Update piperead to Version 0.3 (Jan Roeloffzen)
[reactos.git] / reactos / lib / drivers / oskittcp / oskittcp / tcp_subr.c
1 /*
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993
3 * The Regents of the University of California. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by the University of
16 * California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 * @(#)tcp_subr.c 8.1 (Berkeley) 6/10/93
34 */
35
36 #include <sys/param.h>
37 #include <sys/proc.h>
38 #include <sys/systm.h>
39 #include <sys/kernel.h>
40 #include <sys/malloc.h>
41 #include <sys/mbuf.h>
42 #include <sys/socket.h>
43 #include <sys/socketvar.h>
44 #include <sys/protosw.h>
45 #include <sys/errno.h>
46 #include <sys/queue.h>
47
48 #include <net/route.h>
49 #include <net/if.h>
50
51 #include <netinet/in.h>
52 #include <netinet/in_systm.h>
53 #include <netinet/ip.h>
54 #include <netinet/in_pcb.h>
55 #include <netinet/in_var.h>
56 #include <netinet/ip_var.h>
57 #include <netinet/ip_icmp.h>
58 #include <netinet/tcp.h>
59 #include <netinet/tcp_fsm.h>
60 #include <netinet/tcp_seq.h>
61 #include <netinet/tcp_timer.h>
62 #include <netinet/tcp_var.h>
63 #include <netinet/tcpip.h>
64 #ifdef TCPDEBUG
65 #include <netinet/tcp_debug.h>
66 #endif
67 #include <oskittcp.h>
68
69 /* patchable/settable parameters for tcp */
70 int tcp_mssdflt = TCP_MSS;
71 int tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
72 int tcp_do_rfc1323 = 1;
73 int tcp_do_rfc1644 = 1;
74 static void tcp_cleartaocache(void);
75
76 /*
77 * Target size of TCP PCB hash table. Will be rounded down to a prime
78 * number.
79 */
80 #ifndef TCBHASHSIZE
81 #define TCBHASHSIZE 128
82 #endif
83
84 /*
85 * Tcp initialization
86 */
87 void
88 tcp_init()
89 {
90
91 tcp_iss = boottime.tv_sec; /* wrong */
92 tcp_ccgen = 1;
93 tcp_cleartaocache();
94 LIST_INIT(&tcb);
95 tcbinfo.listhead = &tcb;
96 tcbinfo.hashbase = phashinit(TCBHASHSIZE, M_PCB, &tcbinfo.hashsize);
97 if (max_protohdr < sizeof(struct tcpiphdr))
98 max_protohdr = sizeof(struct tcpiphdr);
99 if (max_linkhdr + sizeof(struct tcpiphdr) > MHLEN)
100 panic("tcp_init");
101 }
102
103 /*
104 * Create template to be used to send tcp packets on a connection.
105 * Call after host entry created, allocates an mbuf and fills
106 * in a skeletal tcp/ip header, minimizing the amount of work
107 * necessary when the connection is used.
108 */
109 struct tcpiphdr *
110 tcp_template(tp)
111 struct tcpcb *tp;
112 {
113 register struct inpcb *inp = tp->t_inpcb;
114 register struct mbuf *m;
115 register struct tcpiphdr *n;
116
117 if ((n = tp->t_template) == 0) {
118 m = m_get(M_DONTWAIT, MT_HEADER);
119 OS_DbgPrint(OSK_MID_TRACE,("tp->t_template = %x\n", m));
120 if (m == NULL)
121 return (0);
122 m->m_len = sizeof (struct tcpiphdr);
123 n = mtod(m, struct tcpiphdr *);
124 }
125 n->ti_next = n->ti_prev = 0;
126 n->ti_x1 = 0;
127 n->ti_pr = IPPROTO_TCP;
128 n->ti_len = htons(sizeof (struct tcpiphdr) - sizeof (struct ip));
129 n->ti_src = inp->inp_laddr;
130 OS_DbgPrint(OSK_MID_TRACE,("INP_LADDR = %x\n", n->ti_src));
131 n->ti_dst = inp->inp_faddr;
132 n->ti_sport = inp->inp_lport;
133 n->ti_dport = inp->inp_fport;
134 n->ti_seq = 0;
135 n->ti_ack = 0;
136 n->ti_x2 = 0;
137 n->ti_off = 5;
138 n->ti_flags = 0;
139 n->ti_win = 0;
140 n->ti_sum = 0;
141 n->ti_urp = 0;
142 return (n);
143 }
144
145 /*
146 * Send a single message to the TCP at address specified by
147 * the given TCP/IP header. If m == 0, then we make a copy
148 * of the tcpiphdr at ti and send directly to the addressed host.
149 * This is used to force keep alive messages out using the TCP
150 * template for a connection tp->t_template. If flags are given
151 * then we send a message back to the TCP which originated the
152 * segment ti, and discard the mbuf containing it and any other
153 * attached mbufs.
154 *
155 * In any case the ack and sequence number of the transmitted
156 * segment are as specified by the parameters.
157 */
158 void
159 tcp_respond(tp, ti, m, ack, seq, flags)
160 struct tcpcb *tp;
161 register struct tcpiphdr *ti;
162 register struct mbuf *m;
163 tcp_seq ack, seq;
164 int flags;
165 {
166 struct mbuf *n;
167 register int tlen;
168 int win = 0;
169 struct route *ro = 0;
170
171 if (tp) {
172 win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
173 ro = &tp->t_inpcb->inp_route;
174 }
175 if (m == 0) {
176 m = m_gethdr(M_DONTWAIT, MT_HEADER);
177 if (m == NULL)
178 return;
179 #ifdef TCP_COMPAT_42
180 tlen = 1;
181 #else
182 tlen = 0;
183 #endif
184 m->m_data += max_linkhdr;
185 *mtod(m, struct tcpiphdr *) = *ti;
186 ti = mtod(m, struct tcpiphdr *);
187 flags = TH_ACK;
188 } else {
189 m_freem(m->m_next);
190 m->m_next = 0;
191 m->m_data = (caddr_t)ti;
192 m->m_len = sizeof (struct tcpiphdr);
193 tlen = 0;
194 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
195 xchg(ti->ti_dst.s_addr, ti->ti_src.s_addr, u_long);
196 xchg(ti->ti_dport, ti->ti_sport, u_short);
197 #undef xchg
198 }
199 ti->ti_len = htons((u_short)(sizeof (struct tcphdr) + tlen));
200 tlen += sizeof (struct tcpiphdr);
201 m->m_len = tlen;
202 m->m_pkthdr.len = tlen;
203 m->m_pkthdr.rcvif = (struct ifnet *) 0;
204 ti->ti_next = ti->ti_prev = 0;
205 ti->ti_x1 = 0;
206 ti->ti_seq = htonl(seq);
207 ti->ti_ack = htonl(ack);
208 ti->ti_x2 = 0;
209 ti->ti_off = sizeof (struct tcphdr) >> 2;
210 ti->ti_flags = flags;
211 if (tp)
212 ti->ti_win = htons((u_short) (win >> tp->rcv_scale));
213 else
214 ti->ti_win = htons((u_short)win);
215 ti->ti_urp = 0;
216 ti->ti_sum = 0;
217 ti->ti_sum = in_cksum(m, tlen);
218 ((struct ip *)ti)->ip_len = tlen;
219 ((struct ip *)ti)->ip_ttl = ip_defttl;
220 #ifdef TCPDEBUG
221 if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
222 tcp_trace(TA_OUTPUT, 0, tp, ti, 0);
223 #endif
224 (void) ip_output(m, NULL, ro, 0, NULL);
225 #ifdef __REACTOS__
226 /* We allocated m, so we are responsible for freeing it. If the mbuf
227 contains a pointer to an external datablock, we (or rather, m_copy)
228 didn't allocate it but pointed it to the data to send. So we have
229 to cheat a little bit and keep M_FREE from freeing the external
230 data block */
231 while (NULL != m) {
232 m->m_flags &= ~M_EXT;
233 MFREE(m, n);
234 m = n;
235 }
236 #endif
237 }
238
239 /*
240 * Create a new TCP control block, making an
241 * empty reassembly queue and hooking it to the argument
242 * protocol control block.
243 */
244 struct tcpcb *
245 tcp_newtcpcb(inp)
246 struct inpcb *inp;
247 {
248 register struct tcpcb *tp;
249
250 tp = malloc(sizeof(*tp), M_PCB, M_NOWAIT);
251 if (tp == NULL)
252 return ((struct tcpcb *)0);
253 bzero((char *) tp, sizeof(struct tcpcb));
254 tp->seg_next = tp->seg_prev = (struct tcpiphdr *)tp;
255 tp->t_maxseg = tp->t_maxopd = tcp_mssdflt;
256
257 if (tcp_do_rfc1323)
258 tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
259 if (tcp_do_rfc1644)
260 tp->t_flags |= TF_REQ_CC;
261 tp->t_inpcb = inp;
262 /*
263 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
264 * rtt estimate. Set rttvar so that srtt + 2 * rttvar gives
265 * reasonable initial retransmit time.
266 */
267 tp->t_srtt = TCPTV_SRTTBASE;
268 tp->t_rttvar = tcp_rttdflt * PR_SLOWHZ << 2;
269 tp->t_rttmin = TCPTV_MIN;
270 TCPT_RANGESET(tp->t_rxtcur,
271 ((TCPTV_SRTTBASE >> 2) + (TCPTV_SRTTDFLT << 2)) >> 1,
272 TCPTV_MIN, TCPTV_REXMTMAX);
273 tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
274 tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
275 inp->inp_ip.ip_ttl = ip_defttl;
276 inp->inp_ppcb = (caddr_t)tp;
277 return (tp);
278 }
279
280 /*
281 * Drop a TCP connection, reporting
282 * the specified error. If connection is synchronized,
283 * then send a RST to peer.
284 */
285 struct tcpcb *
286 tcp_drop(tp, errno)
287 register struct tcpcb *tp;
288 int errno;
289 {
290 struct socket *so = tp->t_inpcb->inp_socket;
291
292 if (TCPS_HAVERCVDSYN(tp->t_state)) {
293 tp->t_state = TCPS_CLOSED;
294 (void) tcp_output(tp);
295 tcpstat.tcps_drops++;
296 } else
297 tcpstat.tcps_conndrops++;
298 if (errno == ETIMEDOUT && tp->t_softerror)
299 errno = tp->t_softerror;
300 so->so_error = errno;
301 return (tcp_close(tp));
302 }
303
304 /*
305 * Close a TCP control block:
306 * discard all space held by the tcp
307 * discard internet protocol block
308 * wake up any sleepers
309 */
310 struct tcpcb *
311 tcp_close(tp)
312 register struct tcpcb *tp;
313 {
314 register struct tcpiphdr *t;
315 struct inpcb *inp = tp->t_inpcb;
316 struct socket *so = inp->inp_socket;
317 register struct mbuf *m;
318 #ifdef RTV_RTT
319 register struct rtentry *rt;
320
321 /*
322 * If we got enough samples through the srtt filter,
323 * save the rtt and rttvar in the routing entry.
324 * 'Enough' is arbitrarily defined as the 16 samples.
325 * 16 samples is enough for the srtt filter to converge
326 * to within 5% of the correct value; fewer samples and
327 * we could save a very bogus rtt.
328 *
329 * Don't update the default route's characteristics and don't
330 * update anything that the user "locked".
331 */
332 if (tp->t_rttupdated >= 16 &&
333 (rt = inp->inp_route.ro_rt) &&
334 ((struct sockaddr_in *)rt_key(rt))->sin_addr.s_addr != INADDR_ANY) {
335 register u_long i = 0;
336
337 if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
338 i = tp->t_srtt *
339 (RTM_RTTUNIT / (PR_SLOWHZ * TCP_RTT_SCALE));
340 if (rt->rt_rmx.rmx_rtt && i)
341 /*
342 * filter this update to half the old & half
343 * the new values, converting scale.
344 * See route.h and tcp_var.h for a
345 * description of the scaling constants.
346 */
347 rt->rt_rmx.rmx_rtt =
348 (rt->rt_rmx.rmx_rtt + i) / 2;
349 else
350 rt->rt_rmx.rmx_rtt = i;
351 tcpstat.tcps_cachedrtt++;
352 }
353 if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
354 i = tp->t_rttvar *
355 (RTM_RTTUNIT / (PR_SLOWHZ * TCP_RTTVAR_SCALE));
356 if (rt->rt_rmx.rmx_rttvar && i)
357 rt->rt_rmx.rmx_rttvar =
358 (rt->rt_rmx.rmx_rttvar + i) / 2;
359 else
360 rt->rt_rmx.rmx_rttvar = i;
361 tcpstat.tcps_cachedrttvar++;
362 }
363 /*
364 * update the pipelimit (ssthresh) if it has been updated
365 * already or if a pipesize was specified & the threshhold
366 * got below half the pipesize. I.e., wait for bad news
367 * before we start updating, then update on both good
368 * and bad news.
369 */
370 if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
371 ((i = tp->snd_ssthresh) != 0) && rt->rt_rmx.rmx_ssthresh) ||
372 i < (rt->rt_rmx.rmx_sendpipe / 2)) {
373 /*
374 * convert the limit from user data bytes to
375 * packets then to packet data bytes.
376 */
377 i = (i + tp->t_maxseg / 2) / tp->t_maxseg;
378 if (i < 2)
379 i = 2;
380 i *= (u_long)(tp->t_maxseg + sizeof (struct tcpiphdr));
381 if (rt->rt_rmx.rmx_ssthresh)
382 rt->rt_rmx.rmx_ssthresh =
383 (rt->rt_rmx.rmx_ssthresh + i) / 2;
384 else
385 rt->rt_rmx.rmx_ssthresh = i;
386 tcpstat.tcps_cachedssthresh++;
387 }
388 }
389 #endif /* RTV_RTT */
390 /* free the reassembly queue, if any */
391 t = tp->seg_next;
392 while (t != (struct tcpiphdr *)tp) {
393 t = (struct tcpiphdr *)t->ti_next;
394 m = REASS_MBUF((struct tcpiphdr *)t->ti_prev);
395 remque(t->ti_prev);
396 m_freem(m);
397 }
398 if (tp->t_template)
399 (void) m_free(dtom(tp->t_template));
400 free(tp, M_PCB);
401 inp->inp_ppcb = 0;
402 soisdisconnected(so);
403 in_pcbdetach(inp);
404 tcpstat.tcps_closed++;
405 return ((struct tcpcb *)0);
406 }
407
408 void
409 tcp_drain()
410 {
411
412 }
413
414 /*
415 * Notify a tcp user of an asynchronous error;
416 * store error as soft error, but wake up user
417 * (for now, won't do anything until can select for soft error).
418 */
419 void
420 tcp_notify(inp, error)
421 struct inpcb *inp;
422 int error;
423 {
424 register struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
425 register struct socket *so = inp->inp_socket;
426
427 /*
428 * Ignore some errors if we are hooked up.
429 * If connection hasn't completed, has retransmitted several times,
430 * and receives a second error, give up now. This is better
431 * than waiting a long time to establish a connection that
432 * can never complete.
433 */
434 if (tp->t_state == TCPS_ESTABLISHED &&
435 (error == EHOSTUNREACH || error == ENETUNREACH ||
436 error == EHOSTDOWN)) {
437 return;
438 } else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
439 tp->t_softerror)
440 so->so_error = error;
441 else
442 tp->t_softerror = error;
443 wakeup( so, (caddr_t) &so->so_timeo);
444 sorwakeup(so);
445 sowwakeup(so);
446 }
447
448 void
449 tcp_ctlinput(cmd, sa, ip)
450 int cmd;
451 struct sockaddr *sa;
452 register struct ip *ip;
453 {
454 register struct tcphdr *th;
455 void (*notify) __P((struct inpcb *, int)) = tcp_notify;
456
457 if (cmd == PRC_QUENCH)
458 notify = tcp_quench;
459 #if 1
460 else if (cmd == PRC_MSGSIZE)
461 notify = tcp_mtudisc;
462 #endif
463 else if (!PRC_IS_REDIRECT(cmd) &&
464 ((unsigned)cmd > PRC_NCMDS || inetctlerrmap[cmd] == 0))
465 return;
466 if (ip) {
467 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
468 in_pcbnotify(&tcb, sa, th->th_dport, ip->ip_src, th->th_sport,
469 cmd, notify);
470 } else
471 in_pcbnotify(&tcb, sa, 0, zeroin_addr, 0, cmd, notify);
472 }
473
474 /*
475 * When a source quench is received, close congestion window
476 * to one segment. We will gradually open it again as we proceed.
477 */
478 void
479 tcp_quench(inp, errno)
480 struct inpcb *inp;
481 int errno;
482 {
483 struct tcpcb *tp = intotcpcb(inp);
484
485 if (tp)
486 tp->snd_cwnd = tp->t_maxseg;
487 }
488
489 #if 1
490 /*
491 * When `need fragmentation' ICMP is received, update our idea of the MSS
492 * based on the new value in the route. Also nudge TCP to send something,
493 * since we know the packet we just sent was dropped.
494 * This duplicates some code in the tcp_mss() function in tcp_input.c.
495 */
496 void
497 tcp_mtudisc(inp, errno)
498 struct inpcb *inp;
499 int errno;
500 {
501 struct tcpcb *tp = intotcpcb(inp);
502 struct rtentry *rt;
503 struct rmxp_tao *taop;
504 struct socket *so = inp->inp_socket;
505 int offered;
506 int mss;
507
508 if (tp) {
509 rt = tcp_rtlookup(inp);
510 if (!rt || !rt->rt_rmx.rmx_mtu) {
511 tp->t_maxopd = tp->t_maxseg = tcp_mssdflt;
512 return;
513 }
514 taop = rmx_taop(rt->rt_rmx);
515 offered = taop->tao_mssopt;
516 mss = rt->rt_rmx.rmx_mtu - sizeof(struct tcpiphdr);
517 if (offered)
518 mss = min(mss, offered);
519 /*
520 * XXX - The above conditional probably violates the TCP
521 * spec. The problem is that, since we don't know the
522 * other end's MSS, we are supposed to use a conservative
523 * default. But, if we do that, then MTU discovery will
524 * never actually take place, because the conservative
525 * default is much less than the MTUs typically seen
526 * on the Internet today. For the moment, we'll sweep
527 * this under the carpet.
528 *
529 * The conservative default might not actually be a problem
530 * if the only case this occurs is when sending an initial
531 * SYN with options and data to a host we've never talked
532 * to before. Then, they will reply with an MSS value which
533 * will get recorded and the new parameters should get
534 * recomputed. For Further Study.
535 */
536 if (tp->t_maxopd <= mss)
537 return;
538 tp->t_maxopd = mss;
539
540 if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
541 (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
542 mss -= TCPOLEN_TSTAMP_APPA;
543 if ((tp->t_flags & (TF_REQ_CC|TF_NOOPT)) == TF_REQ_CC &&
544 (tp->t_flags & TF_RCVD_CC) == TF_RCVD_CC)
545 mss -= TCPOLEN_CC_APPA;
546 #if (MCLBYTES & (MCLBYTES - 1)) == 0
547 if (mss > MCLBYTES)
548 mss &= ~(MCLBYTES-1);
549 #else
550 if (mss > MCLBYTES)
551 mss = mss / MCLBYTES * MCLBYTES;
552 #endif
553 if (so->so_snd.sb_hiwat < mss)
554 mss = so->so_snd.sb_hiwat;
555
556 tp->t_maxseg = mss;
557
558 tcpstat.tcps_mturesent++;
559 tp->t_rtt = 0;
560 tp->snd_nxt = tp->snd_una;
561 tcp_output(tp);
562 }
563 }
564 #endif
565
566 /*
567 * Look-up the routing entry to the peer of this inpcb. If no route
568 * is found and it cannot be allocated the return NULL. This routine
569 * is called by TCP routines that access the rmx structure and by tcp_mss
570 * to get the interface MTU.
571 */
572 struct rtentry *
573 tcp_rtlookup(inp)
574 struct inpcb *inp;
575 {
576 struct route *ro;
577 struct rtentry *rt;
578
579 ro = &inp->inp_route;
580 rt = ro->ro_rt;
581 if (rt == NULL || !(rt->rt_flags & RTF_UP)) {
582 /* No route yet, so try to acquire one */
583 if (inp->inp_faddr.s_addr != INADDR_ANY) {
584 ro->ro_dst.sa_family = AF_INET;
585 ro->ro_dst.sa_len = sizeof(ro->ro_dst);
586 ((struct sockaddr_in *) &ro->ro_dst)->sin_addr =
587 inp->inp_faddr;
588 rtalloc(ro);
589 rt = ro->ro_rt;
590 }
591 }
592 return rt;
593 }
594
595 /*
596 * Return a pointer to the cached information about the remote host.
597 * The cached information is stored in the protocol specific part of
598 * the route metrics.
599 */
600 struct rmxp_tao *
601 tcp_gettaocache(inp)
602 struct inpcb *inp;
603 {
604 struct rtentry *rt = tcp_rtlookup(inp);
605
606 /* Make sure this is a host route and is up. */
607 if (rt == NULL ||
608 (rt->rt_flags & (RTF_UP|RTF_HOST)) != (RTF_UP|RTF_HOST))
609 return NULL;
610
611 return rmx_taop(rt->rt_rmx);
612 }
613
614 /*
615 * Clear all the TAO cache entries, called from tcp_init.
616 *
617 * XXX
618 * This routine is just an empty one, because we assume that the routing
619 * routing tables are initialized at the same time when TCP, so there is
620 * nothing in the cache left over.
621 */
622 static void
623 tcp_cleartaocache(void)
624 { }