move mesa32 over to new dir
[reactos.git] / reactos / lib / mesa32 / src / swrast / s_linetemp.h
1 /*
2 * Mesa 3-D graphics library
3 * Version: 6.3
4 *
5 * Copyright (C) 1999-2004 Brian Paul All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included
15 * in all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
21 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25
26 /*
27 * Line Rasterizer Template
28 *
29 * This file is #include'd to generate custom line rasterizers.
30 *
31 * The following macros may be defined to indicate what auxillary information
32 * must be interplated along the line:
33 * INTERP_Z - if defined, interpolate Z values
34 * INTERP_FOG - if defined, interpolate FOG values
35 * INTERP_RGBA - if defined, interpolate RGBA values
36 * INTERP_SPEC - if defined, interpolate specular RGB values
37 * INTERP_INDEX - if defined, interpolate color index values
38 * INTERP_TEX - if defined, interpolate unit 0 texcoords
39 * INTERP_MULTITEX - if defined, interpolate multi-texcoords
40 *
41 * When one can directly address pixels in the color buffer the following
42 * macros can be defined and used to directly compute pixel addresses during
43 * rasterization (see pixelPtr):
44 * PIXEL_TYPE - the datatype of a pixel (GLubyte, GLushort, GLuint)
45 * BYTES_PER_ROW - number of bytes per row in the color buffer
46 * PIXEL_ADDRESS(X,Y) - returns the address of pixel at (X,Y) where
47 * Y==0 at bottom of screen and increases upward.
48 *
49 * Similarly, for direct depth buffer access, this type is used for depth
50 * buffer addressing:
51 * DEPTH_TYPE - either GLushort or GLuint
52 *
53 * Optionally, one may provide one-time setup code
54 * SETUP_CODE - code which is to be executed once per line
55 *
56 * To actually "plot" each pixel the PLOT macro must be defined...
57 * PLOT(X,Y) - code to plot a pixel. Example:
58 * if (Z < *zPtr) {
59 * *zPtr = Z;
60 * color = pack_rgb( FixedToInt(r0), FixedToInt(g0),
61 * FixedToInt(b0) );
62 * put_pixel( X, Y, color );
63 * }
64 *
65 * This code was designed for the origin to be in the lower-left corner.
66 *
67 */
68
69
70 static void
71 NAME( GLcontext *ctx, const SWvertex *vert0, const SWvertex *vert1 )
72 {
73 struct sw_span span;
74 GLuint interpFlags = 0;
75 GLint x0 = (GLint) vert0->win[0];
76 GLint x1 = (GLint) vert1->win[0];
77 GLint y0 = (GLint) vert0->win[1];
78 GLint y1 = (GLint) vert1->win[1];
79 GLint dx, dy;
80 GLint numPixels;
81 GLint xstep, ystep;
82 #if defined(DEPTH_TYPE)
83 const GLint depthBits = ctx->Visual.depthBits;
84 const GLint fixedToDepthShift = depthBits <= 16 ? FIXED_SHIFT : 0;
85 struct gl_renderbuffer *zrb = ctx->DrawBuffer->Attachment[BUFFER_DEPTH].Renderbuffer;
86 #define FixedToDepth(F) ((F) >> fixedToDepthShift)
87 GLint zPtrXstep, zPtrYstep;
88 DEPTH_TYPE *zPtr;
89 #elif defined(INTERP_Z)
90 const GLint depthBits = ctx->Visual.depthBits;
91 #endif
92 #ifdef PIXEL_ADDRESS
93 PIXEL_TYPE *pixelPtr;
94 GLint pixelXstep, pixelYstep;
95 #endif
96
97 #ifdef SETUP_CODE
98 SETUP_CODE
99 #endif
100
101 /* Cull primitives with malformed coordinates.
102 */
103 {
104 GLfloat tmp = vert0->win[0] + vert0->win[1]
105 + vert1->win[0] + vert1->win[1];
106 if (IS_INF_OR_NAN(tmp))
107 return;
108 }
109
110 /*
111 printf("%s():\n", __FUNCTION__);
112 printf(" (%f, %f, %f) -> (%f, %f, %f)\n",
113 vert0->win[0], vert0->win[1], vert0->win[2],
114 vert1->win[0], vert1->win[1], vert1->win[2]);
115 printf(" (%d, %d, %d) -> (%d, %d, %d)\n",
116 vert0->color[0], vert0->color[1], vert0->color[2],
117 vert1->color[0], vert1->color[1], vert1->color[2]);
118 printf(" (%d, %d, %d) -> (%d, %d, %d)\n",
119 vert0->specular[0], vert0->specular[1], vert0->specular[2],
120 vert1->specular[0], vert1->specular[1], vert1->specular[2]);
121 */
122
123 /*
124 * Despite being clipped to the view volume, the line's window coordinates
125 * may just lie outside the window bounds. That is, if the legal window
126 * coordinates are [0,W-1][0,H-1], it's possible for x==W and/or y==H.
127 * This quick and dirty code nudges the endpoints inside the window if
128 * necessary.
129 */
130 #ifdef CLIP_HACK
131 {
132 GLint w = ctx->DrawBuffer->Width;
133 GLint h = ctx->DrawBuffer->Height;
134 if ((x0==w) | (x1==w)) {
135 if ((x0==w) & (x1==w))
136 return;
137 x0 -= x0==w;
138 x1 -= x1==w;
139 }
140 if ((y0==h) | (y1==h)) {
141 if ((y0==h) & (y1==h))
142 return;
143 y0 -= y0==h;
144 y1 -= y1==h;
145 }
146 }
147 #endif
148
149 dx = x1 - x0;
150 dy = y1 - y0;
151 if (dx == 0 && dy == 0)
152 return;
153
154 #ifdef DEPTH_TYPE
155 zPtr = (DEPTH_TYPE *) zrb->GetPointer(ctx, zrb, x0, y0);
156 #endif
157 #ifdef PIXEL_ADDRESS
158 pixelPtr = (PIXEL_TYPE *) PIXEL_ADDRESS(x0,y0);
159 #endif
160
161 if (dx<0) {
162 dx = -dx; /* make positive */
163 xstep = -1;
164 #ifdef DEPTH_TYPE
165 zPtrXstep = -((GLint)sizeof(DEPTH_TYPE));
166 #endif
167 #ifdef PIXEL_ADDRESS
168 pixelXstep = -((GLint)sizeof(PIXEL_TYPE));
169 #endif
170 }
171 else {
172 xstep = 1;
173 #ifdef DEPTH_TYPE
174 zPtrXstep = ((GLint)sizeof(DEPTH_TYPE));
175 #endif
176 #ifdef PIXEL_ADDRESS
177 pixelXstep = ((GLint)sizeof(PIXEL_TYPE));
178 #endif
179 }
180
181 if (dy<0) {
182 dy = -dy; /* make positive */
183 ystep = -1;
184 #ifdef DEPTH_TYPE
185 zPtrYstep = -((GLint) (ctx->DrawBuffer->Width * sizeof(DEPTH_TYPE)));
186 #endif
187 #ifdef PIXEL_ADDRESS
188 pixelYstep = BYTES_PER_ROW;
189 #endif
190 }
191 else {
192 ystep = 1;
193 #ifdef DEPTH_TYPE
194 zPtrYstep = (GLint) (ctx->DrawBuffer->Width * sizeof(DEPTH_TYPE));
195 #endif
196 #ifdef PIXEL_ADDRESS
197 pixelYstep = -(BYTES_PER_ROW);
198 #endif
199 }
200
201 ASSERT(dx >= 0);
202 ASSERT(dy >= 0);
203
204 numPixels = MAX2(dx, dy);
205
206 /*
207 * Span setup: compute start and step values for all interpolated values.
208 */
209 #ifdef INTERP_RGBA
210 interpFlags |= SPAN_RGBA;
211 if (ctx->Light.ShadeModel == GL_SMOOTH) {
212 span.red = ChanToFixed(vert0->color[0]);
213 span.green = ChanToFixed(vert0->color[1]);
214 span.blue = ChanToFixed(vert0->color[2]);
215 span.alpha = ChanToFixed(vert0->color[3]);
216 span.redStep = (ChanToFixed(vert1->color[0]) - span.red ) / numPixels;
217 span.greenStep = (ChanToFixed(vert1->color[1]) - span.green) / numPixels;
218 span.blueStep = (ChanToFixed(vert1->color[2]) - span.blue ) / numPixels;
219 span.alphaStep = (ChanToFixed(vert1->color[3]) - span.alpha) / numPixels;
220 }
221 else {
222 span.red = ChanToFixed(vert1->color[0]);
223 span.green = ChanToFixed(vert1->color[1]);
224 span.blue = ChanToFixed(vert1->color[2]);
225 span.alpha = ChanToFixed(vert1->color[3]);
226 span.redStep = 0;
227 span.greenStep = 0;
228 span.blueStep = 0;
229 span.alphaStep = 0;
230 }
231 #endif
232 #ifdef INTERP_SPEC
233 interpFlags |= SPAN_SPEC;
234 if (ctx->Light.ShadeModel == GL_SMOOTH) {
235 span.specRed = ChanToFixed(vert0->specular[0]);
236 span.specGreen = ChanToFixed(vert0->specular[1]);
237 span.specBlue = ChanToFixed(vert0->specular[2]);
238 span.specRedStep = (ChanToFixed(vert1->specular[0]) - span.specRed) / numPixels;
239 span.specGreenStep = (ChanToFixed(vert1->specular[1]) - span.specBlue) / numPixels;
240 span.specBlueStep = (ChanToFixed(vert1->specular[2]) - span.specGreen) / numPixels;
241 }
242 else {
243 span.specRed = ChanToFixed(vert1->specular[0]);
244 span.specGreen = ChanToFixed(vert1->specular[1]);
245 span.specBlue = ChanToFixed(vert1->specular[2]);
246 span.specRedStep = 0;
247 span.specGreenStep = 0;
248 span.specBlueStep = 0;
249 }
250 #endif
251 #ifdef INTERP_INDEX
252 interpFlags |= SPAN_INDEX;
253 if (ctx->Light.ShadeModel == GL_SMOOTH) {
254 span.index = FloatToFixed(vert0->index);
255 span.indexStep = FloatToFixed(vert1->index - vert0->index) / numPixels;
256 }
257 else {
258 span.index = FloatToFixed(vert1->index);
259 span.indexStep = 0;
260 }
261 #endif
262 #if defined(INTERP_Z) || defined(DEPTH_TYPE)
263 interpFlags |= SPAN_Z;
264 {
265 if (depthBits <= 16) {
266 span.z = FloatToFixed(vert0->win[2]) + FIXED_HALF;
267 span.zStep = FloatToFixed(vert1->win[2] - vert0->win[2]) / numPixels;
268 }
269 else {
270 /* don't use fixed point */
271 span.z = (GLint) vert0->win[2];
272 span.zStep = (GLint) ((vert1->win[2] - vert0->win[2]) / numPixels);
273 }
274 }
275 #endif
276 #ifdef INTERP_FOG
277 interpFlags |= SPAN_FOG;
278 span.fog = vert0->fog;
279 span.fogStep = (vert1->fog - vert0->fog) / numPixels;
280 #endif
281 #ifdef INTERP_TEX
282 interpFlags |= SPAN_TEXTURE;
283 {
284 const GLfloat invw0 = vert0->win[3];
285 const GLfloat invw1 = vert1->win[3];
286 const GLfloat invLen = 1.0F / numPixels;
287 GLfloat ds, dt, dr, dq;
288 span.tex[0][0] = invw0 * vert0->texcoord[0][0];
289 span.tex[0][1] = invw0 * vert0->texcoord[0][1];
290 span.tex[0][2] = invw0 * vert0->texcoord[0][2];
291 span.tex[0][3] = invw0 * vert0->texcoord[0][3];
292 ds = (invw1 * vert1->texcoord[0][0]) - span.tex[0][0];
293 dt = (invw1 * vert1->texcoord[0][1]) - span.tex[0][1];
294 dr = (invw1 * vert1->texcoord[0][2]) - span.tex[0][2];
295 dq = (invw1 * vert1->texcoord[0][3]) - span.tex[0][3];
296 span.texStepX[0][0] = ds * invLen;
297 span.texStepX[0][1] = dt * invLen;
298 span.texStepX[0][2] = dr * invLen;
299 span.texStepX[0][3] = dq * invLen;
300 span.texStepY[0][0] = 0.0F;
301 span.texStepY[0][1] = 0.0F;
302 span.texStepY[0][2] = 0.0F;
303 span.texStepY[0][3] = 0.0F;
304 }
305 #endif
306 #ifdef INTERP_MULTITEX
307 interpFlags |= SPAN_TEXTURE;
308 {
309 const GLfloat invLen = 1.0F / numPixels;
310 GLuint u;
311 for (u = 0; u < ctx->Const.MaxTextureUnits; u++) {
312 if (ctx->Texture.Unit[u]._ReallyEnabled) {
313 const GLfloat invw0 = vert0->win[3];
314 const GLfloat invw1 = vert1->win[3];
315 GLfloat ds, dt, dr, dq;
316 span.tex[u][0] = invw0 * vert0->texcoord[u][0];
317 span.tex[u][1] = invw0 * vert0->texcoord[u][1];
318 span.tex[u][2] = invw0 * vert0->texcoord[u][2];
319 span.tex[u][3] = invw0 * vert0->texcoord[u][3];
320 ds = (invw1 * vert1->texcoord[u][0]) - span.tex[u][0];
321 dt = (invw1 * vert1->texcoord[u][1]) - span.tex[u][1];
322 dr = (invw1 * vert1->texcoord[u][2]) - span.tex[u][2];
323 dq = (invw1 * vert1->texcoord[u][3]) - span.tex[u][3];
324 span.texStepX[u][0] = ds * invLen;
325 span.texStepX[u][1] = dt * invLen;
326 span.texStepX[u][2] = dr * invLen;
327 span.texStepX[u][3] = dq * invLen;
328 span.texStepY[u][0] = 0.0F;
329 span.texStepY[u][1] = 0.0F;
330 span.texStepY[u][2] = 0.0F;
331 span.texStepY[u][3] = 0.0F;
332 }
333 }
334 }
335 #endif
336
337 INIT_SPAN(span, GL_LINE, numPixels, interpFlags, SPAN_XY);
338
339 /* Need these for fragment prog texcoord interpolation */
340 span.w = 1.0F;
341 span.dwdx = 0.0F;
342 span.dwdy = 0.0F;
343
344 /*
345 * Draw
346 */
347
348 if (dx > dy) {
349 /*** X-major line ***/
350 GLint i;
351 GLint errorInc = dy+dy;
352 GLint error = errorInc-dx;
353 GLint errorDec = error-dx;
354
355 for (i = 0; i < dx; i++) {
356 #ifdef DEPTH_TYPE
357 GLdepth Z = FixedToDepth(span.z);
358 #endif
359 #ifdef PLOT
360 PLOT( x0, y0 );
361 #else
362 span.array->x[i] = x0;
363 span.array->y[i] = y0;
364 #endif
365 x0 += xstep;
366 #ifdef DEPTH_TYPE
367 zPtr = (DEPTH_TYPE *) ((GLubyte*) zPtr + zPtrXstep);
368 span.z += span.zStep;
369 #endif
370 #ifdef PIXEL_ADDRESS
371 pixelPtr = (PIXEL_TYPE*) ((GLubyte*) pixelPtr + pixelXstep);
372 #endif
373 if (error<0) {
374 error += errorInc;
375 }
376 else {
377 error += errorDec;
378 y0 += ystep;
379 #ifdef DEPTH_TYPE
380 zPtr = (DEPTH_TYPE *) ((GLubyte*) zPtr + zPtrYstep);
381 #endif
382 #ifdef PIXEL_ADDRESS
383 pixelPtr = (PIXEL_TYPE*) ((GLubyte*) pixelPtr + pixelYstep);
384 #endif
385 }
386 }
387 }
388 else {
389 /*** Y-major line ***/
390 GLint i;
391 GLint errorInc = dx+dx;
392 GLint error = errorInc-dy;
393 GLint errorDec = error-dy;
394
395 for (i=0;i<dy;i++) {
396 #ifdef DEPTH_TYPE
397 GLdepth Z = FixedToDepth(span.z);
398 #endif
399 #ifdef PLOT
400 PLOT( x0, y0 );
401 #else
402 span.array->x[i] = x0;
403 span.array->y[i] = y0;
404 #endif
405 y0 += ystep;
406 #ifdef DEPTH_TYPE
407 zPtr = (DEPTH_TYPE *) ((GLubyte*) zPtr + zPtrYstep);
408 span.z += span.zStep;
409 #endif
410 #ifdef PIXEL_ADDRESS
411 pixelPtr = (PIXEL_TYPE*) ((GLubyte*) pixelPtr + pixelYstep);
412 #endif
413 if (error<0) {
414 error += errorInc;
415 }
416 else {
417 error += errorDec;
418 x0 += xstep;
419 #ifdef DEPTH_TYPE
420 zPtr = (DEPTH_TYPE *) ((GLubyte*) zPtr + zPtrXstep);
421 #endif
422 #ifdef PIXEL_ADDRESS
423 pixelPtr = (PIXEL_TYPE*) ((GLubyte*) pixelPtr + pixelXstep);
424 #endif
425 }
426 }
427 }
428
429 #ifdef RENDER_SPAN
430 RENDER_SPAN( span );
431 #endif
432
433 (void)span;
434
435 }
436
437
438 #undef NAME
439 #undef INTERP_Z
440 #undef INTERP_FOG
441 #undef INTERP_RGBA
442 #undef INTERP_SPEC
443 #undef INTERP_TEX
444 #undef INTERP_MULTITEX
445 #undef INTERP_INDEX
446 #undef PIXEL_ADDRESS
447 #undef PIXEL_TYPE
448 #undef DEPTH_TYPE
449 #undef BYTES_PER_ROW
450 #undef SETUP_CODE
451 #undef PLOT
452 #undef CLIP_HACK
453 #undef FixedToDepth
454 #undef RENDER_SPAN