvt == VT_DATE)
3900 hres = VariantChangeType(&lv, left, 0, VT_R8);
3901 else
3902 hres = VariantChangeType(&lv, left, 0, resvt);
3903 if (hres != S_OK) goto end;
3904 if (leftvt == VT_DATE && rightvt == VT_BSTR)
3905 hres = VariantChangeType(&rv, right, 0, VT_R8);
3906 else
3907 hres = VariantChangeType(&rv, right, 0, resvt);
3908 if (hres != S_OK) goto end;
3909
3910 /* do the math */
3911 V_VT(result) = resvt;
3912 switch (resvt)
3913 {
3914 case VT_NULL:
3915 break;
3916 case VT_DATE:
3917 V_DATE(result) = V_DATE(&lv) - V_DATE(&rv);
3918 break;
3919 case VT_CY:
3920 hres = VarCySub(V_CY(&lv), V_CY(&rv), &(V_CY(result)));
3921 break;
3922 case VT_R4:
3923 V_R4(result) = V_R4(&lv) - V_R4(&rv);
3924 break;
3925 case VT_I8:
3926 V_I8(result) = V_I8(&lv) - V_I8(&rv);
3927 break;
3928 case VT_I4:
3929 V_I4(result) = V_I4(&lv) - V_I4(&rv);
3930 break;
3931 case VT_I2:
3932 V_I2(result) = V_I2(&lv) - V_I2(&rv);
3933 break;
3934 case VT_UI1:
3935 V_UI1(result) = V_UI2(&lv) - V_UI1(&rv);
3936 break;
3937 case VT_R8:
3938 V_R8(result) = V_R8(&lv) - V_R8(&rv);
3939 break;
3940 case VT_DECIMAL:
3941 hres = VarDecSub(&(V_DECIMAL(&lv)), &(V_DECIMAL(&rv)), &(V_DECIMAL(result)));
3942 break;
3943 }
3944
3945 end:
3946 VariantClear(&lv);
3947 VariantClear(&rv);
3948 VariantClear(&tempLeft);
3949 VariantClear(&tempRight);
3950 TRACE("returning 0x%8x %s\n", hres, debugstr_variant(result));
3951 return hres;
3952 }
3953
3954
3955 /**********************************************************************
3956 * VarOr [OLEAUT32.157]
3957 *
3958 * Perform a logical or (OR) operation on two variants.
3959 *
3960 * PARAMS
3961 * pVarLeft [I] First variant
3962 * pVarRight [I] Variant to OR with pVarLeft
3963 * pVarOut [O] Destination for OR result
3964 *
3965 * RETURNS
3966 * Success: S_OK. pVarOut contains the result of the operation with its type
3967 * taken from the table listed under VarXor().
3968 * Failure: An HRESULT error code indicating the error.
3969 *
3970 * NOTES
3971 * See the Notes section of VarXor() for further information.
3972 */
3973 HRESULT WINAPI VarOr(LPVARIANT pVarLeft, LPVARIANT pVarRight, LPVARIANT pVarOut)
3974 {
3975 VARTYPE vt = VT_I4;
3976 VARIANT varLeft, varRight, varStr;
3977 HRESULT hRet;
3978 VARIANT tempLeft, tempRight;
3979
3980 VariantInit(&tempLeft);
3981 VariantInit(&tempRight);
3982 VariantInit(&varLeft);
3983 VariantInit(&varRight);
3984 VariantInit(&varStr);
3985
3986 TRACE("(%s,%s,%p)\n", debugstr_variant(pVarLeft), debugstr_variant(pVarRight), pVarOut);
3987
3988 /* Handle VT_DISPATCH by storing and taking address of returned value */
3989 if ((V_VT(pVarLeft) & VT_TYPEMASK) == VT_DISPATCH)
3990 {
3991 hRet = VARIANT_FetchDispatchValue(pVarLeft, &tempLeft);
3992 if (FAILED(hRet)) goto VarOr_Exit;
3993 pVarLeft = &tempLeft;
3994 }
3995 if ((V_VT(pVarRight) & VT_TYPEMASK) == VT_DISPATCH)
3996 {
3997 hRet = VARIANT_FetchDispatchValue(pVarRight, &tempRight);
3998 if (FAILED(hRet)) goto VarOr_Exit;
3999 pVarRight = &tempRight;
4000 }
4001
4002 if (V_EXTRA_TYPE(pVarLeft) || V_EXTRA_TYPE(pVarRight) ||
4003 V_VT(pVarLeft) == VT_UNKNOWN || V_VT(pVarRight) == VT_UNKNOWN ||
4004 V_VT(pVarLeft) == VT_DISPATCH || V_VT(pVarRight) == VT_DISPATCH ||
4005 V_VT(pVarLeft) == VT_RECORD || V_VT(pVarRight) == VT_RECORD)
4006 {
4007 hRet = DISP_E_BADVARTYPE;
4008 goto VarOr_Exit;
4009 }
4010
4011 V_VT(&varLeft) = V_VT(&varRight) = V_VT(&varStr) = VT_EMPTY;
4012
4013 if (V_VT(pVarLeft) == VT_NULL || V_VT(pVarRight) == VT_NULL)
4014 {
4015 /* NULL OR Zero is NULL, NULL OR value is value */
4016 if (V_VT(pVarLeft) == VT_NULL)
4017 pVarLeft = pVarRight; /* point to the non-NULL var */
4018
4019 V_VT(pVarOut) = VT_NULL;
4020 V_I4(pVarOut) = 0;
4021
4022 switch (V_VT(pVarLeft))
4023 {
4024 case VT_DATE: case VT_R8:
4025 if (V_R8(pVarLeft))
4026 goto VarOr_AsEmpty;
4027 hRet = S_OK;
4028 goto VarOr_Exit;
4029 case VT_BOOL:
4030 if (V_BOOL(pVarLeft))
4031 *pVarOut = *pVarLeft;
4032 hRet = S_OK;
4033 goto VarOr_Exit;
4034 case VT_I2: case VT_UI2:
4035 if (V_I2(pVarLeft))
4036 goto VarOr_AsEmpty;
4037 hRet = S_OK;
4038 goto VarOr_Exit;
4039 case VT_I1:
4040 if (V_I1(pVarLeft))
4041 goto VarOr_AsEmpty;
4042 hRet = S_OK;
4043 goto VarOr_Exit;
4044 case VT_UI1:
4045 if (V_UI1(pVarLeft))
4046 *pVarOut = *pVarLeft;
4047 hRet = S_OK;
4048 goto VarOr_Exit;
4049 case VT_R4:
4050 if (V_R4(pVarLeft))
4051 goto VarOr_AsEmpty;
4052 hRet = S_OK;
4053 goto VarOr_Exit;
4054 case VT_I4: case VT_UI4: case VT_INT: case VT_UINT:
4055 if (V_I4(pVarLeft))
4056 goto VarOr_AsEmpty;
4057 hRet = S_OK;
4058 goto VarOr_Exit;
4059 case VT_CY:
4060 if (V_CY(pVarLeft).int64)
4061 goto VarOr_AsEmpty;
4062 hRet = S_OK;
4063 goto VarOr_Exit;
4064 case VT_I8: case VT_UI8:
4065 if (V_I8(pVarLeft))
4066 goto VarOr_AsEmpty;
4067 hRet = S_OK;
4068 goto VarOr_Exit;
4069 case VT_DECIMAL:
4070 if (DEC_HI32(&V_DECIMAL(pVarLeft)) || DEC_LO64(&V_DECIMAL(pVarLeft)))
4071 goto VarOr_AsEmpty;
4072 hRet = S_OK;
4073 goto VarOr_Exit;
4074 case VT_BSTR:
4075 {
4076 VARIANT_BOOL b;
4077
4078 if (!V_BSTR(pVarLeft))
4079 {
4080 hRet = DISP_E_BADVARTYPE;
4081 goto VarOr_Exit;
4082 }
4083
4084 hRet = VarBoolFromStr(V_BSTR(pVarLeft), LOCALE_USER_DEFAULT, VAR_LOCALBOOL, &b);
4085 if (SUCCEEDED(hRet) && b)
4086 {
4087 V_VT(pVarOut) = VT_BOOL;
4088 V_BOOL(pVarOut) = b;
4089 }
4090 goto VarOr_Exit;
4091 }
4092 case VT_NULL: case VT_EMPTY:
4093 V_VT(pVarOut) = VT_NULL;
4094 hRet = S_OK;
4095 goto VarOr_Exit;
4096 default:
4097 hRet = DISP_E_BADVARTYPE;
4098 goto VarOr_Exit;
4099 }
4100 }
4101
4102 if (V_VT(pVarLeft) == VT_EMPTY || V_VT(pVarRight) == VT_EMPTY)
4103 {
4104 if (V_VT(pVarLeft) == VT_EMPTY)
4105 pVarLeft = pVarRight; /* point to the non-EMPTY var */
4106
4107 VarOr_AsEmpty:
4108 /* Since one argument is empty (0), OR'ing it with the other simply
4109 * gives the others value (as 0|x => x). So just convert the other
4110 * argument to the required result type.
4111 */
4112 switch (V_VT(pVarLeft))
4113 {
4114 case VT_BSTR:
4115 if (!V_BSTR(pVarLeft))
4116 {
4117 hRet = DISP_E_BADVARTYPE;
4118 goto VarOr_Exit;
4119 }
4120
4121 hRet = VariantCopy(&varStr, pVarLeft);
4122 if (FAILED(hRet))
4123 goto VarOr_Exit;
4124 pVarLeft = &varStr;
4125 hRet = VariantChangeType(pVarLeft, pVarLeft, 0, VT_BOOL);
4126 if (FAILED(hRet))
4127 goto VarOr_Exit;
4128 /* Fall Through ... */
4129 case VT_EMPTY: case VT_UI1: case VT_BOOL: case VT_I2:
4130 V_VT(pVarOut) = VT_I2;
4131 break;
4132 case VT_DATE: case VT_CY: case VT_DECIMAL: case VT_R4: case VT_R8:
4133 case VT_I1: case VT_UI2: case VT_I4: case VT_UI4:
4134 case VT_INT: case VT_UINT: case VT_UI8:
4135 V_VT(pVarOut) = VT_I4;
4136 break;
4137 case VT_I8:
4138 V_VT(pVarOut) = VT_I8;
4139 break;
4140 default:
4141 hRet = DISP_E_BADVARTYPE;
4142 goto VarOr_Exit;
4143 }
4144 hRet = VariantCopy(&varLeft, pVarLeft);
4145 if (FAILED(hRet))
4146 goto VarOr_Exit;
4147 pVarLeft = &varLeft;
4148 hRet = VariantChangeType(pVarOut, pVarLeft, 0, V_VT(pVarOut));
4149 goto VarOr_Exit;
4150 }
4151
4152 if (V_VT(pVarLeft) == VT_BOOL && V_VT(pVarRight) == VT_BOOL)
4153 {
4154 V_VT(pVarOut) = VT_BOOL;
4155 V_BOOL(pVarOut) = V_BOOL(pVarLeft) | V_BOOL(pVarRight);
4156 hRet = S_OK;
4157 goto VarOr_Exit;
4158 }
4159
4160 if (V_VT(pVarLeft) == VT_UI1 && V_VT(pVarRight) == VT_UI1)
4161 {
4162 V_VT(pVarOut) = VT_UI1;
4163 V_UI1(pVarOut) = V_UI1(pVarLeft) | V_UI1(pVarRight);
4164 hRet = S_OK;
4165 goto VarOr_Exit;
4166 }
4167
4168 if (V_VT(pVarLeft) == VT_BSTR)
4169 {
4170 hRet = VariantCopy(&varStr, pVarLeft);
4171 if (FAILED(hRet))
4172 goto VarOr_Exit;
4173 pVarLeft = &varStr;
4174 hRet = VariantChangeType(pVarLeft, pVarLeft, 0, VT_BOOL);
4175 if (FAILED(hRet))
4176 goto VarOr_Exit;
4177 }
4178
4179 if (V_VT(pVarLeft) == VT_BOOL &&
4180 (V_VT(pVarRight) == VT_BOOL || V_VT(pVarRight) == VT_BSTR))
4181 {
4182 vt = VT_BOOL;
4183 }
4184 else if ((V_VT(pVarLeft) == VT_BOOL || V_VT(pVarLeft) == VT_UI1 ||
4185 V_VT(pVarLeft) == VT_I2 || V_VT(pVarLeft) == VT_BSTR) &&
4186 (V_VT(pVarRight) == VT_BOOL || V_VT(pVarRight) == VT_UI1 ||
4187 V_VT(pVarRight) == VT_I2 || V_VT(pVarRight) == VT_BSTR))
4188 {
4189 vt = VT_I2;
4190 }
4191 else if (V_VT(pVarLeft) == VT_I8 || V_VT(pVarRight) == VT_I8)
4192 {
4193 if (V_VT(pVarLeft) == VT_INT || V_VT(pVarRight) == VT_INT)
4194 {
4195 hRet = DISP_E_TYPEMISMATCH;
4196 goto VarOr_Exit;
4197 }
4198 vt = VT_I8;
4199 }
4200
4201 hRet = VariantCopy(&varLeft, pVarLeft);
4202 if (FAILED(hRet))
4203 goto VarOr_Exit;
4204
4205 hRet = VariantCopy(&varRight, pVarRight);
4206 if (FAILED(hRet))
4207 goto VarOr_Exit;
4208
4209 if (vt == VT_I4 && V_VT(&varLeft) == VT_UI4)
4210 V_VT(&varLeft) = VT_I4; /* Don't overflow */
4211 else
4212 {
4213 double d;
4214
4215 if (V_VT(&varLeft) == VT_BSTR &&
4216 FAILED(VarR8FromStr(V_BSTR(&varLeft), LOCALE_USER_DEFAULT, 0, &d)))
4217 hRet = VariantChangeType(&varLeft, &varLeft, VARIANT_LOCALBOOL, VT_BOOL);
4218 if (SUCCEEDED(hRet) && V_VT(&varLeft) != vt)
4219 hRet = VariantChangeType(&varLeft, &varLeft, 0, vt);
4220 if (FAILED(hRet))
4221 goto VarOr_Exit;
4222 }
4223
4224 if (vt == VT_I4 && V_VT(&varRight) == VT_UI4)
4225 V_VT(&varRight) = VT_I4; /* Don't overflow */
4226 else
4227 {
4228 double d;
4229
4230 if (V_VT(&varRight) == VT_BSTR &&
4231 FAILED(VarR8FromStr(V_BSTR(&varRight), LOCALE_USER_DEFAULT, 0, &d)))
4232 hRet = VariantChangeType(&varRight, &varRight, VARIANT_LOCALBOOL, VT_BOOL);
4233 if (SUCCEEDED(hRet) && V_VT(&varRight) != vt)
4234 hRet = VariantChangeType(&varRight, &varRight, 0, vt);
4235 if (FAILED(hRet))
4236 goto VarOr_Exit;
4237 }
4238
4239 V_VT(pVarOut) = vt;
4240 if (vt == VT_I8)
4241 {
4242 V_I8(pVarOut) = V_I8(&varLeft) | V_I8(&varRight);
4243 }
4244 else if (vt == VT_I4)
4245 {
4246 V_I4(pVarOut) = V_I4(&varLeft) | V_I4(&varRight);
4247 }
4248 else
4249 {
4250 V_I2(pVarOut) = V_I2(&varLeft) | V_I2(&varRight);
4251 }
4252
4253 VarOr_Exit:
4254 VariantClear(&varStr);
4255 VariantClear(&varLeft);
4256 VariantClear(&varRight);
4257 VariantClear(&tempLeft);
4258 VariantClear(&tempRight);
4259 return hRet;
4260 }
4261
4262 /**********************************************************************
4263 * VarAbs [OLEAUT32.168]
4264 *
4265 * Convert a variant to its absolute value.
4266 *
4267 * PARAMS
4268 * pVarIn [I] Source variant
4269 * pVarOut [O] Destination for converted value
4270 *
4271 * RETURNS
4272 * Success: S_OK. pVarOut contains the absolute value of pVarIn.
4273 * Failure: An HRESULT error code indicating the error.
4274 *
4275 * NOTES
4276 * - This function does not process by-reference variants.
4277 * - The type of the value stored in pVarOut depends on the type of pVarIn,
4278 * according to the following table:
4279 *| Input Type Output Type
4280 *| ---------- -----------
4281 *| VT_BOOL VT_I2
4282 *| VT_BSTR VT_R8
4283 *| (All others) Unchanged
4284 */
4285 HRESULT WINAPI VarAbs(LPVARIANT pVarIn, LPVARIANT pVarOut)
4286 {
4287 VARIANT varIn;
4288 HRESULT hRet = S_OK;
4289 VARIANT temp;
4290
4291 VariantInit(&temp);
4292
4293 TRACE("(%s,%p)\n", debugstr_variant(pVarIn), pVarOut);
4294
4295 /* Handle VT_DISPATCH by storing and taking address of returned value */
4296 if ((V_VT(pVarIn) & VT_TYPEMASK) == VT_DISPATCH && ((V_VT(pVarIn) & ~VT_TYPEMASK) == 0))
4297 {
4298 hRet = VARIANT_FetchDispatchValue(pVarIn, &temp);
4299 if (FAILED(hRet)) goto VarAbs_Exit;
4300 pVarIn = &temp;
4301 }
4302
4303 if (V_ISARRAY(pVarIn) || V_VT(pVarIn) == VT_UNKNOWN ||
4304 V_VT(pVarIn) == VT_DISPATCH || V_VT(pVarIn) == VT_RECORD ||
4305 V_VT(pVarIn) == VT_ERROR)
4306 {
4307 hRet = DISP_E_TYPEMISMATCH;
4308 goto VarAbs_Exit;
4309 }
4310 *pVarOut = *pVarIn; /* Shallow copy the value, and invert it if needed */
4311
4312 #define ABS_CASE(typ,min) \
4313 case VT_##typ: if (V_##typ(pVarIn) == min) hRet = DISP_E_OVERFLOW; \
4314 else if (V_##typ(pVarIn) < 0) V_##typ(pVarOut) = -V_##typ(pVarIn); \
4315 break
4316
4317 switch (V_VT(pVarIn))
4318 {
4319 ABS_CASE(I1,I1_MIN);
4320 case VT_BOOL:
4321 V_VT(pVarOut) = VT_I2;
4322 /* BOOL->I2, Fall through ... */
4323 ABS_CASE(I2,I2_MIN);
4324 case VT_INT:
4325 ABS_CASE(I4,I4_MIN);
4326 ABS_CASE(I8,I8_MIN);
4327 ABS_CASE(R4,R4_MIN);
4328 case VT_BSTR:
4329 hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(&varIn));
4330 if (FAILED(hRet))
4331 break;
4332 V_VT(pVarOut) = VT_R8;
4333 pVarIn = &varIn;
4334 /* Fall through ... */
4335 case VT_DATE:
4336 ABS_CASE(R8,R8_MIN);
4337 case VT_CY:
4338 hRet = VarCyAbs(V_CY(pVarIn), & V_CY(pVarOut));
4339 break;
4340 case VT_DECIMAL:
4341 DEC_SIGN(&V_DECIMAL(pVarOut)) &= ~DECIMAL_NEG;
4342 break;
4343 case VT_UI1:
4344 case VT_UI2:
4345 case VT_UINT:
4346 case VT_UI4:
4347 case VT_UI8:
4348 /* No-Op */
4349 break;
4350 case VT_EMPTY:
4351 V_VT(pVarOut) = VT_I2;
4352 case VT_NULL:
4353 V_I2(pVarOut) = 0;
4354 break;
4355 default:
4356 hRet = DISP_E_BADVARTYPE;
4357 }
4358
4359 VarAbs_Exit:
4360 VariantClear(&temp);
4361 return hRet;
4362 }
4363
4364 /**********************************************************************
4365 * VarFix [OLEAUT32.169]
4366 *
4367 * Truncate a variants value to a whole number.
4368 *
4369 * PARAMS
4370 * pVarIn [I] Source variant
4371 * pVarOut [O] Destination for converted value
4372 *
4373 * RETURNS
4374 * Success: S_OK. pVarOut contains the converted value.
4375 * Failure: An HRESULT error code indicating the error.
4376 *
4377 * NOTES
4378 * - The type of the value stored in pVarOut depends on the type of pVarIn,
4379 * according to the following table:
4380 *| Input Type Output Type
4381 *| ---------- -----------
4382 *| VT_BOOL VT_I2
4383 *| VT_EMPTY VT_I2
4384 *| VT_BSTR VT_R8
4385 *| All Others Unchanged
4386 * - The difference between this function and VarInt() is that VarInt() rounds
4387 * negative numbers away from 0, while this function rounds them towards zero.
4388 */
4389 HRESULT WINAPI VarFix(LPVARIANT pVarIn, LPVARIANT pVarOut)
4390 {
4391 HRESULT hRet = S_OK;
4392 VARIANT temp;
4393
4394 VariantInit(&temp);
4395
4396 TRACE("(%s,%p)\n", debugstr_variant(pVarIn), pVarOut);
4397
4398 /* Handle VT_DISPATCH by storing and taking address of returned value */
4399 if ((V_VT(pVarIn) & VT_TYPEMASK) == VT_DISPATCH && ((V_VT(pVarIn) & ~VT_TYPEMASK) == 0))
4400 {
4401 hRet = VARIANT_FetchDispatchValue(pVarIn, &temp);
4402 if (FAILED(hRet)) goto VarFix_Exit;
4403 pVarIn = &temp;
4404 }
4405 V_VT(pVarOut) = V_VT(pVarIn);
4406
4407 switch (V_VT(pVarIn))
4408 {
4409 case VT_UI1:
4410 V_UI1(pVarOut) = V_UI1(pVarIn);
4411 break;
4412 case VT_BOOL:
4413 V_VT(pVarOut) = VT_I2;
4414 /* Fall through */
4415 case VT_I2:
4416 V_I2(pVarOut) = V_I2(pVarIn);
4417 break;
4418 case VT_I4:
4419 V_I4(pVarOut) = V_I4(pVarIn);
4420 break;
4421 case VT_I8:
4422 V_I8(pVarOut) = V_I8(pVarIn);
4423 break;
4424 case VT_R4:
4425 if (V_R4(pVarIn) < 0.0f)
4426 V_R4(pVarOut) = (float)ceil(V_R4(pVarIn));
4427 else
4428 V_R4(pVarOut) = (float)floor(V_R4(pVarIn));
4429 break;
4430 case VT_BSTR:
4431 V_VT(pVarOut) = VT_R8;
4432 hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(pVarOut));
4433 pVarIn = pVarOut;
4434 /* Fall through */
4435 case VT_DATE:
4436 case VT_R8:
4437 if (V_R8(pVarIn) < 0.0)
4438 V_R8(pVarOut) = ceil(V_R8(pVarIn));
4439 else
4440 V_R8(pVarOut) = floor(V_R8(pVarIn));
4441 break;
4442 case VT_CY:
4443 hRet = VarCyFix(V_CY(pVarIn), &V_CY(pVarOut));
4444 break;
4445 case VT_DECIMAL:
4446 hRet = VarDecFix(&V_DECIMAL(pVarIn), &V_DECIMAL(pVarOut));
4447 break;
4448 case VT_EMPTY:
4449 V_VT(pVarOut) = VT_I2;
4450 V_I2(pVarOut) = 0;
4451 break;
4452 case VT_NULL:
4453 /* No-Op */
4454 break;
4455 default:
4456 if (V_TYPE(pVarIn) == VT_CLSID || /* VT_CLSID is a special case */
4457 FAILED(VARIANT_ValidateType(V_VT(pVarIn))))
4458 hRet = DISP_E_BADVARTYPE;
4459 else
4460 hRet = DISP_E_TYPEMISMATCH;
4461 }
4462 VarFix_Exit:
4463 if (FAILED(hRet))
4464 V_VT(pVarOut) = VT_EMPTY;
4465 VariantClear(&temp);
4466
4467 return hRet;
4468 }
4469
4470 /**********************************************************************
4471 * VarInt [OLEAUT32.172]
4472 *
4473 * Truncate a variants value to a whole number.
4474 *
4475 * PARAMS
4476 * pVarIn [I] Source variant
4477 * pVarOut [O] Destination for converted value
4478 *
4479 * RETURNS
4480 * Success: S_OK. pVarOut contains the converted value.
4481 * Failure: An HRESULT error code indicating the error.
4482 *
4483 * NOTES
4484 * - The type of the value stored in pVarOut depends on the type of pVarIn,
4485 * according to the following table:
4486 *| Input Type Output Type
4487 *| ---------- -----------
4488 *| VT_BOOL VT_I2
4489 *| VT_EMPTY VT_I2
4490 *| VT_BSTR VT_R8
4491 *| All Others Unchanged
4492 * - The difference between this function and VarFix() is that VarFix() rounds
4493 * negative numbers towards 0, while this function rounds them away from zero.
4494 */
4495 HRESULT WINAPI VarInt(LPVARIANT pVarIn, LPVARIANT pVarOut)
4496 {
4497 HRESULT hRet = S_OK;
4498 VARIANT temp;
4499
4500 VariantInit(&temp);
4501
4502 TRACE("(%s,%p)\n", debugstr_variant(pVarIn), pVarOut);
4503
4504 /* Handle VT_DISPATCH by storing and taking address of returned value */
4505 if ((V_VT(pVarIn) & VT_TYPEMASK) == VT_DISPATCH && ((V_VT(pVarIn) & ~VT_TYPEMASK) == 0))
4506 {
4507 hRet = VARIANT_FetchDispatchValue(pVarIn, &temp);
4508 if (FAILED(hRet)) goto VarInt_Exit;
4509 pVarIn = &temp;
4510 }
4511 V_VT(pVarOut) = V_VT(pVarIn);
4512
4513 switch (V_VT(pVarIn))
4514 {
4515 case VT_R4:
4516 V_R4(pVarOut) = (float)floor(V_R4(pVarIn));
4517 break;
4518 case VT_BSTR:
4519 V_VT(pVarOut) = VT_R8;
4520 hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(pVarOut));
4521 pVarIn = pVarOut;
4522 /* Fall through */
4523 case VT_DATE:
4524 case VT_R8:
4525 V_R8(pVarOut) = floor(V_R8(pVarIn));
4526 break;
4527 case VT_CY:
4528 hRet = VarCyInt(V_CY(pVarIn), &V_CY(pVarOut));
4529 break;
4530 case VT_DECIMAL:
4531 hRet = VarDecInt(&V_DECIMAL(pVarIn), &V_DECIMAL(pVarOut));
4532 break;
4533 default:
4534 hRet = VarFix(pVarIn, pVarOut);
4535 }
4536 VarInt_Exit:
4537 VariantClear(&temp);
4538
4539 return hRet;
4540 }
4541
4542 /**********************************************************************
4543 * VarXor [OLEAUT32.167]
4544 *
4545 * Perform a logical exclusive-or (XOR) operation on two variants.
4546 *
4547 * PARAMS
4548 * pVarLeft [I] First variant
4549 * pVarRight [I] Variant to XOR with pVarLeft
4550 * pVarOut [O] Destination for XOR result
4551 *
4552 * RETURNS
4553 * Success: S_OK. pVarOut contains the result of the operation with its type
4554 * taken from the table below).
4555 * Failure: An HRESULT error code indicating the error.
4556 *
4557 * NOTES
4558 * - Neither pVarLeft or pVarRight are modified by this function.
4559 * - This function does not process by-reference variants.
4560 * - Input types of VT_BSTR may be numeric strings or boolean text.
4561 * - The type of result stored in pVarOut depends on the types of pVarLeft
4562 * and pVarRight, and will be one of VT_UI1, VT_I2, VT_I4, VT_I8, VT_BOOL,
4563 * or VT_NULL if the function succeeds.
4564 * - Type promotion is inconsistent and as a result certain combinations of
4565 * values will return DISP_E_OVERFLOW even when they could be represented.
4566 * This matches the behaviour of native oleaut32.
4567 */
4568 HRESULT WINAPI VarXor(LPVARIANT pVarLeft, LPVARIANT pVarRight, LPVARIANT pVarOut)
4569 {
4570 VARTYPE vt;
4571 VARIANT varLeft, varRight;
4572 VARIANT tempLeft, tempRight;
4573 double d;
4574 HRESULT hRet;
4575
4576 TRACE("(%s,%s,%p)\n", debugstr_variant(pVarLeft), debugstr_variant(pVarRight), pVarOut);
4577
4578 if (V_EXTRA_TYPE(pVarLeft) || V_EXTRA_TYPE(pVarRight) ||
4579 V_VT(pVarLeft) > VT_UINT || V_VT(pVarRight) > VT_UINT ||
4580 V_VT(pVarLeft) == VT_VARIANT || V_VT(pVarRight) == VT_VARIANT ||
4581 V_VT(pVarLeft) == VT_UNKNOWN || V_VT(pVarRight) == VT_UNKNOWN ||
4582 V_VT(pVarLeft) == (VARTYPE)15 || V_VT(pVarRight) == (VARTYPE)15 ||
4583 V_VT(pVarLeft) == VT_ERROR || V_VT(pVarRight) == VT_ERROR)
4584 return DISP_E_BADVARTYPE;
4585
4586 if (V_VT(pVarLeft) == VT_NULL || V_VT(pVarRight) == VT_NULL)
4587 {
4588 /* NULL XOR anything valid is NULL */
4589 V_VT(pVarOut) = VT_NULL;
4590 return S_OK;
4591 }
4592
4593 VariantInit(&tempLeft);
4594 VariantInit(&tempRight);
4595
4596 /* Handle VT_DISPATCH by storing and taking address of returned value */
4597 if ((V_VT(pVarLeft) & VT_TYPEMASK) == VT_DISPATCH)
4598 {
4599 hRet = VARIANT_FetchDispatchValue(pVarLeft, &tempLeft);
4600 if (FAILED(hRet)) goto VarXor_Exit;
4601 pVarLeft = &tempLeft;
4602 }
4603 if ((V_VT(pVarRight) & VT_TYPEMASK) == VT_DISPATCH)
4604 {
4605 hRet = VARIANT_FetchDispatchValue(pVarRight, &tempRight);
4606 if (FAILED(hRet)) goto VarXor_Exit;
4607 pVarRight = &tempRight;
4608 }
4609
4610 /* Copy our inputs so we don't disturb anything */
4611 V_VT(&varLeft) = V_VT(&varRight) = VT_EMPTY;
4612
4613 hRet = VariantCopy(&varLeft, pVarLeft);
4614 if (FAILED(hRet))
4615 goto VarXor_Exit;
4616
4617 hRet = VariantCopy(&varRight, pVarRight);
4618 if (FAILED(hRet))
4619 goto VarXor_Exit;
4620
4621 /* Try any strings first as numbers, then as VT_BOOL */
4622 if (V_VT(&varLeft) == VT_BSTR)
4623 {
4624 hRet = VarR8FromStr(V_BSTR(&varLeft), LOCALE_USER_DEFAULT, 0, &d);
4625 hRet = VariantChangeType(&varLeft, &varLeft, VARIANT_LOCALBOOL,
4626 FAILED(hRet) ? VT_BOOL : VT_I4);
4627 if (FAILED(hRet))
4628 goto VarXor_Exit;
4629 }
4630
4631 if (V_VT(&varRight) == VT_BSTR)
4632 {
4633 hRet = VarR8FromStr(V_BSTR(&varRight), LOCALE_USER_DEFAULT, 0, &d);
4634 hRet = VariantChangeType(&varRight, &varRight, VARIANT_LOCALBOOL,
4635 FAILED(hRet) ? VT_BOOL : VT_I4);
4636 if (FAILED(hRet))
4637 goto VarXor_Exit;
4638 }
4639
4640 /* Determine the result type */
4641 if (V_VT(&varLeft) == VT_I8 || V_VT(&varRight) == VT_I8)
4642 {
4643 if (V_VT(pVarLeft) == VT_INT || V_VT(pVarRight) == VT_INT)
4644 {
4645 hRet = DISP_E_TYPEMISMATCH;
4646 goto VarXor_Exit;
4647 }
4648 vt = VT_I8;
4649 }
4650 else
4651 {
4652 switch ((V_VT(&varLeft) << 16) | V_VT(&varRight))
4653 {
4654 case (VT_BOOL << 16) | VT_BOOL:
4655 vt = VT_BOOL;
4656 break;
4657 case (VT_UI1 << 16) | VT_UI1:
4658 vt = VT_UI1;
4659 break;
4660 case (VT_EMPTY << 16) | VT_EMPTY:
4661 case (VT_EMPTY << 16) | VT_UI1:
4662 case (VT_EMPTY << 16) | VT_I2:
4663 case (VT_EMPTY << 16) | VT_BOOL:
4664 case (VT_UI1 << 16) | VT_EMPTY:
4665 case (VT_UI1 << 16) | VT_I2:
4666 case (VT_UI1 << 16) | VT_BOOL:
4667 case (VT_I2 << 16) | VT_EMPTY:
4668 case (VT_I2 << 16) | VT_UI1:
4669 case (VT_I2 << 16) | VT_I2:
4670 case (VT_I2 << 16) | VT_BOOL:
4671 case (VT_BOOL << 16) | VT_EMPTY:
4672 case (VT_BOOL << 16) | VT_UI1:
4673 case (VT_BOOL << 16) | VT_I2:
4674 vt = VT_I2;
4675 break;
4676 default:
4677 vt = VT_I4;
4678 break;
4679 }
4680 }
4681
4682 /* VT_UI4 does not overflow */
4683 if (vt != VT_I8)
4684 {
4685 if (V_VT(&varLeft) == VT_UI4)
4686 V_VT(&varLeft) = VT_I4;
4687 if (V_VT(&varRight) == VT_UI4)
4688 V_VT(&varRight) = VT_I4;
4689 }
4690
4691 /* Convert our input copies to the result type */
4692 if (V_VT(&varLeft) != vt)
4693 hRet = VariantChangeType(&varLeft, &varLeft, 0, vt);
4694 if (FAILED(hRet))
4695 goto VarXor_Exit;
4696
4697 if (V_VT(&varRight) != vt)
4698 hRet = VariantChangeType(&varRight, &varRight, 0, vt);
4699 if (FAILED(hRet))
4700 goto VarXor_Exit;
4701
4702 V_VT(pVarOut) = vt;
4703
4704 /* Calculate the result */
4705 switch (vt)
4706 {
4707 case VT_I8:
4708 V_I8(pVarOut) = V_I8(&varLeft) ^ V_I8(&varRight);
4709 break;
4710 case VT_I4:
4711 V_I4(pVarOut) = V_I4(&varLeft) ^ V_I4(&varRight);
4712 break;
4713 case VT_BOOL:
4714 case VT_I2:
4715 V_I2(pVarOut) = V_I2(&varLeft) ^ V_I2(&varRight);
4716 break;
4717 case VT_UI1:
4718 V_UI1(pVarOut) = V_UI1(&varLeft) ^ V_UI1(&varRight);
4719 break;
4720 }
4721
4722 VarXor_Exit:
4723 VariantClear(&varLeft);
4724 VariantClear(&varRight);
4725 VariantClear(&tempLeft);
4726 VariantClear(&tempRight);
4727 return hRet;
4728 }
4729
4730 /**********************************************************************
4731 * VarEqv [OLEAUT32.172]
4732 *
4733 * Determine if two variants contain the same value.
4734 *
4735 * PARAMS
4736 * pVarLeft [I] First variant to compare
4737 * pVarRight [I] Variant to compare to pVarLeft
4738 * pVarOut [O] Destination for comparison result
4739 *
4740 * RETURNS
4741 * Success: S_OK. pVarOut contains the result of the comparison (VARIANT_TRUE
4742 * if equivalent or non-zero otherwise.
4743 * Failure: An HRESULT error code indicating the error.
4744 *
4745 * NOTES
4746 * - This function simply calls VarXor() on pVarLeft and pVarRight and inverts
4747 * the result.
4748 */
4749 HRESULT WINAPI VarEqv(LPVARIANT pVarLeft, LPVARIANT pVarRight, LPVARIANT pVarOut)
4750 {
4751 HRESULT hRet;
4752
4753 TRACE("(%s,%s,%p)\n", debugstr_variant(pVarLeft), debugstr_variant(pVarRight), pVarOut);
4754
4755 hRet = VarXor(pVarLeft, pVarRight, pVarOut);
4756 if (SUCCEEDED(hRet))
4757 {
4758 if (V_VT(pVarOut) == VT_I8)
4759 V_I8(pVarOut) = ~V_I8(pVarOut);
4760 else
4761 V_UI4(pVarOut) = ~V_UI4(pVarOut);
4762 }
4763 return hRet;
4764 }
4765
4766 /**********************************************************************
4767 * VarNeg [OLEAUT32.173]
4768 *
4769 * Negate the value of a variant.
4770 *
4771 * PARAMS
4772 * pVarIn [I] Source variant
4773 * pVarOut [O] Destination for converted value
4774 *
4775 * RETURNS
4776 * Success: S_OK. pVarOut contains the converted value.
4777 * Failure: An HRESULT error code indicating the error.
4778 *
4779 * NOTES
4780 * - The type of the value stored in pVarOut depends on the type of pVarIn,
4781 * according to the following table:
4782 *| Input Type Output Type
4783 *| ---------- -----------
4784 *| VT_EMPTY VT_I2
4785 *| VT_UI1 VT_I2
4786 *| VT_BOOL VT_I2
4787 *| VT_BSTR VT_R8
4788 *| All Others Unchanged (unless promoted)
4789 * - Where the negated value of a variant does not fit in its base type, the type
4790 * is promoted according to the following table:
4791 *| Input Type Promoted To
4792 *| ---------- -----------
4793 *| VT_I2 VT_I4
4794 *| VT_I4 VT_R8
4795 *| VT_I8 VT_R8
4796 * - The native version of this function returns DISP_E_BADVARTYPE for valid
4797 * variant types that cannot be negated, and returns DISP_E_TYPEMISMATCH
4798 * for types which are not valid. Since this is in contravention of the
4799 * meaning of those error codes and unlikely to be relied on by applications,
4800 * this implementation returns errors consistent with the other high level
4801 * variant math functions.
4802 */
4803 HRESULT WINAPI VarNeg(LPVARIANT pVarIn, LPVARIANT pVarOut)
4804 {
4805 HRESULT hRet = S_OK;
4806 VARIANT temp;
4807
4808 VariantInit(&temp);
4809
4810 TRACE("(%s,%p)\n", debugstr_variant(pVarIn), pVarOut);
4811
4812 /* Handle VT_DISPATCH by storing and taking address of returned value */
4813 if ((V_VT(pVarIn) & VT_TYPEMASK) == VT_DISPATCH && ((V_VT(pVarIn) & ~VT_TYPEMASK) == 0))
4814 {
4815 hRet = VARIANT_FetchDispatchValue(pVarIn, &temp);
4816 if (FAILED(hRet)) goto VarNeg_Exit;
4817 pVarIn = &temp;
4818 }
4819 V_VT(pVarOut) = V_VT(pVarIn);
4820
4821 switch (V_VT(pVarIn))
4822 {
4823 case VT_UI1:
4824 V_VT(pVarOut) = VT_I2;
4825 V_I2(pVarOut) = -V_UI1(pVarIn);
4826 break;
4827 case VT_BOOL:
4828 V_VT(pVarOut) = VT_I2;
4829 /* Fall through */
4830 case VT_I2:
4831 if (V_I2(pVarIn) == I2_MIN)
4832 {
4833 V_VT(pVarOut) = VT_I4;
4834 V_I4(pVarOut) = -(int)V_I2(pVarIn);
4835 }
4836 else
4837 V_I2(pVarOut) = -V_I2(pVarIn);
4838 break;
4839 case VT_I4:
4840 if (V_I4(pVarIn) == I4_MIN)
4841 {
4842 V_VT(pVarOut) = VT_R8;
4843 V_R8(pVarOut) = -(double)V_I4(pVarIn);
4844 }
4845 else
4846 V_I4(pVarOut) = -V_I4(pVarIn);
4847 break;
4848 case VT_I8:
4849 if (V_I8(pVarIn) == I8_MIN)
4850 {
4851 V_VT(pVarOut) = VT_R8;
4852 hRet = VarR8FromI8(V_I8(pVarIn), &V_R8(pVarOut));
4853 V_R8(pVarOut) *= -1.0;
4854 }
4855 else
4856 V_I8(pVarOut) = -V_I8(pVarIn);
4857 break;
4858 case VT_R4:
4859 V_R4(pVarOut) = -V_R4(pVarIn);
4860 break;
4861 case VT_DATE:
4862 case VT_R8:
4863 V_R8(pVarOut) = -V_R8(pVarIn);
4864 break;
4865 case VT_CY:
4866 hRet = VarCyNeg(V_CY(pVarIn), &V_CY(pVarOut));
4867 break;
4868 case VT_DECIMAL:
4869 hRet = VarDecNeg(&V_DECIMAL(pVarIn), &V_DECIMAL(pVarOut));
4870 break;
4871 case VT_BSTR:
4872 V_VT(pVarOut) = VT_R8;
4873 hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(pVarOut));
4874 V_R8(pVarOut) = -V_R8(pVarOut);
4875 break;
4876 case VT_EMPTY:
4877 V_VT(pVarOut) = VT_I2;
4878 V_I2(pVarOut) = 0;
4879 break;
4880 case VT_NULL:
4881 /* No-Op */
4882 break;
4883 default:
4884 if (V_TYPE(pVarIn) == VT_CLSID || /* VT_CLSID is a special case */
4885 FAILED(VARIANT_ValidateType(V_VT(pVarIn))))
4886 hRet = DISP_E_BADVARTYPE;
4887 else
4888 hRet = DISP_E_TYPEMISMATCH;
4889 }
4890 VarNeg_Exit:
4891 if (FAILED(hRet))
4892 V_VT(pVarOut) = VT_EMPTY;
4893 VariantClear(&temp);
4894
4895 return hRet;
4896 }
4897
4898 /**********************************************************************
4899 * VarNot [OLEAUT32.174]
4900 *
4901 * Perform a not operation on a variant.
4902 *
4903 * PARAMS
4904 * pVarIn [I] Source variant
4905 * pVarOut [O] Destination for converted value
4906 *
4907 * RETURNS
4908 * Success: S_OK. pVarOut contains the converted value.
4909 * Failure: An HRESULT error code indicating the error.
4910 *
4911 * NOTES
4912 * - Strictly speaking, this function performs a bitwise ones complement
4913 * on the variants value (after possibly converting to VT_I4, see below).
4914 * This only behaves like a boolean not operation if the value in
4915 * pVarIn is either VARIANT_TRUE or VARIANT_FALSE and the type is signed.
4916 * - To perform a genuine not operation, convert the variant to a VT_BOOL
4917 * before calling this function.
4918 * - This function does not process by-reference variants.
4919 * - The type of the value stored in pVarOut depends on the type of pVarIn,
4920 * according to the following table:
4921 *| Input Type Output Type
4922 *| ---------- -----------
4923 *| VT_EMPTY VT_I2
4924 *| VT_R4 VT_I4
4925 *| VT_R8 VT_I4
4926 *| VT_BSTR VT_I4
4927 *| VT_DECIMAL VT_I4
4928 *| VT_CY VT_I4
4929 *| (All others) Unchanged
4930 */
4931 HRESULT WINAPI VarNot(LPVARIANT pVarIn, LPVARIANT pVarOut)
4932 {
4933 VARIANT varIn;
4934 HRESULT hRet = S_OK;
4935 VARIANT temp;
4936
4937 VariantInit(&temp);
4938
4939 TRACE("(%s,%p)\n", debugstr_variant(pVarIn), pVarOut);
4940
4941 /* Handle VT_DISPATCH by storing and taking address of returned value */
4942 if ((V_VT(pVarIn) & VT_TYPEMASK) == VT_DISPATCH && ((V_VT(pVarIn) & ~VT_TYPEMASK) == 0))
4943 {
4944 hRet = VARIANT_FetchDispatchValue(pVarIn, &temp);
4945 if (FAILED(hRet)) goto VarNot_Exit;
4946 pVarIn = &temp;
4947 }
4948
4949 if (V_VT(pVarIn) == VT_BSTR)
4950 {
4951 V_VT(&varIn) = VT_R8;
4952 hRet = VarR8FromStr( V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(&varIn) );
4953 if (FAILED(hRet))
4954 {
4955 V_VT(&varIn) = VT_BOOL;
4956 hRet = VarBoolFromStr( V_BSTR(pVarIn), LOCALE_USER_DEFAULT, VAR_LOCALBOOL, &V_BOOL(&varIn) );
4957 }
4958 if (FAILED(hRet)) goto VarNot_Exit;
4959 pVarIn = &varIn;
4960 }
4961
4962 V_VT(pVarOut) = V_VT(pVarIn);
4963
4964 switch (V_VT(pVarIn))
4965 {
4966 case VT_I1:
4967 V_I4(pVarOut) = ~V_I1(pVarIn);
4968 V_VT(pVarOut) = VT_I4;
4969 break;
4970 case VT_UI1: V_UI1(pVarOut) = ~V_UI1(pVarIn); break;
4971 case VT_BOOL:
4972 case VT_I2: V_I2(pVarOut) = ~V_I2(pVarIn); break;
4973 case VT_UI2:
4974 V_I4(pVarOut) = ~V_UI2(pVarIn);
4975 V_VT(pVarOut) = VT_I4;
4976 break;
4977 case VT_DECIMAL:
4978 hRet = VarI4FromDec(&V_DECIMAL(pVarIn), &V_I4(&varIn));
4979 if (FAILED(hRet))
4980 break;
4981 pVarIn = &varIn;
4982 /* Fall through ... */
4983 case VT_INT:
4984 V_VT(pVarOut) = VT_I4;
4985 /* Fall through ... */
4986 case VT_I4: V_I4(pVarOut) = ~V_I4(pVarIn); break;
4987 case VT_UINT:
4988 case VT_UI4:
4989 V_I4(pVarOut) = ~V_UI4(pVarIn);
4990 V_VT(pVarOut) = VT_I4;
4991 break;
4992 case VT_I8: V_I8(pVarOut) = ~V_I8(pVarIn); break;
4993 case VT_UI8:
4994 V_I4(pVarOut) = ~V_UI8(pVarIn);
4995 V_VT(pVarOut) = VT_I4;
4996 break;
4997 case VT_R4:
4998 hRet = VarI4FromR4(V_R4(pVarIn), &V_I4(pVarOut));
4999 V_I4(pVarOut) = ~V_I4(pVarOut);
5000 V_VT(pVarOut) = VT_I4;
5001 break;
5002 case VT_DATE:
5003 case VT_R8:
5004 hRet = VarI4FromR8(V_R8(pVarIn), &V_I4(pVarOut));
5005 V_I4(pVarOut) = ~V_I4(pVarOut);
5006 V_VT(pVarOut) = VT_I4;
5007 break;
5008 case VT_CY:
5009 hRet = VarI4FromCy(V_CY(pVarIn), &V_I4(pVarOut));
5010 V_I4(pVarOut) = ~V_I4(pVarOut);
5011 V_VT(pVarOut) = VT_I4;
5012 break;
5013 case VT_EMPTY:
5014 V_I2(pVarOut) = ~0;
5015 V_VT(pVarOut) = VT_I2;
5016 break;
5017 case VT_NULL:
5018 /* No-Op */
5019 break;
5020 default:
5021 if (V_TYPE(pVarIn) == VT_CLSID || /* VT_CLSID is a special case */
5022 FAILED(VARIANT_ValidateType(V_VT(pVarIn))))
5023 hRet = DISP_E_BADVARTYPE;
5024 else
5025 hRet = DISP_E_TYPEMISMATCH;
5026 }
5027 VarNot_Exit:
5028 if (FAILED(hRet))
5029 V_VT(pVarOut) = VT_EMPTY;
5030 VariantClear(&temp);
5031
5032 return hRet;
5033 }
5034
5035 /**********************************************************************
5036 * VarRound [OLEAUT32.175]
5037 *
5038 * Perform a round operation on a variant.
5039 *
5040 * PARAMS
5041 * pVarIn [I] Source variant
5042 * deci [I] Number of decimals to round to
5043 * pVarOut [O] Destination for converted value
5044 *
5045 * RETURNS
5046 * Success: S_OK. pVarOut contains the converted value.
5047 * Failure: An HRESULT error code indicating the error.
5048 *
5049 * NOTES
5050 * - Floating point values are rounded to the desired number of decimals.
5051 * - Some integer types are just copied to the return variable.
5052 * - Some other integer types are not handled and fail.
5053 */
5054 HRESULT WINAPI VarRound(LPVARIANT pVarIn, int deci, LPVARIANT pVarOut)
5055 {
5056 VARIANT varIn;
5057 HRESULT hRet = S_OK;
5058 float factor;
5059 VARIANT temp;
5060
5061 VariantInit(&temp);
5062
5063 TRACE("(%s,%d)\n", debugstr_variant(pVarIn), deci);
5064
5065 /* Handle VT_DISPATCH by storing and taking address of returned value */
5066 if ((V_VT(pVarIn) & VT_TYPEMASK) == VT_DISPATCH && ((V_VT(pVarIn) & ~VT_TYPEMASK) == 0))
5067 {
5068 hRet = VARIANT_FetchDispatchValue(pVarIn, &temp);
5069 if (FAILED(hRet)) goto VarRound_Exit;
5070 pVarIn = &temp;
5071 }
5072
5073 switch (V_VT(pVarIn))
5074 {
5075 /* cases that fail on windows */
5076 case VT_I1:
5077 case VT_I8:
5078 case VT_UI2:
5079 case VT_UI4:
5080 hRet = DISP_E_BADVARTYPE;
5081 break;
5082
5083 /* cases just copying in to out */
5084 case VT_UI1:
5085 V_VT(pVarOut) = V_VT(pVarIn);
5086 V_UI1(pVarOut) = V_UI1(pVarIn);
5087 break;
5088 case VT_I2:
5089 V_VT(pVarOut) = V_VT(pVarIn);
5090 V_I2(pVarOut) = V_I2(pVarIn);
5091 break;
5092 case VT_I4:
5093 V_VT(pVarOut) = V_VT(pVarIn);
5094 V_I4(pVarOut) = V_I4(pVarIn);
5095 break;
5096 case VT_NULL:
5097 V_VT(pVarOut) = V_VT(pVarIn);
5098 /* value unchanged */
5099 break;
5100
5101 /* cases that change type */
5102 case VT_EMPTY:
5103 V_VT(pVarOut) = VT_I2;
5104 V_I2(pVarOut) = 0;
5105 break;
5106 case VT_BOOL:
5107 V_VT(pVarOut) = VT_I2;
5108 V_I2(pVarOut) = V_BOOL(pVarIn);
5109 break;
5110 case VT_BSTR:
5111 hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(&varIn));
5112 if (FAILED(hRet))
5113 break;
5114 V_VT(&varIn)=VT_R8;
5115 pVarIn = &varIn;
5116 /* Fall through ... */
5117
5118 /* cases we need to do math */
5119 case VT_R8:
5120 if (V_R8(pVarIn)>0) {
5121 V_R8(pVarOut)=floor(V_R8(pVarIn)*pow(10, deci)+0.5)/pow(10, deci);
5122 } else {
5123 V_R8(pVarOut)=ceil(V_R8(pVarIn)*pow(10, deci)-0.5)/pow(10, deci);
5124 }
5125 V_VT(pVarOut) = V_VT(pVarIn);
5126 break;
5127 case VT_R4:
5128 if (V_R4(pVarIn)>0) {
5129 V_R4(pVarOut)=floor(V_R4(pVarIn)*pow(10, deci)+0.5)/pow(10, deci);
5130 } else {
5131 V_R4(pVarOut)=ceil(V_R4(pVarIn)*pow(10, deci)-0.5)/pow(10, deci);
5132 }
5133 V_VT(pVarOut) = V_VT(pVarIn);
5134 break;
5135 case VT_DATE:
5136 if (V_DATE(pVarIn)>0) {
5137 V_DATE(pVarOut)=floor(V_DATE(pVarIn)*pow(10, deci)+0.5)/pow(10, deci);
5138 } else {
5139 V_DATE(pVarOut)=ceil(V_DATE(pVarIn)*pow(10, deci)-0.5)/pow(10, deci);
5140 }
5141 V_VT(pVarOut) = V_VT(pVarIn);
5142 break;
5143 case VT_CY:
5144 if (deci>3)
5145 factor=1;
5146 else
5147 factor=pow(10, 4-deci);
5148
5149 if (V_CY(pVarIn).int64>0) {
5150 V_CY(pVarOut).int64=floor(V_CY(pVarIn).int64/factor)*factor;
5151 } else {
5152 V_CY(pVarOut).int64=ceil(V_CY(pVarIn).int64/factor)*factor;
5153 }
5154 V_VT(pVarOut) = V_VT(pVarIn);
5155 break;
5156
5157 /* cases we don't know yet */
5158 default:
5159 FIXME("unimplemented part, V_VT(pVarIn) == 0x%X, deci == %d\n",
5160 V_VT(pVarIn) & VT_TYPEMASK, deci);
5161 hRet = DISP_E_BADVARTYPE;
5162 }
5163 VarRound_Exit:
5164 if (FAILED(hRet))
5165 V_VT(pVarOut) = VT_EMPTY;
5166 VariantClear(&temp);
5167
5168 TRACE("returning 0x%08x %s\n", hRet, debugstr_variant(pVarOut));
5169 return hRet;
5170 }
5171
5172 /**********************************************************************
5173 * VarIdiv [OLEAUT32.153]
5174 *
5175 * Converts input variants to integers and divides them.
5176 *
5177 * PARAMS
5178 * left [I] Left hand variant
5179 * right [I] Right hand variant
5180 * result [O] Destination for quotient
5181 *
5182 * RETURNS
5183 * Success: S_OK. result contains the quotient.
5184 * Failure: An HRESULT error code indicating the error.
5185 *
5186 * NOTES
5187 * If either expression is null, null is returned, as per MSDN
5188 */
5189 HRESULT WINAPI VarIdiv(LPVARIANT left, LPVARIANT right, LPVARIANT result)
5190 {
5191 HRESULT hres = S_OK;
5192 VARTYPE resvt = VT_EMPTY;
5193 VARTYPE leftvt,rightvt;
5194 VARTYPE rightExtraFlags,leftExtraFlags,ExtraFlags;
5195 VARIANT lv,rv;
5196 VARIANT tempLeft, tempRight;
5197
5198 TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
5199
5200 VariantInit(&lv);
5201 VariantInit(&rv);
5202 VariantInit(&tempLeft);
5203 VariantInit(&tempRight);
5204
5205 leftvt = V_VT(left)&VT_TYPEMASK;
5206 rightvt = V_VT(right)&VT_TYPEMASK;
5207 leftExtraFlags = V_VT(left)&(~VT_TYPEMASK);
5208 rightExtraFlags = V_VT(right)&(~VT_TYPEMASK);
5209
5210 if (leftExtraFlags != rightExtraFlags)
5211 {
5212 hres = DISP_E_BADVARTYPE;
5213 goto end;
5214 }
5215 ExtraFlags = leftExtraFlags;
5216
5217 /* Native VarIdiv always returns an error when using extra
5218 * flags or if the variant combination is I8 and INT.
5219 */
5220 if ((leftvt == VT_I8 && rightvt == VT_INT) ||
5221 (leftvt == VT_INT && rightvt == VT_I8) ||
5222 (rightvt == VT_EMPTY && leftvt != VT_NULL) ||
5223 ExtraFlags != 0)
5224 {
5225 hres = DISP_E_BADVARTYPE;
5226 goto end;
5227 }
5228
5229 /* Determine variant type */
5230 else if (leftvt == VT_NULL || rightvt == VT_NULL)
5231 {
5232 V_VT(result) = VT_NULL;
5233 hres = S_OK;
5234 goto end;
5235 }
5236 else if (leftvt == VT_I8 || rightvt == VT_I8)
5237 resvt = VT_I8;
5238 else if (leftvt == VT_I4 || rightvt == VT_I4 ||
5239 leftvt == VT_INT || rightvt == VT_INT ||
5240 leftvt == VT_UINT || rightvt == VT_UINT ||
5241 leftvt == VT_UI8 || rightvt == VT_UI8 ||
5242 leftvt == VT_UI4 || rightvt == VT_UI4 ||
5243 leftvt == VT_UI2 || rightvt == VT_UI2 ||
5244 leftvt == VT_I1 || rightvt == VT_I1 ||
5245 leftvt == VT_BSTR || rightvt == VT_BSTR ||
5246 leftvt == VT_DATE || rightvt == VT_DATE ||
5247 leftvt == VT_CY || rightvt == VT_CY ||
5248 leftvt == VT_DECIMAL || rightvt == VT_DECIMAL ||
5249 leftvt == VT_R8 || rightvt == VT_R8 ||
5250 leftvt == VT_R4 || rightvt == VT_R4)
5251 resvt = VT_I4;
5252 else if (leftvt == VT_I2 || rightvt == VT_I2 ||
5253 leftvt == VT_BOOL || rightvt == VT_BOOL ||
5254 leftvt == VT_EMPTY)
5255 resvt = VT_I2;
5256 else if (leftvt == VT_UI1 || rightvt == VT_UI1)
5257 resvt = VT_UI1;
5258 else
5259 {
5260 hres = DISP_E_BADVARTYPE;
5261 goto end;
5262 }
5263
5264 /* coerce to the result type */
5265 hres = VariantChangeType(&lv, left, 0, resvt);
5266 if (hres != S_OK) goto end;
5267 hres = VariantChangeType(&rv, right, 0, resvt);
5268 if (hres != S_OK) goto end;
5269
5270 /* do the math */
5271 V_VT(result) = resvt;
5272 switch (resvt)
5273 {
5274 case VT_UI1:
5275 if (V_UI1(&rv) == 0)
5276 {
5277 hres = DISP_E_DIVBYZERO;
5278 V_VT(result) = VT_EMPTY;
5279 }
5280 else
5281 V_UI1(result) = V_UI1(&lv) / V_UI1(&rv);
5282 break;
5283 case VT_I2:
5284 if (V_I2(&rv) == 0)
5285 {
5286 hres = DISP_E_DIVBYZERO;
5287 V_VT(result) = VT_EMPTY;
5288 }
5289 else
5290 V_I2(result) = V_I2(&lv) / V_I2(&rv);
5291 break;
5292 case VT_I4:
5293 if (V_I4(&rv) == 0)
5294 {
5295 hres = DISP_E_DIVBYZERO;
5296 V_VT(result) = VT_EMPTY;
5297 }
5298 else
5299 V_I4(result) = V_I4(&lv) / V_I4(&rv);
5300 break;
5301 case VT_I8:
5302 if (V_I8(&rv) == 0)
5303 {
5304 hres = DISP_E_DIVBYZERO;
5305 V_VT(result) = VT_EMPTY;
5306 }
5307 else
5308 V_I8(result) = V_I8(&lv) / V_I8(&rv);
5309 break;
5310 default:
5311 FIXME("Couldn't integer divide variant types %d,%d\n",
5312 leftvt,rightvt);
5313 }
5314
5315 end:
5316 VariantClear(&lv);
5317 VariantClear(&rv);
5318 VariantClear(&tempLeft);
5319 VariantClear(&tempRight);
5320
5321 return hres;
5322 }
5323
5324
5325 /**********************************************************************
5326 * VarMod [OLEAUT32.155]
5327 *
5328 * Perform the modulus operation of the right hand variant on the left
5329 *
5330 * PARAMS
5331 * left [I] Left hand variant
5332 * right [I] Right hand variant
5333 * result [O] Destination for converted value
5334 *
5335 * RETURNS
5336 * Success: S_OK. result contains the remainder.
5337 * Failure: An HRESULT error code indicating the error.
5338 *
5339 * NOTE:
5340 * If an error occurs the type of result will be modified but the value will not be.
5341 * Doesn't support arrays or any special flags yet.
5342 */
5343 HRESULT WINAPI VarMod(LPVARIANT left, LPVARIANT right, LPVARIANT result)
5344 {
5345 BOOL lOk = TRUE;
5346 HRESULT rc = E_FAIL;
5347 int resT = 0;
5348 VARIANT lv,rv;
5349 VARIANT tempLeft, tempRight;
5350
5351 VariantInit(&tempLeft);
5352 VariantInit(&tempRight);
5353 VariantInit(&lv);
5354 VariantInit(&rv);
5355
5356 TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
5357
5358 /* Handle VT_DISPATCH by storing and taking address of returned value */
5359 if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH)
5360 {
5361 rc = VARIANT_FetchDispatchValue(left, &tempLeft);
5362 if (FAILED(rc)) goto end;
5363 left = &tempLeft;
5364 }
5365 if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH)
5366 {
5367 rc = VARIANT_FetchDispatchValue(right, &tempRight);
5368 if (FAILED(rc)) goto end;
5369 right = &tempRight;
5370 }
5371
5372 /* check for invalid inputs */
5373 lOk = TRUE;
5374 switch (V_VT(left) & VT_TYPEMASK) {
5375 case VT_BOOL :
5376 case VT_I1 :
5377 case VT_I2 :
5378 case VT_I4 :
5379 case VT_I8 :
5380 case VT_INT :
5381 case VT_UI1 :
5382 case VT_UI2 :
5383 case VT_UI4 :
5384 case VT_UI8 :
5385 case VT_UINT :
5386 case VT_R4 :
5387 case VT_R8 :
5388 case VT_CY :
5389 case VT_EMPTY:
5390 case VT_DATE :
5391 case VT_BSTR :
5392 case VT_DECIMAL:
5393 break;
5394 case VT_VARIANT:
5395 case VT_UNKNOWN:
5396 V_VT(result) = VT_EMPTY;
5397 rc = DISP_E_TYPEMISMATCH;
5398 goto end;
5399 case VT_ERROR:
5400 rc = DISP_E_TYPEMISMATCH;
5401 goto end;
5402 case VT_RECORD:
5403 V_VT(result) = VT_EMPTY;
5404 rc = DISP_E_TYPEMISMATCH;
5405 goto end;
5406 case VT_NULL:
5407 break;
5408 default:
5409 V_VT(result) = VT_EMPTY;
5410 rc = DISP_E_BADVARTYPE;
5411 goto end;
5412 }
5413
5414
5415 switch (V_VT(right) & VT_TYPEMASK) {
5416 case VT_BOOL :
5417 case VT_I1 :
5418 case VT_I2 :
5419 case VT_I4 :
5420 case VT_I8 :
5421 if((V_VT(left) == VT_INT) && (V_VT(right) == VT_I8))
5422 {
5423 V_VT(result) = VT_EMPTY;
5424 rc = DISP_E_TYPEMISMATCH;
5425 goto end;
5426 }
5427 case VT_INT :
5428 if((V_VT(right) == VT_INT) && (V_VT(left) == VT_I8))
5429 {
5430 V_VT(result) = VT_EMPTY;
5431 rc = DISP_E_TYPEMISMATCH;
5432 goto end;
5433 }
5434 case VT_UI1 :
5435 case VT_UI2 :
5436 case VT_UI4 :
5437 case VT_UI8 :
5438 case VT_UINT :
5439 case VT_R4 :
5440 case VT_R8 :
5441 case VT_CY :
5442 if(V_VT(left) == VT_EMPTY)
5443 {
5444 V_VT(result) = VT_I4;
5445 rc = S_OK;
5446 goto end;
5447 }
5448 case VT_EMPTY:
5449 case VT_DATE :
5450 case VT_DECIMAL:
5451 if(V_VT(left) == VT_ERROR)
5452 {
5453 V_VT(result) = VT_EMPTY;
5454 rc = DISP_E_TYPEMISMATCH;
5455 goto end;
5456 }
5457 case VT_BSTR:
5458 if(V_VT(left) == VT_NULL)
5459 {
5460 V_VT(result) = VT_NULL;
5461 rc = S_OK;
5462 goto end;
5463 }
5464 break;
5465
5466 case VT_VOID:
5467 V_VT(result) = VT_EMPTY;
5468 rc = DISP_E_BADVARTYPE;
5469 goto end;
5470 case VT_NULL:
5471 if(V_VT(left) == VT_VOID)
5472 {
5473 V_VT(result) = VT_EMPTY;
5474 rc = DISP_E_BADVARTYPE;
5475 } else if((V_VT(left) == VT_NULL) || (V_VT(left) == VT_EMPTY) || (V_VT(left) == VT_ERROR) ||
5476 lOk)
5477 {
5478 V_VT(result) = VT_NULL;
5479 rc = S_OK;
5480 } else
5481 {
5482 V_VT(result) = VT_NULL;
5483 rc = DISP_E_BADVARTYPE;
5484 }
5485 goto end;
5486 case VT_VARIANT:
5487 case VT_UNKNOWN:
5488 V_VT(result) = VT_EMPTY;
5489 rc = DISP_E_TYPEMISMATCH;
5490 goto end;
5491 case VT_ERROR:
5492 rc = DISP_E_TYPEMISMATCH;
5493 goto end;
5494 case VT_RECORD:
5495 if((V_VT(left) == 15) || ((V_VT(left) >= 24) && (V_VT(left) <= 35)) || !lOk)
5496 {
5497 V_VT(result) = VT_EMPTY;
5498 rc = DISP_E_BADVARTYPE;
5499 } else
5500 {
5501 V_VT(result) = VT_EMPTY;
5502 rc = DISP_E_TYPEMISMATCH;
5503 }
5504 goto end;
5505 default:
5506 V_VT(result) = VT_EMPTY;
5507 rc = DISP_E_BADVARTYPE;
5508 goto end;
5509 }
5510
5511 /* determine the result type */
5512 if((V_VT(left) == VT_I8) || (V_VT(right) == VT_I8)) resT = VT_I8;
5513 else if((V_VT(left) == VT_UI1) && (V_VT(right) == VT_BOOL)) resT = VT_I2;
5514 else if((V_VT(left) == VT_UI1) && (V_VT(right) == VT_UI1)) resT = VT_UI1;
5515 else if((V_VT(left) == VT_UI1) && (V_VT(right) == VT_I2)) resT = VT_I2;
5516 else if((V_VT(left) == VT_I2) && (V_VT(right) == VT_BOOL)) resT = VT_I2;
5517 else if((V_VT(left) == VT_I2) && (V_VT(right) == VT_UI1)) resT = VT_I2;
5518 else if((V_VT(left) == VT_I2) && (V_VT(right) == VT_I2)) resT = VT_I2;
5519 else if((V_VT(left) == VT_BOOL) && (V_VT(right) == VT_BOOL)) resT = VT_I2;
5520 else if((V_VT(left) == VT_BOOL) && (V_VT(right) == VT_UI1)) resT = VT_I2;
5521 else if((V_VT(left) == VT_BOOL) && (V_VT(right) == VT_I2)) resT = VT_I2;
5522 else resT = VT_I4; /* most outputs are I4 */
5523
5524 /* convert to I8 for the modulo */
5525 rc = VariantChangeType(&lv, left, 0, VT_I8);
5526 if(FAILED(rc))
5527 {
5528 FIXME("Could not convert left type %d to %d? rc == 0x%X\n", V_VT(left), VT_I8, rc);
5529 goto end;
5530 }
5531
5532 rc = VariantChangeType(&rv, right, 0, VT_I8);
5533 if(FAILED(rc))
5534 {
5535 FIXME("Could not convert right type %d to %d? rc == 0x%X\n", V_VT(right), VT_I8, rc);
5536 goto end;
5537 }
5538
5539 /* if right is zero set VT_EMPTY and return divide by zero */
5540 if(V_I8(&rv) == 0)
5541 {
5542 V_VT(result) = VT_EMPTY;
5543 rc = DISP_E_DIVBYZERO;
5544 goto end;
5545 }
5546
5547 /* perform the modulo operation */
5548 V_VT(result) = VT_I8;
5549 V_I8(result) = V_I8(&lv) % V_I8(&rv);
5550
5551 TRACE("V_I8(left) == %s, V_I8(right) == %s, V_I8(result) == %s\n",
5552 wine_dbgstr_longlong(V_I8(&lv)), wine_dbgstr_longlong(V_I8(&rv)),
5553 wine_dbgstr_longlong(V_I8(result)));
5554
5555 /* convert left and right to the destination type */
5556 rc = VariantChangeType(result, result, 0, resT);
5557 if(FAILED(rc))
5558 {
5559 FIXME("Could not convert 0x%x to %d?\n", V_VT(result), resT);
5560 /* fall to end of function */
5561 }
5562
5563 end:
5564 VariantClear(&lv);
5565 VariantClear(&rv);
5566 VariantClear(&tempLeft);
5567 VariantClear(&tempRight);
5568 return rc;
5569 }
5570
5571 /**********************************************************************
5572 * VarPow [OLEAUT32.158]
5573 *
5574 * Computes the power of one variant to another variant.
5575 *
5576 * PARAMS
5577 * left [I] First variant
5578 * right [I] Second variant
5579 * result [O] Result variant
5580 *
5581 * RETURNS
5582 * Success: S_OK.
5583 * Failure: An HRESULT error code indicating the error.
5584 */
5585 HRESULT WINAPI VarPow(LPVARIANT left, LPVARIANT right, LPVARIANT result)
5586 {
5587 HRESULT hr = S_OK;
5588 VARIANT dl,dr;
5589 VARTYPE resvt = VT_EMPTY;
5590 VARTYPE leftvt,rightvt;
5591 VARTYPE rightExtraFlags,leftExtraFlags,ExtraFlags;
5592 VARIANT tempLeft, tempRight;
5593
5594 TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
5595
5596 VariantInit(&dl);
5597 VariantInit(&dr);
5598 VariantInit(&tempLeft);
5599 VariantInit(&tempRight);
5600
5601 /* Handle VT_DISPATCH by storing and taking address of returned value */
5602 if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH)
5603 {
5604 hr = VARIANT_FetchDispatchValue(left, &tempLeft);
5605 if (FAILED(hr)) goto end;
5606 left = &tempLeft;
5607 }
5608 if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH)
5609 {
5610 hr = VARIANT_FetchDispatchValue(right, &tempRight);
5611 if (FAILED(hr)) goto end;
5612 right = &tempRight;
5613 }
5614
5615 leftvt = V_VT(left)&VT_TYPEMASK;
5616 rightvt = V_VT(right)&VT_TYPEMASK;
5617 leftExtraFlags = V_VT(left)&(~VT_TYPEMASK);
5618 rightExtraFlags = V_VT(right)&(~VT_TYPEMASK);
5619
5620 if (leftExtraFlags != rightExtraFlags)
5621 {
5622 hr = DISP_E_BADVARTYPE;
5623 goto end;
5624 }
5625 ExtraFlags = leftExtraFlags;
5626
5627 /* Native VarPow always returns an error when using extra flags */
5628 if (ExtraFlags != 0)
5629 {
5630 hr = DISP_E_BADVARTYPE;
5631 goto end;
5632 }
5633
5634 /* Determine return type */
5635 else if (leftvt == VT_NULL || rightvt == VT_NULL) {
5636 V_VT(result) = VT_NULL;
5637 hr = S_OK;
5638 goto end;
5639 }
5640 else if ((leftvt == VT_EMPTY || leftvt == VT_I2 ||
5641 leftvt == VT_I4 || leftvt == VT_R4 ||
5642 leftvt == VT_R8 || leftvt == VT_CY ||
5643 leftvt == VT_DATE || leftvt == VT_BSTR ||
5644 leftvt == VT_BOOL || leftvt == VT_DECIMAL ||
5645 (leftvt >= VT_I1 && leftvt <= VT_UINT)) &&
5646 (rightvt == VT_EMPTY || rightvt == VT_I2 ||
5647 rightvt == VT_I4 || rightvt == VT_R4 ||
5648 rightvt == VT_R8 || rightvt == VT_CY ||
5649 rightvt == VT_DATE || rightvt == VT_BSTR ||
5650 rightvt == VT_BOOL || rightvt == VT_DECIMAL ||
5651 (rightvt >= VT_I1 && rightvt <= VT_UINT)))
5652 resvt = VT_R8;
5653 else
5654 {
5655 hr = DISP_E_BADVARTYPE;
5656 goto end;
5657 }
5658
5659 hr = VariantChangeType(&dl,left,0,resvt);
5660 if (FAILED(hr)) {
5661 ERR("Could not change passed left argument to VT_R8, handle it differently.\n");
5662 hr = E_FAIL;
5663 goto end;
5664 }
5665
5666 hr = VariantChangeType(&dr,right,0,resvt);
5667 if (FAILED(hr)) {
5668 ERR("Could not change passed right argument to VT_R8, handle it differently.\n");
5669 hr = E_FAIL;
5670 goto end;
5671 }
5672
5673 V_VT(result) = VT_R8;
5674 V_R8(result) = pow(V_R8(&dl),V_R8(&dr));
5675
5676 end:
5677 VariantClear(&dl);
5678 VariantClear(&dr);
5679 VariantClear(&tempLeft);
5680 VariantClear(&tempRight);
5681
5682 return hr;
5683 }
5684
5685 /**********************************************************************
5686 * VarImp [OLEAUT32.154]
5687 *
5688 * Bitwise implication of two variants.
5689 *
5690 * PARAMS
5691 * left [I] First variant
5692 * right [I] Second variant
5693 * result [O] Result variant
5694 *
5695 * RETURNS
5696 * Success: S_OK.
5697 * Failure: An HRESULT error code indicating the error.
5698 */
5699 HRESULT WINAPI VarImp(LPVARIANT left, LPVARIANT right, LPVARIANT result)
5700 {
5701 HRESULT hres = S_OK;
5702 VARTYPE resvt = VT_EMPTY;
5703 VARTYPE leftvt,rightvt;
5704 VARTYPE rightExtraFlags,leftExtraFlags,ExtraFlags;
5705 VARIANT lv,rv;
5706 double d;
5707 VARIANT tempLeft, tempRight;
5708
5709 VariantInit(&lv);
5710 VariantInit(&rv);
5711 VariantInit(&tempLeft);
5712 VariantInit(&tempRight);
5713
5714 TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
5715
5716 /* Handle VT_DISPATCH by storing and taking address of returned value */
5717 if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH)
5718 {
5719 hres = VARIANT_FetchDispatchValue(left, &tempLeft);
5720 if (FAILED(hres)) goto VarImp_Exit;
5721 left = &tempLeft;
5722 }
5723 if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH)
5724 {
5725 hres = VARIANT_FetchDispatchValue(right, &tempRight);
5726 if (FAILED(hres)) goto VarImp_Exit;
5727 right = &tempRight;
5728 }
5729
5730 leftvt = V_VT(left)&VT_TYPEMASK;
5731 rightvt = V_VT(right)&VT_TYPEMASK;
5732 leftExtraFlags = V_VT(left)&(~VT_TYPEMASK);
5733 rightExtraFlags = V_VT(right)&(~VT_TYPEMASK);
5734
5735 if (leftExtraFlags != rightExtraFlags)
5736 {
5737 hres = DISP_E_BADVARTYPE;
5738 goto VarImp_Exit;
5739 }
5740 ExtraFlags = leftExtraFlags;
5741
5742 /* Native VarImp always returns an error when using extra
5743 * flags or if the variants are I8 and INT.
5744 */
5745 if ((leftvt == VT_I8 && rightvt == VT_INT) ||
5746 ExtraFlags != 0)
5747 {
5748 hres = DISP_E_BADVARTYPE;
5749 goto VarImp_Exit;
5750 }
5751
5752 /* Determine result type */
5753 else if ((leftvt == VT_NULL && rightvt == VT_NULL) ||
5754 (leftvt == VT_NULL && rightvt == VT_EMPTY))
5755 {
5756 V_VT(result) = VT_NULL;
5757 hres = S_OK;
5758 goto VarImp_Exit;
5759 }
5760 else if (leftvt == VT_I8 || rightvt == VT_I8)
5761 resvt = VT_I8;
5762 else if (leftvt == VT_I4 || rightvt == VT_I4 ||
5763 leftvt == VT_INT || rightvt == VT_INT ||
5764 leftvt == VT_UINT || rightvt == VT_UINT ||
5765 leftvt == VT_UI4 || rightvt == VT_UI4 ||
5766 leftvt == VT_UI8 || rightvt == VT_UI8 ||
5767 leftvt == VT_UI2 || rightvt == VT_UI2 ||
5768 leftvt == VT_DECIMAL || rightvt == VT_DECIMAL ||
5769 leftvt == VT_DATE || rightvt == VT_DATE ||
5770 leftvt == VT_CY || rightvt == VT_CY ||
5771 leftvt == VT_R8 || rightvt == VT_R8 ||
5772 leftvt == VT_R4 || rightvt == VT_R4 ||
5773 leftvt == VT_I1 || rightvt == VT_I1)
5774 resvt = VT_I4;
5775 else if ((leftvt == VT_UI1 && rightvt == VT_UI1) ||
5776 (leftvt == VT_UI1 && rightvt == VT_NULL) ||
5777 (leftvt == VT_NULL && rightvt == VT_UI1))
5778 resvt = VT_UI1;
5779 else if (leftvt == VT_EMPTY || rightvt == VT_EMPTY ||
5780 leftvt == VT_I2 || rightvt == VT_I2 ||
5781 leftvt == VT_UI1 || rightvt == VT_UI1)
5782 resvt = VT_I2;
5783 else if (leftvt == VT_BOOL || rightvt == VT_BOOL ||
5784 leftvt == VT_BSTR || rightvt == VT_BSTR)
5785 resvt = VT_BOOL;
5786
5787 /* VT_NULL requires special handling for when the opposite
5788 * variant is equal to something other than -1.
5789 * (NULL Imp 0 = NULL, NULL Imp n = n)
5790 */
5791 if (leftvt == VT_NULL)
5792 {
5793 VARIANT_BOOL b;
5794 switch(rightvt)
5795 {
5796 case VT_I1: if (!V_I1(right)) resvt = VT_NULL; break;
5797 case VT_UI1: if (!V_UI1(right)) resvt = VT_NULL; break;
5798 case VT_I2: if (!V_I2(right)) resvt = VT_NULL; break;
5799 case VT_UI2: if (!V_UI2(right)) resvt = VT_NULL; break;
5800 case VT_I4: if (!V_I4(right)) resvt = VT_NULL; break;
5801 case VT_UI4: if (!V_UI4(right)) resvt = VT_NULL; break;
5802 case VT_I8: if (!V_I8(right)) resvt = VT_NULL; break;
5803 case VT_UI8: if (!V_UI8(right)) resvt = VT_NULL; break;
5804 case VT_INT: if (!V_INT(right)) resvt = VT_NULL; break;
5805 case VT_UINT: if (!V_UINT(right)) resvt = VT_NULL; break;
5806 case VT_BOOL: if (!V_BOOL(right)) resvt = VT_NULL; break;
5807 case VT_R4: if (!V_R4(right)) resvt = VT_NULL; break;
5808 case VT_R8: if (!V_R8(right)) resvt = VT_NULL; break;
5809 case VT_DATE: if (!V_DATE(right)) resvt = VT_NULL; break;
5810 case VT_CY: if (!V_CY(right).int64) resvt = VT_NULL; break;
5811 case VT_DECIMAL:
5812 if (!(DEC_HI32(&V_DECIMAL(right)) || DEC_LO64(&V_DECIMAL(right))))
5813 resvt = VT_NULL;
5814 break;
5815 case VT_BSTR:
5816 hres = VarBoolFromStr(V_BSTR(right),LOCALE_USER_DEFAULT, VAR_LOCALBOOL, &b);
5817 if (FAILED(hres)) goto VarImp_Exit;
5818 else if (!b)
5819 V_VT(result) = VT_NULL;
5820 else
5821 {
5822 V_VT(result) = VT_BOOL;
5823 V_BOOL(result) = b;
5824 }
5825 goto VarImp_Exit;
5826 }
5827 if (resvt == VT_NULL)
5828 {
5829 V_VT(result) = resvt;
5830 goto VarImp_Exit;
5831 }
5832 else
5833 {
5834 hres = VariantChangeType(result,right,0,resvt);
5835 goto VarImp_Exit;
5836 }
5837 }
5838
5839 /* Special handling is required when NULL is the right variant.
5840 * (-1 Imp NULL = NULL, n Imp NULL = n Imp 0)
5841 */
5842 else if (rightvt == VT_NULL)
5843 {
5844 VARIANT_BOOL b;
5845 switch(leftvt)
5846 {
5847 case VT_I1: if (V_I1(left) == -1) resvt = VT_NULL; break;
5848 case VT_UI1: if (V_UI1(left) == 0xff) resvt = VT_NULL; break;
5849 case VT_I2: if (V_I2(left) == -1) resvt = VT_NULL; break;
5850 case VT_UI2: if (V_UI2(left) == 0xffff) resvt = VT_NULL; break;
5851 case VT_INT: if (V_INT(left) == -1) resvt = VT_NULL; break;
5852 case VT_UINT: if (V_UINT(left) == ~0u) resvt = VT_NULL; break;
5853 case VT_I4: if (V_I4(left) == -1) resvt = VT_NULL; break;
5854 case VT_UI4: if (V_UI4(left) == ~0u) resvt = VT_NULL; break;
5855 case VT_I8: if (V_I8(left) == -1) resvt = VT_NULL; break;
5856 case VT_UI8: if (V_UI8(left) == ~(ULONGLONG)0) resvt = VT_NULL; break;
5857 case VT_BOOL: if (V_BOOL(left) == VARIANT_TRUE) resvt = VT_NULL; break;
5858 case VT_R4: if (V_R4(left) == -1.0) resvt = VT_NULL; break;
5859 case VT_R8: if (V_R8(left) == -1.0) resvt = VT_NULL; break;
5860 case VT_CY: if (V_CY(left).int64 == -1) resvt = VT_NULL; break;
5861 case VT_DECIMAL:
5862 if (DEC_HI32(&V_DECIMAL(left)) == 0xffffffff)
5863 resvt = VT_NULL;
5864 break;
5865 case VT_BSTR:
5866 hres = VarBoolFromStr(V_BSTR(left),LOCALE_USER_DEFAULT, VAR_LOCALBOOL, &b);
5867 if (FAILED(hres)) goto VarImp_Exit;
5868 else if (b == VARIANT_TRUE)
5869 resvt = VT_NULL;
5870 }
5871 if (resvt == VT_NULL)
5872 {
5873 V_VT(result) = resvt;
5874 goto VarImp_Exit;
5875 }
5876 }
5877
5878 hres = VariantCopy(&lv, left);
5879 if (FAILED(hres)) goto VarImp_Exit;
5880
5881 if (rightvt == VT_NULL)
5882 {
5883 memset( &rv, 0, sizeof(rv) );
5884 V_VT(&rv) = resvt;
5885 }
5886 else
5887 {
5888 hres = VariantCopy(&rv, right);
5889 if (FAILED(hres)) goto VarImp_Exit;
5890 }
5891
5892 if (V_VT(&lv) == VT_BSTR &&
5893 FAILED(VarR8FromStr(V_BSTR(&lv),LOCALE_USER_DEFAULT, 0, &d)))
5894 hres = VariantChangeType(&lv,&lv,VARIANT_LOCALBOOL, VT_BOOL);
5895 if (SUCCEEDED(hres) && V_VT(&lv) != resvt)
5896 hres = VariantChangeType(&lv,&lv,0,resvt);
5897 if (FAILED(hres)) goto VarImp_Exit;
5898
5899 if (V_VT(&rv) == VT_BSTR &&
5900 FAILED(VarR8FromStr(V_BSTR(&rv),LOCALE_USER_DEFAULT, 0, &d)))
5901 hres = VariantChangeType(&rv, &rv,VARIANT_LOCALBOOL, VT_BOOL);
5902 if (SUCCEEDED(hres) && V_VT(&rv) != resvt)
5903 hres = VariantChangeType(&rv, &rv, 0, resvt);
5904 if (FAILED(hres)) goto VarImp_Exit;
5905
5906 /* do the math */
5907 V_VT(result) = resvt;
5908 switch (resvt)
5909 {
5910 case VT_I8:
5911 V_I8(result) = (~V_I8(&lv)) | V_I8(&rv);
5912 break;
5913 case VT_I4:
5914 V_I4(result) = (~V_I4(&lv)) | V_I4(&rv);
5915 break;
5916 case VT_I2:
5917 V_I2(result) = (~V_I2(&lv)) | V_I2(&rv);
5918 break;
5919 case VT_UI1:
5920 V_UI1(result) = (~V_UI1(&lv)) | V_UI1(&rv);
5921 break;
5922 case VT_BOOL:
5923 V_BOOL(result) = (~V_BOOL(&lv)) | V_BOOL(&rv);
5924 break;
5925 default:
5926 FIXME("Couldn't perform bitwise implication on variant types %d,%d\n",
5927 leftvt,rightvt);
5928 }
5929
5930 VarImp_Exit:
5931
5932 VariantClear(&lv);
5933 VariantClear(&rv);
5934 VariantClear(&tempLeft);
5935 VariantClear(&tempRight);
5936
5937 return hres;
5938 }